WO1999009631A1 - System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function - Google Patents

System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function Download PDF

Info

Publication number
WO1999009631A1
WO1999009631A1 PCT/JP1997/003758 JP9703758W WO9909631A1 WO 1999009631 A1 WO1999009631 A1 WO 1999009631A1 JP 9703758 W JP9703758 W JP 9703758W WO 9909631 A1 WO9909631 A1 WO 9909631A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage drop
reactor
power
distributed power
Prior art date
Application number
PCT/JP1997/003758
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Nishidai
Masakuni Asano
Noriaki Tokuda
Masaya Kikkawa
Original Assignee
Nissin Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co., Ltd. filed Critical Nissin Electric Co., Ltd.
Priority to CA002267304A priority Critical patent/CA2267304A1/en
Publication of WO1999009631A1 publication Critical patent/WO1999009631A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems

Definitions

  • the present invention relates to a system interconnection device used for interconnecting two electric power systems, such as a commercial power supply system and a private power generation system, for example, a system in which measures against instantaneous voltage drop due to a short circuit or the like are taken.
  • the present invention relates to an interconnection device, and to a distributed power supply device having an instantaneous voltage drop countermeasure function that is operated by being connected to a commercial power supply system by the interconnection device.
  • FIG. 9 is a diagram for explaining a basic interconnection configuration between the commercial power supply system and the private power generation system as described above.
  • the commercial power line ⁇ drawn into the customer is connected to the power receiving bus 2, and a number of distribution lines 3 connected to a general load are connected to the power receiving bus 2.
  • the power receiving bus 2 and the connection bus 5 are connected to each other by a bus connecting line 8 having a circuit breaker 7 interposed therebetween.
  • a fault such as a short circuit, a ground fault, or an open power receiving system occurs on the commercial power supply line 1 side, the breaker 7 is driven to be cut off by a relay (not shown).
  • the circuit breaker (not shown) of the transmission line that supplies power to the commercial power line 1 is opened, the private power generator 6 In this case, the operation is performed with the load of the customer who is a few times larger than the own capacity connected, and the private power generator 6 is overloaded and stopped, and eventually all loads are cut off State.
  • FIG. 10 a typical prior art system interconnection device 11 as shown in FIG. 10 has been put to practical use.
  • FIG. 10 the same parts as those in FIG. 9 described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the system interconnection device 11 is composed of two thyristors 12 and 13 connected in parallel with opposite polarities. During interconnection between buses 2 and 5, the gates of these thyristors 12 and 13 are driven by the output from the relay, and the thyristors 12 and 13 are conducting. At the time of the failure, the gates of the thyristors 12 and 13 are blocked, and the thyristors 12 and 13 are shut off.
  • the detection of the failure in driving the thyristors 12 and 13 is performed, for example, in a half cycle, and the breaking drive can be performed at the zero cross point in the subsequent half cycle. Therefore, when the DC offset current is considered, the bus 2 and the bus 5 can be cut off within one cycle (20 msec at 50 Hz) from the occurrence of the failure. However, during this time, a complete short-circuit current flows, It is inevitable that a large voltage drop will occur in the energy bus 5.
  • the time required for interruption between the buses 2 and 5 is shorter than that of the interconnection by the circuit breaker 7, and the in-house power generation device 6 is stopped. Can be avoided. However, an instantaneous voltage drop still occurs, which affects important loads connected to the kogine bus 5 such as a computer.
  • a conventional distributed power supply device that is connected to a system using the circuit breaker 7 is configured as shown in FIG. In FIG. 11, the portions corresponding to FIG. 9 described above are denoted by the same reference numerals.
  • This distributed power supply device is configured to include a diesel generator or a gas generator that constitutes a cogeneration system, which is an example of a so-called new energy power supply, as a private power generator 6. It is operated in parallel with the power supply system and AC. For example, an important load that occupies 60% to 70% of the private power generation capacity is connected to the distribution line 4 connected to the Koziene bus 5 of the distributed power system.
  • the private power generator 6 also includes an uninterruptible power supply called a secondary battery, a fuel cell, a photovoltaic power generation system, a flywheel, a wind power generation system, and a UPS, in addition to the diesel generator and the gas generator.
  • a secondary battery a fuel cell
  • a photovoltaic power generation system a flywheel
  • a wind power generation system a wind power generation system
  • UPS a wind power generation system
  • the circuit breaker 7 is installed in the distributed power supply system. Also, countermeasures against short-circuit current such as rear turtle may be taken as necessary according to the guidelines of the interconnection. However, if a failure such as ground fault or short circuit between phases occurs as shown in reference numeral 15 in the commercial power system, Flows, and a voltage drop occurs in the distributed power supply system.
  • the voltage of the commercial power supply line 1 is detected by a voltage transformer, and based on the detection result, the possibility of voltage drop is determined by an undervoltage relay, and a voltage drop below a predetermined set value is determined. Then, the circuit breaker 7 is configured to perform a breaking drive. Also, the interconnection current is detected by a current transformer, and from the detection result, whether or not the current can be increased is determined by an overcurrent relay.When an overcurrent of a predetermined set value or more is detected, the breaker 7 is shut off. In some cases, it is configured to drive.
  • FIG. 12 shows a voltage drop compensation range when a vacuum circuit breaker is used as the circuit breaker 7 and a range where there is no influence due to the instantaneous voltage drop of the load.
  • FIG. 12 shows a threshold value at which an influence is exerted for each load with respect to a voltage drop rate and a voltage drop duration, and reference numeral M 1 denotes a voltage drop compensation range by the vacuum circuit breaker. It is.
  • the distributed power supply unit shown in Fig. 11 has a power outage countermeasure for the important load by connecting the distributed power supply to the grid, but it is expected to have no effect on the instantaneous voltage drop. Can not do it. For this reason, some of the most important loads are conventionally provided with an uninterruptible power supply (UPS) as indicated by reference numeral 16.
  • UPS uninterruptible power supply
  • the electric power from the cogeneration bus 5 is AC / DC converted, rectified and smoothed by a charger, stored in a battery, and stored in the battery.
  • FIG. 13 in order to connect the distributed power supply device to the commercial power supply system, as shown in FIG. 13, the system interconnection device 11 shown in FIG. 10 has been used.
  • FIG. 13 portions corresponding to the configurations in FIGS. 10 and 11 are denoted by the same reference numerals, and description thereof is omitted.
  • this interconnection device 11 also requires a total of one cycle from the detection of the voltage drop to the zero crossing that can extinguish the thyristors 12 and 13. There is also.
  • the compensation range of the voltage drop in the grid interconnection device 11 using the thyristors 12 and 13 is as shown by the reference numeral M2 in FIG. Therefore, although it is possible to compensate for many operations such as OA equipment and medical electrical equipment, it is still possible to compensate for electromagnetic switches interposed in distribution lines to important loads and included in important loads. There is a problem that the effect on the variable speed mode is inevitable.
  • the uninterruptible power supply 16 is required.
  • An object of the present invention is to provide a system interconnection device that can suppress instantaneous voltage drop in the event of a failure when interconnecting two electric power systems, such as a commercial power supply system and an in-house power generation system, and a power supply system for the same.
  • An object of the present invention is to provide a distributed power supply device with a function to prevent instantaneous voltage drop. Disclosure of the invention
  • the system interconnection device according to the invention of claim 1 is a system interconnection device that is interposed between two electric power systems and interconnects the two systems to exchange power, and Of the two AC terminals connected between the phase connection terminals, one is connected to a pair of rectifying switching elements, and the other is connected to a pair of rectifying elements. It is characterized by including a single-phase rectifier circuit and a DC reactor connected between two DC terminals, which are connection points between the rectifying switching element and the rectifying element.
  • Functions that can be demonstrated with this circuit include: i. During normal operation, the impedance seen from the AC side is almost zero. ⁇ . When a short circuit occurs, it should instantaneously exhibit high impedance and suppress the short circuit current.
  • the DC reactor when viewed from the AC terminal, can have a substantially constant impedance of substantially zero, and exhibits a large impedance only when a failure occurs.
  • the current conserving action of the DC reactor can realize a current limiting action for suppressing a fault current flowing in the faulty distribution line, and also suppress a short-circuit capacity of both power systems. it can.
  • the DC reactor has a reactance component and a resistance component, and a current decay time constant composed of a rectifying circuit including a rectifying switching element and a rectifying element.
  • the system of the power system By making it more than 2.5 times the power frequency cycle, no special power supply is required to define the current value at which the DC reactor starts current limiting.
  • FIG. 2 shows the relationship between the current decay time constant and the equivalent impedance generated between the AC terminals of the grid interconnection device.
  • DC reactance is selected so that the fault current during a system short-circuit fault is suppressed to about three times the rated current.
  • the interconnection device has 33% impedance based on the rated current.
  • the distributed power supply device with instantaneous voltage drop countermeasure function according to the invention of claim 3 includes one or more power supplies, and is connected to an important load that should avoid instantaneous voltage drop and power failure.
  • a distributed power supply unit with an instantaneous voltage drop countermeasure function that is operated in parallel with the commercial power supply system in parallel with the AC by the system interconnection device of the above, wherein the inductance of the DC reactor is connected to the commercial power supply.
  • the grid interconnection device according to claim 1 or 2 that is interposed between the buses of the two systems, the DC reactor presents a large impedance when a failure occurs in the commercial power supply system. Suppress voltage drop in distributed power supply system and short circuit current. Thus, while the voltage drop is suppressed, the semiconductor switching element is extinguished by the protective relay, and the distributed power supply system is cut off from the commercial power supply system.
  • the bus voltage of the distributed power supply system becomes equivalent to the equivalent inductance of the distributed S source system and the inductance of the DC reactor.
  • the system voltage becomes a divided value. Therefore, assuming that the inductance of the DC reactor is L dc and the equivalent inductance of the distributed power system is L s, the voltage drop rate A that can be tolerated,
  • the voltage drop rate is set by setting the inductance Ldc of the DC reactor to one time the equivalent inductance Ls of the distributed power supply system. It can be suppressed within the range of A. For example, if the voltage drop rate A is 25%, the inductance L dc of the DC reactor is calculated from (1 — 0.25) Z 0. It may be set to three times the inductance Ls.
  • the inductance L dc of the DC reactor is set in accordance with the voltage drop rate A allowed for the distributed power supply system when a failure occurs and the equivalent inductance L s of the distributed power supply system.
  • the instantaneous voltage drop of electromagnetic switches and variable motors to critical loads can be reduced.
  • the operation of a device which is easily affected by the above can be compensated.
  • the reliability of the interconnection operation can be improved, and the stress on the distributed power source can be reduced.
  • since the short-circuit current is suppressed by the current limiting action of the DC reactor, it is not necessary to replace the circuit breaker or cable on the load side with an undesirably large capacity for interconnection.
  • the distributed power supply device with a function of preventing instantaneous voltage drop according to the invention of claim 4 is characterized in that a power supply in the distributed power supply system is a rotating machine.
  • the circuit voltage that is, the output voltage of the generator
  • the circuit voltage becomes zero during a short-circuit accident despite the large short-circuit current flowing.
  • the distributed power supply device with an instantaneous voltage drop countermeasure function according to the invention of claim 5 is characterized in that the power supply in the distributed power supply system is a stationary power supply using an inverter.
  • the stationary power supply has no inertia like a rotating machine, and is stopped immediately to cause a power outage, so that it can be particularly suitably implemented.
  • FIG. 1 is a diagram for explaining a grid interconnection device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the current decay time constant and the equivalent impedance for an AC power supply cycle.
  • FIGS. 3 (a) to 3 (c) are diagrams showing a current limiting device and an example of a configuration that can be considered when the current limiting device is used for a system interconnection device.
  • FIGS. 4 (a) to 4 (h) are waveform diagrams for explaining the operation of the interconnection apparatus shown in FIG.
  • 5 (a) to 5 (h) are waveform diagrams for explaining the operation of the interconnection device shown in FIG.
  • FIG. 6 is a single-phase connection diagram of an electric power system for explaining a distributed power supply device according to another embodiment of the present invention configured to include the system interconnection device shown in FIG.
  • FIGS. 7A and 7B are simulation waveform diagrams for explaining the operation of the distributed power supply device shown in FIG.
  • FIGS. 8A and 8B are simulation waveform diagrams illustrating the operation of the conventional distributed power supply device shown in FIG.
  • Fig. 9 is a diagram for explaining the basic configuration of grid interconnection.
  • FIG. 10 is a diagram for explaining a typical prior art interconnection system o
  • FIG. 11 is a single-phase power system diagram for explaining a typical prior art distributed power supply device.
