JP2002124707A - Method for manufacturing thermoelectric conversion module - Google Patents
Method for manufacturing thermoelectric conversion moduleInfo
- Publication number
- JP2002124707A JP2002124707A JP2000315503A JP2000315503A JP2002124707A JP 2002124707 A JP2002124707 A JP 2002124707A JP 2000315503 A JP2000315503 A JP 2000315503A JP 2000315503 A JP2000315503 A JP 2000315503A JP 2002124707 A JP2002124707 A JP 2002124707A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric
- conversion module
- manufacturing
- thermoelectric conversion
- solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 84
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 77
- 229910052751 metal Inorganic materials 0.000 claims abstract description 122
- 239000002184 metal Substances 0.000 claims abstract description 122
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 238000004544 sputter deposition Methods 0.000 claims abstract description 32
- 238000009832 plasma treatment Methods 0.000 claims abstract description 30
- 238000007740 vapor deposition Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 12
- 239000011669 selenium Substances 0.000 claims abstract description 12
- 238000005476 soldering Methods 0.000 claims abstract description 12
- 229910000679 solder Inorganic materials 0.000 claims description 118
- 239000010408 film Substances 0.000 claims description 117
- 238000009792 diffusion process Methods 0.000 claims description 67
- 230000003405 preventing effect Effects 0.000 claims description 55
- 238000007747 plating Methods 0.000 claims description 42
- 238000007788 roughening Methods 0.000 claims description 25
- 238000011282 treatment Methods 0.000 claims description 24
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 239000012300 argon atmosphere Substances 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 230000002265 prevention Effects 0.000 claims description 11
- 229910052745 lead Inorganic materials 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 238000009713 electroplating Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000011810 insulating material Substances 0.000 claims description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 230000008719 thickening Effects 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 2
- 238000009736 wetting Methods 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 6
- 230000001070 adhesive effect Effects 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 4
- 229910052714 tellurium Inorganic materials 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 117
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 229910052759 nickel Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 229910000765 intermetallic Inorganic materials 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- -1 argon ions Chemical class 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 230000036632 reaction speed Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は熱電変換モジュール
の製造方法に関し、具体的には一対以上のP型及びN型
熱電半導体からなる熱電素子を有するアルミナタイプモ
ジュールや固着タイプモジュールの熱電半導体上に適切
な密着力を有し、耐熱性、耐食性を有する金属膜が成膜
ができ、メッキによる金属膜の形成工程として比較し
て、多数の薬剤の不要なもので製造工程が簡単で効率の
良好な熱電変換モジュールの製造方法にある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric conversion module, and more particularly, to a method for manufacturing a thermoelectric semiconductor of an alumina type module or a fixed type module having at least one pair of P-type and N-type thermoelectric semiconductors. A metal film with appropriate adhesion, heat resistance, and corrosion resistance can be formed. Compared to the metal film forming process by plating, it does not require many chemicals and the manufacturing process is simple and efficient. In a method for manufacturing a thermoelectric conversion module.
【0002】[0002]
【従来の技術】従来の熱電変換モジュールの製造方法
は、P型及びN型ビスマス−アンチモン−テルル−セレ
ン系熱電半導体を、表面に金属膜を成膜した後、切断す
ることで、端部に金属膜を有する一対以上のP型及びN
型の熱電素子を得、これらを電気的に直列となるよう、
電極が形成された絶縁基板上の所定の位置に半田付けよ
って接合してなる熱電変換モジュールの製造方法におい
て、特開平4−249385号公報にはメッキ(湿式)
により、金属膜を形成する工程を含むことを特徴とする
方法が開示されている。2. Description of the Related Art A conventional method for manufacturing a thermoelectric conversion module is to form a P-type or N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor by forming a metal film on the surface and then cutting the same to form an edge. More than one pair of P type and N with metal film
Type thermoelectric elements, so that they are electrically in series,
In a method of manufacturing a thermoelectric conversion module which is joined by soldering to a predetermined position on an insulating substrate on which electrodes are formed, Japanese Patent Application Laid-Open No. 4-249385 discloses a plating (wet) method.
Discloses a method including a step of forming a metal film.
【0003】しかしながら、この方法では金属膜と熱電
素子の適切な密着力が得られないもので、多数の薬剤処
理を必要とするものである。However, in this method, an appropriate adhesion between the metal film and the thermoelectric element cannot be obtained, and many chemical treatments are required.
【0004】これらの問題を解決すべく、特開平10−
190070号公報にはスパッタリング又は蒸着(乾
式)によって、熱電素子上へ金属膜を形成する工程を含
むことが開示されている。この乾式による熱電素子上へ
の金属膜の形成方法において、熱電素子と拡散防止層の
密着を得るために形成された拡散層は、低融点で耐熱性
の劣る金属を用いるため、後工程である半田付けやメッ
キの際に、熱電素子と金属膜の密着強度が低下し、熱電
変換モジュールの性能が低下するという問題があった。To solve these problems, Japanese Patent Application Laid-Open No.
JP 190070 discloses that the method includes a step of forming a metal film on a thermoelectric element by sputtering or vapor deposition (dry method). In this method of forming a metal film on a thermoelectric element by a dry method, the diffusion layer formed for obtaining adhesion between the thermoelectric element and the diffusion prevention layer is a post-process because a metal having a low melting point and poor heat resistance is used. At the time of soldering or plating, there is a problem that the adhesion strength between the thermoelectric element and the metal film is reduced, and the performance of the thermoelectric conversion module is reduced.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたもので、電極と熱電素子との密
着強度が強く、製造が簡単で生産効率の良好な熱電変換
モジュールの製造方法にある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended to manufacture a thermoelectric conversion module having a high adhesion strength between an electrode and a thermoelectric element, which is easy to manufacture, and has good production efficiency. In the way.
【0006】[0006]
【課題を解決するための手段】本発明の請求項1記載の
熱電変換モジュールの製造方法はP型及びN型ビスマス
−アンチモン−テルル−セレン系熱電半導体の表面に金
属膜を成膜した後、分断することで、端部に金属膜を有
する一対以上のP型及びN型の熱電素子を得、これらを
電気的に直列となるよう、電極が形成された絶縁基板上
の所定の位置に半田付けによって接合してなる熱電変換
モジュールの製造方法において、前記熱電半導体の表面
にプラズマ処理後、スパッタリング又は蒸着にて金属膜
を形成する工程を含むことを特徴とする熱電変換モジュ
ールの製造方法にある。According to a first aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module, comprising: forming a metal film on a surface of a P-type and N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor; By dividing, a pair or more of P-type and N-type thermoelectric elements having a metal film at an end are obtained, and soldered to a predetermined position on an insulating substrate on which electrodes are formed so that these are electrically connected in series. A method of manufacturing a thermoelectric conversion module, wherein the method includes a step of forming a metal film by sputtering or vapor deposition after plasma treatment on the surface of the thermoelectric semiconductor. .
【0007】したがって、熱電素子上に適切な密着力を
有し、耐熱性、耐食性に金属膜の成膜が可能となる。ま
た、メッキによる金属膜の形成工程と比較して、多数の
薬液が不要となり、工程が簡単である。さらに、多数層
からなる金属膜の形成時に各層を連続的に成膜が可能と
なり、製造効率が向上する。[0007] Therefore, it is possible to form a metal film having an appropriate adhesion force on the thermoelectric element, heat resistance and corrosion resistance. Further, compared with the step of forming a metal film by plating, a large number of chemicals are not required, and the process is simple. Further, it becomes possible to form each layer continuously at the time of forming a metal film composed of many layers, and the production efficiency is improved.
【0008】本発明の請求項2記載の熱電変換モジュー
ルの製造方法はP型及びN型ビスマス−アンチモン−テ
ルル−セレン系熱電半導体からなる一対以上の熱電素子
を絶縁材料で固着した後、固着した熱電素子端面に、電
気的に直列となるような回路を形成し、半田付け又は電
気メッキにて厚付けを行った後、回路形成表面に絶縁基
板を積層してなる熱電変換モジュールの製造方法におい
て、固着した熱電素子端面をプラズマ処理をした後、ス
パッタリング又は蒸着にて金属膜を形成する工程を含む
ことを特徴とする熱電変換モジュールの製造方法にあ
る。According to a second aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module, wherein a pair of thermoelectric elements comprising P-type and N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductors are fixed with an insulating material and then fixed. In the method of manufacturing a thermoelectric conversion module, a circuit that is electrically connected in series is formed on the end face of the thermoelectric element, and after performing thickening by soldering or electroplating, an insulating substrate is laminated on the circuit forming surface. And a step of subjecting the fixed thermoelectric element end face to plasma treatment and then forming a metal film by sputtering or vapor deposition.
【0009】したがって、熱電素子上に適切な密着力を
有し、耐熱性、耐食性に金属膜の成膜が可能となる。ま
た、メッキによる金属膜の形成工程と比較して、多数の
薬液が不要となり、工程が簡単である。さらに、多数層
からなる金属膜の形成時に各層を連続的に成膜が可能と
なり、製造効率が向上する。また,熱電素子端面にスパ
ッタリング又は蒸着にて回路を形成した後、電気めっき
をするので半田レス電極の形成が可能となり、熱電変換
モジュールの耐熱性が向上する。Therefore, it is possible to form a metal film having an appropriate adhesive force on the thermoelectric element, heat resistance and corrosion resistance. Further, compared with the step of forming a metal film by plating, a large number of chemicals are not required, and the process is simple. Further, it becomes possible to form each layer continuously at the time of forming a metal film composed of many layers, and the production efficiency is improved. Further, after forming a circuit on the thermoelectric element end face by sputtering or vapor deposition, electroplating is performed, so that a solderless electrode can be formed, and the heat resistance of the thermoelectric conversion module is improved.
【0010】本発明の請求項3記載の熱電変換モジュー
ルの製造方法は請求項1又は請求項2記載において、プ
ラズマ処理前に熱電素子表面を薬剤による粗面化処理を
行うことを特徴とするものである。According to a third aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module according to the first or second aspect, wherein the surface of the thermoelectric element is subjected to a roughening treatment with a chemical before the plasma treatment. It is.
【0011】したがって、熱電変換モジュールの熱電素
子表面に附着した有機物の除去、活性化及び粗面化によ
るアンカー効果により、金属膜の密着強度が向上する。Therefore, the adhesion strength of the metal film is improved by the anchor effect by removing, activating and roughening the organic substances attached to the surface of the thermoelectric element of the thermoelectric conversion module.
