JP2004354392A5 - - Google Patents

Download PDF

Info

Publication number
JP2004354392A5
JP2004354392A5 JP2004223425A JP2004223425A JP2004354392A5 JP 2004354392 A5 JP2004354392 A5 JP 2004354392A5 JP 2004223425 A JP2004223425 A JP 2004223425A JP 2004223425 A JP2004223425 A JP 2004223425A JP 2004354392 A5 JP2004354392 A5 JP 2004354392A5
Authority
JP
Japan
Prior art keywords
fluorescent
ray
measured
rays
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004223425A
Other languages
Japanese (ja)
Other versions
JP2004354392A (en
JP3811721B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004223425A priority Critical patent/JP3811721B2/en
Priority claimed from JP2004223425A external-priority patent/JP3811721B2/en
Publication of JP2004354392A publication Critical patent/JP2004354392A/en
Publication of JP2004354392A5 publication Critical patent/JP2004354392A5/ja
Application granted granted Critical
Publication of JP3811721B2 publication Critical patent/JP3811721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

蛍光X線分析方法および装置X-ray fluorescence analysis method and apparatus

本発明は、シリコン基板のような試料の試料表面部に存在する被測定物を蛍光X線測定する蛍光X線分析方法および装置に関するものである。   The present invention relates to an X-ray fluorescence analysis method and apparatus for X-ray fluorescence measurement of an object to be measured existing on the surface of a sample such as a silicon substrate.

従来から、例えばシリコン基板表面に付着した被測定物である汚染物質の種類、存在量を決定するために、全反射蛍光X線分析を行うことが知られている。被測定物としてシリコン基板表面近傍に存在する汚染物質、主に鉄、ニッケル、銅、亜鉛といった遷移金属の分析を行うためには、例えば、1次X線源としてW−Lβ線等を用い、1次X線をシリコン基板表面に微小な所定の入射角度で照射し、被測定物からの蛍光X線のエネルギーから種類を、蛍光X線の強度から存在量を決定している。   2. Description of the Related Art Conventionally, it has been known to perform total reflection X-ray fluorescence analysis in order to determine, for example, the type and abundance of a contaminant that is an object to be measured attached to a silicon substrate surface. In order to analyze contaminants existing in the vicinity of the silicon substrate surface as the object to be measured, mainly transition metals such as iron, nickel, copper, and zinc, for example, using a W-Lβ ray or the like as a primary X-ray source, Primary X-rays are irradiated on the surface of the silicon substrate at a predetermined small incident angle, and the type is determined from the energy of the fluorescent X-rays from the object to be measured, and the amount is determined from the intensity of the fluorescent X-rays.

ところで、一般に全反射蛍光X線分析では、被測定物(汚染物質)の付着形態によって、蛍光X線強度の入射角依存性が変化することが知られている。蛍光X線強度は、例えば図3に示すように、酸化膜を有するシリコン基板表面に付着した被測定物が、図3(A)のように酸化膜SiO2 上にフィルム状に分散して存在する場合には図4(A)のように、図3(B)のように粒状に存在する場合には図4(B)のように、または図3(C)のように酸化膜SiO2 中や酸化膜SiO2 とシリコンSiとの界面に存在する場合には図4(C)のように、それぞれ入射角依存性を示す。逆に言えば、蛍光X線強度の入射角依存性から、被測定物の付着形態を決定することができる。 By the way, it is generally known that, in the total reflection X-ray fluorescence analysis, the incident angle dependence of the intensity of the fluorescent X-ray changes depending on the attachment form of the object to be measured (contaminant). As shown in FIG. 3 , for example, the X-ray fluorescence intensity is such that an object to be measured attached to the surface of a silicon substrate having an oxide film is dispersed in a film form on the oxide film SiO2 as shown in FIG. In this case, as shown in FIG. 4 (A) , when it exists in a granular form as shown in FIG. 3 (B) , as shown in FIG. 4 (B) , or as shown in FIG. When it exists at the interface between the oxide film SiO2 and the silicon Si, the incident angle dependency is shown as shown in FIG. 4C . Conversely, the attachment form of the object can be determined from the incident angle dependence of the fluorescent X-ray intensity.