  • FIG. 12 is a graph for explaining an example of the influence of the instantaneous voltage drop of the load device and the compensation range of each device according to the present invention and the conventional technology.
  • FIG. 13 is a single-phase connection diagram of a power system for explaining another conventional distributed power supply device.
  • FIG. 1 is a diagram for explaining a grid interconnection device 21 according to an embodiment of the present invention.
  • the grid interconnection device 21 is interposed in the customer via a bus connection line 24 that connects the power receiving bus 22 and the kojene bus 23.
  • a commercial power line 25 is connected to the power receiving bus 22, and a distribution line 26 for a large number of general loads is connected to the power receiving bus 22.
  • an in-house power generator 27 is connected to the Koziene bus 23, and a distribution line 28 to which an important load such as a computer is connected is connected.
  • the system interconnection device 21 includes a pair of thyristors TH2, which are rectifying switching elements, a pair of diodes D1, D2, which are rectifying elements, and a DC reactor L. Is realized. It should be noted that, in the present invention, the pair of thyristors TH 1 and TH 2 are connected to either one of a pair of AC terminals AC 1 and AC 2 connected to the bus connecting line 2. A pair of diodes D 1 and D 2 are connected to the other. (In the example of Fig. 1, thyristors TH1 and TH2 are connected to AC terminal AC1, and diodes D1 and D2 are connected to AC terminal AC2.) A DC reactor L is connected between terminals DC 1 and DC 2.
  • the current decay time constant determined by the reactance component and the resistance component of the DC reactor L, and the rectifier circuit composed of the thyristor TH2 and the diodes D1, D2.
  • the current decay time constant is selected to be at least 2.5 times the system frequency cycle of the power system.
  • the gates of the thyristors TH 1 and TH 2 are driven in a normal state, and the thyristors TH 1 and TH 2 conduct, and the reference is made.
  • the DC Reactor L attempts to maintain a constant current flowing between its terminals, and as the impedance ⁇ of DC reactor L increases, the voltage between the terminals increases.
  • the impedance as viewed from the AC terminals AC 1 and AC 2 increases, and the current flowing from the koziene bus 23 to the power receiving bus 22 via the bus connecting line 24 is suppressed.
  • the gate of thyristor TH and TH2 is blocked by a short circuit or the output of a ground fault relay, and the power bus 23 is connected to the power bus 23. From Since the power is shut off at high speed within one cycle and reliably, it is possible to prevent the private power generator 27 from being overloaded.
  • FIG. 3 (a).
  • the current limiting device 31 includes a mixed-bridge rectifier circuit 32 and a current-limiting reactor L2 connected in parallel with each other in series with an AC line 33.
  • the mixed bridge rectifier circuit 32 is connected in series to a pair of thyristors th1, th2, a pair of diodes dl, d2, a DC reactor L1, and the DC reactor L1. And a DC power source B to be connected.
  • a DC power source B to be connected.
  • one AC terminal AC1 is connected to thyristor th1 and diode d1
  • the other AC terminal AC2 is connected to thyristor th2 and diode d2. Is to be done. Therefore, the thyristors th1 and th2 are connected to the DC terminal DC1, the diodes d1 and d2 are connected to the DC terminal DC2, and the DC terminals DC1 and DC2 are connected between the DC terminals DC1 and DC2.
  • a series circuit of the DC reactor 1 and the DC power supply B is connected.
  • the thyristors thi and th 2 are conducting, bypassing the current limiting reactor L 2 and mixing the current.
  • Line current is flowing through the combined bridge rectifier circuit 32.
  • the current exceeding the current value set by the DC power supply B is suppressed by the DC reactor L1, and the current limiting effect is exhibited. Then, cut off the thyristor thl and th2.
  • the current limiting reactor 2 is intentionally deleted, and the DC power source B that determines the threshold current at which the DC reactor L1 operates is deleted.
  • Fig. 3 (b) shows the configuration of the grid interconnection device 41 in such a configuration.
  • the system interconnection device 41 the parts that are similar to and correspond to the system interconnection device 21 of the present invention are given the same reference numerals, and description thereof is omitted.
  • one AC terminal AC1 is connected to the thyristor TH1a and diode D1a, and the other AC terminal AC2 is connected to the thyristor TH1.
  • 2a and diode D2a are connected. Therefore, a pair of thyristors TH la and TH 2a are connected to the DC terminal DC1, and a pair of diodes D 1a and D 2a are connected to the DC terminal DC 2. become. Further, a DC reactor L is interposed between the DC terminals DC1 and DC2.
  • the grid interconnection device 21 of the present invention is a single-phase prism rectifier circuit.
  • the connection between the thyristor and the diode is different.
  • Figures 4 and 5 show the simulation waveforms of each part during the disconnection operation of these grid interconnection devices 21 and 41, respectively.
  • the simulation conditions are as follows: the% impedance on the commercial power supply side is 100, the reactance of the power supply is 1.0 Opu, the power supply frequency is 50 Hz, and the DC reactor L Is 4. O pu.
  • the current flowing through the thyristor TH1 and TH1a, respectively passes through a half cycle after the AC terminal AC1 is at the high level, The arc is extinguished once the zero crossing is reached, and thereafter, the current stops flowing.
  • the current flowing through the diode D2 is the current corresponding to the current flowing through the thyristor TH1 indicated by reference numeral 1 in FIG. 4 (c), and the current due to the energy released from the DC reactor L.
  • the current flowing through the diode D 2a is represented by the current corresponding to the current flowing through the thyristor TH 1a indicated by reference numeral S 1 in FIG. , ⁇ 3, ⁇ 4,..., the current is added by the energy released from the DC reactor L.
  • This phenomenon is, as indicated by reference numeral i3 in FIG. 3 (b), that the thyristor TH1a is extinguished by the current flowing back due to the interruption of the thyristor TH1a. This is not possible, and occurs because the current increases.
  • the current flowing through the thyristor TH2 is extinguished in only a half cycle when the AC terminal AC2 is at the high level, whereas the current flowing through the thyristor TH2a is higher.
  • the flowing current increases every cycle.
  • the current flowing through the diode D 1 is different from the current flowing through the thyristor TH 2 shown in FIG. 4 (b) and the DC current indicated by reference numeral 2 in FIG. 4 (c).
  • the current flowing through the diode D1a is the sum of the current due to the discharge of the reactor L and the current flowing through the diode D1a, as shown in FIG. 5 (d), and the diode D2a shown in FIG. 5 (c). It increases with each cycle, as does the current flowing through the circuit.
  • the current flowing through the DC reactor L is shown in Fig. 4 (e) and Fig. 5 (e).
  • the voltage of bus 23 is shown in Fig. 4 (f) and Fig. 5 (f)
  • the voltage of receiving bus 22 is shown in Fig. 4 (g) and Fig. 5 (g)
  • the receiving bus is 22
  • the fault current flowing to the side 2 is shown in Fig. 4 (h) and Fig. 5 (h).
  • the current flowing through the DC reactor L converges at a substantially constant value as shown in FIG. Then, as shown in FIG. 5 (e), the value is increased every one cycle.
  • the fault current is also rapidly and reliably shut off in one cycle in the grid interconnection device 21 of the present invention as shown in FIG.
  • the number increases every cycle.
  • this grid interconnection device 41 functions as a current limiting device, it cannot extinguish either thyristor TH la or TH 2a, and It cannot be used as a grid connection device.
  • the grid interconnection device 21 has a DC reactor when a failure occurs.
  • the fault current can be reliably shut off by performing current limiting operation with the torque L and shutting off the thyristor TH1 and TH2.
  • the instantaneous voltage drop can be greatly improved, and the uninterruptible power supply that has been provided separately for conventional computers and other important loads can be omitted.
  • it is possible to reliably prevent undesired situations such as occurrence of excessive torque load on the vehicle.
  • a thyristor-pure pure-bridge rectifier circuit is used for a current limiting device.
  • This example is shown in Fig. 3 (c).
  • the pure bridge rectifier circuit 32a of the current limiting device 31a always has a thyristor th1 to th4 by the action of the DC power supply B, similarly to the configuration of FIG. 3 (a) described above. If the current in the AC circuit is less than the current value, the impedance seen from the AC side becomes zero, and if the current value is more than the current value, the circuit performs current limiting operation. .
  • the grid interconnection device 21 does not include such a DC power supply B, and as described above, the reactance and resistance components of the DC reactor L and the thyristor TH 1, By selecting the current decay time constant determined by TH2 and the rectifier circuit composed of diodes D1 and D2 to be at least 2.5 times the system frequency cycle of the power system, Unnecessary and disclosed in JP-A-49-504-48 The information technology is completely different in composition.
  • FIG. 6 is a single-phase connection diagram of a power system for describing a distributed power supply device according to another embodiment of the present invention.
  • the grid interconnection device 51 provided in this distributed power supply has the same configuration as the above-described grid interconnection device 21, and connects the receiving bus 54 and the Koziene bus 56 to each other. It enables the grid-connected operation between the commercial power system and the distributed power system.
  • the commercial power line 53 drawn from the power source 52 of the commercial power system into the customer is connected to the receiving bus 54.
  • Many distribution lines 55 connected to a general load are connected to the receiving bus 54.
  • the power bus 56 of the distributed power system is connected to a power source 58 such as a cogeneration system via a power line 57.
  • the Kozine bus 56 is also connected to a number of distribution lines 60 to critical loads.
  • the system interconnection device 51 includes a circuit breaker 61, a single-phase rectifier circuit 62, and a DC reactor 63.
  • the single-phase rectifier circuit 62 connects a pair of thyristors TH2 and TH2 to at least one of the two AC terminals (the circuit breaker 61 side in the example of FIG. 6). It is composed of a bridge circuit of semiconductor rectifiers consisting of thyristors TH1 and TH2 and a pair of diodes D1 and D2.
  • One of the two AC terminals of the single-phase rectifier circuit 62 is connected to the connector bus 56, and the other is connected to the power receiving bus 54 via the circuit breaker 61.
  • this single-phase rectifier circuit 6 A DC reactor 63 is connected between the two DC terminals 2 as described above.
  • the voltages of the power supply lines 53 and 57 are detected by the undervoltage relays 67 and 68 via the voltage transformers 65 and 66, respectively, and the undervoltage relays 67 and 68 are When the voltage of the power supply lines 53 and 57 becomes a predetermined set value with respect to the rated voltage, for example, 85% or less, it is determined that a failure has occurred, and the thyristors TH 1 and TH 2 Is extinguished, and the circuit breaker 61 is turned off.
  • the system impedance on the power supply 58 side looks almost L, and assuming that the equivalent inductance corresponding to the internal impedance of the power supply 58 is Ls,
  • the inductance L dc of the DC reactor 63 is represented by L dc with respect to the equivalent inductance L s of the distributed power system. / L s> (1 -A) / A... Select to satisfy the relationship of (1).
  • V Ldc / (Ldc + Ls) xV- (2).
  • the above equation (1) is used to make the inductance Ldc equal to the inductance of the power supply 58 substantially equal to the equivalent inductance Ls.
  • the decrease in the BE of the power supply bus 56 in the distributed power supply system can be suppressed to 50% of the voltage V of the power supply 58. it can.
  • the multiple L dc ZL s becomes larger than 3 according to the above equation 1, and the DC reactance 6 3
  • the inductance Ldc of the power generator By setting the inductance Ldc of the power generator to 3 times, the voltage drop of the cogeneration bus 56 can be suppressed to 75% of the voltage V of the power supply 58.o
  • the voltage drop can be reduced as the inductance Ldc of the DC reactor 63 is set to be larger, but the voltage obtained at the time of failure is insufficient. It is desirable that the voltage be equal to or less than the set value of the voltage relay 68.
  • FIG. 7 and 8 show the results of breaking the operation of the distributed power supply of the present invention and the operation of the distributed power supply shown in FIG. 13 at the time of occurrence of a failure, respectively.
  • Fig. 7 (a) shows the bus voltage of the Kozi energy bus 56
  • Fig. 7 (b) shows the interconnection current flowing through the grid interconnection device 51
  • Fig. 8 (a) shows the This is the bus voltage
  • Fig. 8 (b) is the interconnection current flowing through the interconnection device 11.
  • the ground fault occurrence timing is set to the zero crossing point
  • the inductance L dc of the DC reactor 63 in the grid interconnection device 51 of the present invention is the equivalent inductance of the power supply 58.
  • L is set to 1 time.
  • the voltage drop is suppressed to 50% or less
  • FIGS. 7 (b) and 8 (b) As is clear from the comparison of and, the interconnection current is also suppressed to less than 1/2.
  • the DC By setting the inductance L dc of the reactor 63 based on the permissible voltage drop rate A and the equivalent inductance L s, the level at which the voltage drop in the event of a failure in the commercial power supply system is desired. Can be suppressed. For example, if the allowable voltage drop rate A is set to 50%, the compensation range of the voltage drop in FIG. 12 is indicated by reference numeral M3, and a variable speed motor for power electronics applications and The stable operation of the electromagnetic switch 59 (see Fig. 6) to which the load is connected can be compensated.
  • the grid interconnection devices 21 and 51 are not limited to the above-described mixed bridge of thyristor and diode, but may be configured of a thyristor pure bridge. Good. In the grid interconnection device 51, the circuit breaker 61 may be omitted. Industrial applicability
  • the rectifying switching element when a failure occurs, the rectifying switching element can be shut off at high speed to disconnect the two power systems, and the failure can be prevented. Even if it occurs, current is stored by DC reactor This function can also suppress the instantaneous drop in the power supply voltage to the important load on the power system side to be disconnected, so that the two power systems can be interconnected with each other to exchange power. It can be suitably applied to system equipment.
  • the distributed power supply device with the instantaneous voltage drop countermeasure function according to the present invention is connected to the commercial power supply system by using the above-described system interconnection device, and In the event of a failure, the distributed power system bus voltage, in which the system voltage is divided by the equivalent inductance L s and the DC termination inductor L dc, is applied to the distributed power system. Since it is within the allowable value, the operation of important loads can be compensated with low loss and low cost without using an uninterruptible power supply, and it is suitable for a distributed power supply. be able to.