【0012】本発明の請求項4及び請求項5記載の熱電
変換モジュールの製造方法はP型熱電素子の粗面化処理
として、硫酸を用いることを特徴とし、N型熱電素子の
粗面化処理として、塩酸を用いることを特徴とするもの
である。According to a fourth aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module, wherein sulfuric acid is used as a roughening treatment for a P-type thermoelectric element, and a roughening treatment for an N-type thermoelectric element is performed. Is characterized by using hydrochloric acid.
【0013】したがって、P型及びN型熱電素子の表面
の粗面化によるアンカー効果により、金属膜の密着強度
が向上する。Accordingly, the adhesion strength of the metal film is improved by the anchor effect due to the roughening of the surface of the P-type and N-type thermoelectric elements.
【0014】本発明の請求項6記載の熱電変換モジュー
ルの製造方法は請求項1又は請求項2記載において、プ
ラズマ処理がアルゴン雰囲気中で行なわれることを特徴
とする。According to a sixth aspect of the present invention, there is provided a method of manufacturing a thermoelectric conversion module according to the first or second aspect, wherein the plasma treatment is performed in an argon atmosphere.
【0015】したがって、アルゴンはスパッタ率が大き
いのでより大きな粗面化処理が得られる。[0015] Therefore, since argon has a large sputtering rate, a larger surface roughening treatment can be obtained.
【0016】本発明の請求項7及び請求項8記載の熱電
変換モジュールの製造方法は請求項6記載において、P
型熱電素子表面のプラズマ処理をアルゴン雰囲気中で、
圧力1〜15Pa、出力30〜1000Wで処理時間を
2〜10分行い、N型熱電素子表面のプラズマ処理をア
ルゴン雰囲気中で、圧力1〜15Pa、出力30〜10
00Wで処理時間を4〜20分行うものである。According to a seventh aspect of the present invention, there is provided a method of manufacturing a thermoelectric conversion module according to the sixth aspect.
Plasma treatment of the surface of the type thermoelectric element in an argon atmosphere,
The treatment time is 2 to 10 minutes at a pressure of 1 to 15 Pa and an output of 30 to 1000 W, and the plasma treatment of the surface of the N-type thermoelectric element is performed in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 10 Pa.
The processing time is 4 to 20 minutes at 00W.
【0017】したがって、P型及びN型熱電素子表面の
活性化及び粗面化により、金属膜の密着強度が向上す
る。Therefore, the activation and roughening of the surface of the P-type and N-type thermoelectric elements improve the adhesion strength of the metal film.
【0018】本発明の請求項9記載の熱電変換モジュー
ルの製造方法は請求項1又は請求項2記載において、熱
電素子の周縁に成膜材料と同じ組成の金属片を設置して
プラズマ処理を行うことである。According to a ninth aspect of the present invention, there is provided a method of manufacturing a thermoelectric conversion module according to the first or second aspect, wherein a metal piece having the same composition as a film-forming material is placed on the periphery of the thermoelectric element to perform plasma processing. That is.
【0019】したがって、熱電素子表面のエッチングと
同時に熱電素子表面に5μm以下の成膜が可能となる。Therefore, a film having a thickness of 5 μm or less can be formed on the thermoelectric element surface simultaneously with the etching of the thermoelectric element surface.
【0020】本発明の請求項10記載の熱電変換モジュ
ールの製造方法は請求項9記載の金属片にスパッタリン
グ又は蒸着にて薄膜を形成したものを使用するものであ
る。したがって、スパッタリング又は蒸着にて形成した
薄膜はスパッタ率が大きく、熱電素子上への成膜度が向
上する。According to a tenth aspect of the present invention, there is provided a method of manufacturing a thermoelectric conversion module, wherein a thin metal film is formed on a metal piece according to the ninth aspect by sputtering or vapor deposition. Therefore, a thin film formed by sputtering or vapor deposition has a large sputtering rate, and the degree of film formation on a thermoelectric element is improved.
【0021】本発明の請求項11記載の熱電変換モジュ
ールの製造方法は請求項1又は請求項2記載において、
熱電素子表面に半田拡散防止層を形成し、半田拡散防止
層の上に半田濡れ性向上層又はメッキ下地層を形成する
ことを特徴とするものである。[0021] The method for manufacturing a thermoelectric conversion module according to claim 11 of the present invention is characterized in that in claim 1 or claim 2,
A solder diffusion preventing layer is formed on the surface of the thermoelectric element, and a solder wettability improving layer or a plating base layer is formed on the solder diffusion preventing layer.
【0022】したがって、熱電素子と金属膜の金属膜の
密着と拡散防止を行うことで、成膜数が削減され、製造
が簡単となる。Accordingly, the number of film formations is reduced and the manufacturing is simplified by performing the adhesion between the thermoelectric element and the metal film and the prevention of diffusion.
【0023】本発明の請求項12記載の熱電変換モジュ
ールの製造方法は請求項11記載において、半田拡散防
止層として、Pt,Ni又はこれらの合金を0.5〜5
μmの厚みに形成し、半田拡散防止層の上に半田濡れ性
向上層としてSn,Bi,Au,Ag,Pb,Cuのう
ち少なくとも一種類からなる金属を0.3〜2μmの厚
みに形成するか又は半田拡散防止層の上にメッキ下地層
としてCuを0.2〜2μmの厚みに形成することを特
徴とするものである。According to a twelfth aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module according to the eleventh aspect, wherein Pt, Ni or an alloy thereof is 0.5 to 5 as a solder diffusion preventing layer.
a thickness of 0.3 μm and a metal made of at least one of Sn, Bi, Au, Ag, Pb and Cu as a solder wettability improving layer on the solder diffusion preventing layer to a thickness of 0.3 to 2 μm. Alternatively, Cu is formed in a thickness of 0.2 to 2 μm as a plating underlayer on the solder diffusion preventing layer.
【0024】したがって、半田の拡散防止、Cuの拡散
防止、金属膜と半田の濡れ性が向上すると共にメッキ膜
との密着力が向上する。Therefore, the diffusion of solder, the diffusion of Cu, the wettability of the metal film and the solder are improved, and the adhesion to the plating film is improved.
【0025】本発明の請求項13記載の熱電変換モジュ
ールの製造方法は請求項1又は請求項2記載において、
熱電素子表面に熱電素子と金属膜の密着性を向上させる
密着層を形成し、該密着層上に半田拡散防止層を形成
し、さらに該半田拡散防止層上に半田濡れ性向上層又は
メッキ下地層を形成することを特徴とするものである。
したがって、熱電素子と金属膜の密着と拡散防止を別材
料で行うことにより、密着に適した材料を密着層として
適用できるので、密着力が向上する。[0025] According to a thirteenth aspect of the present invention, a method for manufacturing a thermoelectric conversion module according to the first or second aspect is provided.
An adhesion layer for improving the adhesion between the thermoelectric element and the metal film is formed on the surface of the thermoelectric element, a solder diffusion preventing layer is formed on the adhesion layer, and a solder wettability improving layer or plating is further formed on the solder diffusion preventing layer. It is characterized by forming a stratum.
Therefore, by performing adhesion and prevention of diffusion between the thermoelectric element and the metal film using a different material, a material suitable for adhesion can be used as the adhesion layer, thereby improving the adhesion.
【0026】本発明の請求項14記載の熱電変換モジュ
ールの製造方法は請求項13記載において、密着層とし
てTi,Mo,Crのうち少なくとも一種類からなる金
属を0.01〜0.5μmの厚みに形成し、半田拡散防
止層として、Pt,Ni又はこれらの合金を0.5〜5
μmの厚みに形成し、半田拡散防止層の上に半田濡れ性
向上層としてSn,Bi,Au,Ag,Pb,Cuのう
ち少なくとも一種類からなる金属を0.2〜2μmの厚
みに形成することを特徴とするものである。According to a fourteenth aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module according to the thirteenth aspect, wherein a metal made of at least one of Ti, Mo, and Cr is used as the adhesion layer to a thickness of 0.01 to 0.5 μm. And a Pt, Ni or alloy thereof of 0.5 to 5 as a solder diffusion preventing layer.
A metal made of at least one of Sn, Bi, Au, Ag, Pb and Cu is formed on the solder diffusion preventing layer as a solder wettability improving layer to a thickness of 0.2 to 2 μm. It is characterized by the following.
【0027】したがって、熱電素子と金属膜の密着力の
向上、半田の拡散防止効果、Cuの拡散防止効果、金属
膜と半田の濡れ性の向上及びメッキ膜との密着力が向上
する。Therefore, the adhesion between the thermoelectric element and the metal film is improved, the diffusion of solder is prevented, the diffusion of Cu is prevented, the wettability between the metal film and the solder is improved, and the adhesion between the plating film and the plating film is improved.
【0028】本発明の請求項15記載の熱電変換モジュ
ールの製造方法は請求項12又は請求項14記載におい
て、金属膜の各組成を傾斜させることを特徴とするもの
である。According to a fifteenth aspect of the present invention, there is provided a method of manufacturing a thermoelectric conversion module according to the twelfth or fourteenth aspect, wherein each composition of the metal film is inclined.
【0029】したがって、各成膜層間の密着力が向上す
る。Therefore, the adhesion between the film forming layers is improved.
【0030】本発明の請求項16記載の熱電変換モジュ
ールの製造方法は請求項12又は請求項14記載におい
て、半田濡れ性向上層の表面を防錆処理するものであ
る。[0030] In the method for manufacturing a thermoelectric conversion module according to claim 16 of the present invention, the surface of the solder wettability improving layer is treated to prevent rust in claim 12 or 14.
【0031】したがって、半田濡れ性が向上し、半田濡
れ層の厚みを0.05〜0.3μmとすることが可能と
なる。Therefore, the solder wettability is improved, and the thickness of the solder wet layer can be made 0.05 to 0.3 μm.
【0032】[0032]
【発明の実施の形態】図1は、本発明の請求項1に係る
発明に対応する例えばアルミナタイプモジュールの熱電
変換モジュールの製造方法であり、図2は、請求項2に
係る発明に対応する例えば固着タイプモジュールの熱電
変換モジュールの製造方法である。これらの二種の熱電
変換モジュールに対して図3乃至図11についての一実
施例の形態を示すもので以下に説明する。FIG. 1 shows a method for manufacturing a thermoelectric conversion module of, for example, an alumina type module according to the invention of claim 1 of the present invention, and FIG. 2 shows the method of manufacturing according to claim 2 of the present invention. For example, a method of manufacturing a thermoelectric conversion module of a fixed type module. These two types of thermoelectric conversion modules will be described below with reference to FIGS.