前記のように被測定物の付着形態が明らかになれば、被測定物(汚染物質)の発生源を知ることができる。例えば、シリコン基板の湿式洗浄過程での汚染であれば汚染物質はフィルム状に付着するし、シリコン基板の機械的搬送中に生じた汚染であれば汚染物質は粒状に付着する。また、シリコン基板の製膜過程で生じた汚染であれば汚染物質は膜中に存在すると考えられる。   As described above, if the form of attachment of the object is clarified, the source of the object (contaminant) can be known. For example, if the silicon substrate is contaminated during the wet cleaning process, the contaminant adheres in the form of a film, and if the contamination occurs during the mechanical transport of the silicon substrate, the contaminant adheres in the form of particles. Further, if the contamination occurs during the film formation process of the silicon substrate, it is considered that the contaminant is present in the film.

しかし、従来のように、前記蛍光X線強度の入射角依存性と被測定物の付着形態の関係から、1次X線の入射角度を変化させて蛍光X線の強度を測定し、その結果から、視覚的(定性的)に、被測定物の付着形態を決定したのでは、分析者の主観に左右される場合があるので、被測定物の付着形態の決定が不正確になるという問題があった。   However, as in the prior art, the intensity of the fluorescent X-ray was measured by changing the incident angle of the primary X-ray from the relationship between the incident angle dependence of the intensity of the fluorescent X-ray and the form of attachment of the object to be measured. Therefore, if the form of attachment of the object to be measured is determined visually (qualitatively), the determination of the form of attachment of the object to be measured may be inaccurate because it may depend on the subjectivity of the analyst. was there.

本発明は、前記の問題点を解決して、被測定物の形態を正確に決定することができる蛍光X線分析方法および装置を提供することを目的としている。   SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and to provide a method and an apparatus for X-ray fluorescence analysis that can accurately determine the form of an object to be measured.

前記目的を達成するために、本発明に係る蛍光X線分析方法は、試料表面に1次X線を照射し、試料表面部に存在する被測定物から発生した蛍光X線を測定する蛍光X線分析方法であって、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定し、そのうち任意の2つの照射角度で得られた蛍光X線強度の大小関係から、被測定物の形態を決定する。
この構成によれば、相異なる任意の2つの照射角度で得られた蛍光X線強度の大小関係から、被測定物の付着形態によって変化する入射角依存性に基づき、被測定物の形態を決定するので、被測定物の形態を正確に決定することができる。
In order to achieve the above object, an X-ray fluorescence analysis method according to the present invention provides a method for irradiating a sample surface with primary X-rays and measuring X-ray fluorescence generated from an object to be measured present on the sample surface. X- ray analysis method, wherein the primary X-rays are irradiated at a plurality of different irradiation angles φ1 to φn to measure the intensity of the fluorescent X-rays, and the fluorescent X-rays obtained at arbitrary two irradiation angles are measured. The form of the object to be measured is determined based on the magnitude relationship between the intensities .
According to this configuration, from the magnitude relationship of the fluorescent X-ray intensities obtained at any two different irradiation angles, the form of the measured object is determined based on the incident angle dependence that changes depending on the form of attachment of the measured object. Therefore, the form of the device under test can be accurately determined.

好ましくは、前記2つの照射角度における蛍光X線強度の大小関係が、蛍光X線の強度比または強度差であり、これから被測定物の形態を決定する。また、例えば測定した複数の照射角度に対する蛍光X線強度曲線を1次微分することによっても、被測定物の形態を決定する。 Preferably, the magnitude relationship between the fluorescent X-ray intensities at the two irradiation angles is an intensity ratio or an intensity difference between the fluorescent X-rays , and the form of the object to be measured is determined from this. Further, the form of the object to be measured is also determined by, for example, first-order differentiation of the measured fluorescent X-ray intensity curve with respect to a plurality of irradiation angles.