Abstract

A system interconnecting device (21) is interposed between two power systems, such as a power receiving bus (22) for receiving electric power through a commercial power line (25) and a cogeneration bus (23) for receiving electric power from a private power generator (27). The device (21) is provided with thyristors (TH1 and TH2), diodes (D1 and D2), and a DC reactor (L). The thyristors (TH1 and TH2) are connected to the AC terminal (AC1), the diodes (D1 and D2) are connected to the AC terminals (AC2), the thyristor (TH1) and diode (D1) are connected to the DC terminal (DC1), and the thyristor (TH2) and the diode (D2) are connected to the DC terminal (DC2). The reactor (L) is connected between the DC terminals (DC1 and DC2). Therefore, when a fault occurs in a distribution line (26), the commercial power line (25), etc., power failure due to the overload of the power generator (27) can be prevented and instantaneous voltage drop in a distribution line (28) connected with an important load can be suppressed by the current limiting action of the reactor (L).

Description

明 細 書 系統連系装置およびそれを備える瞬時電圧低下対策機能付き分散電源装  Description Grid-connected device and distributed power supply with instantaneous voltage drop prevention function
技術分野 Technical field
本発明は、 たとえば商用電源系と自家発電系とのように、 2つの電力 系統を連系させるために用いられる系統連系装置において、 特に短絡な どによる瞬時電圧低下の対策が施された系統連系装置に関し、 またこの 系統連系装置によって商用電源系に連系して運転される瞬時電圧低下対 策機能付き分散電源装置に関する。 背景技術  The present invention relates to a system interconnection device used for interconnecting two electric power systems, such as a commercial power supply system and a private power generation system, for example, a system in which measures against instantaneous voltage drop due to a short circuit or the like are taken. The present invention relates to an interconnection device, and to a distributed power supply device having an instantaneous voltage drop countermeasure function that is operated by being connected to a commercial power supply system by the interconnection device. Background art
図 9は、 上述のような商用電源系と自家発電系との基本的な連系の構 成を説明するための図である。 需要家内に引込まれた商用電源線〗 は、 受電母線 2に接続され、 この受電母線 2には、 一般負荷に接続される多 数の配電線 3が接続されている。  FIG. 9 is a diagram for explaining a basic interconnection configuration between the commercial power supply system and the private power generation system as described above. The commercial power line〗 drawn into the customer is connected to the power receiving bus 2, and a number of distribution lines 3 connected to a general load are connected to the power receiving bus 2.
—方、 コジエネ母線 5へは、 電源線 9を介する自家発電装置 6 と、 た とえば自家発電容量の 6 0〜 7 0 %を占める重要負荷への配電線 4 とが 接銃されている。 前記受電母線 2 とコジ ネ母線 5 とは、 遮断器 7の介 在された母線連絡線 8によつて相互に接続されている。 前記遮断器 7は 、 商用電源線 1 側で、 短絡や地絡および受電系の開放等の故障が発生す ると、 図示しない継電器によって遮断駆動される。  On the other hand, a private power generator 6 via a power supply line 9 and a distribution line 4 to an important load, which accounts for 60 to 70% of the private power generation capacity, are connected to the Koziene bus 5, for example. The power receiving bus 2 and the connection bus 5 are connected to each other by a bus connecting line 8 having a circuit breaker 7 interposed therebetween. When a fault such as a short circuit, a ground fault, or an open power receiving system occurs on the commercial power supply line 1 side, the breaker 7 is driven to be cut off by a relay (not shown).
しかしながら、 このような連系構造では、 たとえば受電母線 2 または 配電線 3に前記故障が発生してから、 実際に遮断器 7が作動するまでに 、 たとえば 5〜 1 0サイクル程度 ( 5 0 H zで 1 0 0〜 2 0 0 m s e c ) を要し、 前記配電線 4に接続されている重要負荷に長時間の電圧降下 が発生してしまう という問题がある。 また、 このように遮断器 7が作動 するまでに長時間を要するので、 商用電源線 1 に電力を供給している送 電線の遮断器 (図示せず) が開放されると、 自家発電装置 6 は、 自己容 量の数倍の一股需要家の負荷が接続されたまま運転されることになり、 該自家発電装置 6が過負荷となって停止し、 最終的にはすべての負荷が 停電状態となる。 However, in such an interconnected structure, for example, receiving bus 2 or It takes, for example, about 5 to 10 cycles (100 to 200 msec at 50 Hz) from the occurrence of the failure in the distribution line 3 until the circuit breaker 7 actually operates, There is a problem that a long-term voltage drop occurs in the important load connected to the distribution line 4. In addition, since it takes a long time for the circuit breaker 7 to operate, when the circuit breaker (not shown) of the transmission line that supplies power to the commercial power line 1 is opened, the private power generator 6 In this case, the operation is performed with the load of the customer who is a few times larger than the own capacity connected, and the private power generator 6 is overloaded and stopped, and eventually all loads are cut off State.
上述のような不具合を解決するために、 図 1 0で示すような典型的な 従来技術の系統連系装置 1 1 が実用化されている。 なお、 この図 1 0に おいて、 前述の図 9に類似し対応する部分には、 同一の参照符号を付し て、 その説明を省略する。  In order to solve the problems described above, a typical prior art system interconnection device 11 as shown in FIG. 10 has been put to practical use. In FIG. 10, the same parts as those in FIG. 9 described above are denoted by the same reference numerals, and description thereof will be omitted.
この系統連系装置 1 1 は、 相互に逆極性で並列接続された 2つのサイ リスタ 1 2 , 1 3から構成されている。 母線 2, 5間の連系時には、 前 記継電器からの出力によつて、 これらのサイ リス夕 1 2 , 1 3のゲー ト が駆動され、 該サイ リスタ 1 2 , 1 3は導通しており、 前記故障時には 、 これらサイ リスタ 1 2 , 1 3のゲー トはブロ ッ クされ、 該サイ リス夕 1 2 , 1 3は遮断する。  The system interconnection device 11 is composed of two thyristors 12 and 13 connected in parallel with opposite polarities. During interconnection between buses 2 and 5, the gates of these thyristors 12 and 13 are driven by the output from the relay, and the thyristors 12 and 13 are conducting. At the time of the failure, the gates of the thyristors 12 and 13 are blocked, and the thyristors 12 and 13 are shut off.
サイ リス夕 1 2 , 1 3の駆動にあたっての前記故障の検知は、 たとえ ば半サイクルで行われ、 続く半サイクルの零クロス点で遮断駆動が可能 となる。 したがって、 直流オフセッ ト電流を考慮すると、 前記故障の発 生から 1 サイ クル (前記 5 0 H zで 2 0 m s e c ) 以内で、 母線 2 , 5 間を遮断することができる。 しかし、 この間、 完全短絡電流が流れ、 コ ジエネ母線 5 に大きな電圧降下を生じるこ とは避けられない。 The detection of the failure in driving the thyristors 12 and 13 is performed, for example, in a half cycle, and the breaking drive can be performed at the zero cross point in the subsequent half cycle. Therefore, when the DC offset current is considered, the bus 2 and the bus 5 can be cut off within one cycle (20 msec at 50 Hz) from the occurrence of the failure. However, during this time, a complete short-circuit current flows, It is inevitable that a large voltage drop will occur in the energy bus 5.
以上のように、 上述の系統連系装置 1 1 によれば、 前述の遮断器 7 に よる連系に比べて、 母線 2, 5間の遮断に要する時間が短く なり、 自家 発電装置 6の停止は回避することができる。 しかしながら、 依然として 瞬時電圧低下が発生し、 コンピュータ等のコジヱネ母線 5に接続される 重要な負荷に影響が生じる。  As described above, according to the above-described system interconnection device 11, the time required for interruption between the buses 2 and 5 is shorter than that of the interconnection by the circuit breaker 7, and the in-house power generation device 6 is stopped. Can be avoided. However, an instantaneous voltage drop still occurs, which affects important loads connected to the kogine bus 5 such as a computer.
一方、 前記遮断器 7を用いて系統と連系を行うようにした従来からの 分散電源装置は、 図 1 1 で示すように構成されている。 この図 1 1 にお いて、 前述の図 9に対応する部分には、 同一の参照符号を付して示す。 この分散電源装置は、 自家発電装置 6 として、 いわゆる新エネルギ電源 の一例であるコジヱネレーショ ンシステムを構成するディ 一ゼル発電機 やガス発電機などを備えて構成されており、 電源 1 3を備える商用電源 系と交流で並列に連系して運転される。 分散電源系のコジエネ母線 5に 接続される配電線 4 には、 たとえば自家発電容量の 6 0〜 7 0 %を占め る重要負荷が接続されている。  On the other hand, a conventional distributed power supply device that is connected to a system using the circuit breaker 7 is configured as shown in FIG. In FIG. 11, the portions corresponding to FIG. 9 described above are denoted by the same reference numerals. This distributed power supply device is configured to include a diesel generator or a gas generator that constitutes a cogeneration system, which is an example of a so-called new energy power supply, as a private power generator 6. It is operated in parallel with the power supply system and AC. For example, an important load that occupies 60% to 70% of the private power generation capacity is connected to the distribution line 4 connected to the Koziene bus 5 of the distributed power system.
前記自家発電装置 6 にはまた、 前記ディ ーゼル発電機やガス発電機な どの他に、 2次電池、 燃料電池、 太陽光発電システム、 フライホイ一ル 、 風力発電システムおよび U P S と称される無停電電源装置など、 多種 類の電源を考えることができる。  The private power generator 6 also includes an uninterruptible power supply called a secondary battery, a fuel cell, a photovoltaic power generation system, a flywheel, a wind power generation system, and a UPS, in addition to the diesel generator and the gas generator. Many types of power supplies, such as power supplies, can be considered.
このよう に、 分散電源系と商用電源系とを連系して運転するにあたつ て、 分散電源系に前記遮断器 7が設置されている。 また、 連系のガイ ド ライ ンに従い、 必要に応じて、 リアタ トルなどの短絡電流対策が施され ていることもある。 しかしながら、 商用電源系に、 参照符 1 5で示すよ うな地絡や相間短絡などの故障が発生すると、 分散電源系から故障電流 が流れ、 該分散電源系に電圧低下が発生する。 As described above, when the distributed power supply system and the commercial power supply system are operated in an interconnected manner, the circuit breaker 7 is installed in the distributed power supply system. Also, countermeasures against short-circuit current such as rear turtle may be taken as necessary according to the guidelines of the interconnection. However, if a failure such as ground fault or short circuit between phases occurs as shown in reference numeral 15 in the commercial power system, Flows, and a voltage drop occurs in the distributed power supply system.
このような故障の対策として、 商用電源線 1 の電圧を電圧変成器によ つて検出し、 その検出結果から不足電圧継電器によって電圧低下の可否 を判定し、 所定の整定値以下の電圧低下が判定されると、 前記遮断器 7 の遮断駆動を行うように構成されている。 また、 連系電流を電流変成器 で検出し、 その検出結果から過電流継電器によって電流増加の可否を判 定し、 所定の整定値以上の過電流が検出されると、 前記遮断器 7の遮断 駆動を行うように構成される場合等もある。  As a countermeasure against such a failure, the voltage of the commercial power supply line 1 is detected by a voltage transformer, and based on the detection result, the possibility of voltage drop is determined by an undervoltage relay, and a voltage drop below a predetermined set value is determined. Then, the circuit breaker 7 is configured to perform a breaking drive. Also, the interconnection current is detected by a current transformer, and from the detection result, whether or not the current can be increased is determined by an overcurrent relay.When an overcurrent of a predetermined set value or more is detected, the breaker 7 is shut off. In some cases, it is configured to drive.
しかしながら、 遮断器 7が開放するまでの間 ( J E C 2 3 0 0規格で は、 2 , 3 または 5サイ クルの 3種類) は、 分散電源系の電圧が低下し たままとなつてしまう。 図 1 2に、 前記遮断器 7 として真空遮断器を用 いた場合の電圧低下の補償範囲と、 負荷の瞬時電圧低下による影響の有 無の範囲とを示す。 図 1 2は、 電圧低下率と電圧低下の継続時間とに対 して、 各負荷毎に影響の現れる閾値を示すものであり、 参照符 M 1 は、 前記真空遮断器による電圧低下の補償範囲である。  However, until the circuit breaker 7 opens (three types of 2, 3 or 5 cycles in the JEC 230 standard), the voltage of the distributed power supply system remains low. FIG. 12 shows a voltage drop compensation range when a vacuum circuit breaker is used as the circuit breaker 7 and a range where there is no influence due to the instantaneous voltage drop of the load. FIG. 12 shows a threshold value at which an influence is exerted for each load with respect to a voltage drop rate and a voltage drop duration, and reference numeral M 1 denotes a voltage drop compensation range by the vacuum circuit breaker. It is.
この図 1 2で示すように、 配電線 4に接続される負荷のほとんどはそ の補償範囲外となり、 電圧低下による影響が生じてしまう。 すなわち、 図 1 1 で示す分散電源装置は、 系統に分散電源を連系させるこ とで、 前 記重要負荷に対する停電対策は講じられているけれども、 瞬時電圧低下 に対しては、 何ら効果を期待することができない。 このため、 従来から 、 参照符 1 6で示されるように、 一部の最重要負荷には、 無停電電源装 置 (U P S ) が介在されている。  As shown in FIG. 12, most of the loads connected to the distribution line 4 are out of the compensation range, and the effect of the voltage drop occurs. In other words, the distributed power supply unit shown in Fig. 11 has a power outage countermeasure for the important load by connecting the distributed power supply to the grid, but it is expected to have no effect on the instantaneous voltage drop. Can not do it. For this reason, some of the most important loads are conventionally provided with an uninterruptible power supply (UPS) as indicated by reference numeral 16.
この無停電電源装置は、 コジエネ母線 5からの電力を、 充電器によつ て A C / D C変換および整流 · 平滑化して蓄電器に蓄えておき、 該蓄電 器に蓄えられている電力を、 D C / A C変換して負荷へ出力する。 した がって、 半導体スイ ッチング素子等を必要とし、 高価であるとともに、 常時、 大きな変換ロスが発生するという問題があり、 前記一部の最重要 負荷に対して用いられる。 したがって、 広範囲に用いられる電磁開閉器 を有するほとんどの負荷は、 前記瞬時電圧低下に対して無防備のままで め 。 In this uninterruptible power supply, the electric power from the cogeneration bus 5 is AC / DC converted, rectified and smoothed by a charger, stored in a battery, and stored in the battery. DC / AC conversion of the electric power stored in the unit and output to the load. Therefore, there is a problem that a semiconductor switching element or the like is required, and it is expensive, and there is a problem that a large conversion loss always occurs. Therefore, it is used for some of the most important loads. Therefore, most loads with widely used electromagnetic switches remain vulnerable to the instantaneous voltage drop.