【0033】図1において、P型熱電半導体1aとして
ビスマス−アンチモン−テルル系とN型熱電半導体1b
としてビスマス−テルル系からなるビスマス−アンチモ
ン−テルル−セレン系熱電半導体1の表面に金属膜2を
成膜した後、切断(ダイシング)することで、端部に金
属膜2を有する一対以上のP型及びN型の熱電素子3を
得、これらを電気的に直列となるよう、電極4が形成さ
れた絶縁基板5上の所定の位置に半田付けよって加熱接
合してなる熱電変換モジュールの製造方法において、気
体にエネルギーを加えることによりイオン化した粒子
に、電圧を加えることで、熱電半導体1の表面にイオン
を衝突させる、いわゆるプラズマ処理後、スパッタリン
グ又は蒸着にて金属膜2を形成する工程を含むことを特
徴とする熱電変換モジュールの製造方法である。In FIG. 1, bismuth-antimony-tellurium-based and N-type thermoelectric semiconductors 1b are used as P-type thermoelectric semiconductors 1a.
After forming a metal film 2 on the surface of a bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor 1 made of a bismuth-tellurium system, by cutting (dicing), a pair of P or more having the metal film 2 at an end portion is formed. Method of Manufacturing Thermoelectric Conversion Module by Obtaining Thermoelectric Elements 3 of N-Type and N-Type, and Heating and Joining to a Predetermined Position on Insulating Substrate 5 on Which Electrode 4 is Formed so as to Be Electrically Seriesed Includes a step of applying a voltage to particles ionized by applying energy to a gas to cause ions to collide with the surface of the thermoelectric semiconductor 1, that is, a step of forming a metal film 2 by sputtering or vapor deposition after so-called plasma processing. A method for manufacturing a thermoelectric conversion module, characterized in that:
【0034】これを工程で説明すると、ビスマス−アン
チモン−テルル−セレン系熱電半導体1の表面に気体に
エネルギーを加えることによりイオン化した粒子に、電
圧を加えることで、熱電半導体1の表面にイオンを衝突
させる、いわゆるプラズマ処理をした後、このプラズマ
処理後の表面にスパッタリング又は蒸着にて金属膜2を
成膜する。そして、成膜された熱電半導体1を切断(ダ
イシング)することで、端部に金属膜2を有する一対以
上のP型及びN型の熱電素子3を得、これらを電気的に
直列となるように電極4が形成された絶縁基板5上の所
定の位置に電極マウントし、しかる後、熱電素子3と電
極4とを半田付けよって加熱接合して熱電変換モジュー
ルを製造する。This will be described in the process. When a voltage is applied to the ionized particles by applying energy to the gas to the surface of the bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor 1, ions are applied to the surface of the thermoelectric semiconductor 1. After performing a so-called plasma process for causing collision, a metal film 2 is formed on the surface after the plasma process by sputtering or vapor deposition. Then, the formed thermoelectric semiconductor 1 is cut (diced) to obtain a pair or more of P-type and N-type thermoelectric elements 3 having a metal film 2 at an end portion, and these are electrically connected in series. The electrode is mounted at a predetermined position on the insulating substrate 5 on which the electrode 4 is formed, and then the thermoelectric element 3 and the electrode 4 are heated and joined by soldering to manufacture a thermoelectric conversion module.
【0035】このように、プラズマ処理をすることによ
り熱電素子3上に適切な密着力を有し、耐熱性、耐食性
に優れた金属膜2の成膜が可能となる。又、従来のよう
にメッキ工法とは異なり、多数の薬液が不要となるので
工程が簡略される。さらに、多数層からなる金属膜の形
成が連続的に可能となり、製造効率が向上する。As described above, by performing the plasma processing, it is possible to form the metal film 2 having an appropriate adhesive force on the thermoelectric element 3 and having excellent heat resistance and corrosion resistance. Also, unlike the conventional plating method, a large number of chemicals are not required, so that the process is simplified. Further, it becomes possible to continuously form a metal film composed of many layers, and the production efficiency is improved.
【0036】図2において、P型熱電半導体1aとして
ビスマス−アンチモン−テルル系とN型熱電半導体1b
としてビスマス−テルル系からなるビスマス−アンチモ
ン−テルル−セレン系熱電半導体1からなる一対以上の
棒状の熱電素子3を樹脂等の絶縁材料で固着して一体化
した後、固着した熱電素子3の端面に、電気的に直列と
なるような回路6を形成し、半田付け又は電気メッキに
て厚付けを行った後、回路形成表面に絶縁基板5を積層
して加熱接合してなる熱電変換モジュールの製造方法に
おいて、固着した熱電素子3の端面を図1と同様のプラ
ズマ処理をした後、スパッタリング又は蒸着にて金属膜
2を形成する工程を含むことを特徴とする熱電変換モジ
ュールの製造方法にある。In FIG. 2, bismuth-antimony-tellurium-based and N-type thermoelectric semiconductors 1b are used as P-type thermoelectric semiconductors 1a.
A pair of at least one rod-shaped thermoelectric element 3 made of a bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor 1 made of bismuth-tellurium is fixed and integrated with an insulating material such as resin, and the end face of the fixed thermoelectric element 3 A thermoelectric conversion module is formed by forming a circuit 6 that is electrically connected in series, performing soldering or electroplating, and then laminating an insulating substrate 5 on a surface on which the circuit is to be formed and heating and joining the same. The method for producing a thermoelectric conversion module includes a step of forming the metal film 2 by sputtering or vapor deposition after subjecting the end face of the fixed thermoelectric element 3 to plasma treatment as in FIG. 1 in the production method. .
【0037】これを工程で説明すると、ビスマス−アン
チモン−テルル−セレン系熱電半導体1からなる一対以
上の押出し成形された棒状の熱電素子3を樹脂等の絶縁
材料で固着して板状に一体化した後、板状に固着した熱
電素子3の表面に、気体にエネルギーを加えることによ
りイオン化した粒子に、電圧を加えることで、熱電半導
体1の表面にイオンを衝突させる、いわゆるプラズマ処
理をした後、このプラズマ処理後の表面にスパッタリン
グ又は蒸着にて金属膜2を形成する。その後、電気的に
直列となるような回路6を形成し、半田付け又は電気メ
ッキにて厚付けを行った後、回路形成表面に電極4を有
する絶縁基板5を積層して熱電素子3と電極4とを半田
付けよって加熱接合して熱電変換モジュールを製造す
る。This will be described in the process. A pair of extruded rod-shaped thermoelectric elements 3 composed of a bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor 1 are fixed with an insulating material such as resin and integrated into a plate. After that, a so-called plasma treatment, in which ions are made to collide with the surface of the thermoelectric semiconductor 1 by applying a voltage to the ionized particles by applying energy to the gas on the surface of the thermoelectric element 3 fixed in a plate shape, Then, a metal film 2 is formed on the surface after the plasma treatment by sputtering or vapor deposition. After that, a circuit 6 that is electrically connected in series is formed, and after thickening is performed by soldering or electroplating, an insulating substrate 5 having an electrode 4 is laminated on a circuit forming surface to form a thermoelectric element 3 and an electrode. And 4 are heated and joined by soldering to manufacture a thermoelectric conversion module.
【0038】このように、プラズマ処理をすることによ
り熱電素子3上に適切な密着力を有し、耐熱性、耐食性
に優れた金属膜2の成膜が可能となる。又、従来のよう
にメッキ工法とは異なり、多数の薬液が不要となるので
工程が簡略される。さらに、多数層からなる金属膜の形
成が連続的に可能となり、製造効率が向上する。さらに
又、熱電素子3端にスパッタリング又は蒸着にて回路を
形成した後、電気メッキするので半田レス電極の形成が
可能となる。As described above, by performing the plasma treatment, it is possible to form the metal film 2 having an appropriate adhesive force on the thermoelectric element 3 and having excellent heat resistance and corrosion resistance. Also, unlike the conventional plating method, a large number of chemicals are not required, so that the process is simplified. Further, it becomes possible to continuously form a metal film composed of many layers, and the production efficiency is improved. Furthermore, after a circuit is formed at the end of the thermoelectric element 3 by sputtering or vapor deposition, electroplating is performed, so that a solderless electrode can be formed.
【0039】上述した、図1及び図2の熱電変換モジュ
ールの製造方法において、図3のようにプラズマ処理を
する前に熱電素子3の表面を超音波洗浄等で清浄化し、
塩酸や硫酸等の薬剤を接触させることで熱電素子3の表
面を粗面化している。このように熱電素子3の表面を粗
面化することでアンカー効果が大となり、金属膜2の密
着強度が向上する。このとき、P型熱電素子の粗面化処
理として、硫酸が用いられ、N型熱電素子の粗面化処理
として、塩酸が用いられる。尚、P型及びN型熱電素子
の超音波洗浄等での清浄化工程は必要あればすれば良い
ものであって、必須構成ではない。In the method of manufacturing the thermoelectric conversion module shown in FIGS. 1 and 2 described above, the surface of the thermoelectric element 3 is cleaned by ultrasonic cleaning or the like before performing the plasma treatment as shown in FIG.
The surface of the thermoelectric element 3 is roughened by contacting a chemical such as hydrochloric acid or sulfuric acid. By roughening the surface of the thermoelectric element 3 in this manner, the anchor effect is increased, and the adhesion strength of the metal film 2 is improved. At this time, sulfuric acid is used as a roughening treatment for the P-type thermoelectric element, and hydrochloric acid is used as a roughening treatment for the N-type thermoelectric element. The cleaning step of the P-type and N-type thermoelectric elements by ultrasonic cleaning or the like may be performed if necessary, and is not an essential component.
【0040】(実施例)P型熱電素子をエタノール中で
超音波洗浄を行った後、薬液として濃度:20ml/L
の硫酸を用い、液温が18〜23℃、時間5分間浸漬し
た。この結果、P型熱電素子の表面の粗面化によるアン
カー効果で、金属膜の密着性が向上した。そして、N型
熱電素子の粗面化処理として、塩酸が用いられる。N型
熱電素子をエタノール中で超音波洗浄を行った後、薬液
として濃度:60ml/Lの硫酸を用い、液温が18〜
23℃、時間5分間浸漬した。この結果、N型熱電素子
の表面の粗面化によるアンカー効果で、金属膜の密着性
が向上した。(Embodiment) A P-type thermoelectric element was subjected to ultrasonic cleaning in ethanol, and then the concentration was 20 ml / L as a chemical solution.
The solution was immersed in sulfuric acid at a liquid temperature of 18 to 23 ° C. for 5 minutes. As a result, the adhesion of the metal film was improved by the anchor effect due to the roughening of the surface of the P-type thermoelectric element. Then, hydrochloric acid is used as a surface roughening treatment of the N-type thermoelectric element. After ultrasonic cleaning of the N-type thermoelectric element in ethanol, sulfuric acid having a concentration of 60 ml / L was used as a chemical solution, and the solution temperature was 18 to
It was immersed at 23 ° C. for 5 minutes. As a result, the adhesion of the metal film was improved by the anchor effect due to the roughening of the surface of the N-type thermoelectric element.