好ましくは、前記蛍光X線分析方法は、被測定物の存在量等しいが、被測定物の形態が異なる標準試料1および2について、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定する。
複数の照射角度φ1〜φnのうち任意の2つの照射角度φa ,φb (φa <φb )の複数の組について、それぞれ標準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数PF1として求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試料2の粒度係数PF2として求める。本発明では2つの照射角度での蛍光X線強度比を粒度係数PFと定義する。
そして、これら得られた各組についての蛍光X線強度Ia1,Ia2および粒度係数PF1、PF2から、Ia2・PF1/PF2の値がIa1の値に最も近づくように、照射角度φa,φbの組を選択し、前記選択した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3から、被測定物の形態を決定するものである。
Preferably, in the X-ray fluorescence analysis method, a plurality of irradiation angles φ1 to φ1 different from each other are applied to the primary X-rays for the standard samples 1 and 2 having the same amount of the object to be measured, but having different forms of the object to be measured. Irradiate with φn and measure the intensity of fluorescent X-rays.
Any two irradiation angles .phi.a among a plurality of irradiation angles φ1~φn, φb (φa <φb) for a plurality of sets of each particle size coefficient of the standard sample 1 the ratio of the fluorescent X-ray intensity of the standard sample 1 Ia1, Ib1 PF1 is obtained, and the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2 is obtained as the particle size coefficient PF2 of the standard sample 2. In the present invention, the fluorescent X-ray intensity ratio at two irradiation angles is defined as a particle size coefficient PF.
Then, based on the obtained fluorescent X-ray intensities Ia1 and Ia2 and the particle size coefficients PF1 and PF2 , the set of the irradiation angles φa and φb is set so that the value of Ia2 · PF1 / PF2 is closest to the value of Ia1. selected, the selected irradiation angle .phi.a, from the intensity Ia3, Ib3 of X-ray fluorescence for the sample to be measured in .phi.b, it is what determines the form of the object to be measured.

また、前記した好ましい蛍光X線分析方法に対応する蛍光X線分析装置は、試料表面に1次X線を照射し、試料表面部に存在する被測定物から発生した蛍光X線を測定するものであって、被測定物の存在量は等しいが、被測定物の付着形態が異なる標準試料1および2について、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定する測定手段と、前記測定された複数の照射角度のうち任意の2つの照射角度φa ,φb (φa <φb )の複数の組について、それぞれ標準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数PF1として求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試料2の粒度係数PF2として求めて、これら得られた各組についての蛍光X線強度Ia1,Ia2および粒度係数PF1、PF2から、Ia2・PF1/PF2の値がIa1の値に最も近づくように、照射角度φa,φbの組を選択する演算手段と、前記選択した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3から、被測定物の形態を決定する形態決定手段とを備えている。 An X-ray fluorescence analyzer corresponding to the preferred X-ray fluorescence analysis method described above irradiates a sample surface with primary X-rays and measures X-ray fluorescence generated from an object to be measured present on the surface of the sample. And irradiating the primary X-rays at a plurality of different irradiation angles φ1 to φn with respect to the standard samples 1 and 2 having the same amount of the object to be measured, but having different adhesion forms of the object to fluoresce. X-ray fluorescence intensity of the standard sample 1 for each of a plurality of sets of arbitrary two irradiation angles φa and φb (φa <φb) among the measurement means for measuring the X-ray intensity and the measured plural irradiation angles. ia1, obtains the ratio of Ib1 as particle size coefficient PF1 of the standard sample 1, seeking fluorescent X-ray intensity Ia2, Ib2 ratio of the standard sample 2 as particle size coefficient PF2 of the standard sample 2, fluorescence for those obtained each set X-ray intensity Ia1, Ia2 and particle size From PF1, PF2, as the value of Ia2 · PF1 / PF2 approaches most to the value of Ia1, irradiation angle .phi.a, a calculating means for selecting a set of .phi.b, the selected irradiation angle .phi.a, for the measurement target sample in .phi.b A morphology determining means for determining the morphology of the object to be measured based on the intensity of the fluorescent X-rays Ia3 and Ib3.