このため、 分散電源装置を商用電源系に連系させるために、 図 1 3で 示すように、 前記図 1 0で示す系統連系装置 1 1 が用いられるようにな つてきている。 なお、 図 1 3において、 図 1 0および図 1 1 の構成に対 応する部分には、 同一の参照符号を付してその説明を省略する。 しかし ながら、 この系統連系装置 1 1 によっても、 電圧低下の検知と、 サイ リ ス夕 1 2 , 1 3を消弧することができる零クロス通過までとに、 合わせ て 1 サイ クルを要することもある。  For this reason, in order to connect the distributed power supply device to the commercial power supply system, as shown in FIG. 13, the system interconnection device 11 shown in FIG. 10 has been used. In FIG. 13, portions corresponding to the configurations in FIGS. 10 and 11 are denoted by the same reference numerals, and description thereof is omitted. However, this interconnection device 11 also requires a total of one cycle from the detection of the voltage drop to the zero crossing that can extinguish the thyristors 12 and 13. There is also.
このため、 該サイ リスタ 1 2 , 1 3を用いる系統連系装置 1 1 での電 圧低下の補償範囲は、 前記図 1 2において参照符 M 2で示すようになる 。 したがって、 O A機器や医療用電気機器などの多く の動作を補償する ことができるようになるけれども、 依然として、 重要な負荷への配電線 に介在される電磁開閉器や、 重要な負荷に含まれている可変速モ一夕へ の影響は避けられないという問題がある。  For this reason, the compensation range of the voltage drop in the grid interconnection device 11 using the thyristors 12 and 13 is as shown by the reference numeral M2 in FIG. Therefore, although it is possible to compensate for many operations such as OA equipment and medical electrical equipment, it is still possible to compensate for electromagnetic switches interposed in distribution lines to important loads and included in important loads. There is a problem that the effect on the variable speed mode is inevitable.
したがって、 このようにサイ リスタ 1 2 , 1 3を用いた系統連系装置 1 1 によつても補償することができない (図 1 2において参照符 M 2で 示す範囲外の) 負荷のうち、 重要なものに対しては、 前記無停電電源装 置 1 6が必要となる。  Therefore, among the loads that cannot be compensated for by the grid interconnection device 11 using the thyristors 12 and 13 (outside the range indicated by the reference sign M2 in FIG. 12), For such devices, the uninterruptible power supply 16 is required.
また、 分散電源系を商用電源系に連系させると、 短絡容量が増大し、 負荷側の各遮断器を短時間遮断容量の大きなものに取換えたり、 その遮 断器に接続されているケーブルを電流容量の大きいものに交換する必要 が生じる。 さらにまた、 故障時に系統の遮断に時間がかかってしまう とIn addition, connecting the distributed power system to the commercial power system increases the short-circuit capacity, It will be necessary to replace each circuit breaker on the load side with one having a large breaking capacity for a short time, or replace the cable connected to the circuit breaker with one having a large current capacity. Furthermore, if it takes time to shut down the system in the event of a failure,
、 自家発電装置 6が停止し、 分散電源系も全停状態になってしまう とい う問題もある。 However, there is also a problem that the in-house power generator 6 is stopped and the distributed power system is completely stopped.
本発明の目的は、 たとえば商用電源系と自家発電系とのように、 2つ の電力系統を連系させるにあたって、 故障時における瞬時電圧低下を抑 止することができる系統連系装置およびそれを備える瞬時電圧低下対策 機能付き分散電源装置を提供するこ とである。 発明の開示  An object of the present invention is to provide a system interconnection device that can suppress instantaneous voltage drop in the event of a failure when interconnecting two electric power systems, such as a commercial power supply system and an in-house power generation system, and a power supply system for the same. An object of the present invention is to provide a distributed power supply device with a function to prevent instantaneous voltage drop. Disclosure of the invention
請求項 1 の発明に係る系統連系装置は、 2つの電力系統間に介在され 、 両系統を相互に連系させて電力の融通を行うための系統連系装置にお いて、 両系統の各相連系端子間に接続される 2つの交流端子のうち、 い ずれか一方には一対の整流性スィ ッチング素子が接続され、 いずれか他 方には一対の整流性素子が接続されて構成される単相整流回路と、 前記 整流性スィ ツチング素子と整流性素子との各接続点である 2つの直流端 子間に接続される直流リアク トルとを含むことを特徵とする。  The system interconnection device according to the invention of claim 1 is a system interconnection device that is interposed between two electric power systems and interconnects the two systems to exchange power, and Of the two AC terminals connected between the phase connection terminals, one is connected to a pair of rectifying switching elements, and the other is connected to a pair of rectifying elements. It is characterized by including a single-phase rectifier circuit and a DC reactor connected between two DC terminals, which are connection points between the rectifying switching element and the rectifying element.
上記の構成によれば、 2つの電力系統間を接続するにあたって、 サイ リス夕などで実現される 2つの整流性スィ ッチング素子と、 ダイォー ド またはサイ リスタなどで実現される 2つの整流性素子とから成る単相整 流回路の直流端子間に直流リアク トルを接続し、 交流端子を 2つの電力 系統にそれぞれ接続する。  According to the above configuration, when connecting between two power systems, two rectifying switching elements realized by a thyristor and the like and two rectifying elements realized by a diode or a thyristor are used. A DC reactor is connected between the DC terminals of the single-phase rectification circuit consisting of, and the AC terminals are connected to the two power systems, respectively.
この回路で発揮できる機能としては、 i . 定常運転時に、 交流側から見たイ ンピーダンスが殆ど零であること ϋ . 短絡発生時に、 瞬時に高イ ンピーダンスを呈し、 短絡電流を抑制で さること。 Functions that can be demonstrated with this circuit include: i. During normal operation, the impedance seen from the AC side is almost zero. ϋ. When a short circuit occurs, it should instantaneously exhibit high impedance and suppress the short circuit current.
ϋί . 整流性スイ ッチング素子によって、 両系統間を高速に遮断できるこ と。 ϋί. High-speed disconnection between both systems by rectifying switching elements.
である。 It is.
上記 i , ii , iiiに従って説明する。  A description will be given according to i, ii, and iii above.
i . 前記直流リアク トルは、 交流端子から見て、 定常時のィ ンピーダン スを略零とすることができるとともに、 故障発生時にのみ大きなイ ンピ 一ダンスを呈する。  i. The DC reactor, when viewed from the AC terminal, can have a substantially constant impedance of substantially zero, and exhibits a large impedance only when a failure occurs.
ϋ . 前記故障が発生しても、 直流リアク トルによる電流保存作用によつ て、 該直流リアタ トルの端子間電圧が上昇し、 前記切離されるべき電力 系統側の重要な負荷への瞬時の電源電圧の低下も抑えるこ とができる。 さらにまた、 前記直流リァク トルによる電流保存作用によって、 前記故 障の発生している配電線に流れる故障電流を抑える限流作用を実現する ことができ、 双方の電力系統の短絡容量を抑えることもできる。 ϋ. Even if the failure occurs, the voltage between the terminals of the DC reactor increases due to the current preserving action of the DC reactor, and the instantaneous load to the important load on the power system to be disconnected It is also possible to suppress a drop in power supply voltage. Furthermore, the current conserving action of the DC reactor can realize a current limiting action for suppressing a fault current flowing in the faulty distribution line, and also suppress a short-circuit capacity of both power systems. it can.
iii . 故障が発生すると、 整流性スイ ッチング素子が高速で遮断して、 2 つの電力系統間が切離されることによって、 切離される電力系統に設け られている発電装置が過負荷となつて停止してしまうようなことはなく 、 停電を防止することができる。 iii. When a failure occurs, the rectifying switching element shuts off at a high speed, and the two power systems are disconnected, causing the power generator installed in the disconnected power system to stop due to overload. There is no such thing as a power outage can be prevented.
また、 請求項 2の発明に係る系統連系装置では、 前記直流リアク トル のりァク夕 ンス成分および抵抗成分ならびに整流性スィ ツチング素子と 整流性素子との整流回路から成る電流減衰時定数を、 前記電力系統の系 統周波数サイ クルの 2 . 5倍以上にするこ とによって、 前記直流リアク トルが限流作用を開始する閻値電流を規定するために、 特別な電源が必 要となるこ ともない。 Further, in the grid interconnection device according to the second aspect of the present invention, the DC reactor has a reactance component and a resistance component, and a current decay time constant composed of a rectifying circuit including a rectifying switching element and a rectifying element. The system of the power system By making it more than 2.5 times the power frequency cycle, no special power supply is required to define the current value at which the DC reactor starts current limiting.
すなわち、 前記電流減衰時定数と系統連系装置の交流端子間に生じる 等価イ ンピーダンスとの関係を示すと図 2のようになる。 一般的には、 系統短絡故障時の故障電流を定格電流の 3倍程度に抑制するように直流 リ アクタ ンスを選定する。 すなわち、 定格電流ベースの 3 3 %のイ ンピ —ダンスを連系装置に持たせることになる。  That is, FIG. 2 shows the relationship between the current decay time constant and the equivalent impedance generated between the AC terminals of the grid interconnection device. Generally, DC reactance is selected so that the fault current during a system short-circuit fault is suppressed to about three times the rated current. In other words, the interconnection device has 33% impedance based on the rated current.
一方、 通常の運転状態では、 前記等価イ ン ピーダンスを極力小さ くす るこ とが好ましく、 実用上は、 定格電流ベースで 3 %、 すなわち図 2に 示す等価イ ンピーダンスが直流リアク トルしの示す交流ィ ンピーダンス の 0 . 0 9 p u ( = 3 % / 3 3 % ) 以下でその要求を満たすことができ るので、 前記図 2から、 前記電流減衰時定数が電力系統の系統周波数サ ィ クルの 2 . 5倍以上あれば、 常時損失が無く、 系統故障によって前記 閾値電流以上の電流が流れたときに限流作用を行わせるこ とができる。  On the other hand, in a normal operating state, it is preferable to minimize the equivalent impedance as much as possible.In practice, the equivalent impedance shown in FIG. 2 is 3% based on the rated current, that is, the equivalent impedance shown in FIG. Since the requirement can be satisfied with the impedance of 0.09 pu (= 3% / 33%) or less, the current decay time constant can be determined from FIG. If it is 5 times or more, there is no loss at all times, and a current limiting action can be performed when a current equal to or larger than the threshold current flows due to a system failure.
また、 請求項 3の発明に係る瞬時電圧低下対策機能付き分散電源装置 は、 1 または複数の電源を備え、 瞬時電圧低下および停電を回避すべき 重要負荷が接続され、 前記請求項 1 または 2記載の系統連系装置によつ て商用電源系に交流で並列に連系して運転される瞬時電圧低下対策機能 付き分散電源装置であって、 前記直流リアク トルのイ ンダク夕 ンスを、 商用電源系の故障発生時に分散電源系で許容することができる電圧低下 率を Aとするとき、 分散電源系の内部ィ ンピーダンスに相当する等価ィ ンダク夕ンスの ( 1 — A ) / A倍より大きい値のリアクタンスを有する ように形成することを特徵とする。 CT/JP97/03758 Also, the distributed power supply device with instantaneous voltage drop countermeasure function according to the invention of claim 3 includes one or more power supplies, and is connected to an important load that should avoid instantaneous voltage drop and power failure. A distributed power supply unit with an instantaneous voltage drop countermeasure function that is operated in parallel with the commercial power supply system in parallel with the AC by the system interconnection device of the above, wherein the inductance of the DC reactor is connected to the commercial power supply. When the voltage drop rate that can be tolerated in the distributed power system when a system failure occurs is A, a value larger than (1 — A) / A times the equivalent inductance corresponding to the internal impedance of the distributed power system It is characterized in that it is formed to have the following reactance. CT / JP97 / 03758
θ  θ
上記の構成によれば、 2つの系統の母線間に介在される前記請求項 1 または 2記載の系統連系装置は、 商用電源系の故障発生時には、 前記直 流リアク トルが大きなインピーダンスを呈して分散電源系の電圧低下を 抑制し、 かつ短絡電流を抑制する。 こう して、 電圧低下が抑制されてい る間に、 保護継電器によって前記半導体スイ ッチング素子か消弧されて 、 分散電源系が商用電源系から遮断される。  According to the above configuration, the grid interconnection device according to claim 1 or 2 that is interposed between the buses of the two systems, the DC reactor presents a large impedance when a failure occurs in the commercial power supply system. Suppress voltage drop in distributed power supply system and short circuit current. Thus, while the voltage drop is suppressed, the semiconductor switching element is extinguished by the protective relay, and the distributed power supply system is cut off from the commercial power supply system.
このように構成される分散電源装置において、 商用電源系で故障が発 生すると、 分散電源系の母線電圧は、 該分散 S源系の等価イ ンダクタン スと、 前記直流リアク トルのイ ンダク夕ンスとによって、 系統電圧が分 圧された値になる。 このため、 直流リアク トルのイ ンダク夕ンスを L d c、 分散電源系の等価イ ンダク夕ンスを L s とすると、 許容するこ とが できる電圧低下率 Aから、 上記のように、  In the distributed power supply configured as described above, when a failure occurs in the commercial power supply system, the bus voltage of the distributed power supply system becomes equivalent to the equivalent inductance of the distributed S source system and the inductance of the DC reactor. As a result, the system voltage becomes a divided value. Therefore, assuming that the inductance of the DC reactor is L dc and the equivalent inductance of the distributed power system is L s, the voltage drop rate A that can be tolerated,
L d c /L s > ( l - A) /A  L d c / L s> (l-A) / A
を満足するように選ぶ。 すなわち、 たとえば前記電圧低下率 Aを 5 0 % とするときには、 直流リアタ トルのイ ンダクタンス L d cを、 分散電源 系の等価イ ンダクタンス L sの 1倍に設定するこ とによって、 電圧低下 率を前記 Aの範囲内に抑制することができる。 また、 たとえば前記電圧 低下率 Aを 2 5 %とすると、 ( 1 — 0. 2 5 ) Z 0.. 2 5から、 直流リ ァク トルのイ ンダク夕ンス L d cを、 分散電源系の等価ィ ンダクタンス L sの 3倍に設定すればよい。 Choose to satisfy. That is, for example, when the voltage drop rate A is 50%, the voltage drop rate is set by setting the inductance Ldc of the DC reactor to one time the equivalent inductance Ls of the distributed power supply system. It can be suppressed within the range of A. For example, if the voltage drop rate A is 25%, the inductance L dc of the DC reactor is calculated from (1 — 0.25) Z 0. It may be set to three times the inductance Ls.