【0041】以下に上述したプラズマ処理の方法を述べ
る。プラズマ処理はアルゴン雰囲気中で行うことが一番
良い。なぜなら、アルゴンイオンとヘリウムイオンにお
けるスパッタ率を比較するとアルゴンイオン:1.3、
ヘリウムイオン:0.13となり、ヘリウムイオンと比
較してアルゴンイオンは原子量が大きく、固体表面に衝
突した際に、イオン1個あたりに蒸発する原子数(スパ
ッタ率)が大きいために、より大きな粗面化効果が得ら
れる。又、表面を短時間で粗面化ができるので生産効率
が増大する。このとき、P型熱電素子1aの表面のプラ
ズマ処理をアルゴン雰囲気中で、圧力1〜15Pa、出
力30〜1000Wで処理時間行うと、母材強度10M
Pa並みの密着強度を有するには最低でも図12からわ
かるように2分〜10分行えばP型熱電素子3の表面の
活性化及び粗面化が完了し、金属膜2の密着強度が向上
する。又、N型熱電素子1bの表面のプラズマ処理をア
ルゴン雰囲気中で、圧力1〜15Pa、出力30〜10
00Wで行うと、母材強度10MPa並みの密着強度を
有するには最低でも図13からわかるように処理時間を
4分〜20分行えばN型熱電素子3の表面の活性化及び
粗面化が完了し、金属膜2の密着強度が向上する。Hereinafter, the above-described plasma processing method will be described. It is best to perform the plasma treatment in an argon atmosphere. Because, when comparing the sputtering rates of argon ions and helium ions, argon ions are 1.3,
Helium ions: 0.13, and argon ions have a greater atomic weight than helium ions, and the number of atoms that evaporate per ion (sputter rate) when colliding with the solid surface is large, resulting in a larger roughness. The surface effect can be obtained. In addition, since the surface can be roughened in a short time, production efficiency is increased. At this time, if the plasma treatment of the surface of the P-type thermoelectric element 1a is performed in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 1000 W, the base material strength becomes 10 M
At least 2 minutes to 10 minutes as shown in FIG. 12 to have an adhesion strength comparable to that of Pa, activation and roughening of the surface of the P-type thermoelectric element 3 are completed, and the adhesion strength of the metal film 2 is improved. . The surface of the N-type thermoelectric element 1b is plasma-treated in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 10 Pa.
When performed at 00 W, the activation and roughening of the surface of the N-type thermoelectric element 3 are completed by performing the processing time of 4 to 20 minutes at a minimum, as can be seen from FIG. 13, in order to have an adhesion strength similar to the base material strength of 10 MPa. Thus, the adhesion strength of the metal film 2 is improved.
【0042】図4はスパッタリングモデル図であって、
真空容器7内にガス導入口8からアルゴンガスを放出
し、金属膜2を附着させるための基板9に放電プラズマ
を放電して、その後でスパッタリング又は蒸着して金属
膜2を形成するようにしている。このとき、熱電素子3
の周縁に成膜材料と同じ組成の金属片10を設置して行
うようにしている。金属膜2を附着させるための基板9
を拡大した断面図で説明すると、上段のステンレス製の
治具11に熱電素子3を下段のステンレス製の治具12
に挟持し、下段のステンレス製の治具12の下に白金、
ニッケル等の金属片10を熱電素子3の周縁の半径0.
2m以内に配設固着している。したがって、アルゴンイ
オンが熱電素子3に衝突し、熱電素子3のエッチングと
同時にこの熱電素子3の表面に5μm以下の成膜が可能
となる。FIG. 4 is a diagram showing a sputtering model.
Argon gas is released from the gas inlet 8 into the vacuum vessel 7, discharge plasma is discharged to the substrate 9 for attaching the metal film 2, and then the metal film 2 is formed by sputtering or vapor deposition. I have. At this time, the thermoelectric element 3
A metal piece 10 having the same composition as that of the film-forming material is installed on the periphery of. Substrate 9 for attaching metal film 2
In the enlarged cross-sectional view, the thermoelectric element 3 is attached to the lower stainless steel jig 12 on the upper stainless steel jig 11.
And platinum under the lower stainless steel jig 12,
A metal piece 10 such as nickel is provided with a radius of 0.degree.
Arranged and fixed within 2 m. Therefore, argon ions collide with the thermoelectric element 3, and a film of 5 μm or less can be formed on the surface of the thermoelectric element 3 simultaneously with the etching of the thermoelectric element 3.
【0043】又、図5は図4の変形実施例であって、上
段のステンレス製の治具11に熱電素子3を下段のステ
ンレス製の治具12に挟持し、下段のステンレス製の治
具12の下に白金、ニッケル等をスパッタリング又は蒸
着にて薄膜を形成した金属片10を用いてプラズマ処理
したものである。したがって、スパッタリング又は蒸着
にて形成した薄膜はスパッタ率が大きくなり、熱電素子
3への成膜率が向上する。FIG. 5 shows a modified embodiment of FIG. 4, in which the thermoelectric element 3 is held between a lower stainless steel jig 12 and a lower stainless steel jig 12 by an upper stainless steel jig 11. 12 is obtained by subjecting platinum, nickel, or the like to plasma treatment using a metal piece 10 in which a thin film is formed by sputtering or vapor deposition. Therefore, the sputtering rate of the thin film formed by sputtering or vapor deposition is increased, and the deposition rate on the thermoelectric element 3 is improved.
【0044】さらに、図1に示したアルミナタイプモジ
ュールにおいて、図6(a),(b),(c)に示した
ように、熱電素子3の表面に半田拡散防止層13を形成
し、半田拡散防止層13の上に半田濡れ性向上層14又
はメッキ下地層15を形成したものである。これを拡大
図(c)で見ると、電極4の下面に半田17、この半田
17の下面に半田濡れ性向上層14を形成し、さらにこ
の半田濡れ性向上層14の下に半田拡散防止層13が形
成され、熱電素子3の上面に接合されている。このとき
半田濡れ性向上層14の変わりにメッキ下地層15を形
成しても良い。Further, in the alumina type module shown in FIG. 1, a solder diffusion preventing layer 13 is formed on the surface of the thermoelectric element 3 as shown in FIGS. 6 (a), 6 (b) and 6 (c). In this embodiment, a solder wettability improving layer 14 or a plating base layer 15 is formed on the diffusion preventing layer 13. Looking at this in an enlarged view (c), a solder 17 is formed on the lower surface of the electrode 4, a solder wettability improving layer 14 is formed on the lower surface of the solder 17, and a solder diffusion preventing layer is formed under the solder wettability improving layer 14. 13 are formed and joined to the upper surface of the thermoelectric element 3. At this time, a plating base layer 15 may be formed instead of the solder wettability improving layer 14.
【0045】又、図2に示した固着タイプモジュールに
おいて、図7(a),(b),(c)に示したように、
熱電素子3の表面に半田拡散防止層13を形成し、半田
拡散防止層13の上に半田濡れ性向上層14又はメッキ
下地層15を形成したものである。これを拡大図(c)
で見ると、電極4の下面に半田17、この半田17の下
面に半田濡れ性向上層14を形成し、さらにこの半田濡
れ性向上層14の下に半田拡散防止層13が形成され、
熱電素子3の上面に接合されている。このとき半田濡れ
性向上層14の変わりにメッキ下地層15を形成しても
良い。又、P型熱電半導体1aとN型熱電半導体1bは
樹脂等の絶縁材料16で固着されている。In the fixed type module shown in FIG. 2, as shown in FIGS. 7 (a), (b) and (c),
The solder diffusion preventing layer 13 is formed on the surface of the thermoelectric element 3, and the solder wettability improving layer 14 or the plating base layer 15 is formed on the solder diffusion preventing layer 13. This is an enlarged view (c)
As shown in FIG. 2, a solder 17 is formed on the lower surface of the electrode 4, a solder wettability improving layer 14 is formed on the lower surface of the solder 17, and a solder diffusion preventing layer 13 is formed under the solder wettability improving layer 14.
It is joined to the upper surface of the thermoelectric element 3. At this time, a plating base layer 15 may be formed instead of the solder wettability improving layer 14. The P-type thermoelectric semiconductor 1a and the N-type thermoelectric semiconductor 1b are fixed with an insulating material 16 such as a resin.
【0046】上述のように、熱電素子3と金属膜2との
密着と拡散防止を一層で行うことで、成膜数が削減され
製造が簡単となる。このとき、半田拡散防止層13とし
て、Pt,Ni又はこれらの合金を0.5〜5μmの厚
みに形成し、半田拡散防止層13の上に半田濡れ性向上
層14としてSn,Bi,Au,Ag,Pb,Cuのう
ち少なくとも一種類からなる金属を0.3〜2μmの厚
みに形成するか又は半田拡散防止層13の上にメッキ下
地層15としてCuを0.2〜2μmの厚みに形成する
ことにより、Pt,NiはSn系半田と反応し、金属間
化合物を形成するため金属膜2と半田17の密着力が得
られ、その反応速度が遅いため、半田17の拡散防止効
果が得られる。又、Pt,Niはメッキ下地層15であ
るCuと反応し、金属間化合物を形成するため成膜層間
の密着力が得られ、その反応速度が遅いため、Cuの拡
散防止効果が得られる。そして、Sn,Bi,Au,A
g,Pb,CuはSn系半田の中へ溶解するか、Sn系
半田成分と金属間化合物を形成することにより、金属膜
2と半田17の濡れ性が向上する。さらに、Cuは酸化
膜がメッキ前処理である酸洗にて容易に除去できるた
め、メッキ膜との密着力が向上する。As described above, since the adhesion between the thermoelectric element 3 and the metal film 2 and the prevention of diffusion are performed by a single layer, the number of formed films is reduced and the manufacturing is simplified. At this time, Pt, Ni or an alloy thereof is formed to a thickness of 0.5 to 5 μm as the solder diffusion preventing layer 13, and Sn, Bi, Au, A metal made of at least one of Ag, Pb, and Cu is formed to a thickness of 0.3 to 2 μm, or Cu is formed to a thickness of 0.2 to 2 μm as a plating underlayer 15 on the solder diffusion preventing layer 13. By doing so, Pt and Ni react with the Sn-based solder to form an intermetallic compound, so that the adhesion between the metal film 2 and the solder 17 is obtained, and since the reaction speed is slow, the effect of preventing the diffusion of the solder 17 is obtained. Can be Further, Pt and Ni react with Cu, which is the plating underlayer 15, to form an intermetallic compound, so that the adhesion between the film-forming layers is obtained, and the reaction speed is low, so that the Cu diffusion preventing effect is obtained. And Sn, Bi, Au, A
By dissolving g, Pb, and Cu in the Sn-based solder or forming an Sn-based solder component and an intermetallic compound, the wettability between the metal film 2 and the solder 17 is improved. Further, since the oxide film of Cu can be easily removed by pickling, which is a pretreatment for plating, the adhesion to the plating film is improved.
