JP2002122557A - Method and apparatus for fluorescent x-ray analysis - Google Patents

Method and apparatus for fluorescent x-ray analysis

Info

Publication number
JP2002122557A
JP2002122557A JP2000314961A JP2000314961A JP2002122557A JP 2002122557 A JP2002122557 A JP 2002122557A JP 2000314961 A JP2000314961 A JP 2000314961A JP 2000314961 A JP2000314961 A JP 2000314961A JP 2002122557 A JP2002122557 A JP 2002122557A
Authority
JP
Japan
Prior art keywords
fluorescent
measured
sample
ray
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000314961A
Other languages
Japanese (ja)
Inventor
Motoyuki Yamagami
基行 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2000314961A priority Critical patent/JP2002122557A/en
Publication of JP2002122557A publication Critical patent/JP2002122557A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus, for a fluorescent X-ray analysis, wherein the shape of a specimen can be decided precisely by a method wherein W-L β rays or the like are used as a primary X-ray source, the surface of a silicon substrate is irradiated with primary X-rays at a prescribed very small angle of incidence, the kind of a contaminant is decided on the basis of the energy of fluorescent X-rays from the specimen and the existence amount of the contaminant is decided on the basis of the intensity of the fluorescent X-rays. SOLUTION: An angle of irradiation ϕa and an angle of irradiation ϕb are decided in such a way that a value in which the intensity Ia2 of fluorescent X-rays from a standard sample 2 is multiplied by the ratio PF1/PF2 of the particle size factor of a standard sample 1 to that of the standard sample 2 becomes close to the value of the intensity Ia1 of fluorescent X-rays from the standard sample 1. On the basis of the intensity Ia3 of fluorescent X-rays and the intensity Ib3 of fluorescent X-rays regarding a sample to be measured at the decided angles of irradiation ϕa, ϕb, the shape of the specimen is decided. Therefore, the shape of the specimen regarding the sample to be measured can be decided precisely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン基板のよ
うな試料の試料表面部に存在する被測定物を蛍光X線測
定する蛍光X線分析方法および装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analysis method and apparatus for measuring an X-ray fluorescence of an object, such as a silicon substrate, on a sample surface of a sample.

【0002】[0002]

【従来の技術】従来から、例えばシリコン基板表面に付
着した被測定物である汚染物質の種類、存在量を決定す
るために、全反射蛍光X線分析を行うことが知られてい
る。被測定物としてシリコン基板表面近傍に存在する汚
染物質、主に鉄、ニッケル、銅、亜鉛といった遷移金属
の分析を行うためには、例えば、1次X線源としてW−
Lβ線等を用い、1次X線をシリコン基板表面に微小な
所定の入射角度で照射し、被測定物からの蛍光X線のエ
ネルギーから種類を、蛍光X線の強度から存在量を決定
している。
2. Description of the Related Art Conventionally, it has been known to perform total reflection X-ray fluorescence analysis in order to determine the type and abundance of a contaminant which is an object to be measured, for example, attached to a silicon substrate surface. In order to analyze contaminants existing in the vicinity of the silicon substrate surface as an object to be measured, mainly transition metals such as iron, nickel, copper, and zinc, for example, a primary X-ray source such as W-
A primary X-ray is irradiated onto the silicon substrate surface at a small predetermined incident angle using Lβ rays or the like, and the type is determined from the energy of the fluorescent X-rays from the object to be measured, and the amount is determined from the intensity of the fluorescent X-rays. ing.

【0003】[0003]

【発明が解決しようとする課題】ところで、一般に全反
射蛍光X線分析では、被測定物(汚染物質)の付着形態
によって、蛍光X線強度の入射角依存性が変化すること
が知られている。蛍光X線強度は、例えば図4に示すよ
うに、酸化膜を有するシリコン基板表面に付着した被測
定物が、図4(A)のように酸化膜SiO2 上にフィル
ム状に分散して存在する場合には図5(A)のように、
図4(B)のように粒状に存在する場合には図5(B)
のように、または図4(C)のように酸化膜SiO2
や酸化膜SiO2 とシリコンSiとの界面に存在する場
合には図5(C)のように、それぞれ入射角依存性を示
す。逆に言えば、蛍光X線強度の入射角依存性から、被
測定物の付着形態を決定することができる。
Incidentally, it is generally known that, in the total reflection X-ray fluorescence analysis, the incident angle dependence of the intensity of the X-ray fluorescence changes depending on the adhesion form of the object to be measured (contaminant). . For example, as shown in FIG. 4, the fluorescent X-ray intensity is such that an object to be measured attached to the surface of a silicon substrate having an oxide film is dispersed in a film form on the oxide film SiO 2 as shown in FIG. To do so, as shown in FIG.
FIG. 5B shows a case where the particles exist in a granular form as shown in FIG.
As shown in FIG. 5C, or in the case of being present in the oxide film SiO 2 or at the interface between the oxide film SiO 2 and silicon Si as shown in FIG. Show. Conversely, the attachment form of the object can be determined from the incident angle dependence of the fluorescent X-ray intensity.

【0004】前記のように被測定物の付着形態が明らか
になれば、被測定物(汚染物質)の発生源を知ることが
できる。例えば、シリコン基板の湿式洗浄過程での汚染
であれば汚染物質はフィルム状に付着するし、シリコン
基板の機械的搬送中に生じた汚染であれば汚染物質は粒
状に付着する。また、シリコン基板の製膜過程で生じた
汚染であれば汚染物質は膜中に存在すると考えられる。
[0004] As described above, if the form of attachment of the object to be measured becomes clear, the source of the object to be measured (contaminant) can be known. For example, if the silicon substrate is contaminated during the wet cleaning process, the contaminant adheres in the form of a film, and if the contamination occurs during the mechanical transport of the silicon substrate, the contaminant adheres in the form of particles. Further, if the contamination occurs during the film formation process of the silicon substrate, the contaminant is considered to be present in the film.