このようにして、 故障発生時に分散電源系に許容される電圧低下率 A と、 該分散電源系の等価ィ ンダク夕ンス L s とに対応して直流リァク ト ルのィンダクタンス L d cを設定するだけで、 無停電電源装置を用いな くても、 重要な負荷への電磁開閉器や可変逮モータなどの瞬時電圧低下 の影響を受け易い機器の動作も補償することができる。 これによつて、 連系運転にあたっての信頼性を向上することができるとともに、 分散電 源へのス ト レスを低減することができる。 また、 直流リアク トルの限流 作用によって短絡電流が抑制されるので、 連系にあたって、 負荷側の遮 断器やケーブルを不所望に容量の大きなものに交換する必要もない。 In this way, the inductance L dc of the DC reactor is set in accordance with the voltage drop rate A allowed for the distributed power supply system when a failure occurs and the equivalent inductance L s of the distributed power supply system. Even without using an uninterruptible power supply, the instantaneous voltage drop of electromagnetic switches and variable motors to critical loads can be reduced. The operation of a device which is easily affected by the above can be compensated. As a result, the reliability of the interconnection operation can be improved, and the stress on the distributed power source can be reduced. In addition, since the short-circuit current is suppressed by the current limiting action of the DC reactor, it is not necessary to replace the circuit breaker or cable on the load side with an undesirably large capacity for interconnection.
さらにまた、 請求項 4の発明に係る瞬時電圧低下対策機能付き分散電 源装置は、 前記分散電源系における電源を、 回転機とすることを特徴と する。  Still further, the distributed power supply device with a function of preventing instantaneous voltage drop according to the invention of claim 4 is characterized in that a power supply in the distributed power supply system is a rotating machine.
上記の構成によれば、 分散電源系における電源を回転機とすると、 短 絡事故中には、 大きな短絡電流が流れるにも拘らず、 回路電圧、 すなわ ち発電機の出力電圧が零となって、 発電機と原動機との間のス ト レスが 開放され、 シャ フ トに機械的振動が生じ、 また短絡事故が解除されると きには、 発電機は自己容量を超える負荷を背負う こ とになり、 該発電機 に急激な制動 トルクが発生し、 前記シャ フ トに過大な振動トルクが生じ る。 このように、 短絡故障時には発電機からの過渡的な過大電流の流出 によるス ト レス (タービン発電機の場合にはシェア一ピン断裂など) が 発生するのに対して、 上記のように短絡電流を抑えることによって、 該 ス ト レスを回避するこ とができる。  According to the above configuration, if the power source in the distributed power system is a rotating machine, the circuit voltage, that is, the output voltage of the generator, becomes zero during a short-circuit accident despite the large short-circuit current flowing. When the stress between the generator and the prime mover is released, mechanical vibrations occur in the shaft, and when the short-circuit fault is cleared, the generator may carry a load exceeding its capacity. Then, a sudden braking torque is generated in the generator, and an excessive vibration torque is generated in the shaft. As described above, when a short-circuit fault occurs, stress (such as a shear pin break in the case of a turbine generator) occurs due to transient overcurrent flowing out of the generator. By suppressing the stress, the stress can be avoided.
また、 請求項 5の発明に係る瞬時電圧低下対策機能付き分散電源装置 は、 前記分散電源系における電源を、 インバー夕を使用する静止形の電 源とするこ とを特徴とする。  Further, the distributed power supply device with an instantaneous voltage drop countermeasure function according to the invention of claim 5 is characterized in that the power supply in the distributed power supply system is a stationary power supply using an inverter.
上記の構成によれば、 前記静止形の電源は、 回転機のように慣性がな く、 すぐに停止して停電となってしまうので、 特に好適に実施すること ができる。 図面の簡単な説明 According to the above configuration, the stationary power supply has no inertia like a rotating machine, and is stopped immediately to cause a power outage, so that it can be particularly suitably implemented. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の実施の一形態の系統連系装置を説明するための図で め 。  FIG. 1 is a diagram for explaining a grid interconnection device according to an embodiment of the present invention.
図 2は、 交流電源サイ クルに対する電流減衰時定数と等価イ ン ピーダ ンスとの関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the current decay time constant and the equivalent impedance for an AC power supply cycle.
図 3 ( a ) 〜図 3 ( c ) は、 限流装置と、 それを系統連系装置に用い る場合に考えられる構成例を示す図である。  FIGS. 3 (a) to 3 (c) are diagrams showing a current limiting device and an example of a configuration that can be considered when the current limiting device is used for a system interconnection device.
図 4 ( a ) 〜図 4 ( h ) は、 図 1 で示す系統連系装置の動作を説明す るための波形図である。  FIGS. 4 (a) to 4 (h) are waveform diagrams for explaining the operation of the interconnection apparatus shown in FIG.
図 5 ( a ) 〜図 5 ( h ) は、 図 3で示す系統連系装置の動作を説明す るための波形図である。  5 (a) to 5 (h) are waveform diagrams for explaining the operation of the interconnection device shown in FIG.
図 6は、 図 1 で示す系統連系装置を備えて構成される本発明の実施の 他の形態の分散電源装置を説明するための電力系統の単相結線図である 。  FIG. 6 is a single-phase connection diagram of an electric power system for explaining a distributed power supply device according to another embodiment of the present invention configured to include the system interconnection device shown in FIG.
図 7 ( a ) および図 7 ( b ) は、 図 6で示す分散電源装置の動作を説 明するためのシミ ュ レ一ショ ン波形図である。  FIGS. 7A and 7B are simulation waveform diagrams for explaining the operation of the distributed power supply device shown in FIG.
図 8 ( a ) および図 8 ( b ) は、 図 1 3で示す従来技術の分散電源装 置の動作を説明するためのシミ ュ レーショ ン波形図である。  FIGS. 8A and 8B are simulation waveform diagrams illustrating the operation of the conventional distributed power supply device shown in FIG.
図 9 は、 系統連系の基本的構成を説明するための図である。  Fig. 9 is a diagram for explaining the basic configuration of grid interconnection.
図 1 0は、 典型的な従来技術の系統連系装置を説明するための図であ る o  FIG. 10 is a diagram for explaining a typical prior art interconnection system o
図 1 1 は、 典型的な従来技術の分散電源装置を説明するための電力系 統の単相結線図である。 図 1 2は、 負荷装置の瞬時電圧低下による影響例と、 本発明および従 来技術による各装置の補償範囲を説明するためのグラフである。 FIG. 11 is a single-phase power system diagram for explaining a typical prior art distributed power supply device. FIG. 12 is a graph for explaining an example of the influence of the instantaneous voltage drop of the load device and the compensation range of each device according to the present invention and the conventional technology.
図 1 3は、 他の従来技術の分散電源装置を説明するための電力系統の 単相結線図である。 発明を実施するための最良の形態  FIG. 13 is a single-phase connection diagram of a power system for explaining another conventional distributed power supply device. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の一形態について、 図 1 〜図 5に基づいて説明すれば以 下のとおりである。  One embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
図 1 は、 本発明の実施の一形態の系統連系装置 2 1 を説明するための 図である。 この系統連系装置 2 1 は、 需要家内で、 受電母線 2 2 とコジ エネ母線 2 3 とを接続する母線連絡線 2 4 に介在される。 受電母線 2 2 には、 商用電源線 2 5が接続されるとともに、 多数の一般負荷のための 配電線 2 6が接続されている。 また、 コジエネ母線 2 3には、 自家発電 装置 2 7が接続されるとともに、 コ ンピュー夕等の重要負荷が接続され る配電線 2 8が接続されている。  FIG. 1 is a diagram for explaining a grid interconnection device 21 according to an embodiment of the present invention. The grid interconnection device 21 is interposed in the customer via a bus connection line 24 that connects the power receiving bus 22 and the kojene bus 23. A commercial power line 25 is connected to the power receiving bus 22, and a distribution line 26 for a large number of general loads is connected to the power receiving bus 22. In addition, an in-house power generator 27 is connected to the Koziene bus 23, and a distribution line 28 to which an important load such as a computer is connected is connected.
前記系統連系装置 2 1 は、 整流性スィ ッチング素子である一対のサイ リス夕 T H し T H 2 と、 整流性素子である一対のダイオー ド D 1, D 2 と、 直流リアク トル L とを備えて実現される。 注目すべきは、 本発明 では、 前記母線連絡線 2 に接続される一対の交流端子 A C 1 , A C 2 の、 いずれか一方に前記一対のサイ リス夕 T H 1, T H 2が接続され、 いずれか他方に一対のダイオー ド D 1 , D 2が接続される。 (図 1 の例 では、 交流端子 A C 1 にサイ リス夕 T H 1 , T H 2が接続され、 交流端 子 A C 2にダイオー ド D l , D 2が接続されている。 ) これに対して、 直流端子 D C 1 , D C 2間には、 直流リアク トル Lが接続される。 この系統連系装置 2 1 において、 直流リアク トル Lのリアクタンス成 分および抵抗成分と、 サイ リス夕 T H し T H 2およびダイオー ド D 1 , D 2から成る整流回路とによって決定される電流減衰時定数と、 電力 系統側から見た等価イ ンピーダンスとの間には、 図 2で示すように、 電 流減衰時定数が大き く なる程、 等価イ ンピーダンスが小さ く なるという 関係を有する。 一方、 定常動作時の装置イ ン ピーダンスは極力小さいこ とが望ま しい。 したがって本発明では、 この図 2から、 前記電流減衰時 定数は、 電力系統の系統周波数サイ クルの 2 . 5倍以上に選ぶ。 The system interconnection device 21 includes a pair of thyristors TH2, which are rectifying switching elements, a pair of diodes D1, D2, which are rectifying elements, and a DC reactor L. Is realized. It should be noted that, in the present invention, the pair of thyristors TH 1 and TH 2 are connected to either one of a pair of AC terminals AC 1 and AC 2 connected to the bus connecting line 2. A pair of diodes D 1 and D 2 are connected to the other. (In the example of Fig. 1, thyristors TH1 and TH2 are connected to AC terminal AC1, and diodes D1 and D2 are connected to AC terminal AC2.) A DC reactor L is connected between terminals DC 1 and DC 2. In the system interconnection device 21, the current decay time constant determined by the reactance component and the resistance component of the DC reactor L, and the rectifier circuit composed of the thyristor TH2 and the diodes D1, D2. As shown in Fig. 2, there is a relation between the equivalent impedance seen from the power system side and the equivalent impedance decreases as the current decay time constant increases. On the other hand, it is desirable that the device impedance during steady operation be as small as possible. Therefore, in the present invention, from FIG. 2, the current decay time constant is selected to be at least 2.5 times the system frequency cycle of the power system.
上述のように構成された系統連系装置 2 1 において、 定常時には、 サ イ リ ス夕 T H 1 , T H 2のゲー トが駆動され、 該サイ リ ス夕 T H 1 . T H 2が導通し、 参照符 i 1 または i 2で示す経路で電流が流れている。 したがって、 直流リアク トル Lに流れる電流の方向および振幅は一定で あり、 該直流リアク トル Lのインピーダンス Z ( = ω L ) は零となって 、 損失が発生することはない。  In the grid interconnection device 21 configured as described above, the gates of the thyristors TH 1 and TH 2 are driven in a normal state, and the thyristors TH 1 and TH 2 conduct, and the reference is made. The current is flowing through the path indicated by the symbol i 1 or i 2. Therefore, the direction and amplitude of the current flowing through DC reactor L are constant, and impedance Z (= ωL) of DC reactor L becomes zero, so that no loss occurs.
これに対して、 たとえば配電線 2 6の短絡や地絡および受電系の開放 等の故障が発生し、 コノジエネ母線 2 3側から受電母線 2 2側に過電流が 流れよう とすると、 直ちに、 直流リアク トル Lは、 その端子間に流れる 電流を一定に保持しよう として、 該直流リアク トル Lの前記イ ンピーダ ンス Ζが大きくなつて、 端子間電圧を上昇する。  On the other hand, if a fault such as a short circuit in the distribution line 26, a ground fault, or the opening of the power receiving system occurs, and an overcurrent flows from the conogene energy bus 23 to the power receiving bus 22, the DC Reactor L attempts to maintain a constant current flowing between its terminals, and as the impedance の of DC reactor L increases, the voltage between the terminals increases.
これによつて、 交流端子 A C 1 , A C 2側から見たイ ン ピーダンスが 増大することになり、 母線連絡線 2 4を介してコジエネ母線 2 3側から 受電母線 2 2側へ流れる電流を抑制する限流作用を実現するこ とができ 、 その間に、 短絡や地絡継電器の出力によって、 サイ リス夕 T H し T H 2のゲー トがブロ ッ クされ、 コジ ネ母線 2 3が受電母線 2 2から、 1 サイクル以内の高速で、 かつ確実に遮断されるので、 自家発電装置 2 7が過負荷となることを防止することかできる。 As a result, the impedance as viewed from the AC terminals AC 1 and AC 2 increases, and the current flowing from the koziene bus 23 to the power receiving bus 22 via the bus connecting line 24 is suppressed. In the meantime, the gate of thyristor TH and TH2 is blocked by a short circuit or the output of a ground fault relay, and the power bus 23 is connected to the power bus 23. From Since the power is shut off at high speed within one cycle and reliably, it is possible to prevent the private power generator 27 from being overloaded.
このようにして、 受電母線 2 2側での故障に対して、 自家発電装置 2 7が停止してしまう ことを防止することができ、 停電を防止することが できる。 また、 前記直流リアク トル Lの端子間電圧の上昇によって、 コ ジエネ母線 2 3の瞬時電圧低下を抑えるこ ともできる。 こう して、 コジ ネ系統の運用の信頼性を向上することができる。 また、 前記限流作用 が達成されることによって、 コジヱネ母線 2 3側およぴ受電母線 1 2側 の双方の短絡容量を抑えることもできる。  In this way, it is possible to prevent the private power generator 27 from stopping due to a failure on the power receiving bus 22 side, and to prevent a power failure. In addition, an increase in the voltage between the terminals of the DC reactor L can also suppress the instantaneous voltage drop of the kojene bus 23. In this way, the reliability of operation of the power grid can be improved. Further, by achieving the current limiting function, it is possible to suppress the short-circuit capacity of both the kozine bus 23 and the power receiving bus 12.
ここで、 単相混合ブリ ッ ジ整流回路を限流装置に用いた例 (特開昭 4 9 - 5 0 4 4 8号公報) を、 図 3 ( a ) に示す。 この限流装置 3 1 は、 相互に並列に接続された混合プリ ッジ整流回路 3 2 と、 限流リァク トル L 2 とが、 交流線路 3 3に直列に介在されて構成されている。  Here, an example in which a single-phase mixed bridge rectifier circuit is used for a current limiting device (JP-A-49-50448) is shown in FIG. 3 (a). The current limiting device 31 includes a mixed-bridge rectifier circuit 32 and a current-limiting reactor L2 connected in parallel with each other in series with an AC line 33.