【0047】又、図1、図2に示したアルミナタイプモ
ジュール及び固着タイプモジュールにおいて、図8及び
図9は密着層を設けたもので以下に示す。In the alumina type module and the fixed type module shown in FIGS. 1 and 2, FIGS. 8 and 9 are provided below with an adhesion layer provided.
【0048】図8において、熱電素子3の表面に熱電素
子3と金属膜2の密着性を向上させる密着層18を形成
し、この密着層18の上に半田拡散防止層13を形成
し、さらにこの半田拡散防止層13の上に半田濡れ性向
上層14又はメッキ下地層15を形成したものである。
拡大図より電極4の下面に半田17をし、この半田17
の下面に半田濡れ性向上層14を形成し、この半田濡れ
性向上層14の下面に半田拡散防止層13が形成され、
この半田拡散防止層13の下面に密着層18が形成さ
れ、この密着層18は熱電素子3の表面と接合される。In FIG. 8, an adhesion layer 18 for improving the adhesion between the thermoelectric element 3 and the metal film 2 is formed on the surface of the thermoelectric element 3, and a solder diffusion preventing layer 13 is formed on the adhesion layer 18. On the solder diffusion preventing layer 13, a solder wettability improving layer 14 or a plating base layer 15 is formed.
The solder 17 is applied to the lower surface of the electrode 4 according to the enlarged view.
A solder diffusion preventing layer 13 is formed on the lower surface of the solder wettability improving layer 14,
An adhesion layer 18 is formed on the lower surface of the solder diffusion preventing layer 13, and the adhesion layer 18 is joined to the surface of the thermoelectric element 3.
【0049】図9において、熱電素子3の表面に熱電素
子3と金属膜2の密着性を向上させる密着層18を形成
し、この密着層18の上に半田拡散防止層13を形成
し、さらにこの半田拡散防止層13の上に半田濡れ性向
上層14又はメッキ下地層15を形成したものである。
拡大図より電極4の下面に半田17をし、この半田17
の下面に半田濡れ性向上層14を形成し、この半田濡れ
性向上層14の下面に半田拡散防止層13が形成され、
この半田拡散防止層13の下面に密着層18が形成さ
れ、この密着層18は熱電素子3の表面と接合される。
そして、P型熱電半導体1aとN型熱電半導体1bは樹
脂等の絶縁材料16で固着されている。In FIG. 9, an adhesion layer 18 for improving the adhesion between the thermoelectric element 3 and the metal film 2 is formed on the surface of the thermoelectric element 3, and a solder diffusion preventing layer 13 is formed on the adhesion layer 18. On the solder diffusion preventing layer 13, a solder wettability improving layer 14 or a plating base layer 15 is formed.
The solder 17 is applied to the lower surface of the electrode 4 according to the enlarged view.
A solder diffusion preventing layer 13 is formed on the lower surface of the solder wettability improving layer 14,
An adhesion layer 18 is formed on the lower surface of the solder diffusion preventing layer 13, and the adhesion layer 18 is joined to the surface of the thermoelectric element 3.
The P-type thermoelectric semiconductor 1a and the N-type thermoelectric semiconductor 1b are fixed with an insulating material 16 such as a resin.
【0050】したがって、熱電素子3と金属膜2の密着
層18と半田拡散防止層13を別材料を用いることで、
密着に適した材料を密着層18として適用できるので、
密着力が向上する。このとき、密着層18としてTi,
Mo,Crのうち少なくとも一種類からなる金属を0.
01〜0.5μmの厚みに形成し、半田拡散防止層13
として、Pt,Ni又はこれらの合金を0.5〜5μm
の厚みに形成し、半田拡散防止層13の上に半田濡れ性
向上層14としてSn,Bi,Au,Ag,Pb,Cu
のうち少なくとも一種類からなる金属を0.2〜2μm
の厚みに形成するものである。Therefore, by using different materials for the adhesion layer 18 of the thermoelectric element 3, the metal film 2, and the solder diffusion preventing layer 13,
Since a material suitable for adhesion can be applied as the adhesion layer 18,
The adhesion is improved. At this time, Ti,
A metal consisting of at least one of Mo and Cr is added to a metal.
The solder diffusion preventing layer 13 is formed to a thickness of
Pt, Ni or an alloy thereof is 0.5 to 5 μm
Of Sn, Bi, Au, Ag, Pb, and Cu as the solder wettability improving layer 14 on the solder diffusion preventing layer 13.
0.2 to 2 μm of at least one kind of metal
It is formed in the thickness of.
【0051】尚、半田拡散防止層13には半田或いはメ
ッキ材料の拡散防止層が定義されるものである。The solder diffusion preventing layer 13 defines a solder or plating material diffusion preventing layer.
【0052】したがって、Ti,Mo,Crは活性金属
であり、熱電素子3と金属膜2の密着力が向上する。
又、Pt,NiはSn系の半田17と反応し、金属間化
合物を形成するための金属膜2と半田17の密着力が得
られ、その反応速度が遅いため、半田の拡散防止効果が
得られる。さらに、Pt,Niはメッキ下地層15であ
るCuと反応し、金属間化合物を形成するため成膜層間
の密着力が得られ、その反応速度が遅いため、Cuの拡
散防止効果が得られる。そして、Sn,Bi,Au,A
g,Pb,CuはSn系の半田の中へ溶解するか、或い
はSn系の半田成分と金属間化合物を形成することによ
り、金属膜2と半田17の濡れ性が向上する。さらに
又、Cuは表面の酸化膜がメッキ前処理である酸洗にて
容易に除去できるため、メッキ膜との密着力が向上す
る。Therefore, Ti, Mo, and Cr are active metals, and the adhesion between the thermoelectric element 3 and the metal film 2 is improved.
Further, Pt and Ni react with the Sn-based solder 17 to obtain an adhesive force between the metal film 2 and the solder 17 for forming an intermetallic compound, and the reaction speed is slow, so that an effect of preventing diffusion of the solder is obtained. Can be Further, Pt and Ni react with Cu as the plating underlayer 15 to form an intermetallic compound, so that adhesion between the film-forming layers is obtained, and the reaction speed is low, so that an effect of preventing Cu diffusion is obtained. And Sn, Bi, Au, A
By dissolving g, Pb, and Cu in the Sn-based solder, or by forming an intermetallic compound with the Sn-based solder component, the wettability between the metal film 2 and the solder 17 is improved. Further, Cu can easily remove the oxide film on the surface by pickling, which is a pre-plating treatment, so that the adhesion to the plating film is improved.
【0053】図10は金属膜の各組成を傾斜させること
により、各成膜層の密着力が向上するようにしたもので
ある。電極4の下面に半田17を行い、この半田17の
下面にPt,NiはSn系の半田17と反応し、金属間
化合物を形成するための金属膜2と半田17の密着力が
得られ、さらに、Pt,Niはメッキ下地層15である
Cuと反応し、金属間化合物を形成するため成膜層間の
密着力が得られ、そして、Sn,Bi,Au,Ag,P
b,CuはSn系の半田の中へ溶解するか、或いはSn
系の半田成分と金属間化合物を形成することにより、金
属膜2と半田17の濡れ性が向上する。さらに又、Cu
は表面の酸化膜がメッキ前処理である酸洗にて容易に除
去できるため、メッキ膜との密着力が向上する。FIG. 10 shows that the composition of the metal film is inclined to improve the adhesion of each film formation layer. Solder 17 is applied to the lower surface of the electrode 4, and Pt and Ni react with the Sn-based solder 17 on the lower surface of the solder 17, and the adhesion between the metal film 2 and the solder 17 for forming an intermetallic compound is obtained. Further, Pt and Ni react with Cu, which is the plating underlayer 15, to form an intermetallic compound, so that adhesion between the film-forming layers is obtained, and Sn, Bi, Au, Ag, P
b and Cu are dissolved in Sn-based solder, or
By forming the intermetallic compound with the system solder component, the wettability between the metal film 2 and the solder 17 is improved. Furthermore, Cu
Since the oxide film on the surface can be easily removed by pickling, which is a pre-plating treatment, the adhesion to the plating film is improved.
【0054】図11は半田濡れ性向上層14の表面を防
錆処理するもので、金属膜2をプラズマ処理後にスパッ
タリングして、成膜した後、ロジン系フラックスをスプ
レーにより、噴霧又は溶融塗布して、防錆処理するもの
である。この防錆処理により、半田濡れ性が向上し、半
田濡れ層の厚みを0.05〜0.3μmとすることが可
能となり、よりメッキ膜との密着力が向上する。FIG. 11 shows a process for rust-proofing the surface of the solder wettability improving layer 14. The metal film 2 is formed by sputtering after plasma treatment, and then a rosin-based flux is sprayed or melt-coated by spraying. Rust prevention treatment. By this rust prevention treatment, the solder wettability is improved, the thickness of the solder wet layer can be made 0.05 to 0.3 μm, and the adhesion to the plating film is further improved.
【0055】[0055]
【発明の効果】上述の如く、本発明の請求項1記載の熱
電変換モジュールの製造方法はP型及びN型ビスマス−
アンチモン−テルル−セレン系熱電半導体の表面に金属
膜を成膜した後、分断することで、端部に金属膜を有す
る一対以上のP型及びN型の熱電素子を得、これらを電
気的に直列となるよう、電極が形成された絶縁基板上の
所定の位置に半田付けによって接合してなる熱電変換モ
ジュールの製造方法において、熱電半導体表面にプラズ
マ処理後、スパッタリング又は蒸着にて金属膜を形成す
る工程を含むようにしているから、熱電素子上に適切な
密着力を有し、耐熱性、耐食性に金属膜の成膜が可能と
なる。又、メッキによる金属膜の形成工程と比較して、
多数の薬液が不要となり、工程が簡単である。さらに、
多数層からなる金属膜の形成時に各層を連続的に成膜が
可能となり、製造効率が向上する。As described above, the method for manufacturing a thermoelectric conversion module according to the first aspect of the present invention is based on the P-type and N-type bismuth
After a metal film is formed on the surface of the antimony-tellurium-selenium-based thermoelectric semiconductor, it is divided to obtain a pair or more of P-type and N-type thermoelectric elements having a metal film at an end, and these are electrically connected. In a method for manufacturing a thermoelectric conversion module, which is joined by soldering to a predetermined position on an insulating substrate on which electrodes are formed so as to be in series, a metal film is formed by sputtering or vapor deposition after plasma treatment on the thermoelectric semiconductor surface Since the method includes a step of forming a metal film, the metal film can be formed with an appropriate adhesive force on the thermoelectric element and with heat resistance and corrosion resistance. Also, compared to the process of forming a metal film by plating,
Many chemical solutions are not required, and the process is simple. further,
When forming a metal film composed of a large number of layers, each layer can be formed continuously, and the production efficiency is improved.