【0005】しかし、従来のように、前記蛍光X線強度
の入射角依存性と被測定物の付着形態の関係から、1次
X線の入射角度を変化させて蛍光X線の強度を測定し、
その結果から、視覚的(定性的)に、被測定物の付着形
態を決定したのでは、分析者の主観に左右される場合が
あるので、被測定物の付着形態の決定が不正確になると
いう問題があった。
However, as in the prior art, the intensity of the fluorescent X-ray was measured by changing the incident angle of the primary X-ray from the relationship between the incident angle dependence of the intensity of the fluorescent X-ray and the form of attachment of the object to be measured. ,
From the result, if the attachment form of the object is determined visually (qualitatively), the determination of the attachment form of the object becomes inaccurate because it may depend on the subjectivity of the analyst. There was a problem.

【0006】本発明は、前記の問題点を解決して、被測
定物の形態を正確に決定することができる蛍光X線分析
方法および装置を提供することを目的としている。
An object of the present invention is to provide a method and an apparatus for X-ray fluorescence analysis capable of solving the above problems and accurately determining the form of an object to be measured.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1に係る蛍光X線分析方法は、試料
表面に1次X線を照射し、試料表面部に存在する被測定
物から発生した蛍光X線を測定するものであって、被測
定物の存在量は等しいが、被測定物の形態が異なる標準
試料1および2について、前記1次X線をそれぞれ相異
なる複数の照射角度φ1〜φnで照射して蛍光X線の強
度を測定する。複数の照射角度φ1〜φnのうち任意の
2つの照射角度φa ,φb (φa <φb )について、標
準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の
粒度係数PF1として求め、標準試料2の蛍光X線強度
Ia2,Ib2の比を標準試料2の粒度係数PF2として求
める。本発明では2つの照射角度での蛍光X線強度比を
粒度係数PFと定義する。そして、Ia2・PF1/PF
2の値がIa1の値に近づくように、照射角度φa,φb
を決定し、前記決定した照射角度φa,φbにおける測
定対象試料についての蛍光X線の強度Ia3,Ib3から、
被測定物の形態を決定するものである。
In order to achieve the above object, a method of X-ray fluorescence analysis according to claim 1 of the present invention irradiates a sample surface with primary X-rays and applies a primary X-ray to the sample surface. This is a method for measuring fluorescent X-rays generated from an object, wherein the standard X-rays of the standard samples 1 and 2 having the same abundance of the object but different in the form of the object are different from each other. And the intensity of fluorescent X-rays is measured. For any two irradiation angles φa, φb (φa <φb) among the plurality of irradiation angles φ1 to φn, the ratio of the fluorescent X-ray intensities Ia1, Ib1 of the standard sample 1 is obtained as the particle size coefficient PF1 of the standard sample 1, The ratio between the fluorescent X-ray intensities Ia2 and Ib2 of the sample 2 is determined as the particle size coefficient PF2 of the standard sample 2. In the present invention, the fluorescent X-ray intensity ratio at two irradiation angles is defined as a particle size coefficient PF. And Ia2 · PF1 / PF
The irradiation angles φa and φb are set so that the value of 2 approaches the value of Ia1.
Is determined, and from the fluorescence X-ray intensities Ia3 and Ib3 of the sample to be measured at the determined irradiation angles φa and φb,
This determines the form of the device under test.

【0008】また、本発明の請求項5に係る蛍光X線分
析装置は、試料表面に1次X線を照射し、試料表面部に
存在する被測定物から発生した蛍光X線を測定するもの
であって、被測定物の存在量は等しいが、被測定物の付
着形態が異なる標準試料1および2について、前記1次
X線をそれぞれ相異なる複数の照射角度φ1〜φnで照
射して蛍光X線の強度を測定する測定手段と、前記測定
された複数の照射角度のうち任意の2つの照射角度φa
,φb (φa <φb )について、標準試料1の蛍光X
線強度Ia1,Ib1の比を標準試料1の粒度係数PF1と
して求め、標準試料2の蛍光X線強度Ia2,Ib2の比を
標準試料2の粒度係数PF2として求めて、Ia2・PF
1/PF2の値がIa1の値に近づくように、照射角度φ
a,φbを決定する演算手段と、前記決定した照射角度
φa,φbにおける測定対象試料についての蛍光X線の
強度Ia3,Ib3から、被測定物の形態を決定する形態決
定手段とを備えている。
According to a fifth aspect of the present invention, there is provided an X-ray fluorescence spectrometer for irradiating a sample surface with primary X-rays and measuring X-ray fluorescence generated from an object to be measured existing on the surface of the sample. And irradiating the primary X-rays at a plurality of different irradiation angles φ1 to φn with respect to the standard samples 1 and 2 having the same amount of the object to be measured, but having different adhesion forms of the object. Measuring means for measuring the intensity of X-rays; and arbitrary two irradiation angles φa among the plurality of measured irradiation angles.
, Φb (φa <φb), the fluorescence X of the standard sample 1
The ratio between the line intensities Ia1 and Ib1 is determined as the particle size coefficient PF1 of the standard sample 1, and the ratio between the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2 is determined as the particle size coefficient PF2 of the standard sample 2.
The irradiation angle φ is adjusted so that the value of 1 / PF2 approaches the value of Ia1.
a calculating means for determining a and φb; and a form determining means for determining the form of the object to be measured from the intensities Ia3 and Ib3 of the fluorescent X-rays of the sample to be measured at the determined irradiation angles φa and φb. .

【0009】本発明によれば、標準試料2の蛍光X線強
度Ia2に標準試料1と標準試料2の粒度係数の比PF1
/PF2を乗じた値が、標準試料1の蛍光X線強度Ia1
の値に近づくように、照射角度φa,φbを決定し、そ
の決定した照射角度φa,φbにおける測定対象試料に
ついての蛍光X線の強度Ia3,Ib3から、被測定物の形
態を決定するので、正確に測定対象試料の被測定物の形
態を決定できる。
According to the present invention, the ratio PF1 of the particle size coefficient between the standard sample 1 and the standard sample 2 is added to the fluorescent X-ray intensity Ia2 of the standard sample 2.
The value multiplied by / PF2 is the fluorescent X-ray intensity Ia1 of the standard sample 1.
The irradiation angles φa and φb are determined so as to approach the value of, and the form of the object to be measured is determined from the fluorescent X-ray intensities Ia3 and Ib3 of the sample to be measured at the determined irradiation angles φa and φb. The form of the measured object of the sample to be measured can be accurately determined.

【0010】本発明において、Ia2・PF1/PF2の
値がIa1の値に近づく場合とは、(Ia2/Ia1)・(P
F1/PF2)=Aとしたときに係数Aが1に近づくこ
とをいう。係数Aが1に近づくにしたがって、高精度に
被測定物の形態を決定できる。係数Aの範囲は0.3〜
3が好ましく、0.4〜2.5がより好ましく、0.5
〜2がさらに好ましく、0.7〜1.5が特に好まし
く、0.8〜1.2が最も好ましい。
In the present invention, the case where the value of Ia2 · PF1 / PF2 approaches the value of Ia1 is defined as (Ia2 / Ia1) · (P
This means that the coefficient A approaches 1 when F1 / PF2) = A. As the coefficient A approaches 1, the form of the DUT can be determined with high accuracy. The range of the coefficient A is 0.3 to
3 is preferable, 0.4 to 2.5 is more preferable, and 0.5
To 2, more preferably 0.7 to 1.5, most preferably 0.8 to 1.2.

【0011】好ましくは、前記決定した照射角度φa,
φbにおける測定対象試料についての蛍光X線の強度比
または強度差から、被測定物の形態を決定する。また、
例えば測定した複数の照射角度に対する蛍光X線強度曲
線を1次微分することによっても、被測定物の形態を決
定する。前記決定すべき被測定物の形態は、例えば、被
測定物の付着形態または大きさである。被測定物の付着
形態とは、シリコン基板表面に被測定物がフィルム状や
粒状等に存在しているような場合をいう。被測定物の大
きさとは、粒状の場合は粒径の大きさ、フィルム状やそ
の他の場合は長さ、幅、高さ寸法の大きさをいう。
Preferably, the determined irradiation angle φa,
The form of the measured object is determined from the intensity ratio or the intensity difference of the fluorescent X-rays for the sample to be measured at φb. Also,
For example, the form of the object to be measured is also determined by first-order differentiation of the measured fluorescent X-ray intensity curve for a plurality of irradiation angles. The form of the measured object to be determined is, for example, the attached form or size of the measured object. The attached form of the measured object refers to a case where the measured object exists on the surface of the silicon substrate in the form of a film, a grain, or the like. The size of the object to be measured refers to the size of the particle size in the case of a granular shape, and the size of the length, width, and height in the case of a film or other cases.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明の一実施形態に係る
全反射蛍光X線分析装置の概略側面図を示す。本装置
は、X線を発生させるX線源2と、X線源2からのX線
を回折させて単色化させ、その1次X線B1を試料台7
0上のシリコン基板のような試料50の表面に向かって
微小な所定の入射角度(例えば、0.05°〜0.2
°)で入射させる分光結晶3と、試料50表面に対向し
て、1次X線B1を受けた試料50からの蛍光X線B3
を検出する検出器4とを備えており、試料50の試料表
面部に存在する被測定物から発生した蛍光X線B3を分
析する。試料50をのせた試料台70が図示しない駆動
手段によって駆動されて、試料50に対して任意の照射
(入射)角度および位置で1次X線B1が照射される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view of a total reflection X-ray fluorescence spectrometer according to an embodiment of the present invention. The present apparatus includes an X-ray source 2 for generating X-rays, and diffracts X-rays from the X-ray source 2 to monochromatic by diffracting the X-rays.
A small predetermined incident angle (for example, 0.05 ° to 0.2 °) toward the surface of the sample 50 such as a silicon substrate on
°) and the fluorescent X-rays B3 from the sample 50 that has received the primary X-rays B1 facing the surface of the sample 50
And a detector 4 for detecting the fluorescent X-rays B3 generated from the measured object existing on the sample surface of the sample 50. The sample stage 70 on which the sample 50 is placed is driven by driving means (not shown), and the sample 50 is irradiated with the primary X-ray B1 at an arbitrary irradiation (incident) angle and position.

【0013】前記X線源2、分光結晶3、検出器4、試
料台70および駆動手段により測定手段5が構成され、
この測定手段5は、被測定物の存在量は等しいが、被測
定物の付着形態が異なる標準試料1および2について、
前記1次X線をそれぞれ相異なる複数の照射角度φ1〜
φnで照射して蛍光X線B3の強度を測定する。
The X-ray source 2, the spectral crystal 3, the detector 4, the sample stage 70 and the driving means constitute a measuring means 5,
This measuring means 5 is provided for the standard samples 1 and 2 having the same amount of the object to be measured, but having different adhesion forms of the object to be measured.
The primary X-rays are irradiated with a plurality of different irradiation angles φ1 to φ1.
Irradiate with φn and measure the intensity of fluorescent X-ray B3.

【0014】本装置の演算手段6は、前記測定された複
数の照射角度のうち任意の2つの照射角度φa ,φb
(φa <φb )について、標準試料1の蛍光X線強度I
a1,Ib1の比を標準試料1の粒度係数PF1として求
め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試
料2の粒度係数PF2として求めて、Ia2・PF1/P
F2の値がIa1の値に近づくように、照射角度φa,φ
bを決定する。また、形態決定手段8は、前記決定した
照射角度φa,φbにおける測定対象試料についての蛍
光X線の強度Ia3,Ib3、例えばIa3とIb3の強度比P
F3から、被測定物の形態を決定する。
The calculating means 6 of the present apparatus is capable of arbitrarily setting two irradiation angles φa and φb among the plurality of measured irradiation angles.
(Φa <φb), the fluorescent X-ray intensity I of the standard sample 1
The ratio between a1 and Ib1 is obtained as the particle size coefficient PF1 of the standard sample 1, and the ratio between the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2 is obtained as the particle size coefficient PF2 of the standard sample 2.
The irradiation angles φa, φa are set so that the value of F2 approaches the value of Ia1.
Determine b. Further, the morphology determining means 8 determines the intensity Ia3, Ib3 of the fluorescent X-rays for the sample to be measured at the determined irradiation angles φa, φb, for example, the intensity ratio Pa of Ia3 and Ib3.
From F3, the form of the measured object is determined.

【0015】以下、本装置の動作を説明する。例えば、
シリコン基板上の被測定物である汚染物質のニッケルの
定量分析を行う場合、汚染量が既知の標準試料に対し
て、予め全反射蛍光X線分析(後述する照射角度φcに
おける測定)を行い、汚染量と蛍光X線強度との関係を
明らかにしておく。つまり、汚染量と蛍光X線強度との
関係を示す検量線を作成しておく。つぎに、汚染量が未
知の測定対象試料に対して全反射蛍光X線測定を行い、
測定対象試料の蛍光X線強度を測定する。その強度を前
記検量線を用いて汚染量に換算する。本実施形態では、
標準試料1における被測定物の付着形態をフィルム状と
し、標準試料2における被測定物の付着形態を粒状とす
る。
Hereinafter, the operation of the present apparatus will be described. For example,
When performing quantitative analysis of nickel of a contaminant which is an object to be measured on a silicon substrate, total reflection X-ray fluorescence analysis (measurement at an irradiation angle φc to be described later) is performed on a standard sample having a known contamination amount in advance, The relationship between the amount of contamination and the fluorescent X-ray intensity will be clarified. That is, a calibration curve indicating the relationship between the amount of contamination and the fluorescent X-ray intensity is created. Next, a total reflection X-ray fluorescence measurement is performed on the sample to be measured whose contamination amount is unknown,
The fluorescent X-ray intensity of the sample to be measured is measured. The intensity is converted to the amount of contamination using the calibration curve. In this embodiment,
The adhered form of the measured object in the standard sample 1 is a film form, and the adhered form of the measured object in the standard sample 2 is a granular form.

【0016】本実施形態では、フィルム状の標準試料1
をフッ化水素雰囲気中に30分間放置することにより、
試料表面のシリコン酸化膜をフッ化水素に溶解させ、そ
の後、試料を大気中に放置して、シリコン基板上で溶解
液を乾燥させ、シリコン基板上の被測定物の付着形態を
フィルム状から粒状に変化させて、粒状の標準試料2と
した。この場合、被測定物の存在量は変化していない。
In this embodiment, a film-like standard sample 1
Is left in a hydrogen fluoride atmosphere for 30 minutes,
Dissolve the silicon oxide film on the sample surface in hydrogen fluoride, then leave the sample in the air, dry the solution on the silicon substrate, and change the adhesion form of the object to be measured on the silicon substrate from film to granular. To obtain a granular standard sample 2. In this case, the abundance of the measured object does not change.

【0017】上述したとおり、図5(A)の被測定物が
基板上にフィルム状に存在する場合と、図5(B)の粒
状に存在する場合とを比較すると、被測定物の存在量が
等しくても、フィルム状の標準試料1と粒状の標準試料
2とでは、蛍光X線B3の強度と1次X線B1の入射角
との関係は大きく異なる。したがって、前記検量線を用
いて算出した被測定物の存在量も大きく異なる。
As described above, a comparison between the case where the object to be measured in FIG. 5A is present on the substrate in the form of a film and the case where the object to be measured is present in the form of particles in FIG. Are equal, the relationship between the intensity of the fluorescent X-ray B3 and the incident angle of the primary X-ray B1 is greatly different between the film-shaped standard sample 1 and the granular standard sample 2. Therefore, the abundance of the measured object calculated using the calibration curve is also greatly different.

【0018】本装置では、まず、測定手段5により、1
次X線B1を標準試料1と標準試料2について、それぞ
れ相異なる複数の照射角度φ1〜φnで照射して蛍光X
線B3の強度を測定する。
In the present apparatus, first, 1
Next, the standard X-ray B1 is irradiated on the standard sample 1 and the standard sample 2 at a plurality of different irradiation angles φ1 to φn to obtain fluorescent X-rays.
Measure the intensity of line B3.

【0019】つぎに、演算手段6の動作を、測定された
複数の照射角度のデータのうち、それぞれ異なる2つの
照射角度φa、φbを選択した2つのケースに分けて説
明する。
Next, the operation of the calculating means 6 will be described for two cases in which two different irradiation angles φa and φb are selected from the data of a plurality of measured irradiation angles.

【0020】ケース1:照射角度φa=0.05°、φ
b=0.15°を選択したとき この場合、フィルム状の標準試料1についてのNi−K
α線の強度は0.05°のとき20.65cps、0.
15°のとき335.65cpsである。したがって、
標準試料1についての蛍光X線強度Ia1,Ib1の比であ
る標準試料1の粒度係数PF1を求めると、PF1=2
0.65/335.65=0.06である。粒状の標準
試料2についてのNi−Kα線の強度は0.05°のと
き158.79cps、0.15°のとき444.05
cpsである。したがって、標準試料2についての蛍光
X線強度Ia2,Ib2の比である標準試料2の粒度係数P
F2を求めると、PF2=158.79/444.05
=0.36である。これにより、粒度係数PF1とPF
2の比は、PF1/PF2=0.06/0.36=1/
6となる。
Case 1: Irradiation angle φa = 0.05 °, φ
When b = 0.15 ° is selected In this case, Ni-K for the film-form standard sample 1 is used.
The α-ray intensity is 20.65 cps at 0.05 °
It is 335.65 cps at 15 °. Therefore,
When the particle size coefficient PF1 of the standard sample 1, which is the ratio of the fluorescent X-ray intensities Ia1 and Ib1 for the standard sample 1, is obtained, PF1 = 2
0.65 / 335.65 = 0.06. The intensity of the Ni—Kα ray of the granular standard sample 2 was 158.79 cps at 0.05 ° and 444.05 at 0.15 °.
cps. Therefore, the particle size coefficient P of the standard sample 2, which is the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2,
When F2 is obtained, PF2 = 158.79 / 444.05
= 0.36. Thereby, the particle size coefficients PF1 and PF
The ratio of 2 is PF1 / PF2 = 0.06 / 0.36 = 1 /
It becomes 6.

【0021】このとき、係数Aは、A=(Ia2/Ia1)
・(PF1/PF2)=(158.79/20.65)
・(0.06/0.36)≒1.3である。
At this time, the coefficient A is A = (Ia2 / Ia1)
(PF1 / PF2) = (158.79 / 20.65)
・ (0.06 / 0.36) ≒ 1.3.

【0022】ここに、係数Aが1に近づく目安となるよ
うに、前記のように求めたPF1/PF2=1/6と、
図2(A)に示すような1次X線B1の照射角度に対す
る粒状の標準試料2の蛍光X線強度Ia2とフィルム状の
標準試料1の蛍光X線強度Ia1との比、つまりIa2/I
a1を用いて、A=(Ia2/Ia1)・(1/6)から、図
2(C)に示す1次X線B1の照射角度に対する係数A
の関係を作図する。この場合、図2(C)に示すよう
に、照射角度0.07°付近で、A=1となる。すなわ
ち、前記定量分析で用いる検量線を作製する際、この条
件下では係数Aが1に近い照射角度φc=0.07°で
全反射蛍光X線分析を行うことが望ましい。
Here, PF1 / PF2 = 1/6 determined as described above so that the coefficient A becomes a standard approaching 1;
The ratio of the fluorescent X-ray intensity Ia2 of the granular standard sample 2 to the irradiation angle of the primary X-ray B1 as shown in FIG. 2A and the fluorescent X-ray intensity Ia1 of the film-shaped standard sample 1, that is, Ia2 / I.
Using A1, A = (Ia2 / Ia1) · (1/6), and the coefficient A for the irradiation angle of the primary X-ray B1 shown in FIG.
Plot the relationship. In this case, as shown in FIG. 2C, A = 1 near the irradiation angle of 0.07 °. That is, when preparing a calibration curve used in the quantitative analysis, it is preferable to perform total reflection X-ray fluorescence analysis at an irradiation angle φc = 0.07 ° where the coefficient A is close to 1 under this condition.

【0023】ケース2:照射角度φa=0.09°、φ
b=0.17°を選択したとき この場合も、ケース1と同様の演算を行い、図2(B)
に示す1次X線B1の照射角度に対する係数Aの関係を
作図する。図2(B)に示すように、照射角度0.09
°付近で、A=1となる。すなわち、前記定量分析で用
いる検量線を作製する際、この条件下では係数Aが1に
近い照射角度φc=0.09°で蛍光X線分析を行うこ
とが望ましい。
Case 2: Irradiation angle φa = 0.09 °, φ
When b = 0.17 ° is selected Also in this case, the same calculation as in Case 1 is performed, and FIG.
The relationship between the coefficient A and the irradiation angle of the primary X-ray B1 shown in FIG. As shown in FIG. 2B, the irradiation angle is 0.09.
In the vicinity of °, A = 1. That is, when preparing a calibration curve used in the quantitative analysis, it is preferable to perform the fluorescent X-ray analysis at an irradiation angle φc = 0.09 ° at which the coefficient A is close to 1 under this condition.

【0024】前記演算手段6により決定された例えば照
射角度φa=0.09°、φb=0.17°のとき、フ
ィルム状の標準試料1について全反射蛍光X線測定した
結果、Ni−Kα線の強度は0.09°のとき103.
60cps、0.17°のとき419.58cpsであ
る。したがって、標準試料1についての蛍光X線強度I
a1,Ib1の比である標準試料1の粒度係数PF1は、P
F1=103.60/419.58=0.25である。
なお、前記した照射角度φc=0.09°での検量線を
用いて、Ni−Kα線の強度をニッケルの汚染量に換算
すると、約1.5×1012atoms/cm2 となる。粒状の標
準試料2については、Ni−Kα線の強度は0.09°
のとき404.91cps、0.17°のとき415.
30cpsである。したがって、標準試料2についての
蛍光X線強度Ia2,Ib2の比である標準試料2の粒度係
数PF2は、PF2=404.91/415.30=
0.97である。これにより、前記粒度係数PF1とP
F2の比は、PF1/PF2=0.25/0.97≒1
/4となる。
When, for example, the irradiation angles φa = 0.09 ° and φb = 0.17 ° determined by the arithmetic means 6, the total reflection X-ray fluorescence measurement of the film-like standard sample 1 was performed. At an intensity of 0.09 °.
It is 419.58 cps at 60 cps and 0.17 °. Therefore, the fluorescent X-ray intensity I for the standard sample 1
The particle size coefficient PF1 of the standard sample 1, which is the ratio of a1 and Ib1, is P
F1 = 103.60 / 419.58 = 0.25.
When the intensity of the Ni-Kα ray is converted into the amount of nickel contamination using the above-mentioned calibration curve at the irradiation angle φc = 0.09 °, it becomes about 1.5 × 10 12 atoms / cm 2 . For the granular standard sample 2, the intensity of the Ni-Kα ray was 0.09 °.
404.91 cps at 0.17 ° and 415.
30 cps. Therefore, the particle size coefficient PF2 of the standard sample 2, which is the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2, is PF2 = 404.91 / 415.30 =
0.97. Thereby, the particle size coefficients PF1 and P
The ratio of F2 is PF1 / PF2 = 0.25 / 0.97 ≒ 1
/ 4.

【0025】このとき、係数Aは、A=(Ia2/Ia1)
・(PF1/PF2)=(404.91/103.6
0)・(0.25/0.97)≒1である。
At this time, the coefficient A is A = (Ia2 / Ia1)
(PF1 / PF2) = (404.91 / 103.6)
0) ・ (0.25 / 0.97) ≒ 1.

【0026】つぎに、被測定物の付着形態が未知の測定
対象試料について、前記決定した照射角度φa=0.0
9°,φb=0.17°で全反射蛍光X線測定する。粒
状の測定対象試料の場合、前記標準試料2の場合と同様
に、Ni−Kα線の強度Ia3,Ib3は、0.09°のと
き404.91cps、0.17°のとき415.30
cpsである。したがって、測定対象試料についての蛍
光X線強度Ia3,Ib3の比である測定対象試料の粒度係
数PF3は、PF3=404.91/415.30=
0.97である。
Next, for the sample to be measured whose adhesion form is unknown, the determined irradiation angle φa = 0.0
The total reflection fluorescent X-ray is measured at 9 ° and φb = 0.17 °. In the case of a granular sample to be measured, as in the case of the standard sample 2, the intensity Ia3, Ib3 of the Ni-Kα ray is 404.91 cps at 0.09 ° and 415.30 at 0.17 °.
cps. Therefore, the particle size coefficient PF3 of the sample to be measured, which is the ratio of the fluorescent X-ray intensities Ia3 and Ib3 of the sample to be measured, is PF3 = 404.91 / 415.30 =
0.97.

【0027】形態決定手段8は、測定対象試料について
の粒度係数PF3の値により、粒度係数PFの例えば、
PF=0.5を判断基準として、PF≦0.5の場合は
フィルム状、PF>0.5の場合は粒状と判断する。も
ちろん、この0.5という基準は分析条件や必要な情報
によって変化する。本実施形態では、PF3=0.97
で、PF>0.5であるので、被測定物の付着形態を粒
状と決定する。
The form determining means 8 calculates, for example, the particle size coefficient PF based on the value of the particle size coefficient PF3 for the sample to be measured.
Using PF = 0.5 as a criterion, it is determined that the film shape is obtained when PF ≦ 0.5, and the particle shape is obtained when PF> 0.5. Of course, the standard of 0.5 changes depending on analysis conditions and necessary information. In the present embodiment, PF3 = 0.97
Since PF> 0.5, the adhesion form of the measured object is determined to be granular.

【0028】こうして、本発明は、Ia2・PF1/PF
2の値がIa1の値に近づくように、つまり、係数Aが1
に近づくように、照射角度φa、φbを決定し、この決
定した照射角度φa、φbにおける測定対象試料につい
ての蛍光X線の強度Ia3,Ib3の比PF3から、被測定
物の付着形態を正確に決定することができる。
Thus, according to the present invention, Ia2 · PF1 / PF
2 is closer to the value of Ia1, that is, the coefficient A is 1
The irradiation angles φa and φb are determined so as to approach the above. From the ratio PF3 of the fluorescent X-ray intensities Ia3 and Ib3 of the sample to be measured at the determined irradiation angles φa and φb, the adhesion form of the object to be measured is accurately determined. Can be determined.

【0029】なお、本実施形態では、測定対象試料につ
いての蛍光X線の強度比から、被測定物の付着形態を決
定しているが、蛍光X線の強度差によって、強度比と同
じようにして、被測定物の付着形態を決定するようにし
てもよい。
In this embodiment, the attachment form of the object to be measured is determined from the intensity ratio of the fluorescent X-rays with respect to the sample to be measured. Thus, the attachment form of the object to be measured may be determined.

【0030】なお、図5のように、測定した複数の照射
角度に対する蛍光X線強度曲線を1次微分することによ
って得られた図3の曲線によって、被測定物の付着形態
を決定してもよい。すなわち、図5(B)の粒状の測定
対象試料の蛍光X線強度曲線は、図5(A)のフィルム
状の標準試料の蛍光X線強度曲線に比較してピーク位置
が前方にあり、これら図5(A)、(B)の蛍光X線強
度曲線を1次微分することによってそれぞれ得られた図
3(A)、(B)の曲線から、図3(B)のピーク位置
P2が図3(A)のピーク位置P1に比較して前方に位
置することに基づいて、測定対象試料の被測定物の付着
形態を粒状であると決定することができる。
As shown in FIG. 5, even if the adhesion form of the object to be measured is determined by the curve of FIG. 3 obtained by first-order differentiation of the fluorescent X-ray intensity curve for a plurality of measured irradiation angles. Good. That is, the fluorescent X-ray intensity curve of the granular sample to be measured in FIG. 5B has a peak position ahead of the fluorescent X-ray intensity curve of the film-shaped standard sample in FIG. From the curves of FIGS. 3A and 3B obtained by first-order differentiation of the fluorescent X-ray intensity curves of FIGS. 5A and 5B, respectively, the peak position P2 of FIG. Based on the fact that the sample is located ahead of the peak position P1 in FIG. 3 (A), it is possible to determine that the adhesion form of the measurement target sample to the measured object is granular.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
標準試料2の蛍光X線強度Ia2に標準試料1と標準試料
2の粒度係数の比PF1/PF2を乗じた値が、標準試
料1の蛍光X線強度Ia1の値に近づくように、照射角度
φa,φbを決定し、その決定した照射角度φa,φb
における測定対象試料についての蛍光X線の強度Ia3,
Ib3から、被測定物の形態を決定するので、正確に測定
対象試料の被測定物の形態を決定できる。
As described above, according to the present invention,
The irradiation angle φa is set so that the value obtained by multiplying the fluorescent X-ray intensity Ia2 of the standard sample 2 by the ratio PF1 / PF2 of the particle size coefficients of the standard sample 1 and the standard sample 2 approaches the value of the fluorescent X-ray intensity Ia1 of the standard sample 1. , Φb, and the determined irradiation angles φa, φb
X-ray intensity Ia3,
Since the form of the measured object is determined from Ib3, the form of the measured object of the sample to be measured can be accurately determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る蛍光X線分析装置を
示す側面図である。
FIG. 1 is a side view showing an X-ray fluorescence analyzer according to one embodiment of the present invention.

【図2】(A)〜(C)は係数Aと照射角度との関係を
示す特性図である。
FIGS. 2A to 2C are characteristic diagrams showing a relationship between a coefficient A and an irradiation angle.

【図3】(A)、(B)は1次微分した蛍光X線強度と
1次X線の照射角度との関係を示す特性図である。
FIGS. 3A and 3B are characteristic diagrams showing the relationship between the first-order differentiated fluorescent X-ray intensity and the irradiation angle of the primary X-ray.

【図4】(A)〜(C)は被測定物の形態を示す側面図
である。
FIGS. 4A to 4C are side views showing a form of an object to be measured.

【図5】(A)〜(C)は蛍光X線強度と1次X線の照
射角度との関係を示す特性図である。
FIGS. 5A to 5C are characteristic diagrams showing a relationship between fluorescent X-ray intensity and primary X-ray irradiation angle.

【符号の説明】[Explanation of symbols]