この構成によれば、標準試料2の蛍光X線強度Ia2に標準試料1と標準試料2の粒度係数の比PF1/PF2を乗じた値が、標準試料1の蛍光X線強度Ia1の値に近づくように、照射角度φa,φbを選択し、その選択した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3から、被測定物の形態を決定するので、正確に測定対象試料の被測定物の形態を決定できる。 According to this configuration , the value obtained by multiplying the fluorescent sample X-ray intensity Ia2 of the standard sample 2 by the ratio PF1 / PF2 of the particle size coefficients of the standard sample 1 and the standard sample 2 approaches the value of the fluorescent X-ray intensity Ia1 of the standard sample 1. As described above, the irradiation angles φa and φb are selected , and the form of the object to be measured is determined from the intensity Xa3 and Ib3 of the fluorescent X-rays of the sample to be measured at the selected irradiation angles φa and φb. The morphology of the sample under test can be determined.

本発明において、Ia2・PF1/PF2の値がIa1の値に近づく場合とは、(Ia2/Ia1)・(PF1/PF2)=Aとしたときに係数Aが1に近づくことをいう。係数Aが1に近づくにしたがって、高精度に被測定物の形態を決定できる。係数Aの範囲は0.3〜3が好ましく、0.4〜2.5がより好ましく、0.5〜2がさらに好ましく、0.7〜1.5が特に好ましく、0.8〜1.2が最も好ましい。   In the present invention, the case where the value of Ia2 · PF1 / PF2 approaches the value of Ia1 means that the coefficient A approaches 1 when (Ia2 / Ia1) · (PF1 / PF2) = A. As the coefficient A approaches 1, the form of the DUT can be determined with high accuracy. The range of the coefficient A is preferably from 0.3 to 3, more preferably from 0.4 to 2.5, still more preferably from 0.5 to 2, particularly preferably from 0.7 to 1.5, and from 0.8 to 1. 2 is most preferred.

前記決定すべき被測定物の形態は、例えば、被測定物の付着形態または大きさである。被測定物の付着形態とは、シリコン基板表面に被測定物がフィルム状や粒状等に存在しているような場合をいう。被測定物の大きさとは、粒状の場合は粒径の大きさ、フィルム状やその他の場合は長さ、幅、高さ寸法の大きさをいう。 The form of the measured object to be determined is, for example, the attached form or size of the measured object. The attached form of the measured object refers to a case where the measured object exists on the surface of the silicon substrate in a film shape, a granular shape, or the like. The size of the object to be measured refers to the size of the particle size in the case of a granular shape, and the size of the length, width, and height in the case of a film or other cases.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る全反射蛍光X線分析装置の概略側面図を示す。本装置は、X線を発生させるX線源2と、X線源2からのX線を回折させて単色化させ、その1次X線B1を試料台70上のシリコン基板のような試料50の表面に向かって微小な所定の入射角度(例えば、0.05°〜0.2°)で入射させる分光結晶3と、試料50表面に対向して、1次X線B1を受けた試料50からの蛍光X線B3を検出する検出器4とを備えており、試料50の試料表面部に存在する被測定物から発生した蛍光X線B3を分析する。試料50をのせた試料台70が図示しない駆動手段によって駆動されて、試料50に対して任意の照射(入射)角度および位置で1次X線B1が照射される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic side view of a total reflection X-ray fluorescence spectrometer according to an embodiment of the present invention. The apparatus includes an X-ray source 2 for generating X-rays, and diffracts the X-rays from the X-ray source 2 into a single color, and converts the primary X-rays B1 into a sample 50 such as a silicon substrate on a sample stage 70. The spectroscopic crystal 3 which is incident at a small predetermined incident angle (for example, 0.05 ° to 0.2 °) toward the surface of the sample 50 and the sample 50 which has received the primary X-ray B1 facing the surface of the sample 50 And a detector 4 for detecting the fluorescent X-rays B3 from the apparatus, and analyzes the fluorescent X-rays B3 generated from the measured object existing on the sample surface of the sample 50. The sample stage 70 on which the sample 50 is placed is driven by driving means (not shown), and the sample 50 is irradiated with the primary X-ray B1 at an arbitrary irradiation (incident) angle and position.