【0056】本発明の請求項2記載の熱電変換モジュー
ルの製造方法はP型及びN型ビスマス−アンチモン−テ
ルル−セレン系熱電半導体からなる一対以上の熱電素子
を絶縁材料で固着した後、固着した熱電素子端面に、電
気的に直列となるような回路を形成し、半田付け又は電
気メッキにて厚付けを行った後、回路形成表面に絶縁基
板を積層してなる熱電変換モジュールの製造方法におい
て、固着した熱電素子端面をプラズマ処理をした後、ス
パッタリング又は蒸着にて金属膜を形成する工程を含む
ようにしているから、熱電素子上に適切な密着力を有
し、耐熱性、耐食性に金属膜の成膜が可能となる。ま
た、メッキによる金属膜の形成工程と比較して、多数の
薬液が不要となり、工程が簡単である。さらに、多数層
からなる金属膜の形成時に各層を連続的に成膜が可能と
なり、製造効率が向上する。また,熱電素子端にスパッ
タリング又は蒸着にて回路を形成した後、電気めっきを
するので半田レス電極の形成が可能となり、熱電変換モ
ジュールの耐熱性が向上する。In the method for manufacturing a thermoelectric conversion module according to the second aspect of the present invention, a pair of thermoelectric elements composed of P-type and N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductors are fixed with an insulating material and then fixed. In the method of manufacturing a thermoelectric conversion module, a circuit that is electrically connected in series is formed on the end face of the thermoelectric element, and after performing thickening by soldering or electroplating, an insulating substrate is laminated on the circuit forming surface. After the plasma treatment of the fixed thermoelectric element end face, the method includes a step of forming a metal film by sputtering or vapor deposition, so that the thermoelectric element has an appropriate adhesion, heat resistance, corrosion resistance of the metal film. Film formation becomes possible. Further, compared with the step of forming a metal film by plating, a large number of chemicals are not required, and the process is simple. Further, it becomes possible to form each layer continuously at the time of forming a metal film composed of many layers, and the production efficiency is improved. In addition, since a circuit is formed on the thermoelectric element end by sputtering or vapor deposition, electroplating is performed, so that a solderless electrode can be formed, and the heat resistance of the thermoelectric conversion module is improved.
【0057】本発明の請求項3記載の熱電変換モジュー
ルの製造方法はプラズマ処理前に熱電素子表面を薬剤に
よる粗面化処理を行うことにより、熱電変換モジュール
の熱電素子表面に附着した有機物の除去、活性化及び粗
面化によるアンカー効果により、金属膜の密着強度が向
上する。According to a third aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module, wherein the surface of the thermoelectric element is subjected to a surface roughening treatment with a chemical before plasma treatment, thereby removing organic substances attached to the thermoelectric element surface of the thermoelectric conversion module. The adhesion strength of the metal film is improved by the anchor effect due to activation and roughening.
【0058】本発明の請求項4及び請求項5記載の熱電
変換モジュールの製造方法はP型熱電素子の粗面化処理
として、硫酸を用いることを特徴とし、N型熱電素子の
粗面化処理として、塩酸を用いることにより、P型及び
N型熱電素子の表面の粗面化によるアンカー効果によ
り、金属膜の密着強度が向上する。According to a fourth aspect of the present invention, there is provided a method for manufacturing a thermoelectric conversion module, wherein sulfuric acid is used as a roughening treatment for a P-type thermoelectric element, and a roughening treatment for an N-type thermoelectric element is performed. By using hydrochloric acid, the adhesion strength of the metal film is improved by the anchor effect due to the surface roughening of the P-type and N-type thermoelectric elements.
【0059】本発明の請求項6記載の熱電変換モジュー
ルの製造方法はプラズマ処理をアルゴン雰囲気中で行う
ことにより、スパッタ率が大きいのでより大きな粗面化
処理が得られる。In the method of manufacturing a thermoelectric conversion module according to the sixth aspect of the present invention, since the plasma treatment is performed in an argon atmosphere, a larger surface roughening treatment can be obtained because the sputtering rate is high.
【0060】本発明の請求項7及び請求項8記載の熱電
変換モジュールの製造方法はP型熱電素子表面のプラズ
マ処理をアルゴン雰囲気中で、圧力1〜15Pa、出力
30〜1000Wで処理時間を2〜10分行い、N型熱
電素子表面のプラズマ処理をアルゴン雰囲気中で、圧力
1〜15Pa、出力30〜1000Wで処理時間を4〜
20分行うものであってP型及びN型熱電素子表面の活
性化及び粗面化により、金属膜の密着強度が向上する。In the method for manufacturing a thermoelectric conversion module according to the seventh and eighth aspects of the present invention, the plasma treatment of the surface of the P-type thermoelectric element is performed in an argon atmosphere at a pressure of 1 to 15 Pa, an output of 30 to 1000 W and a processing time of 2 hours. Performing plasma treatment on the surface of the N-type thermoelectric element in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 1000 W for 4 to 10 minutes.
This is performed for 20 minutes, and the adhesion strength of the metal film is improved by activating and roughening the surface of the P-type and N-type thermoelectric elements.
【0061】本発明の請求項9記載の熱電変換モジュー
ルの製造方法は熱電素子の周縁に成膜材料と同じ組成の
金属片を設置してプラズマ処理を行うから、熱電素子表
面のエッチングと同時に熱電素子表面に5μm以下の成
膜が可能となる。In the method for manufacturing a thermoelectric conversion module according to the ninth aspect of the present invention, a metal piece having the same composition as the film-forming material is placed on the periphery of the thermoelectric element and plasma treatment is performed. A film having a thickness of 5 μm or less can be formed on the element surface.
【0062】本発明の請求項10記載の熱電変換モジュ
ールの製造方法は金属片にスパッタリング又は蒸着にて
薄膜を形成したものを使用するので、薄膜はスパッタ率
が大きく、熱電素子上への成膜度が向上する。In the method for manufacturing a thermoelectric conversion module according to the tenth aspect of the present invention, a thin film formed by sputtering or vapor deposition on a metal piece is used. Therefore, the thin film has a large sputtering rate and is formed on a thermoelectric element. The degree improves.
【0063】本発明の請求項11記載の熱電変換モジュ
ールの製造方法は熱電素子表面に半田拡散防止層を形成
し、半田拡散防止層の上に半田濡れ性向上層又はメッキ
下地層を形成しているから、熱電素子と金属膜の金属膜
の密着と拡散防止を行うことで、成膜数が削減され、製
造が簡単となる。In the method for manufacturing a thermoelectric conversion module according to the eleventh aspect of the present invention, a solder diffusion preventing layer is formed on a thermoelectric element surface, and a solder wettability improving layer or a plating base layer is formed on the solder diffusion preventing layer. Therefore, by performing adhesion and preventing diffusion between the thermoelectric element and the metal film of the metal film, the number of formed films is reduced, and the manufacturing is simplified.
【0064】本発明の請求項12記載の熱電変換モジュ
ールの製造方法は半田拡散防止層として、Pt,Ni又
はこれらの合金を0.5〜5μmの厚みに形成し、半田
拡散防止層の上に半田濡れ性向上層としてSn,Bi,
Au,Ag,Pb,Cuのうち少なくとも一種類からな
る金属を0.3〜2μmの厚みに形成するか又は半田拡
散防止層の上にメッキ下地層としてCuを0.2〜2μ
mの厚みに形成することにより、半田の拡散防止、Cu
の拡散防止、金属膜と半田の濡れ性が向上すると共にメ
ッキ膜との密着力が向上する。According to a method of manufacturing a thermoelectric conversion module according to a twelfth aspect of the present invention, Pt, Ni or an alloy thereof is formed to a thickness of 0.5 to 5 μm as a solder diffusion preventing layer, and is formed on the solder diffusion preventing layer. As a solder wettability improving layer, Sn, Bi,
A metal made of at least one of Au, Ag, Pb, and Cu is formed to a thickness of 0.3 to 2 μm, or Cu is formed to a plating underlayer of 0.2 to 2 μm on the solder diffusion preventing layer.
m to prevent solder diffusion, Cu
And the wettability between the metal film and the solder is improved, and the adhesion to the plating film is improved.
【0065】本発明の請求項13記載の熱電変換モジュ
ールの製造方法は熱電素子表面に熱電素子と金属膜の密
着性を向上させる密着層を形成し、この密着層上に半田
拡散防止層を形成し、さらにこの半田拡散防止層上に半
田濡れ性向上層又はメッキ下地層を形成しているから、
熱電素子と金属膜の密着と拡散防止を別材料で行うこと
により、密着に適した材料を密着層として適用できるの
で、密着力が向上する。According to the method for manufacturing a thermoelectric conversion module according to the thirteenth aspect of the present invention, an adhesion layer for improving the adhesion between the thermoelectric element and the metal film is formed on the surface of the thermoelectric element, and a solder diffusion preventing layer is formed on the adhesion layer. Further, since a solder wettability improving layer or a plating base layer is formed on the solder diffusion preventing layer,
By performing adhesion and diffusion prevention between the thermoelectric element and the metal film using different materials, a material suitable for adhesion can be used as the adhesion layer, so that the adhesion is improved.
【0066】本発明の請求項14記載の熱電変換モジュ
ールの製造方法は密着層としてTi,Mo,Crのうち
少なくとも一種類からなる金属を0.01〜0.5μm
の厚みに形成し、半田拡散防止層として、Pt,Ni又
はこれらの合金を0.5〜5μmの厚みに形成し、半田
拡散防止層の上に半田濡れ性向上層としてSn,Bi,
Au,Ag,Pb,Cuのうち少なくとも一種類からな
る金属を0.2〜2μmの厚みに形成しているから、熱
電素子と金属膜の密着力の向上、半田の拡散防止効果、
Cuの拡散防止効果、金属膜と半田の濡れ性の向上及び
メッキ膜との密着力が向上する。In the method for manufacturing a thermoelectric conversion module according to claim 14 of the present invention, as the adhesion layer, a metal made of at least one of Ti, Mo, and Cr is used in an amount of 0.01 to 0.5 μm.
, Pt, Ni or an alloy thereof is formed to a thickness of 0.5 to 5 μm as a solder diffusion preventing layer, and Sn, Bi, and Sn are formed on the solder diffusion preventing layer as a solder wettability improving layer.