混合ブリ ッ ジ整流回路 3 2は、 一対のサイ リ ス夕 t h 1, t h 2 と、 一対のダイオー ド d l , d 2 と、 直流リアク トル L 1 と、 前記直流リア ク トル L 1 に直列に接続される直流電源 Bとを備えて構成されている。 注目すべきは、 一方の交流端子 A C 1 にはサイ リス夕 t h 1 およびダイ オー ド d 1 が接続され、 他方の交流端子 A C 2にはサイ リ ス夕 t h 2お よびダイオー ド d 2が接続されることである。 したがって、 直流端子 D C 1 にはサイ リ ス夕 t h 1 , t h 2が接続され、 直流端子 D C 2にはダ ィオー ド d 1 , d 2が接続され、 直流端子 D C 1 , D C 2間には、 前記 直流リアク トルし 1 と直流電源 Bとの直列回路が接続されている。  The mixed bridge rectifier circuit 32 is connected in series to a pair of thyristors th1, th2, a pair of diodes dl, d2, a DC reactor L1, and the DC reactor L1. And a DC power source B to be connected. It should be noted that one AC terminal AC1 is connected to thyristor th1 and diode d1, while the other AC terminal AC2 is connected to thyristor th2 and diode d2. Is to be done. Therefore, the thyristors th1 and th2 are connected to the DC terminal DC1, the diodes d1 and d2 are connected to the DC terminal DC2, and the DC terminals DC1 and DC2 are connected between the DC terminals DC1 and DC2. A series circuit of the DC reactor 1 and the DC power supply B is connected.
このように構成された限流装置 3 1 では、 定常時には、 サイ リス夕 t h i , t h 2が導通しており、 限流リアタ トル L 2をバイパスして、 混 合ブリ ッジ整流回路 3 2を介して線路電流が流れている。 これに対して 、 故障時には、 直流電源 Bで設定された電流値以上の電流が直流リアク トル L 1 によって抑制され、 限流効果が発揮される。 その後、 サイ リス 夕 t h l , t h 2を遮断する。 このサイ リス夕 t h 1 , t h 2の遮断に よって、 交流端子 A C し AC 2間に不所望な過電圧が発生するので、 その過電圧を抑制するための限流リアク トル L 2によって、 交流端子 A C I , A C 2間に側路回路を形成する。 この限流リ了ク トル L 2が存在 するために、 連系の分離を目的とする系統連系装置には適用するこ とが できない。 In the current limiting device 31 configured as described above, in a steady state, the thyristors thi and th 2 are conducting, bypassing the current limiting reactor L 2 and mixing the current. Line current is flowing through the combined bridge rectifier circuit 32. On the other hand, at the time of failure, the current exceeding the current value set by the DC power supply B is suppressed by the DC reactor L1, and the current limiting effect is exhibited. Then, cut off the thyristor thl and th2. When the thyristors th1 and th2 are cut off, an undesired overvoltage is generated between the AC terminals AC2 and AC2, and the current limiting reactor L2 for suppressing the overvoltage causes the AC terminals ACI, Form a bypass circuit between AC2. Due to the existence of this current limiting end vector L2, it cannot be applied to a grid interconnection device for the purpose of disconnecting the interconnection.
上述のように構成される混合ブリ ッ ジ整流回路 3 2において、 あえて 限流リアク トル 2を削除し、 また直流リアク トル L 1 が作用する閾値 電流を決定する直流電源 Bを削除して、 本発明のように系統連系装置に 用いる場合を想定してみる。 図 3 (b) に、 そのようにして構成した場 合の系統連系装置 4 1 の構成を示す。 なお、 この系統連系装置 4 1 にお いて、 本発明の系統連系装置 2 1 に類似し対応する部分には、 同一の参 照符号を付してその説明を省略する。  In the mixed bridge rectifier circuit 32 configured as described above, the current limiting reactor 2 is intentionally deleted, and the DC power source B that determines the threshold current at which the DC reactor L1 operates is deleted. Let us suppose that it is used for a grid interconnection device as in the invention. Fig. 3 (b) shows the configuration of the grid interconnection device 41 in such a configuration. In the system interconnection device 41, the parts that are similar to and correspond to the system interconnection device 21 of the present invention are given the same reference numerals, and description thereof is omitted.
注目すべきは、 この系統連系装置 4 1では、 一方の交流端子 A C 1 に はサイ リス夕 TH 1 aおよびダイオー ド D 1 aが接続され、 他方の交流 端子 A C 2にはサイ リス夕 T H 2 aおよびダイオー ド D 2 aが接続され ることである。 したがって、 直流端子 D C 1 には一対のサイ リス夕 TH l a , TH 2 aが接続されることになり、 直流端子 D C 2には一対のダ ィオー ド D 1 a, D 2 aが接続されることになる。 また、 直流端子 D C 1 , D C 2間には、 直流リアク トル Lが介在される。  It should be noted that in this grid interconnection device 41, one AC terminal AC1 is connected to the thyristor TH1a and diode D1a, and the other AC terminal AC2 is connected to the thyristor TH1. 2a and diode D2a are connected. Therefore, a pair of thyristors TH la and TH 2a are connected to the DC terminal DC1, and a pair of diodes D 1a and D 2a are connected to the DC terminal DC 2. become. Further, a DC reactor L is interposed between the DC terminals DC1 and DC2.
すなわち、 本発明の系統連系装置 2 1 とは、 単相プリ ッジ整流回路に おけるサイ リス夕とダイォー ドとの接続形態が異なっている。 That is, the grid interconnection device 21 of the present invention is a single-phase prism rectifier circuit. The connection between the thyristor and the diode is different.
これらの系統連系装置 2 1 と 4 1 との遮断動作時における各部のシミ ユレーショ ン波形を、 図 4および図 5 でそれぞれ示す。 シ ミ ュ レ一シ ョ ンの条件は、 商用電源側の%ィ ンピーダンスを 1 0 0 とし、 その電源の リアクタンスを 1 . O p u とし、 電源周波数を 5 0 H z とし、 直流リァ ク トル Lのリアクタンスを 4. O p u としている。 サイ リス夕 T H 1 , TH 1 aを流れる電流は、 それぞれ図 4 ( a ) および図 5 ( a ) で示さ れているように、 交流端子 A C 1 がハイ レベルである半サイ クルが経過 して、 一旦、 零クロスとなった時点で消弧し、 以後、 該電流は、 流れな く なつている。  Figures 4 and 5 show the simulation waveforms of each part during the disconnection operation of these grid interconnection devices 21 and 41, respectively. The simulation conditions are as follows: the% impedance on the commercial power supply side is 100, the reactance of the power supply is 1.0 Opu, the power supply frequency is 50 Hz, and the DC reactor L Is 4. O pu. As shown in Fig. 4 (a) and Fig. 5 (a), the current flowing through the thyristor TH1 and TH1a, respectively, passes through a half cycle after the AC terminal AC1 is at the high level, The arc is extinguished once the zero crossing is reached, and thereafter, the current stops flowing.
これによつて、 ダイオー ド D 2に流れる電流は、 図 4 ( c ) において 参照符ひ 1 で示す前記サイ リス夕 TH 1 を流れる電流に対応した電流と 、 直流リアク トル Lの放出エネルギーによる電流 2 となるのに対して 、 ダイオー ド D 2 aを流れる電流は、 図 5 ( c ) において参照符 S 1 で 示す前記サイ リスタ TH 1 aを流れる電流に対応した電流と、 参照符 /S 2 , β 3 , β 4 , …で示すように、 直流リアク トル Lの放出エネルギー によって加算されてゆく電流となる。 この現象は、 図 3 ( b ) において 参照符 i 3で示すように、 前記サイ リスタ T H 1 aが遮断することによ つて還流する電流によって、 サイ リス夕 TH 2 aが消弧するこ とができ ず、 該電流が増加してゆくために生じる。  As a result, the current flowing through the diode D2 is the current corresponding to the current flowing through the thyristor TH1 indicated by reference numeral 1 in FIG. 4 (c), and the current due to the energy released from the DC reactor L. 2, the current flowing through the diode D 2a is represented by the current corresponding to the current flowing through the thyristor TH 1a indicated by reference numeral S 1 in FIG. , β 3, β 4,…, the current is added by the energy released from the DC reactor L. This phenomenon is, as indicated by reference numeral i3 in FIG. 3 (b), that the thyristor TH1a is extinguished by the current flowing back due to the interruption of the thyristor TH1a. This is not possible, and occurs because the current increases.
したがって、 サイ リス夕 T H 2を流れる電流が図 4 ( b ) で示すよう に、 交流端子 A C 2がハイ レベルとなる半サイクルだけで消弧するのに 対して、 前記サイ リス夕 T H 2 aを流れる電流は、 図 5 ( b ) で示すよ うに、 1 サイ クル毎に増加してゆく ことになる。 また、 これによつて、 ダイォ— ド D 1 を流れる電流が、 図 4 ( d ) で示すように、 前記図 4 ( b ) で示すサイ リス夕 T H 2を流れる電流と、 図 4 ( c ) において参照 符 2で示す直流リアク トル Lの放出による電流との和となるのに対し て、 ダイオー ド D 1 aを流れる電流は、 図 5 ( d ) で示すように、 前記 図 5 ( c ) で示すダイオー ド D 2 aを流れる電流と同様に、 1 サイクル 毎に増加してゆく。 Therefore, as shown in Fig. 4 (b), the current flowing through the thyristor TH2 is extinguished in only a half cycle when the AC terminal AC2 is at the high level, whereas the current flowing through the thyristor TH2a is higher. As shown in Fig. 5 (b), the flowing current increases every cycle. In addition, As shown in FIG. 4 (d), the current flowing through the diode D 1 is different from the current flowing through the thyristor TH 2 shown in FIG. 4 (b) and the DC current indicated by reference numeral 2 in FIG. 4 (c). The current flowing through the diode D1a is the sum of the current due to the discharge of the reactor L and the current flowing through the diode D1a, as shown in FIG. 5 (d), and the diode D2a shown in FIG. 5 (c). It increases with each cycle, as does the current flowing through the circuit.
また、 これによつて、 系統連系装置 2 1 と系統連系装置 4 1 とのそれ ぞれにおいて、 直流リアタ トル Lを流れる電流を図 4 ( e ) および図 5 ( e ) で示し、 コジエネ母線 2 3の電圧を図 4 ( f ) および図 5 ( f ) で示し、 受電母線 2 2の電圧を図 4 ( g ) および図 5 ( g ) で示し、 コ ジエネ母線 2 3側から受電母線 2 2側へ流れる故障電流を図 4 ( h ) お よび図 5 ( h ) で示す。  As a result, in each of the grid interconnection device 21 and the grid interconnection device 41, the current flowing through the DC reactor L is shown in Fig. 4 (e) and Fig. 5 (e). The voltage of bus 23 is shown in Fig. 4 (f) and Fig. 5 (f), the voltage of receiving bus 22 is shown in Fig. 4 (g) and Fig. 5 (g), and the receiving bus is 22 The fault current flowing to the side 2 is shown in Fig. 4 (h) and Fig. 5 (h).
本発明に従う系統連系装置 2 1 では、 直流リァク トル; Lを流れる電流 が図 4 ( e ) で示すように、 ほほ一定値で収束しているのに対して、 系 統連系装置 4 1 では、 図 5 ( e ) で示すように、 前記 1 サイ クル毎に増 加してゆく。 これに対応して、 故障電流も、 本発明の系統連系装置 2 1 では、 図 4 ( h ) で示すように 1サイクルで、 高速、 かつ確実に遮断さ れているのに対して、 系統連系装置 4 1 では、 図 5 ( h ) で示すように 、 1 サイ クル毎に増加してゆく。  In the grid interconnection device 21 according to the present invention, the current flowing through the DC reactor L converges at a substantially constant value as shown in FIG. Then, as shown in FIG. 5 (e), the value is increased every one cycle. Correspondingly, the fault current is also rapidly and reliably shut off in one cycle in the grid interconnection device 21 of the present invention as shown in FIG. In the interconnection device 41, as shown in FIG. 5 (h), the number increases every cycle.
したがって、 この系統連系装置 4 1 は、 限流装置と しての機能は果た しているけれども、 いずれか一方のサイ リス夕 T H l a または T H 2 a を消弧することができず、 したがって系統連系装置と して使用すること が不可能である。  Therefore, although this grid interconnection device 41 functions as a current limiting device, it cannot extinguish either thyristor TH la or TH 2a, and It cannot be used as a grid connection device.
この点、 本発明に従う系統連系装置 2 1 は、 故障発生時に直流リアク トル Lによって限流動作を行う とともに、 サイ リ ス夕 T H 1 , T H 2を 遮断することによって、 確実に故障電流を遮断することができる。 これ によって、 瞬時電圧低下を大幅に改善することができ、 コンピュータ等 の重要な負荷に対して、 従来個別に設けられていた無停電電源の省略を 可能とすることができる。 また、 高速での遮断が可能となり、 自家発電 装置 2 7が過負荷状態となることを防止することができ、 該自家発電装 置 2 7の停止による停電や、 急激な過負荷による発電機シャフ トへの過 剰な トルク負担の発生等の不所望な事態を確実に防止することができる 。 さらにまた、 コジ ネ母線 2 3側および受電母線 2 2側の双方の短絡 容量を小さ く抑えることも可能となる。 In this regard, the grid interconnection device 21 according to the present invention has a DC reactor when a failure occurs. The fault current can be reliably shut off by performing current limiting operation with the torque L and shutting off the thyristor TH1 and TH2. As a result, the instantaneous voltage drop can be greatly improved, and the uninterruptible power supply that has been provided separately for conventional computers and other important loads can be omitted. In addition, it is possible to shut down at a high speed, thereby preventing the private power generator 27 from being overloaded, causing a power outage due to the stoppage of the private power generator 27, and a generator shuffling due to a sudden overload. Thus, it is possible to reliably prevent undesired situations such as occurrence of excessive torque load on the vehicle. Furthermore, it is also possible to reduce the short-circuit capacity on both the side of the power bus 23 and the side of the power receiving bus 22.
また、 前記特開昭 4 9 - 5 0 4 4 8号公報では、 サイ リ ス夕純プリ ッ ジ整流回路を限流装置に用いた例も示されている。 この例を図 3 ( c ) に示す。 この限流装置 3 1 aの純ブリ ッ ジ整流回路 3 2 aは、 前述の図 3 ( a ) の構成と同様に、 直流電源 Bの作用によって、 常時、 サイ リ ス 夕 t h 1 〜 t h 4 に電流を流しておき、 交流回路の電流がその電流値以 下であれば、 交流側から見たイ ン ピーダンスは零となり、 前記電流値以 上となれば、 限流動作を行う回路である。  Also, in the above-mentioned Japanese Patent Application Laid-Open No. 49-50448, there is disclosed an example in which a thyristor-pure pure-bridge rectifier circuit is used for a current limiting device. This example is shown in Fig. 3 (c). The pure bridge rectifier circuit 32a of the current limiting device 31a always has a thyristor th1 to th4 by the action of the DC power supply B, similarly to the configuration of FIG. 3 (a) described above. If the current in the AC circuit is less than the current value, the impedance seen from the AC side becomes zero, and if the current value is more than the current value, the circuit performs current limiting operation. .
かかる目的の直流電源 Bを付加することは、 技術的 ·経済的に同発明 の実現性を困難にしている。 本発明に従う系統連系装置 2 1 は、 このよ うな直流電源 Bを備えておらず、 前述のように、 直流リアク トル Lのリ ァク夕ンス成分および抵抗成分と、 サイ リス夕 T H 1 , T H 2およびダ ィオー ド D 1 , D 2から成る整流回路とによって決定される電流減衰時 定数を、 電力系統の系統周波数サイクルの 2 . 5倍以上に選ぶことによ つて、 前記直流電源 Bを不要としており、 特開昭 4 9 — 5 0 4 4 8号公 報の技術とは、 全く構成の異なるものである。 The addition of the DC power source B for such a purpose makes it technically and economically difficult to realize the invention. The grid interconnection device 21 according to the present invention does not include such a DC power supply B, and as described above, the reactance and resistance components of the DC reactor L and the thyristor TH 1, By selecting the current decay time constant determined by TH2 and the rectifier circuit composed of diodes D1 and D2 to be at least 2.5 times the system frequency cycle of the power system, Unnecessary and disclosed in JP-A-49-504-48 The information technology is completely different in composition.
本発明の実施の他の形態について、 図 6〜図 8および前述の図 1 2に 基づいて説明すれば以下の通りである。  Another embodiment of the present invention will be described below with reference to FIGS. 6 to 8 and FIG. 12 described above.
図 6は、 本発明の実施の他の形態の分散電源装置を説明するための電 力系統の単相結線図である。 この分散電源装置に備えられている系統連 系装置 5 1 は、 上述の系統連系装置 2 1 と同様の構成を備えており、 受 電母線 5 4 とコジエネ母線 5 6 とを相互に接続し、 商用電源系と分散電 源系との連系運転を可能とするものである。  FIG. 6 is a single-phase connection diagram of a power system for describing a distributed power supply device according to another embodiment of the present invention. The grid interconnection device 51 provided in this distributed power supply has the same configuration as the above-described grid interconnection device 21, and connects the receiving bus 54 and the Koziene bus 56 to each other. It enables the grid-connected operation between the commercial power system and the distributed power system.
商用電源系の電源 5 2から需要家内に引込まれた商用電源線 5 3は、 受電母線 5 4 に接続されている。 この受電母線 5 4 には、 一般負荷に接 続される多数の配電線 5 5が接続されている。 また、 分散電源系のコジ エネ母線 5 6は、 電源線 5 7を介して、 コ ジェネ レーショ ンシステムな どの電源 5 8 と接続されている。 コジヱネ母線 5 6にはまた、 重要負荷 への多数の配電線 6 0が接続されている。  The commercial power line 53 drawn from the power source 52 of the commercial power system into the customer is connected to the receiving bus 54. Many distribution lines 55 connected to a general load are connected to the receiving bus 54. In addition, the power bus 56 of the distributed power system is connected to a power source 58 such as a cogeneration system via a power line 57. The Kozine bus 56 is also connected to a number of distribution lines 60 to critical loads.
この系統連系装置 5 1 は、 遮断器 6 1 と、 単相整流回路 6 2 と、 直流 リアク トル 6 3 とを備えて構成されている。 単相整流回路 6 2は、 2つ の交流端子のうち、 少く ともいずれか一方 (図 6の例では遮断器 6 1 側 ) に一対のサイ リス夕 TH し TH 2を接続するようにし、 該サイ リス タ TH 1 , TH 2 と一対のダイオー ド D 1, D 2 とから成る半導体整流 素子のブリ ッ ジ回路によって構成されている。 これによつて、 故障時に は、 1 Z 2サイクル ( 5 0 H zで 1 0 m s e c ) 以内での遮断駆動が可 能となり、 その後、 遮断器 6 1 が遮断する。 前記単相整流回路 6 2の 2 つの交流端子のうち、 一方はコジヱネ母線 5 6に接繞され、 他方は遮断 器 6 1 を介して受電母線 5 4に接続される。 また、 この単相整流回路 6 2の 2つの直流端子間には、 前述と同様に直流リアク トル 6 3が接続さ れている。 The system interconnection device 51 includes a circuit breaker 61, a single-phase rectifier circuit 62, and a DC reactor 63. The single-phase rectifier circuit 62 connects a pair of thyristors TH2 and TH2 to at least one of the two AC terminals (the circuit breaker 61 side in the example of FIG. 6). It is composed of a bridge circuit of semiconductor rectifiers consisting of thyristors TH1 and TH2 and a pair of diodes D1 and D2. As a result, in the event of a failure, shutoff drive within 1Z2 cycles (10 msec at 50 Hz) becomes possible, and then the breaker 61 shuts off. One of the two AC terminals of the single-phase rectifier circuit 62 is connected to the connector bus 56, and the other is connected to the power receiving bus 54 via the circuit breaker 61. In addition, this single-phase rectifier circuit 6 A DC reactor 63 is connected between the two DC terminals 2 as described above.
電源線 5 3 , 5 7の電圧は、 それぞれ電圧変成器 6 5 , 6 6を介して 、 不足電圧継電器 6 7 , 6 8によって検知されており、 この不足電圧継 電器 6 7 , 6 8は、 前記電源線 5 3 , 5 7の電圧が、 定格電圧に対して 所定の整定値、 たとえば 8 5 %以下となると故障が発生しているものと 判定し、 前記サイ リ ス夕 TH 1 , TH 2を消弧するとともに、 遮断器 6 1 を遮断駆動する。  The voltages of the power supply lines 53 and 57 are detected by the undervoltage relays 67 and 68 via the voltage transformers 65 and 66, respectively, and the undervoltage relays 67 and 68 are When the voltage of the power supply lines 53 and 57 becomes a predetermined set value with respect to the rated voltage, for example, 85% or less, it is determined that a failure has occurred, and the thyristors TH 1 and TH 2 Is extinguished, and the circuit breaker 61 is turned off.
このように構成される分散電源装置において、 電源 5 8側の系統イ ン ピーダンスはほぼ Lとして見え、 該電源 5 8の内部ィ ン ピ一ダンスに相 当する等価イ ンダクタンスを L s とすると、 本発明では、 分散電源系に 許容される電圧低下率を Aとするとき、 該分散電源系の等価ィ ンダクタ ンス L s に対して、 直流リアク トル 6 3のイ ンダクタ ンス L d cを、 L d c /L s > ( 1 - A) /A … ( 1 ) の関係を満足するように選ぶ。  In the distributed power supply configured as described above, the system impedance on the power supply 58 side looks almost L, and assuming that the equivalent inductance corresponding to the internal impedance of the power supply 58 is Ls, In the present invention, when the allowable voltage drop rate of the distributed power system is A, the inductance L dc of the DC reactor 63 is represented by L dc with respect to the equivalent inductance L s of the distributed power system. / L s> (1 -A) / A… Select to satisfy the relationship of (1).
こ こで、 参照符 6 9で示すように、 商用電源系で地絡故障が生じた場 合を考えると、 コジヱネ母線 5 6の電圧は、 電源 5 8の電圧 Vを、 等価 イ ンダクタンス L s と直流リアタ トル 6 3のイ ンダク夕ンス L d c とで 分圧した値となる。 したがって、 故障後の系統電圧 V' は、  Here, as shown by reference numeral 69, when a ground fault occurs in the commercial power supply system, the voltage of the power supply bus 56 is obtained by changing the voltage V of the power supply 58 to the equivalent inductance L s And the inductance L dc of the DC rear reactor 63 are the divided values. Therefore, the system voltage V 'after the fault is
V = L d c / (L d c + L s ) x V - ( 2 ) で求めることができる。  V = Ldc / (Ldc + Ls) xV- (2).
したがって、 たとえば前記許容電圧低下率 Aが 5 0 %であるときには 、 前記式 1 力、ら、 前記インダクタンス L d cを、 ほぼ等価ィ ンダクタン ス L s に等しい電源 5 8のインダク夕ンスに等しくするこ とによって、 商用電源系で前記参照符 6 9で示すように故障が発生した場合、 該分散 電源系でのコジヱネ母線 5 6の電 BE低下を上記電源 5 8の電圧 Vの 5 0 %までに抑えることができる。 また、 たとえば前記許容電圧低下率 Aが 2 5 %であるときには、 前記式 1 から、 倍数 L d c ZL s は 3 より大き くなり、 前記電源 5 8のイ ンダクタンスに対して、 直流リアタ トル 6 3 のインダク夕ンス L d cを 3倍に設定することによって、 コジェネ母線 5 6の電圧低下を電源 5 8の電圧 Vの 7 5 %までに抑えることができる o Therefore, for example, when the allowable voltage drop rate A is 50%, the above equation (1) is used to make the inductance Ldc equal to the inductance of the power supply 58 substantially equal to the equivalent inductance Ls. And by When a failure occurs in the commercial power supply system as indicated by the reference numeral 69, the decrease in the BE of the power supply bus 56 in the distributed power supply system can be suppressed to 50% of the voltage V of the power supply 58. it can. Also, for example, when the allowable voltage drop rate A is 25%, the multiple L dc ZL s becomes larger than 3 according to the above equation 1, and the DC reactance 6 3 By setting the inductance Ldc of the power generator to 3 times, the voltage drop of the cogeneration bus 56 can be suppressed to 75% of the voltage V of the power supply 58.o
なお、 上式から明らかなように、 直流リアク トル 6 3のイ ンダクタン ス L d cを大き く設定する程、 電圧低下を小さ く抑えることができるけ れども、 故障時に得られる電圧が、 前記不足電圧継電器 6 8の整定値以 下であることが望ま しい。  As is clear from the above equation, the voltage drop can be reduced as the inductance Ldc of the DC reactor 63 is set to be larger, but the voltage obtained at the time of failure is insufficient. It is desirable that the voltage be equal to or less than the set value of the voltage relay 68.
図 7および図 8に、 故障発生時における本発明の分散電源装置と、 前 述の図 1 3で示す分散電源装置との動作の解折結果をそれぞれ示す。 図 7 ( a ) はコジエネ母線 5 6の母線電圧であり、 図 7 ( b ) は系統連系 装置 5 1 を介して流れる連系電流であり、 図 8 ( a ) はコジ Xネ母線 5 の母線電圧であり、 図 8 ( b ) は系統連系装置 1 1 を介して流れる連系 電流である。 なお、 地絡故障の発生タイ ミ ングは零クロス点とし、 本発 明の系統連系装置 5 1 における直流リアク トル 6 3のイ ンダク夕ンス L d cは、 電源 5 8の等価イ ンダク夕ンス L sの 1 倍に設定している。 図 7 ( a ) と図 8 ( a ) とを比較して明らかなように、 本発明では電 圧低下が 5 0 %以下に抑制されており、 また図 7 (b ) と図 8 ( b ) と を比較して明らかなように、 連系電流も 1 / 2以下に抑制されている。 このように本発明に従う分散電源装置では、 系統連系装置 5 1 の直流 リアク トル 6 3のイ ンダク夕 ンス L d cを、 許容電圧低下率 Aと等価ィ ンダク夕ンス L s とに基づいて設定することによって、 商用電源系の故 障時における電圧低下を所望とするレベルに抑制することができる。 たとえば、 前記許容電圧低下率 Aを 5 0 %に設定した場合、 図 1 2に おいて電圧低下の補償範囲は参照符 M 3で示すようになり、 パワーエレ ク トロニクス応用の可変速モータや、 重要負荷の接続される電磁開閉器 5 9 (図 6参照) の安定動作を補償することができる。 7 and 8 show the results of breaking the operation of the distributed power supply of the present invention and the operation of the distributed power supply shown in FIG. 13 at the time of occurrence of a failure, respectively. Fig. 7 (a) shows the bus voltage of the Kozi energy bus 56, Fig. 7 (b) shows the interconnection current flowing through the grid interconnection device 51, and Fig. 8 (a) shows the This is the bus voltage, and Fig. 8 (b) is the interconnection current flowing through the interconnection device 11. The ground fault occurrence timing is set to the zero crossing point, and the inductance L dc of the DC reactor 63 in the grid interconnection device 51 of the present invention is the equivalent inductance of the power supply 58. L is set to 1 time. As is clear from comparison between FIG. 7 (a) and FIG. 8 (a), in the present invention, the voltage drop is suppressed to 50% or less, and FIGS. 7 (b) and 8 (b) As is clear from the comparison of and, the interconnection current is also suppressed to less than 1/2. As described above, in the distributed power supply device according to the present invention, the DC By setting the inductance L dc of the reactor 63 based on the permissible voltage drop rate A and the equivalent inductance L s, the level at which the voltage drop in the event of a failure in the commercial power supply system is desired. Can be suppressed. For example, if the allowable voltage drop rate A is set to 50%, the compensation range of the voltage drop in FIG. 12 is indicated by reference numeral M3, and a variable speed motor for power electronics applications and The stable operation of the electromagnetic switch 59 (see Fig. 6) to which the load is connected can be compensated.
これによつて、 無停電電源装置を用いるこ となく、 低損失および低コ ス トに、 可変速モータや電磁開閉器の動作を補償するこ とができる。 こ れによって、 連系運転にあたっての信頼性を向上することができるとと もに、 分散電源へのス ト レスを低減するこ とができる。 また、 直流リア ク トル 6 3の限流作用およびサイ リス夕による高速電流遮断作用によつ て、 負荷側の電磁開閉器 5 9の短絡容量をむやみに大き くする必要はな く、 分散電源系を商用電源系に連系させるにあたって、 配電線 6 0や、 この電磁開閉器 5 9の交換の必要もなくすことができる。  This makes it possible to compensate for the operation of the variable speed motor and the electromagnetic switch with low loss and low cost without using an uninterruptible power supply. As a result, the reliability of the interconnection operation can be improved, and the stress on the distributed power source can be reduced. In addition, due to the current limiting action of the DC reactor 63 and the high-speed current cutoff action of the thyristor, the short-circuit capacity of the electromagnetic switch 59 on the load side does not need to be unnecessarily increased. In connecting the system to the commercial power system, it is not necessary to replace the distribution line 60 or the electromagnetic switch 59.
なお、 前記系統連系装置 2 1 , 5 1 は、 上述のようなサイ リス夕とダ ィォ一 ドとの混合ブリ ッ ジだけでなく、 サイ リス夕純ブリ ッ ジで構成さ れてもよい。 また、 系統連系装置 5 1 において、 遮断器 6 1 は省略され てもよい。 産業上の利用可能性  The grid interconnection devices 21 and 51 are not limited to the above-described mixed bridge of thyristor and diode, but may be configured of a thyristor pure bridge. Good. In the grid interconnection device 51, the circuit breaker 61 may be omitted. Industrial applicability
以上のように、 本発明に係る系統連系装置は、 故障が発生すると、 整 流性スィ ッチング素子が高速で遮断して、 2つの電力系統間を切離すこ とができ、 また前記故障が発生しても、 直流リアク トルによる電流保存 作用によって、 切離されるべき電力系統側の重要な負荷への瞬時の電源 電圧の低下も抑えることができるので、 2つの電力系統を相互に連系さ せて電力の融通を行うための系統連系装置に好適に適用するこ とができ る。 As described above, in the system interconnection device according to the present invention, when a failure occurs, the rectifying switching element can be shut off at high speed to disconnect the two power systems, and the failure can be prevented. Even if it occurs, current is stored by DC reactor This function can also suppress the instantaneous drop in the power supply voltage to the important load on the power system side to be disconnected, so that the two power systems can be interconnected with each other to exchange power. It can be suitably applied to system equipment.
また、 以上のように、 本発明に係る瞬時電圧低下対策機能付き分散電 源装置は、 上記のような系統連系装置を用いて商用電源系に連系するよ うにし、 かつ商用電源系の故障発生時に、 系統電圧が等価イ ンダクタン ス L s と直流リ了ク トルのイ ンダク夕ンス L d c とによつて分圧された 値となる分散電源系の母線電圧を、 該分散電源系で許容するこ とができ る値以内とするので、 無停電電源装置を用いることなく、 低損失および 低コス トに、 重要な負荷の動作も補償することができ、 分散電源装置に 好適に適用することができる。  Further, as described above, the distributed power supply device with the instantaneous voltage drop countermeasure function according to the present invention is connected to the commercial power supply system by using the above-described system interconnection device, and In the event of a failure, the distributed power system bus voltage, in which the system voltage is divided by the equivalent inductance L s and the DC termination inductor L dc, is applied to the distributed power system. Since it is within the allowable value, the operation of important loads can be compensated with low loss and low cost without using an uninterruptible power supply, and it is suitable for a distributed power supply. be able to.