前記X線源2、分光結晶3、検出器4、試料台70および駆動手段により測定手段5が構成され、この測定手段5は、被測定物の存在量は等しいが、被測定物の付着形態が異なる標準試料1および2について、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線B3の強度を測定する。   The X-ray source 2, the spectral crystal 3, the detector 4, the sample stage 70, and the driving unit constitute a measuring unit 5. The measuring unit 5 has the same amount of the object to be measured, Are irradiated with the primary X-rays at a plurality of different irradiation angles φ1 to φn to measure the intensity of the fluorescent X-rays B3.

本装置の演算手段6は、前記測定された複数の照射角度のうち任意の2つの照射角度φa ,φb (φa <φb )について、標準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数PF1として求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試料2の粒度係数PF2として求めて、Ia2・PF1/PF2の値がIa1の値に近づくように、照射角度φa,φbを決定する。また、形態決定手段8は、前記決定した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3、例えばIa3とIb3の強度比PF3から、被測定物の形態を決定する。   The calculating means 6 of the present apparatus determines the ratio of the fluorescent X-ray intensities Ia1 and Ib1 of the standard sample 1 for any two of the measured irradiation angles φa and φb (φa <φb) to the standard sample. 1 and the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2 is obtained as the particle size coefficient PF2 of the standard sample 2. The angles φa and φb are determined. Further, the form determining means 8 determines the form of the measured object from the intensity Xa of fluorescent X-rays Ia3 and Ib3, for example, the intensity ratio PF3 of Ia3 and Ib3 for the sample to be measured at the determined irradiation angles φa and φb.

以下、本装置の動作を説明する。
例えば、シリコン基板上の被測定物である汚染物質のニッケルの定量分析を行う場合、汚染量が既知の標準試料に対して、予め全反射蛍光X線分析(照射角度φc(例えば、0.09°)における測定)を行い、汚染量と蛍光X線強度との関係を明らかにしておく。つまり、汚染量と蛍光X線強度との関係を示す検量線を作成しておく。つぎに、汚染量が未知の測定対象試料に対して全反射蛍光X線測定を行い、測定対象試料の蛍光X線強度を測定する。その強度を前記検量線を用いて汚染量に換算する。本実施形態では、標準試料1における被測定物の付着形態をフィルム状とし、標準試料2における被測定物の付着形態を粒状とする。
Hereinafter, the operation of the present apparatus will be described.
For example, when performing quantitative analysis of nickel of a contaminant which is an object to be measured on a silicon substrate, a total reflection X-ray fluorescence analysis ( irradiation angle φc (for example, 0.09 °)) to clarify the relationship between the amount of contamination and the fluorescent X-ray intensity. That is, a calibration curve indicating the relationship between the amount of contamination and the fluorescent X-ray intensity is created. Next, total reflection X-ray fluorescence measurement is performed on the sample to be measured whose contamination amount is unknown, and the fluorescent X-ray intensity of the sample to be measured is measured. The intensity is converted to the amount of contamination using the calibration curve. In the present embodiment, the adhered form of the measured object on the standard sample 1 is a film form, and the adhered form of the measured object on the standard sample 2 is a granular form.

本実施形態では、フィルム状の標準試料1をフッ化水素雰囲気中に30分間放置することにより、試料表面のシリコン酸化膜をフッ化水素に溶解させ、その後、試料を大気中に放置して、シリコン基板上で溶解液を乾燥させ、シリコン基板上の被測定物の付着形態をフィルム状から粒状に変化させて、粒状の標準試料2とした。この場合、被測定物の存在量は変化していない。   In this embodiment, the silicon oxide film on the surface of the sample is dissolved in hydrogen fluoride by leaving the film-shaped standard sample 1 in a hydrogen fluoride atmosphere for 30 minutes, and then the sample is left in the atmosphere. The solution was dried on the silicon substrate, and the adhesion form of the object to be measured on the silicon substrate was changed from a film shape to a granular shape to obtain a granular standard sample 2. In this case, the abundance of the measured object does not change.