Since at least one metal of Au, Ag, Pb, and Cu is formed to a thickness of 0.2 to 2 μm, the adhesion between the thermoelectric element and the metal film is improved, the effect of preventing solder diffusion,
The effect of preventing the diffusion of Cu, the wettability between the metal film and the solder, and the adhesion between the plating film and the metal film are improved.
【0067】本発明の請求項15記載の熱電変換モジュ
ールの製造方法は金属膜の各組成を傾斜させることによ
り、各成膜層間の密着力が向上する。In the method for manufacturing a thermoelectric conversion module according to the fifteenth aspect of the present invention, the adhesion between the film forming layers is improved by inclining each composition of the metal film.
【0068】本発明の請求項16記載の熱電変換モジュ
ールの製造方法は半田濡れ性向上層の表面を防錆処理し
ているから、半田濡れ性が向上し、半田濡れ層の厚みを
0.05〜0.3μmとすることが可能となる。In the method for manufacturing a thermoelectric conversion module according to the present invention, the surface of the solder wettability improving layer is subjected to rust prevention treatment, so that the solder wettability is improved and the thickness of the solder wettability layer is reduced to 0.05. To 0.3 μm.
【図1】本発明の熱電変換モジュールの製造方法の一実
施形態を示す工程の概略図である。FIG. 1 is a schematic view of a process showing one embodiment of a method for manufacturing a thermoelectric conversion module of the present invention.
【図2】本発明の熱電変換モジュールの製造方法の異な
る実施形態を示す工程の概略図である。FIG. 2 is a schematic view of a process showing a different embodiment of the method for manufacturing a thermoelectric conversion module of the present invention.
【図3】本発明のプラズマ処理前の工程を示す熱電素子
の断面図である。FIG. 3 is a cross-sectional view of a thermoelectric element showing a step before the plasma processing of the present invention.
【図4】本発明のスパッタリングモデルの一実施形態の
要部の断面図である。FIG. 4 is a sectional view of a main part of an embodiment of the sputtering model of the present invention.
【図5】本発明のスパッタリングモデルの異なる実施形
態の要部の断面図である。FIG. 5 is a sectional view of a main part of a different embodiment of the sputtering model of the present invention.
【図6】本発明の熱電変換モジュールであって、(a)
はアルミナタイプモジュールの斜視図,(b)は要部の
縦断面図,(c)は(b)の四角部A部の拡大断面図で
ある。FIG. 6 shows a thermoelectric conversion module according to the present invention, wherein (a)
1 is a perspective view of an alumina type module, (b) is a longitudinal sectional view of a main part, and (c) is an enlarged sectional view of a square part A of (b).
【図7】本発明の熱電変換モジュールであって、(a)
は固着タイプモジュールの斜視図,(b)は要部の縦断
面図,(c)は(b)の四角部B部の拡大断面図であ
る。FIG. 7 shows a thermoelectric conversion module according to the present invention, wherein (a)
Is a perspective view of a fixed type module, (b) is a vertical cross-sectional view of a main part, and (c) is an enlarged cross-sectional view of a square portion B of (b).
【図8】本発明のアルミナタイプモジュールの熱電変換
モジュールであって、密着層を設けた要部の縦断面図で
ある。FIG. 8 is a vertical cross-sectional view of a main part of the thermoelectric conversion module of the alumina type module of the present invention, in which an adhesion layer is provided.
【図9】本発明の固着タイプモジュールの熱電変換モジ
ュールであって、密着層を設けた要部の縦断面図であ
る。FIG. 9 is a vertical cross-sectional view of a main part of the thermoelectric conversion module of the fixed type module of the present invention, in which an adhesion layer is provided.
【図10】本発明のアルミナタイプモジュールの熱電変
換モジュールであって、その要部の縦断面図である。FIG. 10 is a vertical sectional view of a main part of a thermoelectric conversion module of an alumina type module according to the present invention.
【図11】本発明の熱電変換モジュールであって、金属
膜を成膜後、防錆処理をしている状態を示す要部の縦断
面図である。FIG. 11 is a vertical cross-sectional view of a main part of the thermoelectric conversion module according to the present invention, showing a state where a rust prevention process is performed after a metal film is formed.
【図12】本発明のP型熱電素子のプラズマ処理時間と
密着強度を示すグラフである。FIG. 12 is a graph showing plasma treatment time and adhesion strength of a P-type thermoelectric element of the present invention.
【図13】本発明のN型熱電素子のプラズマ処理時間と
密着強度を示すグラフである。FIG. 13 is a graph showing plasma treatment time and adhesion strength of the N-type thermoelectric element of the present invention.
1a P型熱電半導体 1b N型熱電半導体 2 金属膜 3 熱電素子 4 電極 5 絶縁基板 6 回路 7 真空容器 8 ガス導入口 9 基板 10 金属片 11 治具 12 治具 13 半田拡散防止層 14 半田濡れ性向上層 15 メッキ下地層 16 絶縁材料 17 半田 18 密着層 1a P-type thermoelectric semiconductor 1b N-type thermoelectric semiconductor 2 Metal film 3 Thermoelectric element 4 Electrode 5 Insulating substrate 6 Circuit 7 Vacuum container 8 Gas inlet 9 Substrate 10 Metal piece 11 Jig 12 Jig 13 Solder diffusion prevention layer 14 Solder wettability Enhancement layer 15 Plating underlayer 16 Insulation material 17 Solder 18 Adhesion layer
Claims (16)
ルル−セレン系熱電半導体の表面に金属膜を成膜した
後、切断することで、端部に金属膜を有する一対以上の
P型及びN型の熱電素子を得、これらを電気的に直列と
なるよう、電極が形成された絶縁基板上の所定の位置に
半田付けによって接合してなる熱電変換モジュールの製
造方法において、前記熱電半導体の表面にプラズマ処理
後、スパッタリング又は蒸着にて金属膜を形成する工程
を含むことを特徴とする熱電変換モジュールの製造方
法。1. A metal film is formed on the surface of a P-type and N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductor and then cut to form a pair of at least one P-type and N-type metal film at the ends. In a thermoelectric conversion module, wherein the thermoelectric elements are joined in a predetermined position on an insulating substrate on which electrodes are formed by soldering so that the thermoelectric elements are electrically connected in series. A process of forming a metal film by sputtering or vapor deposition after plasma treatment.
ルル−セレン系熱電半導体からなる一対以上の熱電素子
を絶縁材料で固着した後、固着した熱電素子端面に、電
気的に直列となるような回路を形成し、半田付け又は電
気メッキにて厚付けを行った後、回路形成表面に絶縁基
板を積層してなる熱電変換モジュールの製造方法におい
て、固着した熱電素子端面をプラズマ処理をした後、ス
パッタリング又は蒸着にて金属膜を形成する工程を含む
ことを特徴とする熱電変換モジュールの製造方法。2. A thermoelectric element comprising a pair of P-type and N-type bismuth-antimony-tellurium-selenium-based thermoelectric semiconductors fixed with an insulating material, and then electrically connected in series to the fixed end faces of the thermoelectric elements. After forming a circuit, after performing thickening by soldering or electroplating, in the method of manufacturing a thermoelectric conversion module by laminating an insulating substrate on the circuit forming surface, after performing plasma processing on the thermoelectric element end face that is fixed, A method for manufacturing a thermoelectric conversion module, comprising a step of forming a metal film by sputtering or vapor deposition.
剤による粗面化処理を行うことを特徴とする請求項1又
は請求項2記載の熱電変換モジュールの製造方法。3. The method for manufacturing a thermoelectric conversion module according to claim 1, wherein the surface of the thermoelectric element is subjected to a surface roughening treatment with a chemical before the plasma treatment.
硫酸を用いることを特徴とする請求項3記載の熱電変換
モジュールの製造方法。4. The roughening treatment of the P-type thermoelectric element,
The method for manufacturing a thermoelectric conversion module according to claim 3, wherein sulfuric acid is used.
塩酸を用いることを特徴とする請求項3記載の熱電変換
モジュールの製造方法。5. The roughening treatment of the N-type thermoelectric element,
The method for producing a thermoelectric conversion module according to claim 3, wherein hydrochloric acid is used.
行うことを特徴とする請求項1又は請求項2記載の熱電
変換モジュールの製造方法。6. The method for manufacturing a thermoelectric conversion module according to claim 1, wherein the plasma processing is performed in an argon atmosphere.
アルゴン雰囲気中で、圧力1〜15Pa、出力30〜1
000Wで処理時間を2〜10分行うことを特徴とする
請求項6記載の熱電変換モジュールの製造方法。7. The plasma treatment of the surface of the P-type thermoelectric element is performed in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 1 Pa.
The method for producing a thermoelectric conversion module according to claim 6, wherein the treatment time is 2 to 10 minutes at 000W.
アルゴン雰囲気中で、圧力1〜15Pa、出力30〜1
000Wで処理時間を4〜20分行うことを特徴とする
請求項6記載の熱電変換モジュールの製造方法。8. The plasma treatment of the surface of the N-type thermoelectric element is performed in an argon atmosphere at a pressure of 1 to 15 Pa and an output of 30 to 1 Pa.
The method for manufacturing a thermoelectric conversion module according to claim 6, wherein the treatment is performed at 000 W for 4 to 20 minutes.
膜材料と同じ組成の金属片を設置して行うことを特徴と
する請求項1又は請求項2記載の熱電変換モジュールの
製造方法。9. The method for manufacturing a thermoelectric conversion module according to claim 1, wherein the plasma treatment is performed by placing a metal piece having the same composition as the film forming material on the periphery of the thermoelectric element.
にて薄膜を形成した金属片を使用することを特徴とする
請求項9記載の熱電変換モジュールの製造方法。10. The method for manufacturing a thermoelectric conversion module according to claim 9, wherein said metal piece is a metal piece having a thin film formed by sputtering or vapor deposition.
形成し、半田拡散防止層の上に半田濡れ性向上層又はメ
ッキ下地層を形成することを特徴とする請求項1又は請
求項2記載の熱電変換モジュールの製造方法。11. The solder diffusion preventing layer is formed on the surface of the thermoelectric element, and a solder wettability improving layer or a plating base layer is formed on the solder diffusion preventing layer. Method for manufacturing a thermoelectric conversion module.
i又はこれらの合金を0.5〜5μmの厚みに形成し、
半田拡散防止層の上に半田濡れ性向上層としてSn,B
i,Au,Ag,Pb,Cuのうち少なくとも一種類か
らなる金属を0.3〜2μmの厚みに形成するか又は半
田拡散防止層の上にメッキ下地層としてCuを0.2〜
2μmの厚みに形成することを特徴とする請求項11記
載の熱電変換モジュールの製造方法。12. The method according to claim 12, wherein the solder diffusion preventing layer is made of Pt, N
i or an alloy thereof is formed to a thickness of 0.5 to 5 μm,
Sn, B as a solder wettability improving layer on the solder diffusion preventing layer
A metal made of at least one of i, Au, Ag, Pb, and Cu is formed in a thickness of 0.3 to 2 μm, or Cu is used as a plating underlayer on a solder diffusion preventing layer in a thickness of 0.2 to 2 μm.