Claims

請 求 の 範 囲 The scope of the claims
1 . 2つの電力系統間に介在され、 両系統を相互に連系させて電力の融 通を行うための系統連系装置において、 1. A system interconnection device that is interposed between two power systems and interconnects both systems to exchange power
両系統の各相連系端子間に接続される 2つの交流端子のうち、 いずれ か一方には一対の整流性スィ ッチング素子が接続され、 いずれか他方に は一対の整流性素子が接続されて構成される単相整流回路と、  A pair of rectifying switching elements is connected to one of the two AC terminals connected between the phase connection terminals of both systems, and a pair of rectifying elements is connected to the other. A single-phase rectifier circuit,
前記整流性スィ ツチング素子と整流性素子との各接続点である 2つの 直流端子間に接続される直流リァク トルとを含むこ とを特徵とする系統 連系装置。  A system interconnection device characterized by including a DC reactor connected between two DC terminals which are connection points between the rectifying switching element and the rectifying element.
2 . 前記直流リアク トルのリアクタンス成分および抵抗成分ならびに整 流性スィ ッチング素子と整流性素子との整流回路から成る電流減衰時定 数が、 前記電力系統の系統周波数サイクルの 2 . 5倍以上であるこ とを 特徴とする請求項 1 記載の系統連系装置。  2. When the reactance component and the resistance component of the DC reactor and the current decay time constant composed of the rectifying circuit of the rectifying switching element and the rectifying element are at least 2.5 times the system frequency cycle of the power system. The grid interconnection device according to claim 1, wherein:
3 . 1 または複数の電源を備え、 瞬時電圧低下および停電を回避すべき 重要負荷が接続され、 前記請求項 1 または 2記載の系統連系装置によつ て商用電源系に交流で並列に連系して運転される瞬時電圧低下対策機能 付き分散電源装置であって、  3.1 An important load that is provided with one or more power supplies and should avoid instantaneous voltage drop and power failure is connected, and is connected in parallel with the commercial power supply system by the grid interconnection device according to claim 1 or 2. A distributed power supply with an instantaneous voltage drop countermeasure function
前記直流リアク トルのイ ンダク夕ンスを、 商用電源系の故障発生時に 分散電源系で許容することができる電圧低下率を Aとするとき、 分散電 源系の内部イ ンピーダンスに相当する等価インダク夕ンスの ( 1 — A ) ノ A倍より大きい値のリアクタンスを有するように形成することを特徴 とする瞬時電圧低下対策機能付き分散電源装置。  Assuming that the inductance of the DC reactor is A, the voltage drop rate that can be tolerated in the distributed power supply system when a failure occurs in the commercial power supply system, an equivalent inductance equivalent to the internal impedance of the distributed power supply system A distributed power supply with instantaneous voltage drop countermeasures, characterized in that it has a reactance that is greater than (1-A) no A times the impedance.
4 . 前記分散電源系における電源は、 回転機であることを特徴とする請 求項 3記載の瞬時電圧低下対策機能付き分散電源装置。 4. The power supply in the distributed power supply system is a rotating machine. A distributed power supply unit with a function to prevent instantaneous voltage drop according to claim 3.
5 . 前記分散電源系における電源は、 イ ンバータを使用する静止形の電 源であることを特徴とする請求項 3記載の瞬時電圧低下対策機能付き分 散電源装置。  5. The distributed power supply with instantaneous voltage drop prevention function according to claim 3, wherein the power supply in the distributed power supply system is a stationary power supply using an inverter.
PCT/JP1997/003758 1997-08-19 1997-10-17 System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function WO1999009631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002267304A CA2267304A1 (en) 1997-08-19 1997-10-17 System interconnection device and distributed power supply device including the same having instantaneous voltage drop counter-measure function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9222737A JP2998711B2 (en) 1997-08-19 1997-08-19 Distributed power supply with sag protection
JP9/222737 1997-08-19

Publications (1)

Publication Number Publication Date
WO1999009631A1 true WO1999009631A1 (en) 1999-02-25

Family

ID=16787119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003758 WO1999009631A1 (en) 1997-08-19 1997-10-17 System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function

Country Status (3)

Country Link
JP (1) JP2998711B2 (en)
CA (1) CA2267304A1 (en)
WO (1) WO1999009631A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147845A (en) * 1998-04-08 2000-11-14 Nissin Electric Co., Ltd. System interconnection device and method of designing same
WO2001061820A1 (en) * 2000-02-17 2001-08-23 Powerline Ges Pty Ltd Decentralised energy network system
CN100370668C (en) * 2002-12-19 2008-02-20 中国科学院电工研究所 Current-limiting circuit
CN100370667C (en) * 2002-12-19 2008-02-20 中国科学院电工研究所 Fault current limiting circuit
CN100433490C (en) * 2002-12-19 2008-11-12 中国科学院电工研究所 Fault current-limiting circuit for transmission and distribution electric network

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10284008B2 (en) * 2016-09-13 2019-05-07 Abb Schweiz Ag Isolated parallel ups system with fault location detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131280A (en) * 1979-03-29 1980-10-11 Fuji Electric Co Ltd Inverter
JPS5826533A (en) * 1981-08-10 1983-02-17 株式会社明電舎 Load balancing device for power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131280A (en) * 1979-03-29 1980-10-11 Fuji Electric Co Ltd Inverter
JPS5826533A (en) * 1981-08-10 1983-02-17 株式会社明電舎 Load balancing device for power system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147845A (en) * 1998-04-08 2000-11-14 Nissin Electric Co., Ltd. System interconnection device and method of designing same
WO2001061820A1 (en) * 2000-02-17 2001-08-23 Powerline Ges Pty Ltd Decentralised energy network system
CN100370668C (en) * 2002-12-19 2008-02-20 中国科学院电工研究所 Current-limiting circuit
CN100370667C (en) * 2002-12-19 2008-02-20 中国科学院电工研究所 Fault current limiting circuit
CN100433490C (en) * 2002-12-19 2008-11-12 中国科学院电工研究所 Fault current-limiting circuit for transmission and distribution electric network

Also Published As

Publication number Publication date
CA2267304A1 (en) 1999-02-25
JP2998711B2 (en) 2000-01-11
JPH1169664A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
KR100997559B1 (en) System for providing assured power to a critical load
US6118676A (en) Dynamic voltage sag correction
JP3432640B2 (en) Converter protection device
JP2015517784A (en) Photovoltaic system and method for operating a photovoltaic system to supply power to a medium voltage power grid
Li et al. A hybrid modular multilevel converter with reduced full-bridge submodules
US20240097427A1 (en) Protection apparatus and protection method for photovoltaic power generation system
JPH05501045A (en) Earth fault circuit breaker
EP3379674A1 (en) Power distribution system
WO1999009631A1 (en) System interconnecting device and decentralized power supply equipped with the same and having instantaneous voltage drop preventing function
US8687391B2 (en) Converter system and method for the operation of such a converter
US11942873B2 (en) Secondary magnetic excitation generator-motor device
CN216599460U (en) Frequency conversion control system of fracturing unit and fracturing unit
Rocha et al. Improving the performance of protection schemes in three level IGCT-based neutral point clamped converters
JP3529530B2 (en) Inverter protection device for grid connection
Zber et al. Simulation and analysis of a VSC-HVDC transmission system based on DC Line-Line fault
JP2991106B2 (en) Grid connection equipment
CA2268203C (en) System interconnection device and method of designing same
JPH11299103A (en) System interlinkage device
CN201682292U (en) Chopping device based on low-voltage ride-through
Cairoli et al. Ultra-fast utility disconnect switch for high efficiency medium voltage UPS
JP2870536B1 (en) Grid connection device and its control device
Voss et al. Transient performance an design issues for a parallel-connected voltage sag outage compensator
JP2004201413A (en) Power storing system
JP2976962B2 (en) Grid connection device and its control device
Ball et al. Static power converters of 500 kW or less serving as the relay interface package for nonconventional generators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

WWE Wipo information: entry into national phase

Ref document number: 09147885

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2267304

Country of ref document: CA

Ref country code: CA

Ref document number: 2267304

Kind code of ref document: A

Format of ref document f/p: F