5…測定手段、6…演算手段、8…形態決定手段、50
…試料、B1…1次X線、B3…蛍光X線。
5 measuring means, 6 arithmetic means, 8 form determining means, 50
... sample, B1 ... primary X-ray, B3 ... fluorescent X-ray.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料表面に1次X線を照射し、試料表面
部に存在する被測定物から発生した蛍光X線を測定する
蛍光X線分析方法であって、 被測定物の存在量は等しいが、被測定物の形態が異なる
標準試料1および2について、前記1次X線をそれぞれ
相異なる複数の照射角度φ1〜φnで照射して蛍光X線
の強度を測定し、そのうち任意の2つの照射角度φa ,
φb (φa <φb )について、標準試料1の蛍光X線強
度Ia1,Ib1の比を標準試料1の粒度係数PF1として
求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準
試料2の粒度係数PF2として求めて、Ia2・PF1/
PF2の値がIa1の値に近づくように、照射角度φa,
φbを決定し、 前記決定した照射角度φa,φbにおける測定対象試料
についての蛍光X線の強度Ia3,Ib3から、被測定物の
形態を決定する蛍光X線分析方法。
1. A fluorescent X-ray analysis method for irradiating a sample surface with primary X-rays and measuring fluorescent X-rays generated from an object to be measured existing on the surface of the sample, wherein the amount of the object to be measured is The primary X-rays are irradiated at different irradiation angles φ1 to φn, respectively, on the standard samples 1 and 2 which are equal but have different forms of the object to be measured, and the intensity of the fluorescent X-rays is measured. Irradiation angles φa,
For φb (φa <φb), the ratio of the fluorescent X-ray intensities Ia1 and Ib1 of the standard sample 1 is determined as the particle size coefficient PF1 of the standard sample 1, and the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2 is determined. Calculated as the particle size coefficient PF2, Ia2 · PF1 /
The irradiation angles φa and φa are set so that the value of PF2 approaches the value of Ia1.
An X-ray fluorescence analysis method for determining φb and determining the form of the object from the X-ray fluorescence intensity Ia3, Ib3 of the sample to be measured at the determined irradiation angles φa, φb.
【請求項2】 請求項1において、前記決定した照射角
度φa,φbにおける測定対象試料についての蛍光X線
の強度比または強度差から、被測定物の形態を決定する
蛍光X線分析方法。
2. The X-ray fluorescence analysis method according to claim 1, wherein a form of the object is determined from an intensity ratio or an intensity difference of X-ray fluorescence with respect to the sample to be measured at the determined irradiation angles φa and φb.
【請求項3】 請求項1または2において、決定すべき
被測定物の形態が、被測定物の付着形態である蛍光X線
分析方法。
3. The X-ray fluorescence analysis method according to claim 1, wherein the form of the object to be determined is an attachment form of the object.
【請求項4】 請求項1または2において、決定すべき
被測定物の形態が、被測定物の大きさである蛍光X線分
析方法。
4. The X-ray fluorescence analysis method according to claim 1, wherein the form of the object to be determined is the size of the object.
【請求項5】 試料表面に1次X線を照射し、試料表面
部に存在する被測定物から発生した蛍光X線を測定する
蛍光X線分析装置であって、 被測定物の存在量は等しいが、被測定物の形態が異なる
標準試料1および2について、前記1次X線をそれぞれ
相異なる複数の照射角度φ1〜φnで照射して蛍光X線
の強度を測定する測定手段と、 前記測定された複数の照射角度のうち任意の2つの照射
角度φa ,φb (φa<φb )について、標準試料1の
蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数P
F1として求め、標準試料2の蛍光X線強度Ia2,Ib2
の比を標準試料2の粒度係数PF2として求めて、Ia2
・PF1/PF2の値がIa1の値に近づくように、照射
角度φa,φbを決定する演算手段と、 前記決定した照射角度φa,φbにおける測定対象試料
についての蛍光X線の強度Ia3,Ib3から、被測定物の
形態を決定する形態決定手段とを備えた蛍光X線分析装
置。
5. An X-ray fluorescence analyzer for irradiating a sample surface with primary X-rays and measuring fluorescent X-rays generated from an object to be measured existing on the surface of the sample, wherein the amount of the object to be measured is Measuring means for measuring the intensity of fluorescent X-rays by irradiating the primary X-rays at a plurality of different irradiation angles φ1 to φn, respectively, on the standard samples 1 and 2 which are equal but have different forms of the object to be measured; For any two irradiation angles φa, φb (φa <φb) of the plurality of measured irradiation angles, the ratio of the fluorescent X-ray intensities Ia1, Ib1 of the standard sample 1 is determined by the particle size coefficient P of the standard sample 1.
F1 and the fluorescent X-ray intensity Ia2, Ib2 of the standard sample 2
Is determined as the particle size coefficient PF2 of the standard sample 2, and Ia2
Calculation means for determining the irradiation angles φa and φb so that the value of PF1 / PF2 approaches the value of Ia1; and X-ray fluorescence analyzer comprising: a morphological determining means for determining a morphology of an object to be measured.
JP2000314961A 2000-10-16 2000-10-16 Method and apparatus for fluorescent x-ray analysis Withdrawn JP2002122557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314961A JP2002122557A (en) 2000-10-16 2000-10-16 Method and apparatus for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314961A JP2002122557A (en) 2000-10-16 2000-10-16 Method and apparatus for fluorescent x-ray analysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004223425A Division JP3811721B2 (en) 2004-07-30 2004-07-30 X-ray fluorescence analysis method and apparatus

Publications (1)

Publication Number Publication Date
JP2002122557A true JP2002122557A (en) 2002-04-26

Family

ID=18794132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314961A Withdrawn JP2002122557A (en) 2000-10-16 2000-10-16 Method and apparatus for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JP2002122557A (en)

Similar Documents

Publication Publication Date Title
US9746433B2 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
JP5722861B2 (en) Inspection method and inspection apparatus
US6041096A (en) Method and apparatus for total reflection X-ray fluorescence spectroscopy
JP2848751B2 (en) Elemental analysis method
JPH05240808A (en) Method for determining fluorescent x rays
JP2002122558A (en) Method and apparatus for fluorescent x-ray analysis
TWI761788B (en) Device and substrate assisted x-ray leakage method for ultrathin film thickness measurement
Spolnik et al. Optimization of measurement conditions of an energy dispersive X-ray fluorescence spectrometer with high-energy polarized beam excitation for analysis of aerosol filters
TWI329736B (en) X-ray scattering with a polychromatic source
JP2928688B2 (en) Pollution element analysis method and device
JP2002122557A (en) Method and apparatus for fluorescent x-ray analysis
JP3811721B2 (en) X-ray fluorescence analysis method and apparatus
JP2005140767A (en) Three-dimensional surface analysis method
JP2004354392A5 (en)
JP3814644B2 (en) X-ray fluorescence analysis method and apparatus
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
EP3822622B1 (en) X-ray analysis system, x-ray analysis device, and vapor phase decomposition device
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JP3373698B2 (en) X-ray analysis method and X-ray analyzer
Goldstein et al. Special topics in electron beam x-ray microanalysis
JP2004361414A5 (en)
JP2020003331A (en) Background elimination method and x-ray fluorescence spectrometer
JPH08327566A (en) Method and device for quantitative determination in total reflection x-ray fluorescence analysis
JP3840503B2 (en) X-ray analysis method and apparatus
JP4339997B2 (en) Method for acquiring data of standard sample for analysis, and X-ray analysis method and apparatus using this standard sample

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A02

A761 Written withdrawal of application

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A761