The method for manufacturing a thermoelectric conversion module according to claim 11, wherein the module is formed to have a thickness of 2 µm.
の密着性を向上させる密着層を形成し、該密着層上に半
田拡散防止層を形成し、さらに該半田拡散防止層上に半
田濡れ性向上層又はメッキ下地層を形成することを特徴
とする請求項1又は請求項2記載の熱電変換モジュール
の製造方法。13. An adhesion layer for improving the adhesion between the thermoelectric element and the metal film is formed on the surface of the thermoelectric element, a solder diffusion preventing layer is formed on the adhesion layer, and a solder wetting is formed on the solder diffusion preventing layer. The method for manufacturing a thermoelectric conversion module according to claim 1, wherein a property improving layer or a plating base layer is formed.
うち少なくとも一種類からなる金属を0.01〜0.5
μmの厚みに形成し、半田拡散防止層として、Pt,N
i又はこれらの合金を0.5〜5μmの厚みに形成し、
半田拡散防止層の上に半田濡れ性向上層としてSn,B
i,Au,Ag,Pb,Cuのうち少なくとも一種類か
らなる金属を0.2〜2μmの厚みに形成することを特
徴とする請求項13記載の熱電変換モジュールの製造方
法。14. A method according to claim 1, wherein the adhesion layer comprises a metal of at least one of Ti, Mo and Cr in an amount of 0.01 to 0.5.
of Pt, N as a solder diffusion preventing layer.
i or an alloy thereof is formed to a thickness of 0.5 to 5 μm,
Sn, B as a solder wettability improving layer on the solder diffusion preventing layer
14. The method for manufacturing a thermoelectric conversion module according to claim 13, wherein a metal made of at least one of i, Au, Ag, Pb, and Cu is formed to a thickness of 0.2 to 2 [mu] m.
を特徴とする請求項12又は請求項14記載の熱電変換
モジュールの製造方法。15. The method for manufacturing a thermoelectric conversion module according to claim 12, wherein each composition of said metal film is inclined.
理することを特徴とする請求項12又は請求項14記載
の熱電変換モジュールの製造方法。16. The method for manufacturing a thermoelectric conversion module according to claim 12, wherein the surface of the solder wettability improving layer is subjected to rust prevention treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000315503A JP3918424B2 (en) | 2000-10-16 | 2000-10-16 | Method for manufacturing thermoelectric conversion module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000315503A JP3918424B2 (en) | 2000-10-16 | 2000-10-16 | Method for manufacturing thermoelectric conversion module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002124707A true JP2002124707A (en) | 2002-04-26 |
JP3918424B2 JP3918424B2 (en) | 2007-05-23 |
Family
ID=18794596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000315503A Expired - Fee Related JP3918424B2 (en) | 2000-10-16 | 2000-10-16 | Method for manufacturing thermoelectric conversion module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3918424B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100377378C (en) * | 2006-05-16 | 2008-03-26 | 华中科技大学 | Method for preparing Bi-Sb-Te series thermoelectric material |
US7365956B2 (en) * | 2004-06-14 | 2008-04-29 | Douglas Burke | Plasma driven, N-type semiconductor, thermoelectric power superoxide ion generator with critical bias conditions |
WO2009031695A1 (en) * | 2007-09-07 | 2009-03-12 | Sumitomo Chemical Company, Limited | Method for manufacturing thermoelectric conversion element |
JP2010199131A (en) * | 2009-02-23 | 2010-09-09 | Aisin Seiki Co Ltd | Film forming method for thermoelectric element |
JP2012522380A (en) * | 2009-03-26 | 2012-09-20 | コーニング インコーポレイテッド | Thermoelectric conversion element, electrode material and manufacturing method thereof |
JP2013538451A (en) * | 2010-08-26 | 2013-10-10 | エルジー イノテック カンパニー リミテッド | Thermoelectric module including thermoelectric element doped with nanoparticles and method for manufacturing the same |
JP2016006827A (en) * | 2014-06-20 | 2016-01-14 | パナソニックIpマネジメント株式会社 | Thermoelectric transducer |
CN110678993A (en) * | 2017-03-07 | 2020-01-10 | 马勒国际有限公司 | Method for producing a thermoelectric module |
WO2020100717A1 (en) * | 2018-11-16 | 2020-05-22 | 株式会社 安永 | Stannide thermoelectric conversion element and stannide thermoelectric conversion module |
JP2020141093A (en) * | 2019-03-01 | 2020-09-03 | アイシン精機株式会社 | Joining material, joining method of thermoelectric element and metal electrode, and thermoelectric conversion module |
WO2021019891A1 (en) * | 2019-07-30 | 2021-02-04 | 株式会社Kelk | Thermoelectric module, and method for manufacturing thermoelectric module |
-
2000
- 2000-10-16 JP JP2000315503A patent/JP3918424B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7365956B2 (en) * | 2004-06-14 | 2008-04-29 | Douglas Burke | Plasma driven, N-type semiconductor, thermoelectric power superoxide ion generator with critical bias conditions |
CN100377378C (en) * | 2006-05-16 | 2008-03-26 | 华中科技大学 | Method for preparing Bi-Sb-Te series thermoelectric material |
WO2009031695A1 (en) * | 2007-09-07 | 2009-03-12 | Sumitomo Chemical Company, Limited | Method for manufacturing thermoelectric conversion element |
JP2009065046A (en) * | 2007-09-07 | 2009-03-26 | Sumitomo Chemical Co Ltd | Fabrication process of thermoelectric conversion element |
JP2010199131A (en) * | 2009-02-23 | 2010-09-09 | Aisin Seiki Co Ltd | Film forming method for thermoelectric element |
JP2012522380A (en) * | 2009-03-26 | 2012-09-20 | コーニング インコーポレイテッド | Thermoelectric conversion element, electrode material and manufacturing method thereof |
JP2013538451A (en) * | 2010-08-26 | 2013-10-10 | エルジー イノテック カンパニー リミテッド | Thermoelectric module including thermoelectric element doped with nanoparticles and method for manufacturing the same |
JP2016006827A (en) * | 2014-06-20 | 2016-01-14 | パナソニックIpマネジメント株式会社 | Thermoelectric transducer |
CN110678993A (en) * | 2017-03-07 | 2020-01-10 | 马勒国际有限公司 | Method for producing a thermoelectric module |
WO2020100717A1 (en) * | 2018-11-16 | 2020-05-22 | 株式会社 安永 | Stannide thermoelectric conversion element and stannide thermoelectric conversion module |
JP2020087997A (en) * | 2018-11-16 | 2020-06-04 | 株式会社安永 | Stannide-based thermoelectric conversion device and stannide-based thermoelectric conversion module |
CN113016082A (en) * | 2018-11-16 | 2021-06-22 | 株式会社安永 | Tin-based thermoelectric conversion element and tin-based thermoelectric conversion module |
EP3882992A4 (en) * | 2018-11-16 | 2022-08-03 | Yasunaga Corporation | Stannide thermoelectric conversion element and stannide thermoelectric conversion module |
JP2020141093A (en) * | 2019-03-01 | 2020-09-03 | アイシン精機株式会社 | Joining material, joining method of thermoelectric element and metal electrode, and thermoelectric conversion module |
JP7363055B2 (en) | 2019-03-01 | 2023-10-18 | 株式会社アイシン | Bonding material, bonding method between thermoelectric element and metal electrode, and thermoelectric conversion module |
WO2021019891A1 (en) * | 2019-07-30 | 2021-02-04 | 株式会社Kelk | Thermoelectric module, and method for manufacturing thermoelectric module |
JP2021022712A (en) * | 2019-07-30 | 2021-02-18 | 株式会社Kelk | Thermoelectric module and manufacturing method of thermoelectric module |
US20220293840A1 (en) * | 2019-07-30 | 2022-09-15 | Kelk Ltd. | Thermoelectric module and method for manufacturing thermoelectric module |
JP7438685B2 (en) | 2019-07-30 | 2024-02-27 | 株式会社Kelk | Thermoelectric module and method for manufacturing thermoelectric module |
Also Published As
Publication number | Publication date |
---|---|
JP3918424B2 (en) | 2007-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8198104B2 (en) | Method of manufacturing a semiconductor device | |
JP3144328B2 (en) | Thermoelectric conversion element and method of manufacturing the same | |
JP5669780B2 (en) | Manufacturing method of semiconductor device | |
JP2002124707A (en) | Method for manufacturing thermoelectric conversion module | |
RU98110367A (en) | THERMOELECTRIC MODULE AND METHOD FOR ITS MANUFACTURE | |
JPH0212829A (en) | Bonding pad alloy layer and bonding pad structure | |
JPS6070724A (en) | Method of forming ohmic contact | |
JP2999760B2 (en) | Method for producing beryllium-copper alloy HIP joint and HIP joint | |
WO2009142077A1 (en) | Process for fabricating semiconductor device | |
JP7170849B2 (en) | Semiconductor device and its manufacturing method | |
JP6477386B2 (en) | Manufacturing method of power module substrate with plating | |
JP2001111126A (en) | Piezoelectric element | |
US10937657B2 (en) | Semiconductor device including a reactant metal layer disposed between an aluminum alloy film and a catalyst metal film and method for manufacturing thereof | |
JPS6351630A (en) | Method of forming electrode for silicon substrate | |
JP3707548B2 (en) | Lead frame and lead frame manufacturing method | |
CN111489953A (en) | Method for metalizing surface of semiconductor | |
US11798807B2 (en) | Process for producing an electrical contact on a silicon carbide substrate | |
CN201016609Y (en) | Aluminium made radiating fin | |
JP5434087B2 (en) | Semiconductor device and method of soldering the semiconductor device | |
JP2504081B2 (en) | Manufacturing method of lead frame | |
JPH0783172B2 (en) | Wiring board | |
EA036179B1 (en) | Method of multilayered metal structure deposition from solutions onto single-crystal silicon | |
CN118380396A (en) | Semiconductor device bonding structure and manufacturing method thereof | |
JP2002025934A (en) | Electrode pattern forming method and semiconductor device | |
JPS63224325A (en) | Formation of semiconductor electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |