JPH08327566A - Method and device for quantitative determination in total reflection x-ray fluorescence analysis - Google Patents

Method and device for quantitative determination in total reflection x-ray fluorescence analysis

Info

Publication number
JPH08327566A
JPH08327566A JP13300695A JP13300695A JPH08327566A JP H08327566 A JPH08327566 A JP H08327566A JP 13300695 A JP13300695 A JP 13300695A JP 13300695 A JP13300695 A JP 13300695A JP H08327566 A JPH08327566 A JP H08327566A
Authority
JP
Japan
Prior art keywords
ray
measured
fluorescent
intensity
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13300695A
Other languages
Japanese (ja)
Inventor
Naoki Awaji
直樹 淡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13300695A priority Critical patent/JPH08327566A/en
Publication of JPH08327566A publication Critical patent/JPH08327566A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To enable quantitative determinations to be stably made without using a standard sample and being affected by changes in intensity of an irradiation X-ray by quantitatively determining the concentration of an element to be measured, using the fluorescent X-ray relative sensitivity coefficient of the element to be measured and an element of known concentration and shape other than the element to be measured and using either X-ray penetration length or X-ray reflectance. CONSTITUTION: It is determined whether the distribution state of an element to be measured shows particle-like contamination, surface contamination, or internal contamination (exponentially diffusing contamination), from changes in X-ray fluorescence intensity when the incidence angle of an irradiation X-ray is varied, and a concentration determining method suited for the shape of that impurity is applied as follows, that is, using the fluorescent X-ray intensity of the element to be measured which emanates from a sample to be measured and using the fluorescent X-ray intensity of an element of known concentration and shape other than the element to be measured, the relative sensitivity coefficient of the element to be measured and the latter element and either X-ray penetration length or X-ray reflectance are calculated, and the use of these in determining the concentration of the element to be measured results in accurate analysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全反射蛍光X線分析の
定量法および定量装置に関する。近年の半導体製造技術
分野においては、半導体装置の高集積化にともない、装
置の信頼性に影響がある金属汚染や製造過程での歩留り
に大きく関係するパーティクル汚染の低減が求められて
おり、これらの汚染を評価するための分析手法を開発す
ることが要望されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantitative method and apparatus for total reflection X-ray fluorescence analysis. In the field of semiconductor manufacturing technology in recent years, with the high integration of semiconductor devices, there is a demand for reduction of metal pollution that affects the reliability of the device and particle pollution that is greatly related to the yield in the manufacturing process. It is desired to develop analytical methods for assessing pollution.

【0002】この要望に応えるために、非破壊で半導体
ウェハ等の表面の汚染元素の濃度を109 atoms/
cm2 程度の高感度で測定することができる全反射蛍光
分析法が、半導体ウェハを製造する場合や、半導体ウェ
ハを用いて半導体装置を製造する場合に、半導体ウェハ
の清浄度を評価する目的で導入されている。全反射蛍光
X線分析法による蛍光X線は、強度が強く、平行性がよ
く、入射X線波長の選択性もあることから微量元素の評
価に適している。
In order to meet this demand, the concentration of contaminant elements on the surface of a semiconductor wafer or the like is non-destructively set to 10 9 atoms /
For the purpose of evaluating the cleanliness of a semiconductor wafer by a total reflection fluorescence analysis method capable of measuring with high sensitivity of about cm 2 when manufacturing a semiconductor wafer or when manufacturing a semiconductor device using the semiconductor wafer. Has been introduced. The fluorescent X-rays obtained by the total reflection fluorescent X-ray analysis method are suitable for the evaluation of trace elements because they have high intensity, good parallelism, and selectivity of the incident X-ray wavelength.

【0003】[0003]

【従来の技術】従来から用いられている全反射蛍光X線
分析法においては、試料上に微小な入射角でX線を照射
し、その試料から発生する蛍光X線を検出し、この蛍光
X線を解析することによって試料中の微量元素を検出す
るものであるが、X線を、X線が全反射する微小な入射
角ψ(0.05〜0.1°)で入射するため、X線の入
射角設定の誤差により試料上のX線定在波強度や試料中
のX線強度が変動し、汚染濃度定量における誤差となっ
ていた。
2. Description of the Related Art In the conventional total reflection X-ray fluorescence analysis method, an X-ray is irradiated onto a sample at a small incident angle, and the fluorescent X-ray generated from the sample is detected. Although trace elements in a sample are detected by analyzing the X-ray, X-rays are incident at a minute incident angle ψ (0.05 to 0.1 °) at which the X-rays are totally reflected. The intensity of the X-ray standing wave on the sample and the intensity of the X-ray in the sample fluctuated due to an error in setting the incident angle of the rays, which resulted in an error in quantifying the contamination concentration.

【0004】また、前記のように、試料上にX線の定在
波が生じるため、試料に含まれる汚染物の形状(パーテ
ィクル、表面汚染、内部汚染)によって励起される蛍光
X線強度が異なり、濃度定量の誤差となっていた。
Further, as described above, since the X-ray standing wave is generated on the sample, the intensity of the fluorescent X-ray excited by the shape of the contaminant (particle, surface contamination, internal contamination) contained in the sample is different. There was an error in the concentration determination.

【0005】現在一般に用いられている全反射蛍光X線
による定量法においては、被測定元素からの蛍光X線強
度を、表面を均一に汚染させた標準試料の蛍光X線強度
と直接比較することによって行っているが、前記の汚染
物の形状の違いや、測定時のX線の入射角設定の誤差が
定量精度を悪くすることや、そのような標準試料を作製
することが困難であり、また、この標準試料の汚染物質
の濃度を化学分析によって決定することが必要である
等、多くの問題を有していた。
In the quantification method using total reflection fluorescent X-rays which is generally used at present, the fluorescent X-ray intensity from the element to be measured is directly compared with the fluorescent X-ray intensity of a standard sample whose surface is uniformly polluted. However, it is difficult to make such a standard sample because the difference in the shape of the contaminants and the error in the setting of the incident angle of X-rays during measurement deteriorate the quantitative accuracy. In addition, there are many problems such as the need to determine the concentration of pollutants in this standard sample by chemical analysis.

【0006】[0006]

【発明が解決しようとする課題】したがって、従来の全
反射蛍光X線分析法を半導体装置の製造工程における汚
染度のライン管理等に導入する場合、標準試料が使用中
に汚染されて定量誤差を生じたり、異なる製造現場での
不純物の濃度比較が困難であった。本発明は、一度各元
素からの蛍光X線の相対感度係数を求めた後は、比較の
ための標準試料を用いることなく、照射X線の強度変化
にも影響されない、安定な定量法を確立することによ
り、全反射蛍光X線分析法を普及させることができる手
段を提供することを目的とする。
Therefore, when the conventional total reflection X-ray fluorescence analysis method is introduced in line control of the degree of contamination in the manufacturing process of semiconductor devices, the standard sample is contaminated during use and quantitative errors occur. It is difficult to compare the concentration of impurities at different manufacturing sites. The present invention, once the relative sensitivity coefficient of fluorescent X-rays from each element is obtained, establishes a stable quantitative method that is not affected by the intensity change of irradiated X-rays without using a standard sample for comparison. By doing so, it is an object of the present invention to provide a means by which the total reflection X-ray fluorescence analysis method can be popularized.

【0007】また、本発明は、試料からの被測定元素の
蛍光X線強度の入射角依存性から、被測定元素の形状
を、均一元素、パーティクル、表面元素、内部拡散元素
の何れかに分類し、その不純物の形状に対応した濃度定
量法を適用することによってより正確な測定値が得られ
る全反射蛍光X線分析の定量法および定量装置を提供す
ることを目的とする。
Further, according to the present invention, the shape of the element to be measured is classified into a uniform element, a particle, a surface element, and an internal diffusion element based on the incident angle dependence of the fluorescent X-ray intensity of the element to be measured from the sample. However, it is an object of the present invention to provide a quantitative method and a quantitative apparatus for total reflection X-ray fluorescence analysis, by which a more accurate measurement value can be obtained by applying a concentration quantitative method corresponding to the shape of the impurity.

【0008】[0008]

【課題を解決するための手段】本発明にかかる全反射蛍
光X線分析の定量法においては、前記全反射蛍光X線分
析法を実現するために、被測定試料からの被測定元素の
蛍光X線強度と、該被測定元素以外の、濃度および形状
が知られている元素の蛍光X線強度を用い、該被測定元
素と該被測定元素以外の元素の相対感度係数、X線侵入
長またはX線反射率を用いて被測定元素の濃度を定量す
る手順を採用した。
In order to realize the above-mentioned total reflection fluorescent X-ray analysis method, in the quantitative method of total reflection X-ray fluorescence analysis according to the present invention, fluorescence X of an element to be measured from a sample to be measured is measured. Using the line intensity and the fluorescent X-ray intensity of an element of which concentration and shape are known other than the element to be measured, the relative sensitivity coefficient of the element to be measured and the element other than the element to be measured, the X-ray penetration length, or A procedure for quantifying the concentration of the element to be measured using X-ray reflectance was adopted.

【0009】この場合、被測定元素以外の、濃度および
形状が知られている元素の蛍光X線強度を、被測定試料
基体の蛍光X線強度とすることができる。
In this case, the fluorescent X-ray intensity of an element whose concentration and shape are known other than the element to be measured can be used as the fluorescent X-ray intensity of the sample substrate to be measured.

【0010】また,この場合、被測定元素以外の、濃度
および形状が知られている元素の蛍光X線強度を、標準
試料の蛍光X線強度とすることができる。
Further, in this case, the fluorescent X-ray intensity of an element having a known concentration and shape other than the element to be measured can be used as the fluorescent X-ray intensity of the standard sample.

【0011】また、本発明にかかる他の全反射蛍光X線
分析の定量法においては、被測定試料からの被測定元素
の蛍光X線強度の入射角依存性から、被測定元素の形状
を、均一元素、パーティクル状汚染、表面汚染、内部汚
染の何れかに分類し、各被測定元素の形状に適する濃度
定量法を適用する手順を採用した。
In another quantitative method for total reflection X-ray fluorescence analysis according to the present invention, the shape of the element to be measured is determined from the dependence of the fluorescent X-ray intensity of the element to be measured from the sample to be measured on the incident angle. A procedure was adopted in which the element was classified into uniform element, particulate contamination, surface contamination, and internal contamination, and the concentration quantification method suitable for the shape of each element to be measured was applied.

【0012】また、本発明にかかる全反射蛍光X線分析
装置においては、被測定試料からの蛍光X線強度を検出
する手段と、該被測定試料に対するX線の侵入長、X線
反射率またはX線強度分布を計算しあるいは蓄積データ
から求める手段と、被測定元素の蛍光X線強度と、該被
測定試料に対するX線の侵入長、X線反射率またはX線
強度分布と該被測定元素の相対感度係数から、該被測定
元素の濃度を定量する手段を有する構成を採用した。
Further, in the total reflection X-ray fluorescence analyzer according to the present invention, means for detecting the fluorescent X-ray intensity from the sample to be measured, penetration length of X-rays into the sample to be measured, X-ray reflectance or Means for calculating X-ray intensity distribution or obtaining from accumulated data, fluorescent X-ray intensity of element to be measured, penetration length of X-ray into the sample to be measured, X-ray reflectance or X-ray intensity distribution and element to be measured A structure having means for quantifying the concentration of the element to be measured is adopted from the relative sensitivity coefficient of.

【0013】[0013]

【作用】前記従来の全反射蛍光X線検出方法が有する問
題は、次記の方法によって解決することができる。 照射X線の入射角を変えた場合の蛍光X線強度の変
化から試料の汚染形状を評価し、その形状に適合する定
量法を用いる。 照射X線の入射角が変わってもその影響を受けにく
いように、試料の基板元素等の基準元素によって、蛍光
X線強度で規格化して評価する。
The problems of the conventional total reflection X-ray fluorescence detection method can be solved by the following method. The contaminated shape of the sample is evaluated from the change in the fluorescent X-ray intensity when the incident angle of the irradiated X-ray is changed, and a quantitative method suitable for the shape is used. The fluorescent X-ray intensity is standardized and evaluated by the reference element such as the substrate element of the sample so that it is not easily affected by the change of the incident angle of the irradiated X-ray.

【0014】具体的には、解決策では、試料からの被
測定元素の蛍光X線強度の入射角依存性から、汚染物質
の分布形状を(a)均一元素、(b)パーティクル、
(c)表面元素、(d)内部拡散元素の何れかに分類す
ることができる。また、解決策では、基板元素あるい
は基板に均一に分布する元素からの蛍光X線強度と、被
測定元素からの蛍光X線強度の比をとり、その値に基づ
いて定量を行う。このとき基板元素等の、濃度がわかっ
ている元素を用いて被測定元素の濃度定量を行うことが
できる。
Specifically, in the solution, the distribution shape of the pollutant is (a) a uniform element, (b) a particle, based on the incident angle dependence of the fluorescent X-ray intensity of the element to be measured from the sample.
It can be classified into either (c) surface element or (d) internal diffusion element. Further, in the solution, the ratio of the fluorescent X-ray intensity from the substrate element or the element uniformly distributed on the substrate and the fluorescent X-ray intensity from the element to be measured is calculated, and the quantitative determination is performed based on the value. At this time, the concentration of the element to be measured can be quantified using an element whose concentration is known, such as a substrate element.

【0015】以下、本発明にかかる全反射蛍光X線分析
の定量法の測定原理を説明する。試料の表面に入射した
X線の反射や透過は、試料の複素数屈折率nを用いたフ
レネルの法則により記述することができる。X線領域に
対する物質の屈折率は1よりわずかに小さく、n=1−
δ+iβと表記することができる。ここでδおよびβは
原子散乱因子Z+f′,f″を用いて以下のように表記
することができる。 δ=cλ2 ρ(Z+f′)/A,β=cλ2 ρ(f″/A),c=re 0 / 2π・・・(1)
The measurement principle of the quantitative method of total reflection X-ray fluorescence analysis according to the present invention will be described below. The reflection and transmission of X-rays incident on the surface of the sample can be described by Fresnel's law using the complex index n of the sample. The refractive index of the substance for the X-ray region is slightly smaller than 1, and n = 1-
It can be expressed as δ + iβ. Here, δ and β can be expressed as follows using the atomic scattering factors Z + f ′, f ″: δ = cλ 2 ρ (Z + f ′) / A, β = cλ 2 ρ (f ″ / A) , C = r e N 0 / 2π (1)

【0016】ここで、re は電子の古典半径、N0 はア
ボガドロ数、λはX線波長、ρは密度、Aは原子量、Z
は原子番号、f′は分散補正項、f″は吸収項である。
これらの原子散乱因子はHenkeによる表(B.L.
Henke,J.C.Davis,E.M.Gulli
kson and R.C.C.Perera,Law
rence Berkeley Lab.Rep.LB
L−26259(1988),M.N.Thomas,
J.C.Davis,C.J.Jacobsen an
d R.C.C.Perera,Lawrence B
erkeley Lab.Rep.LBL−27668
(1989)参照)や、佐々木による表(S.Sasa
ki:KEK Report 88−14,Febru
ary(1089)参照)から得られる。上式から、屈
折率は試料の密度に比例し、化学結合状態には影響され
ない。
Where r e is the classical radius of the electron, N 0 is the Avogadro number, λ is the X-ray wavelength, ρ is the density, A is the atomic weight, and Z is Z.
Is an atomic number, f ′ is a dispersion correction term, and f ″ is an absorption term.
These atomic scattering factors are listed in the table by Henke (BL.
Henke, J .; C. Davis, E .; M. Gulli
kson and R.K. C. C. Perera, Law
lens Berkeley Lab. Rep. LB
L-26259 (1988), M.A. N. Thomas,
J. C. Davis, C.I. J. Jacobsen an
d R. C. C. Perera, Lawrence B
erkeley Lab. Rep. LBL-27668
(See (1989)) and a table by Sasaki (S. Sasaa).
ki: KEK Report 88-14, Febru
ary (1089)). From the above equation, the refractive index is proportional to the density of the sample and is not affected by the chemical bond state.

【0017】平坦な基板にX線が入射すると、基板上で
は入射X線と反射X線が干渉し、定在波を生じる。ま
た、屈折率は1より小さいため、全反射臨界角ψc(=
√(2δ))以下ではX線は全反射を起こすため、基板
中には表面から指数関数的に減衰するエバネッセント波
のみが存在する。そのためX線は基板をあまり励起せ
ず、表面付近に存在する元素が高感度に検出される。
When X-rays are incident on a flat substrate, the incident X-rays and the reflected X-rays interfere with each other on the substrate to generate a standing wave. Since the refractive index is smaller than 1, the total reflection critical angle ψc (=
Below √ (2δ)), X-rays undergo total internal reflection, so that only evanescent waves that decay exponentially from the surface exist in the substrate. Therefore, the X-rays do not excite the substrate so much, and the elements existing near the surface are detected with high sensitivity.

【0018】いま単位入射X線フラックスが入射角(照
射平面と入射X線フラックスのなす角)ψで基板に入射
した場合、面内方向のX線の位相変化を省略し、入射X
線と反射X線の電場をE0 ,Er 反射計数r、表面での
位相差φ、表面からの位置zを用いて、E0 =exp
(−ikz z),Er =rexp(iφ)ezp(ik
z z)と書くと、基板より上のX線強度F(ψ,z)
は、 F(ψ,z)=(E0 +Er 2 =1+R+2√(R)cos(φ−4πz/ λ) (z≧0)・・・(2) となる。ここでkz は波数ベクトルのz成分、R=r2
は反射率である。
When the unit incident X-ray flux is incident on the substrate at an incident angle (angle formed by the irradiation plane and the incident X-ray flux) ψ, the phase change of the in-plane X-rays is omitted and the incident X-rays are omitted.
Using the electric fields of the X-ray and the reflected X-ray as E 0 , the reflection coefficient r of E r , the phase difference φ at the surface, and the position z from the surface, E 0 = exp
(−ik z z), E r = rexp (iφ) ezp (ik
z z), the X-ray intensity F (ψ, z) above the substrate
Is F (ψ, z) = (E 0 + E r ) 2 = 1 + R + 2√ (R) cos (φ−4πz / λ) (z ≧ 0) (2) Where k z is the z component of the wave vector, R = r 2
Is the reflectance.

【0019】また、基板中のX線強度は、 F(ψ,z)=T(ψ)exp(z/zx ) (z<0)・・・(3) と表すことができる。ここで、T(ψ)≡F(ψ,0)
は基板表面のX線強度、zx (cm)はX線の侵入長で
ある。
The X-ray intensity in the substrate can be expressed as F (ψ, z) = T (ψ) exp (z / z x ) (z <0) (3). Where T (ψ) ≡F (ψ, 0)
Is the X-ray intensity on the substrate surface, and z x (cm) is the penetration length of X-rays.

【0020】また、R,φ,T,zx 等はフレネルの式
から求められるが(L.G.Parrat,Phys.
Rev.95,359(1954)参照)、試料表面に
ガウス型の分布をもつラフネスσがある場合、反射率は
R′=Rexp(−qz q′ z σ2 )に変わる。ここで
z ,q′z は基板上および基板中の運動量転移ベクト
ルqz =(4π/λ)√(n2 −cos2 ψ)である
(L.Nevot and P.Croce,Rev.
Phys.Appl.15,761(1980),S.
K.Shinha,E.B.Sirota and
S.Garoff,Phys.Rev.B.38,22
97(1988)参照)。また、多層膜状の試料でもX
線強度は同様に計算することができる(B.Vidal
and P.Vincent,Appl.Optic
s,23,1794(1984)参照)。
Further, R, φ, T, zxEtc. are Fresnel's formula
(LG Parrat, Phys.
Rev. 95, 359 (1954)), on the sample surface
Given a roughness σ with a Gaussian distribution, the reflectance is
R '= Rexp (-qzq ′ zσ2). here
qz, Q ′zIs the momentum transfer vector on and in the substrate
Leqz= (4π / λ) √ (n2-Cos2ψ)
(L. Nevotte and P. Croce, Rev.
Phys. Appl. 15, 761 (1980), S.M.
K. Shinha, E .; B. Sirota and
S. Garoff, Phys. Rev. B. 38,22
97 (1988)). Also, even in the case of a multilayer film sample, X
The line intensity can be calculated similarly (B. Vidal
 and P.D. Vincent, Appl. Optic
s, 23, 1794 (1984)).

【0021】図1は、異なる角度で入射した単位X線フ
ラックスによる試料上方および内部のX線強度分布の説
明図である。この図において、横軸は試料の垂直方向の
距離を示し、縦軸はX線強度を示している。この図は、
試料の表面に異なる角度(0.05度、0.17度、
0.3度)で入射した単位X線フラックスによる、試料
上方および内部のX線強度(相対値)F(ψ,z)のz
分布を示している。ここでは表面ラフネスが3ÅのSi
基板について計算している。
FIG. 1 is an explanatory view of the X-ray intensity distribution above and inside the sample due to unit X-ray fluxes incident at different angles. In this figure, the horizontal axis represents the vertical distance of the sample, and the vertical axis represents the X-ray intensity. This figure is
Different angles (0.05 degree, 0.17 degree,
Z of the X-ray intensity (relative value) F (ψ, z) above and inside the sample due to the unit X-ray flux incident at 0.3 degrees)
The distribution is shown. Here, Si with surface roughness of 3Å
Calculated for the board.

【0022】表面近傍を評価する場合、蛍光強度の再吸
収は無視できるため、蛍光X線収量I(ψ)は、元素分
布Φ(z)(1/cm3 )とX線強度I0 Fの積分で表
すことができる。すなわち、 I(ψ)=ωεI0 ∫(−∞〜∞)F(ψ,z)Φ(z)ds・・・(4) ここでωは蛍光収率、εは検出効率、I0 は入射X線フ
ラックスである。放射光では入射X線の発散角は小さ
く、その影響は無視できる。図1のX線強度の入射角依
存性から、元素の分布形状が蛍光収量の入射角依存性に
反映されることがわかかる。
When the vicinity of the surface is evaluated, the reabsorption of the fluorescence intensity can be ignored, so that the fluorescent X-ray yield I (ψ) is the element distribution Φ (z) (1 / cm 3 ) and the X-ray intensity I 0 F. It can be expressed as an integral. That is, I (ψ) = ωεI 0 ∫ (−∞ to ∞) F (ψ, z) Φ (z) ds (4) where ω is the fluorescence yield, ε is the detection efficiency, and I 0 is the incident. X-ray flux. With synchrotron radiation, the divergence angle of incident X-rays is small and its effect can be ignored. From the dependence of the X-ray intensity on the incident angle in FIG. 1, it is clear that the distribution shape of the elements is reflected on the dependence of the fluorescence yield on the incident angle.

【0023】測定は放射光施設(高エネルギー物理学研
究所放射光施設(KEK.PF)ビームライン17)で
行われた。具体的には、放射光を、Siウェハ(11
1)二結晶モノクロメータで波長1.2Åに単色化し、
真空チェンバ内に立てて置かれた試料に入射した。放射
光の直線偏光を利用し、散乱X線が少ない水平方向に半
導体検出器(SSD)を配置し、検出下限の向上を図っ
た。スリットで入射X線サイズを0.1mmW×4mm
Hに絞った場合のX線発散角は0.1mrad程度であ
り、市販装置の発散角1mradに比べ1桁小さく、影
響はほとんど無視できる。
The measurement was carried out at a synchrotron radiation facility (KEK.PF beamline 17 of the Institute for High Energy Physics). Specifically, the emitted light is emitted from the Si wafer (11
1) Convert to a monochromatic color with a wavelength of 1.2Å using a double crystal monochromator
It was incident on a sample placed upright in a vacuum chamber. The semiconductor detector (SSD) was arranged in the horizontal direction with little scattered X-rays by using the linearly polarized light of the emitted light to improve the lower limit of detection. Incident X-ray size is 0.1mmW × 4mm with slit
The X-ray divergence angle when narrowed down to H is about 0.1 mrad, which is one digit smaller than the divergence angle of 1 mrad of the commercially available device, and the influence can be almost ignored.

【0024】入射角の調整には基板の全反射臨界角を計
算し、測定値を補正することにより2/1000°程度
の精度で入射角を決定している。この測定において検出
感度がよいのは、基板からのバックグラウンドの低い入
射角0.1°以下の部分であり、現状での表面汚染元素
の濃度換算係数は、X線入射角0.05°においてNi
で36cps/1012atoms/cm2 、対応する検
出下限は2×109 atoms/cm2 が得られた。
To adjust the incident angle, the critical angle of total reflection of the substrate is calculated, and the measured value is corrected to determine the incident angle with an accuracy of about 2/1000 °. In this measurement, the detection sensitivity is good in the part where the incident angle of the background from the substrate is low is 0.1 ° or less, and the current concentration conversion coefficient of the surface contamination element is at the X-ray incident angle of 0.05 °. Ni
At 36 cps / 10 12 atoms / cm 2 and a corresponding lower limit of detection of 2 × 10 9 atoms / cm 2 .

【0025】各種の汚染元素を有するSi等の基板から
なる試料の表面にX線を照射したときに発生する蛍光X
線の強度分布について説明する。 (A)基板元素 Si等の基板の構成元素、あるいは、基板中に均一に存
在する元素の場合、Φ(z)=Φ0 (z≦0)(ato
ms/cm3 )であり、基板中のX線強度は(3)とな
るため、その蛍光収量は(3),(4)から、 IB (ψ)=(ωε)B 0 T(ψ)・Φ0 ・zx (ψ)・・・(5) となり、基板表面のX線強度とX線侵入長に比例する。
なお、zx (ψ)はX線侵入長、T(ψ)は試料表面の
X線強度であり、計算によって求めることができる。
Fluorescence X generated when the surface of a sample made of a substrate such as Si having various pollutant elements is irradiated with X-rays.
The intensity distribution of the line will be described. (A) Substrate element In the case of a constituent element of the substrate such as Si or an element which is uniformly present in the substrate, Φ (z) = Φ 0 (z ≦ 0) (ato
ms / cm 3) a and, since the X-ray intensity in the substrate is (3), the fluorescence yield (3), from (4), I B (ψ ) = (ωε) B I 0 T (ψ ) · Φ 0 · z x (ψ) (5), which is proportional to the X-ray intensity and the X-ray penetration length on the substrate surface.
Note that z x (ψ) is the X-ray penetration length, and T (ψ) is the X-ray intensity on the sample surface, which can be calculated.

【0026】図2は、Si基板からのSi蛍光収量とN
i蛍光収量の入射角度依存性説明図である。この図にお
いて、横軸はX線入射角を示し、縦軸はNi蛍光収量と
Si蛍光収量を示している。この図においては、Si基
板からのSi蛍光収量の入射角度依存性と、(5)によ
って計算した結果との一致性を示している。
FIG. 2 shows the Si fluorescence yield and N from the Si substrate.
It is an explanatory view of incident angle dependence of i fluorescence yield. In this figure, the horizontal axis represents the X-ray incident angle, and the vertical axis represents the Ni fluorescence yield and the Si fluorescence yield. This figure shows the agreement between the incident angle dependence of the Si fluorescence yield from the Si substrate and the result calculated by (5).

【0027】(B)表面汚染 表面元素の分布関数はその濃度φs(atoms/cm
2 )としてΦ(z)=φs・δ(z)と表すことができ
るから、蛍光収量は(4)から、 IS (ψ)=(ωε)S 0 T(ψ)・φS ・・・(6) となり、基板表面のX線強度のみに比例する。標準的表
面汚染サンプルは、金属不純物を添加したアンモニア過
酸化水素水でSiウェハを処理して得られ、金属元素は
1nm程度の自然酸化膜中に存在している。図2に添加
金属としてNiを用いた標準試料からのNi蛍光収量の
入射角依存性および(6)式でのフィットの結果を示し
ている。
(B) Surface contamination The distribution function of the surface element has a concentration of φs (atoms / cm).
2 ) can be expressed as Φ (z) = φs · δ (z), the fluorescence yield can be calculated from (4) as I S (ψ) = (ωε) S I 0 T (ψ) · φ S ···・ It becomes (6) and it is proportional only to the X-ray intensity of the substrate surface. A standard surface contamination sample is obtained by treating a Si wafer with aqueous ammonia hydrogen peroxide containing metal impurities, and the metal element is present in a natural oxide film of about 1 nm. FIG. 2 shows the incident angle dependence of the Ni fluorescence yield from the standard sample using Ni as the additive metal and the result of the fit in the equation (6).

【0028】(C)パーティクル状汚染 パーティクルからの蛍光は、基板の上の定在波(2)に
より励起され、サイズに依存した角度依存性となる。高
さz0 の矩形のパーティクルの場合、Φ(z)=φP
0 (0<z<z0)で表すことができ、蛍光収量は、
(2),(4)から、 IP (ψ,z0 )=(ωε)P 0 ΦP {1+R−(√(R)λ/2πψz0 )〔sin(φ−4πψz0 /λ)−sin(φ)〕}・・・(7) となる。
(C) Particle Contamination Fluorescence from particles is excited by the standing wave (2) on the substrate and has an angle dependence depending on the size. For rectangular particles with height z 0 , Φ (z) = φ P /
z 0 (0 <z <z 0 ) and the fluorescence yield is
From (2) and (4), I P (ψ, z 0 ) = (ωε) P I 0 Φ P {1 + R− (√ (R) λ / 2πψz 0 ) [sin (φ-4πψz 0 / λ) − sin (φ)]} (7)

【0029】ここで、前2項は入射X線により励起され
た蛍光X線であり、後の項は定在波による強度振動であ
る。後者はサイズz0 に比例して小さくなり、200n
m以上のパーティクルからの蛍光収量はほとんど前2項
だけで決まり、 IP (ψ)=(ωε)P 0 (1+R(ψ))ΦP ・・・(8) となる。この明細書では、この(1+R)に比例する部
分をパーティクルの漸近形と呼ぶことにする。なお、R
(ψ)は反射率であり、計算によって求めることができ
る。
Here, the first two terms are fluorescent X-rays excited by incident X-rays, and the second term is intensity vibration due to a standing wave. The latter decreases in proportion to the size z 0 ,
The fluorescence yield from particles larger than m is almost determined only by the preceding two terms, and becomes I P (ψ) = (ωε) P I 0 (1 + R (ψ)) Φ P (8) In this specification, a portion proportional to (1 + R) is referred to as an asymptotic form of particles. Note that R
(Ψ) is the reflectance and can be calculated.

【0030】図3は、矩形状のパーティクル状汚染の蛍
光収量のサイズ依存性および入射角依存性説明図であ
る。この図において、横軸はX線入射角を示し、縦軸は
パーティクル蛍光収量を示している。半球状のパーティ
クルの場合は、振動がこれより少し弱くなる。実際の汚
染ではサイズに分布があるため、適当なサイズ幅のパー
ティクルの和としてIP (ψ)=ΣIP (ψ,z0i)の
ようにデータにフィットする。
FIG. 3 is an explanatory diagram of size dependency and incidence angle dependency of fluorescence yield of rectangular particulate contamination. In this figure, the horizontal axis represents the X-ray incident angle and the vertical axis represents the particle fluorescence yield. For hemispherical particles, the vibration is slightly weaker than this. Since there is a distribution in size in actual contamination, the sum of particles having an appropriate size width is fitted to the data as I P (ψ) = ΣI P (ψ, z 0i ).

【0031】図4は、Niの蛍光収量とFeの蛍光収量
入射角依存性説明図である。この図において、横軸はX
線入射角を示し、縦軸はNi蛍光収量とSi蛍光収量を
示している。この図の白丸はNi標準原液を希釈した溶
液を、フッ酸処理したSi基板上に滴下し、乾燥させた
マイクロドロップ試料の測定結果であり、実線はフィッ
ト結果であるが、パーティクルの漸近形のみでデータを
再現できた。光学顕微鏡の観察によって、溶液の添加剤
である硝酸塩が析出し、厚いプレート状になっているこ
とが確認できた。
FIG. 4 is an explanatory view of the dependence of the fluorescence yield of Ni and the fluorescence yield of Fe on the incident angle. In this figure, the horizontal axis is X
The line incident angle is shown, and the vertical axis shows the Ni fluorescence yield and the Si fluorescence yield. The white circles in this figure are the measurement results of a microdrop sample obtained by dropping a solution of a Ni standard stock solution diluted on a hydrofluoric acid-treated Si substrate and drying it. The solid line shows the fit results, but only the asymptotic shape of particles. I was able to reproduce the data. By observing with an optical microscope, it was confirmed that nitrate, which is an additive of the solution, was deposited and formed into a thick plate shape.

【0032】この図の黒丸はプロセス中で発生したFe
汚染の例である。実線は、パーティクルサイズを40n
m刻みに区分してデータにフィットさせた結果で、表面
汚染とパーティクルの漸近形でデータを再現できた。こ
の汚染は、FeのほかにNi,Crが同じ面内分布を示
すことからステンレススチール(SUS)パーティクル
であることがわかった。
The black circles in this figure represent Fe generated during the process.
This is an example of pollution. The solid line indicates the particle size is 40n
As a result of fitting into the data by dividing it into m steps, the data could be reproduced in the asymptotic form of surface contamination and particles. This contamination was found to be stainless steel (SUS) particles because Ni and Cr have the same in-plane distribution in addition to Fe.

【0033】蛍光収量の入射角依存性に振動が見られな
かったのはパーティクルが大きいか、あるいは小サイズ
のパーティクルは存在しても、蛍光収量はその体積に比
例するため、結果的に大きいサイズのパーティクルで角
度依存性が決まるものであることに起因すると思われ
る。多くの場合、測定データは表面汚染およびパーティ
クルの漸近形で再現できる(A.Prange and
H.Schwenke,Advances in X
−Ray Analysis,V.35,899(19
92)参照)。パーティクル汚染の場合、低い入射角で
は蛍光強度はほぼ一定で、表面汚染に比べ強度も大き
く、検出下限および濃度の定量精度がよい。
The oscillation was not observed in the incident angle dependence of the fluorescence yield because the particles were large, or even if small particles were present, the fluorescence yield was proportional to the volume thereof, resulting in a large size. It seems that the angle dependence is determined by the particles of. In many cases, the measured data can be reproduced in asymptotic form of surface contamination and particles (A. Range and
H. Schwenke, Advances in X
-Ray Analysis, V.I. 35,899 (19
92)). In the case of particle contamination, the fluorescence intensity is almost constant at a low incident angle, the intensity is higher than that of surface contamination, and the lower limit of detection and quantification accuracy of concentration are good.

【0034】図5は、各種形態の汚染元素からの蛍光収
量を基板元素の蛍光収量で除したバルク比の入射角依存
性説明図である。この図において、横軸はX線入射角を
示し、縦軸は各種形態の汚染元素からの蛍光収量を基板
元素の蛍光収量で除したバルク比を示している。パーテ
ィクル汚染(Particulate)からの蛍光収量
は、表面汚染(Surface)に比べ入射角0.05
°付近で数倍になっている。最近の報告では、フッ酸蒸
気によりSi基板上の自然酸化膜を溶解後乾燥させたパ
ーティクル状残留物に対し、同様のデータが得られ、検
出感度の向上が図られている(宮崎邦浩,島崎綾子,信
学技報、Vol.94,No.39,7(1992)参
照)。
FIG. 5 is an explanatory view of the incident angle dependence of the bulk ratio obtained by dividing the fluorescence yields from various forms of contaminant elements by the fluorescence yield of the substrate element. In this figure, the horizontal axis represents the X-ray incident angle, and the vertical axis represents the bulk ratio obtained by dividing the fluorescence yield from various forms of contaminant elements by the fluorescence yield of the substrate element. The fluorescence yield from particle contamination (Particulate) is 0.05 compared to surface contamination (Surface).
It becomes several times around °. In a recent report, similar data were obtained for the particle-like residue obtained by dissolving and drying the natural oxide film on the Si substrate with hydrofluoric acid vapor, and the detection sensitivity was improved (Kunihiro Miyazaki, Shimazaki Ayako, IEICE Technical Report, Vol.94, No.39, 7 (1992)).

【0035】(D)内部汚染 以前から、蛍光収量のX線入射角依存性から深さ方向の
分布形状を評価する可能性が指摘されており、Si中に
イオン注入されたAsの放射光による深さ評価等の試み
が報告されている(A.Iida,K.Sakura
i,A.Yoshinaga and Y.Gohsh
i,Nucl.Instrum.&Methods,A
246,736(1986)参照)。
(D) Internal Contamination It has been pointed out that the distribution shape in the depth direction can be evaluated from the dependency of the fluorescence yield on the X-ray incident angle. Attempts such as depth evaluation have been reported (A. Iida, K. Sakura).
i, A. Yoshinaga and Y. Gohsh
i, Nucl. Instrum. & Methods, A
246, 736 (1986)).

【0036】しかし、この方法の難点は、X線の侵入長
が臨界角付近で急激に非線形に変化するため、元素の深
さ分布をその積分である蛍光収量(4)から逆変換によ
り分離するには、精度の高い多量のデータが必要になる
ことである。汚染元素等の微量不純物では蛍光強度も弱
く、このようなデータを得ることは難しい。
However, the disadvantage of this method is that the penetration depth of X-rays changes rapidly and non-linearly near the critical angle, so the depth distribution of the element is separated from the integral fluorescence yield (4) by inverse transformation. Requires a large amount of highly accurate data. Fluorescence intensity is weak with trace impurities such as pollutants, and it is difficult to obtain such data.

【0037】一方、汚染評価では、その厳密な深さ形状
は必ずしも重要でなく、平均的な深さがわかればよい場
合が多い。本発明の発明者らは、深さ分布として指数関
数を仮定して汚染の平均深さ評価の可能性を調べた。
On the other hand, in the contamination evaluation, the strict depth shape is not always important, and it is often sufficient to know the average depth. The inventors of the present invention have investigated the possibility of estimating the average depth of contamination by assuming an exponential function as the depth distribution.

【0038】元素の深さ分布は、Φ(z)=φD /zD
・exp(z/zD ) (z<0)と表され、元素
の1/e深さzD で特徴づけられる。蛍光強度は
(3),(4)から次のようになる。 ID (ψ)=(ωε)D 0 T(ψ)ΦD ・ZX (ψ)/(ZD +(ZX (ψ )))・・・(9) 解析においては、蛍光収量を基板の蛍光収量で割ったバ
ルク比を用いることにより、種々の測定エラーを小さく
することができる。
The depth distribution of elements is Φ (z) = φ D / z D
It is expressed as exp (z / z D ) (z <0) and is characterized by the 1 / e depth z D of the element. The fluorescence intensity is as follows from (3) and (4). I D (ψ) = (ωε) D I 0 T (ψ) Φ D · Z X (ψ) / (Z D + (Z x (ψ))) ... (9) In the analysis, the fluorescence yield is By using the bulk ratio divided by the fluorescence yield of the substrate, various measurement errors can be reduced.

【0039】先の図5に10nmおよび100nmの平
均深さをもつ内部汚染のバルク比の計算値を示す。蛍光
収量の角度依存性から評価可能な深さ範囲は〜1μm程
度で、精度のあるのは100nm以下である。また、深
さ分布としてガウス分布や均一厚さの場合の蛍光強度分
布の計算結果も、ほぼ同様な形状を示すため、蛍光収量
から元素の深さ形状の詳細を求めることは困難である。
FIG. 5 above shows the calculated bulk ratio of internal contamination with average depths of 10 nm and 100 nm. The depth range that can be evaluated from the angle dependence of the fluorescence yield is about 1 μm, and the accuracy is 100 nm or less. Further, the calculation result of the fluorescence intensity distribution in the case of the Gaussian distribution or the uniform thickness as the depth distribution shows almost the same shape, so it is difficult to obtain the details of the depth shape of the element from the fluorescence yield.

【0040】本発明の発明者らは、実験では、砒素(A
s)注入時の燐(P)のクロスコンタミネーションにつ
いて実験した。この実験においては、Pを高濃度で注入
したイオン注入機を用いてAsを注入した。Pの蛍光エ
ネルギーはSiに近いため、Siの蛍光を抑える目的で
レジストを塗布した基板を用いて評価したところ、Pの
クロスコンタミネーションが見られた。
In an experiment, the inventors of the present invention have shown that arsenic (A
s) Experiments were carried out on cross-contamination of phosphorus (P) during injection. In this experiment, As was injected using an ion implanter in which P was injected at a high concentration. Since the fluorescence energy of P is close to that of Si, the cross-contamination of P was found in the evaluation using a substrate coated with a resist for the purpose of suppressing the fluorescence of Si.

【0041】図6は、燐と砒素からの蛍光収量をレジス
ト中に均一に含まれる硫黄の蛍光収量で除したバルク比
のX線入射角依存性説明図である。この図において、横
軸はX線入射角を示し、縦軸は燐と砒素の蛍光収量をレ
ジスト中に均一に含まれる硫黄(S)の蛍光収量で除し
たバルク比を示している。
FIG. 6 is an explanatory view of the X-ray incident angle dependence of the bulk ratio obtained by dividing the fluorescence yields from phosphorus and arsenic by the fluorescence yield of sulfur uniformly contained in the resist. In this figure, the horizontal axis represents the X-ray incident angle, and the vertical axis represents the bulk ratio obtained by dividing the fluorescence yields of phosphorus and arsenic by the fluorescence yield of sulfur (S) uniformly contained in the resist.

【0042】実線は、(9)/(5)式でフィットした
結果であり、平均深さとしてzP =14nm、zAs=4
10nmが得られ、燐が深さ分布をもっていることがわ
かった。これは試料ホルダー等から再スパッタされたP
が基板表面に付着し、砒素イオンによりたたき込まれた
結果であると考えられる。高分解能SIMSにより同プ
ロセスによるシリコン(Si)基板の燐を分析した結果
では、燐濃度は表面からほぼ指数関数的に減少してお
り、その深さは上記の値と同程度であった。
The solid line is the result of fitting by the equations (9) / (5), and z P = 14 nm and z As = 4 as the average depth.
10 nm was obtained, and it was found that phosphorus has a depth distribution. This is P sputtered from the sample holder etc.
Is believed to be the result of being attached to the substrate surface and being struck by arsenic ions. As a result of analyzing the phosphorus of the silicon (Si) substrate by the high-resolution SIMS by the same process, the phosphorus concentration decreased almost exponentially from the surface, and the depth was about the same as the above value.

【0043】[0043]

【実施例】以下、本発明の一実施例の全反射蛍光X線分
析の定量法を説明する。この実施例の全反射蛍光X線分
析の定量法は、図5に示された試料からの被測定元素の
蛍光X線強度の入射角依存性から、被測定元素の分布形
態が(a)均一元素、(b)パーティクル状汚染、
(c)表面汚染、(d)内部汚染(指数関数的拡散汚
染)の何れかであるかを決定し、その不純物の形状に適
した濃度定量法を適用することによって正確な分析結果
を得るものである。その濃度定量法は、被測定試料から
発生する被測定元素の蛍光X線強度と、この被測定試料
から発生する該被測定元素以外の、濃度および形状が知
られている元素の蛍光X線強度を用い、被測定元素と被
測定元素以外の元素の相対感度係数、X線浸入長、また
は、X線反射率を用いて被測定元素の濃度を定量するも
のである。
EXAMPLES A quantitative method of total reflection X-ray fluorescence analysis according to an example of the present invention will be described below. In the quantitative method of total reflection X-ray fluorescence analysis of this example, the distribution form of the element to be measured was (a) uniform from the incident angle dependence of the fluorescent X-ray intensity of the element to be measured from the sample shown in FIG. Element, (b) particulate contamination,
(C) Surface contamination or (d) Internal contamination (exponential diffusion contamination) is determined, and an accurate analysis result is obtained by applying a concentration quantification method suitable for the shape of the impurity. Is. The concentration quantification method is the fluorescent X-ray intensity of the element to be measured generated from the sample to be measured, and the fluorescent X-ray intensity of an element other than the element to be measured generated from the sample to be measured whose concentration and shape are known. Is used to quantify the concentration of the element to be measured using the relative sensitivity coefficient of the element to be measured and the element other than the element to be measured, the X-ray penetration length, or the X-ray reflectance.

【0044】前記のように、内部汚染では指数関数的な
深さ分布を示すと仮定し、パーティクル汚染ではパーテ
ィクルの漸近形を用いることによって、各分布態様に応
じて次のように表すことができる。 (A)基板元素 IB (ψ)=(ωε)B 0 T(ψ)・Φ0 ・zx (ψ)・・・(5) (B)表面汚染 IS (ψ)=(ωε)S 0 T(ψ)・φS ・・・(6) (C)パーティクル状汚染 IP (ψ)=(ωε)P 0 (1+R(ψ))ΦP ・・・(8) (D)内部汚染 ID (ψ)=(ωε)D 0 T(ψ)ΦD ・ZX (ψ)/(ZD +(ZX (ψ )))・・・(9) 以下、各汚染の形状についての定量法を説明する。
As described above, it is assumed that the internal contamination exhibits an exponential depth distribution, and the particle contamination uses the asymptotic form of the particles, which can be expressed as follows according to each distribution mode. . (A) Substrate element I B (ψ) = (ωε) B I 0 T (ψ) · Φ 0 · z x (ψ) (5) (B) Surface contamination I S (ψ) = (ωε) S I 0 T (ψ) · φ S ··· (6) (C) particle shape contaminated I P (ψ) = (ωε ) P I 0 (1 + R (ψ)) Φ P ··· (8) (D ) Internal pollution I D (ψ) = (ωε) D I 0 T (ψ) Φ D · Z X (ψ) / (Z D + (Z x (ψ))) ... (9) Below, each pollution The quantification method for the shape of will be described.

【0045】(A)基板元素 IB (ψ)=(ωε)B 0 T(ψ)・Φ0 ・zx (ψ)・・・(5) をみると、IB (ψ)は基板の蛍光X線強度を測定する
ことによって求めることができ、ωB は元素によって定
まり、εB は用いるX線検出器によって定まるから(ω
ε)B を求めることができ、T(ψ)はフレネルの式か
ら求めることができ、Φ0 は基板または基準試料の元素
の濃度であるから(Siの場合は5×10 22cm3 )求
めることができ、zx (ψ)はX線の侵入長であるから
計算することができるから、 I0 =IB (ψ)/(ωε)B T(ψ)・Φ0 ・zx (ψ)・・・(9) として求めることができる。
(A) Substrate element IB(Ψ) = (ωε)BI0T (ψ) ・ Φ0・ ZxLooking at (ψ) ... (5), IB(Ψ) measures the fluorescent X-ray intensity of the substrate
Can be obtained byBIs determined by the element
Mari, εBIs determined by the X-ray detector used (ω
ε)BAnd T (ψ) is Fresnel's equation
Can be obtained from Φ0Is the element of the substrate or reference sample
(Si is 5 × 10 in the case of Si) twenty twocm3) Request
Can be zx(Ψ) is the penetration length of X-rays
It can be calculated, so I0= IB(Ψ) / (ωε)BT (ψ) ・ Φ0・ ZxIt can be obtained as (ψ) ... (9).

【0046】(B)表面汚染 このI0 を式(6)に代入すると、 IS (ψ)=(ωε)S B (ψ)・φS /(ωε)B ・Φ0 ・zx (ψ)・ ・・(10) となる。よって、 φS =((ωε)B /(ωε)S )Φ0 (IS (ψ)/IB (ψ))・zx ( ψ)・・・(11) となる。[0046] (B) surface contamination Substituting this I 0 in Equation (6), I S (ψ ) = (ωε) S I B (ψ) · φ S / (ωε) B · Φ 0 · z x ( ψ) ··· (10) Therefore, φ S = ((ωε) B / (ωε) S ) Φ 0 (I S (ψ) / I B (ψ)) · z x (ψ) (11)

【0047】したがって、(ωε)B /(ωε)S =S
BS(基板元素または基準元素と被測定元素の相対感度係
数であり装置により定まる)、Φ0 =ΦBo(基板元素ま
たは基準元素の濃度)、IS (ψ)/IB (ψ)=(I
S /IB )(X線入射強度の比であり、容易に測定する
ことができる)とすると、 φS =SBSΦBo(IS /IB )・zX (ψ)・・・(12) と表すことができる。
Therefore, (ωε) B / (ωε) S = S
BS (determined by a relative sensitivity coefficient of the substrate element or the reference element and the measured element device) (the concentration of the substrate element or reference element) Φ 0 = Φ Bo, I S (ψ) / I B (ψ) = ( I
An S / I B) (the ratio of the X-ray incident intensity and can easily be measured) to, φ S = S BS Φ Bo (I S / I B) · z X (ψ) ··· ( 12) can be expressed as

【0048】(C)パーティクル状汚染 先のI0 を式(8)に代入すると、 IP (ψ)=(ωε)P (1+R(ψ))φP B (ψ)/(ωε)B T(ψ )・Φ0 ・zx (ψ)・・・(13) となる。よって、 φP =((ωε)B /(ωε)P )Φ0 (IP (ψ)/IB (ψ))・zx ( ψ)・T(ψ)・/(1+R(ψ))・・・(14) となる。[0048] (C) If the I 0 particle-like contamination destination into equation (8), I P (ψ ) = (ωε) P (1 + R (ψ)) φ P I B (ψ) / (ωε) B T (φ) · Φ 0 · z x (φ) (13) Therefore, φ P = ((ωε) B / (ωε) P) Φ 0 (I P (ψ) / I B (ψ)) · z x (ψ) · T (ψ) · / (1 + R (ψ)) (14)

【0049】したがって、(ωε)B /(ωε)P =S
BP(基板元素または基準元素と被測定元素の相対感度係
数であり装置により定まる)、Φ0 =ΦBo(基板元素ま
たは基準元素の濃度)、IP (ψ)/IB (ψ)=(I
P /IB )(X線入射強度の比であり、容易に測定する
ことができる)とすると、 φP =SBPΦBo(IP /IB )・zX (ψ)T(ψ)/(1+R(ψ))・・ ・(15) と表すことができる。
Therefore, (ωε) B / (ωε) P = S
BP (determined by a relative sensitivity coefficient of the substrate element or the reference element and the measured element device) (the concentration of the substrate element or reference element) Φ 0 = Φ Bo, I P (ψ) / I B (ψ) = ( I
A P / I B) (the ratio of the X-ray incident intensity can be easily measured) and when, φ P = S BP Φ Bo (I P / I B) · z X (ψ) T (ψ) / (1 + R (ψ)) ··· (15)

【0050】(D)内部汚染 先のI0 を式(9)に代入すると、 ID (ψ)=(ωε)D B (ψ)φD /(ωε)B Φ0 (ZD +ZX (ψ) )・・・(16) となる。よって、 φD =ID (ψ)(ωε)B Φ0 (ZD +ZX (ψ))/IB (ψ)(ωε) D ・・・(17) となる。(D) Internal contamination I0Substituting into equation (9), ID(Ψ) = (ωε)DIB(Ψ) φD/ (Ωε)BΦ0(ZD+ ZX(Ψ)) ... (16) Therefore, φD= ID(Ψ) (ωε)BΦ0(ZD+ ZX(Ψ)) / IB(Ψ) (ωε) D (17)

【0051】したがって、(ωε)B /(ωε)D =S
BD(基板元素または基準元素と被測定元素の相対感度係
数であり装置により定まる)、Φ0 Bo(基板元素また
は基準元素の濃度)、ID (ψ)/IB (ψ)=ID
B (X線入射強度の比であり、容易に測定することが
できる)とすると、 φD =SBDΦBo(ID /IB )・(zX (ψ)+ZD )・・・(18) と表すことができる。
Therefore, (ωε) B / (ωε) D = S
BD (determined by the board element or the reference element is a relative sensitivity coefficient of the measuring element device) (the concentration of the substrate element or reference element) Φ 0 = Bo, I D (ψ) / I B (ψ) = I D /
(The ratio of the X-ray incident intensity, easily can be measured) I B when that, φ D = S BD Φ Bo (I D / I B) · (z X (ψ) + Z D) ··· It can be expressed as (18).

【0052】以上の説明は、基板元素を基準に用いた
が、他の例えば濃度がわかっている表面汚染試料を基準
とすることも勿論可能であり、その場合は、式(6)か
らI0を算出して、式(5),(8),(9)に代入す
ればよい。
In the above description, the substrate element was used as a reference, but it is of course possible to use another surface contamination sample whose concentration is known, for example. In that case, I 0 from equation (6) can be used. Can be calculated and substituted into equations (5), (8) and (9).

【0053】上記の説明から明らかなように、元素Iと
元素Jの相対検出感度比SIJは、検出器固有の値である
ため一度相対検出感度比SIJを求めると、標準サンプル
を用いないで定量することができる。
As is clear from the above description, since the relative detection sensitivity ratio S IJ of the element I and the element J is a value peculiar to the detector, once the relative detection sensitivity ratio S IJ is obtained, the standard sample is not used. Can be quantified with.

【0054】従来の全反射蛍光X線分析の定量法におい
ては、不純物濃度φを、φ=k・I として求めてい
た。ここで、Iは蛍光X線強度(cps)、kは濃度変
換係数で、濃度のわかった標準サンプルとの比較から出
したものである。この方法では、入射角設定エラーある
いはX線源の強度変動等の影響が直接Iの誤差になり、
φの誤差を与える。また、この方法ではX線の入射角ψ
が変わった場合、その入射角ψでの係数k(ψ)を求め
る必要があるのに対し、この実施例の定量法では、どの
角度においても相対感度係数のみから定量することがで
きる。
In the conventional quantitative method of total reflection X-ray fluorescence analysis, the impurity concentration φ is determined as φ = k · I. Here, I is the fluorescent X-ray intensity (cps), and k is the concentration conversion coefficient, which is obtained by comparison with a standard sample whose concentration is known. In this method, the influence of the incident angle setting error or the intensity fluctuation of the X-ray source directly becomes the error of I,
gives the error of φ. Moreover, in this method, the incident angle of the X-ray ψ
When it changes, it is necessary to obtain the coefficient k (ψ) at the incident angle ψ, whereas in the quantitative method of this embodiment, it is possible to quantify only from the relative sensitivity coefficient at any angle.

【0055】本発明の一実施例の全反射蛍光X線分析の
定量法によるCo濃度測定結果を下記の表1に示してい
る。
Table 1 below shows the measurement results of Co concentration by the total reflection X-ray fluorescence analysis quantitative method according to one embodiment of the present invention.

【0056】[0056]

【表1】 [Table 1]

【0057】この測定においては、シリコン(Si)ウ
ェハの表面をコバルト(Co)元素で均一に汚染させた
標準試料からの蛍光強度を、Siウェハ上の異なる9点
で測定した結果を示すものである。
In this measurement, the fluorescence intensity from a standard sample in which the surface of a silicon (Si) wafer was uniformly contaminated with cobalt (Co) element was measured at 9 different points on the Si wafer. is there.

【0058】この測定点は、Siウェハの中心から
(0,0),(0,30),(−30,0),(30,
0),(0,−20),(−20,20),(20,2
0),(−20,−20),(20,−20)であり
(単位はmm)、X線の入射角を0.005°として測
定した場合の、SiおよびCoの蛍光強度、および従来
法と本発明により定量した濃度を示している。X線の入
射角を0.05°としたが、Siの蛍光強度がウェハ上
の位置によりかなり異なるのは、入射角や試料高さの調
整の誤差によると考えられる。測定されたCoの蛍光強
度とも明らかな相関がある。
The measurement points are (0, 0), (0, 30), (-30, 0), (30, from the center of the Si wafer.
0), (0, -20), (-20, 20), (20, 2)
0), (-20, -20), (20, -20) (unit is mm), the fluorescence intensity of Si and Co when measured with an X-ray incident angle of 0.005 °, and the conventional The concentration determined by the method and the present invention is shown. Although the incident angle of X-rays is set to 0.05 °, it is considered that the fluorescence intensity of Si varies considerably depending on the position on the wafer due to the error in adjusting the incident angle and the height of the sample. There is a clear correlation with the measured Co fluorescence intensity.

【0059】濃度換算は従来法においては、 φCo(atoms/cm2 )=k・ICo(cps)、k
=1.312×1011(atoms/cm2 ) で計算し、本特許においては式(5)から、 φCo(atoms/cm2 )=SCo・ZX ・ΦSi・(I
Co/ISi) で、SCo=0.00067、ZX =3.4×10-7
m、ΦSi=5×1022(atoms/cm3 )より、 φCo(atoms/cm2 )=1.14×1013(ICo
/ISi) から求めたものであり、その結果、従来法においては、 平均φCo=142×1010(atoms/cm2 ) 誤差3σICo =6.0×1010(atoms/cm2 ) となり、本発明においては、 平均φCo=143×1010(atoms/cm2 ) 誤差3σICo =18.0×1010(atoms/c
2 ) となり、誤差3σが42%から13%に小さくなった。
In the conventional method, the concentration conversion is φ Co (atoms / cm 2 ) = k · I Co (cps), k
= 1.312 × 10 11 (atoms / cm 2 ), and in the present patent, from formula (5), φ Co (atoms / cm 2 ) = S Co · Z X · Φ Si · (I
Co / I Si ), S Co = 0.00067, Z X = 3.4 × 10 −7 c
m, Φ Si = 5 × 10 22 (atoms / cm 3 ), φ Co (atoms / cm 2 ) = 1.14 × 10 13 (I Co
/ I Si ), and as a result, in the conventional method, the average φ Co = 142 × 10 10 (atoms / cm 2 ) error 3σ ICo = 6.0 × 10 10 (atoms / cm 2 ). In the present invention, the average φ Co = 143 × 10 10 (atoms / cm 2 ) error 3σ ICo = 18.0 × 10 10 (atoms / c)
m 2 ), and the error 3σ decreased from 42% to 13%.

【0060】この差である29%は本発明により測定誤
差が減った効果であり、残りの13%には実際の濃度分
布の寄与が含まれていると考えることができる。
It can be considered that this difference of 29% is the effect of reducing the measurement error according to the present invention, and the remaining 13% includes the contribution of the actual concentration distribution.

【0061】図7は、本発明の一実施例の全反射蛍光X
線分析の定量法によるCo濃度測定結果説明図である。
この図は、前記の表1に示した測定結果をグラフ化した
ものであり、横軸はウェハ内位置を示し、縦軸はCo濃
度を示している。この図から、従来法による測定結果は
平均値から大きくばらついているが、本発明による測定
結果は平均値近傍に集まっており、本発明による測定精
度が、従来法による測定結果より正確であることがわか
る。
FIG. 7 shows the total reflection fluorescence X of one embodiment of the present invention.
It is explanatory drawing of Co concentration measurement result by the quantitative method of line analysis.
This figure is a graph of the measurement results shown in Table 1 above, in which the horizontal axis represents the position within the wafer and the vertical axis represents the Co concentration. From this figure, the measurement results by the conventional method vary greatly from the average value, but the measurement results by the present invention are gathered near the average value, and the measurement accuracy by the present invention is more accurate than the measurement results by the conventional method. I understand.

【0062】[0062]

【発明の効果】以上説明したように、本発明は、半導体
装置の特性の信頼性に影響がある金属汚染や製造過程で
の歩留りに大きく関係するパーティクル汚染を高感度で
正確にかつ安定に評価するための全反射蛍光X線分析の
定量法および定量装置を確立することにより、高集積回
路装置等の歩留りの向上に寄与するところが大きい。
As described above, according to the present invention, metal contamination, which affects the reliability of the characteristics of the semiconductor device, and particle contamination, which is greatly related to the yield in the manufacturing process, can be accurately and stably evaluated. By establishing a quantitative method for quantitative analysis of total reflection X-ray fluorescence and a quantitative apparatus for achieving the above, it contributes greatly to the improvement of the yield of highly integrated circuit devices and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】異なる角度で入射した単位X線フラックスによ
る試料上方および内部のX線強度分布の説明図である。
FIG. 1 is an explanatory diagram of X-ray intensity distribution above and inside a sample due to unit X-ray flux incident at different angles.

【図2】Si基板からのSi蛍光収量とNi蛍光収量の
入射角度依存性説明図である。
FIG. 2 is an explanatory diagram of incident angle dependence of Si fluorescence yield and Ni fluorescence yield from a Si substrate.

【図3】矩形状のパーティクル状汚染の蛍光収量のサイ
ズ依存性および入射角依存性説明図である。
FIG. 3 is an explanatory diagram of size dependency and incident angle dependency of fluorescence yield of rectangular particulate contamination.

【図4】Niの蛍光収量とFeの蛍光収量入射角依存性
説明図である。
FIG. 4 is an explanatory view of the dependence of the fluorescence yield of Ni and the fluorescence yield of Fe on the incident angle.

【図5】各種形態の汚染元素からの蛍光収量を基板元素
の蛍光収量で除したバルク比の入射角依存性説明図であ
る。
FIG. 5 is an explanatory view of the incident angle dependency of the bulk ratio obtained by dividing the fluorescence yields from various forms of contaminant elements by the fluorescence yields of the substrate elements.

【図6】燐と砒素からの蛍光収量をレジスト中に均一に
含まれる硫黄の蛍光収量で除したバルク比のX線入射角
依存性説明図である。
FIG. 6 is an explanatory diagram of the X-ray incident angle dependence of the bulk ratio obtained by dividing the fluorescence yield from phosphorus and arsenic by the fluorescence yield of sulfur uniformly contained in the resist.

【図7】本発明の一実施例の全反射蛍光X線分析の定量
法によるCo濃度測定結果説明図である。
FIG. 7 is an explanatory diagram of Co concentration measurement results by a total reflection X-ray fluorescence analysis quantitative method according to an example of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定試料からの被測定元素の蛍光X線
強度と、該被測定元素以外の、濃度および形状が知られ
ている元素の蛍光X線強度を用い、該被測定元素と該被
測定元素以外の元素の相対感度係数、X線侵入長または
X線反射率を用いて被測定元素の濃度を定量することを
特徴とする全反射蛍光X線分析の定量法。
1. Using the fluorescent X-ray intensity of an element to be measured from a sample to be measured and the fluorescent X-ray intensity of an element other than the element to be measured whose concentration and shape are known, A quantitative method for total internal reflection fluorescent X-ray analysis, which comprises quantifying the concentration of an element to be measured using the relative sensitivity coefficient of elements other than the element to be measured, the X-ray penetration length, or the X-ray reflectance.
【請求項2】 被測定元素以外の、濃度および形状が知
られている元素の蛍光X線強度が、被測定試料基体の蛍
光X線強度であることを特徴とする請求項1に記載され
た全反射蛍光X線分析の定量法。
2. The fluorescent X-ray intensity of an element having a known concentration and shape other than the element to be measured is the fluorescent X-ray intensity of the sample substrate to be measured. Quantitative method of total reflection X-ray fluorescence analysis.
【請求項3】 被測定元素以外の、濃度および形状が知
られている元素の蛍光X線強度が、標準試料の蛍光X線
強度であることを特徴とする請求項1に記載された全反
射蛍光X線分析の定量法。
3. The total internal reflection according to claim 1, wherein the fluorescent X-ray intensity of an element having a known concentration and shape other than the element to be measured is the fluorescent X-ray intensity of the standard sample. Quantitative method of fluorescent X-ray analysis.
【請求項4】 被測定試料からの被測定元素の蛍光X線
強度の入射角依存性から、被測定元素の形状を、均一元
素、パーティクル状汚染、表面汚染、内部汚染の何れか
に分類し、各被測定元素の形状に適する濃度定量法を適
用することを特徴とする全反射蛍光X線分析の定量法。
4. The shape of the element to be measured is classified into any of uniform element, particulate contamination, surface contamination, and internal contamination based on the incident angle dependence of the fluorescent X-ray intensity of the element to be measured from the sample to be measured. A quantitative method of total reflection X-ray fluorescence analysis characterized by applying a concentration quantitative method suitable for the shape of each element to be measured.
【請求項5】 被測定試料からの蛍光X線強度を検出す
る手段と、該被測定試料に対するX線の侵入長、X線反
射率またはX線強度分布を計算しあるいは蓄積データか
ら求める手段と、被測定元素の蛍光X線強度と、該被測
定試料に対するX線の侵入長、X線反射率またはX線強
度分布と該被測定元素の相対感度係数から、該被測定元
素の濃度を定量する手段を有することを特徴とする全反
射蛍光X線分析装置。
5. A means for detecting the intensity of fluorescent X-rays from the sample to be measured, and a means for calculating the penetration length of X-rays into the sample to be measured, the X-ray reflectance or the X-ray intensity distribution, or obtaining it from accumulated data. Quantifying the concentration of the element to be measured from the fluorescent X-ray intensity of the element to be measured, the penetration length of X-rays into the sample to be measured, the X-ray reflectance or the X-ray intensity distribution, and the relative sensitivity coefficient of the element to be measured. An X-ray fluorescence analyzer for total internal reflection, which comprises:
JP13300695A 1995-05-31 1995-05-31 Method and device for quantitative determination in total reflection x-ray fluorescence analysis Withdrawn JPH08327566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13300695A JPH08327566A (en) 1995-05-31 1995-05-31 Method and device for quantitative determination in total reflection x-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13300695A JPH08327566A (en) 1995-05-31 1995-05-31 Method and device for quantitative determination in total reflection x-ray fluorescence analysis

Publications (1)

Publication Number Publication Date
JPH08327566A true JPH08327566A (en) 1996-12-13

Family

ID=15094588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13300695A Withdrawn JPH08327566A (en) 1995-05-31 1995-05-31 Method and device for quantitative determination in total reflection x-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JPH08327566A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191050A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Fluorescent x-ray analysis method and apparatus
JP2010054334A (en) * 2008-08-28 2010-03-11 Rigaku Corp X-ray fluorescence analyzer
JP2010071762A (en) * 2008-09-17 2010-04-02 Tokyo Electron Ltd Particle-size measuring device, particle-size measuring method and computer program
US9746433B2 (en) 2014-07-01 2017-08-29 Rigaku Corporation X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
KR20190131363A (en) * 2018-05-16 2019-11-26 한국원자력 통제기술원 X-ray analysis system and x-ray analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191050A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Fluorescent x-ray analysis method and apparatus
JP2010054334A (en) * 2008-08-28 2010-03-11 Rigaku Corp X-ray fluorescence analyzer
JP2010071762A (en) * 2008-09-17 2010-04-02 Tokyo Electron Ltd Particle-size measuring device, particle-size measuring method and computer program
US9746433B2 (en) 2014-07-01 2017-08-29 Rigaku Corporation X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
KR20190131363A (en) * 2018-05-16 2019-11-26 한국원자력 통제기술원 X-ray analysis system and x-ray analysis method

Similar Documents

Publication Publication Date Title
US7680243B2 (en) X-ray measurement of properties of nano-particles
Beckhoff Reference-free X-ray spectrometry based on metrology using synchrotron radiation
US11029148B2 (en) Feed-forward of multi-layer and multi-process information using XPS and XRF technologies
Cazaux Calculated effects of work function changes on the dispersion of secondary electron emission data: Application for Al and Si and related elements
US11549895B2 (en) System and method using x-rays for depth-resolving metrology and analysis
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
Szaloki et al. Fundamental parameter model for quantification of total reflection X-ray fluorescence analysis
Unterumsberger et al. A round robin test for total reflection X-ray fluorescence analysis using preselected and well characterized samples
TWI329736B (en) X-ray scattering with a polychromatic source
JPH08327566A (en) Method and device for quantitative determination in total reflection x-ray fluorescence analysis
Wählisch et al. Validation of secondary fluorescence excitation in quantitative X-ray fluorescence analysis of thin alloy films
Shao et al. Analysis of plant samples by low-power total reflection X-ray fluorescence spectrometry applying argon-peak normalization
JP2019158560A (en) X-ray fluorescence analysis method, x-ray fluorescence analyzer and program
JP2005140767A (en) Three-dimensional surface analysis method
Leani et al. 3D-reconstruction of chemical state distributions in stratified samples by spatially resolved micro-X-ray resonant Raman spectroscopy
Tiwari et al. X-ray standing wave induced Compton and elastic scattering from thin periodic multilayer structures
Kunimura et al. Trace elemental determination using a portable total reflection X-ray fluorescence spectrometer with a collodion film sample holder
Claes et al. Progress in laboratory grazing emission x‐ray fluorescence spectrometry
Somogyi et al. Interpretation and use of inter-element correlation graphs obtained by scanning X-ray fluorescence micro-beam spectrometry from individual particles. Part I—theory
Alam et al. Improvement of limit of detection sensitivities in the parts per billion range using conventional geometry synchrotron radiation excited EDXRF measurements
Il’in An alternative version of X-ray fluorescence analysis
da COSTA et al. Development and characterization of a portable total reflection X-ray fluorescence system using a waveguide for trace elements analysis
Wählisch et al. Reference-free X-ray fluorescence analysis using well-known polychromatic synchrotron radiation
Santos et al. Development of a portable system of grazing exit X-Ray fluorescence applied to environmental and biological studies
Torcheux et al. Calibration procedure for quantitative surface analysis by total reflection X‐ray fluorescence

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806