上述したとおり、図4(A)の被測定物が基板上にフィルム状に存在する場合と、図4(B)の粒状に存在する場合とを比較すると、被測定物の存在量が等しくても、フィルム状の標準試料1と粒状の標準試料2とでは、蛍光X線B3の強度と1次X線B1の入射角との関係は大きく異なる。したがって、前記検量線を用いて算出した被測定物の存在量も大きく異なる。 As described above, in the case where the object to be measured shown in FIG. 4 (A) is present in the film form on the substrate, when compared with the case where there granulated in FIG. 4 (B), with equal abundance of the workpiece However, the relationship between the intensity of the fluorescent X-ray B3 and the incident angle of the primary X-ray B1 is significantly different between the film-shaped standard sample 1 and the granular standard sample 2. Therefore, the abundance of the measured object calculated using the calibration curve also differs greatly.

本装置では、まず、測定手段5により、1次X線B1を標準試料1と標準試料2について、それぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線B3の強度を測定する。   In this apparatus, first, the primary X-ray B1 is irradiated on the standard sample 1 and the standard sample 2 at a plurality of different irradiation angles φ1 to φn by the measuring unit 5 to measure the intensity of the fluorescent X-ray B3.

つぎに、演算手段6の動作を、測定された複数の照射角度のデータのうち、それぞれ異なる2つの照射角度φa、φbを選択した種々のケース(複数組)のうち例えば2つのケースについて説明する。 Next, the operation of the calculating means 6 will be described for, for example, two cases out of various cases (plural sets) in which two different irradiation angles φa and φb are selected from the plurality of measured irradiation angle data. .

ケース1:照射角度φa=0.05°、φb=0.15°を選択したとき
この場合、フィルム状の標準試料1についてのNi−Kα線の強度は0.05°のとき20.65cps、0.15°のとき335.65cpsである。したがって、標準試料1についての蛍光X線強度Ia1,Ib1の比である標準試料1の粒度係数PF1を求めると、PF1=20.65/335.65=0.06である。
粒状の標準試料2についてのNi−Kα線の強度は0.05°のとき158.79cps、0.15°のとき444.05cpsである。したがって、標準試料2についての蛍光X線強度Ia2,Ib2の比である標準試料2の粒度係数PF2を求めると、PF2=158.79/444.05=0.36である。これにより、粒度係数PF1とPF2の比は、PF1/PF2=0.06/0.36=1/6となる。
Case 1: When the irradiation angles φa = 0.05 ° and φb = 0.15 ° are selected. In this case, the Ni-Kα ray intensity of the film-form standard sample 1 is 20.65 cps when the intensity is 0.05 °. It is 335.65 cps at 0.15 °. Therefore, when the particle size coefficient PF1 of the standard sample 1, which is the ratio of the fluorescent X-ray intensities Ia1 and Ib1 for the standard sample 1, is obtained, PF1 = 20.65 / 335.65 = 0.06.
The intensity of the Ni—Kα ray of the granular standard sample 2 is 158.79 cps at 0.05 ° and 444.05 cps at 0.15 °. Therefore, when the particle size coefficient PF2 of the standard sample 2, which is the ratio of the fluorescent X-ray intensities Ia2 and Ib2 of the standard sample 2, is obtained, PF2 = 158.79 / 444.05 = 0.36. Thus, the ratio between the particle size coefficients PF1 and PF2 is PF1 / PF2 = 0.06 / 0.36 = 1/6.

このとき、係数Aは、A=(Ia2/Ia1)・(PF1/PF2)=(158.79/20.65)・(0.06/0.36)≒1.3である。   At this time, the coefficient A is A = (Ia2 / Ia1) · (PF1 / PF2) = (158.79 / 20.65) · (0.06 / 0.36) ≒ 1.3.

ケース2:照射角度φa=0.09°、φb=0.17°を選択したとき
この場合、フィルム状の標準試料1について全反射蛍光X線測定した結果、Ni−Kα線の強度は0.09°のとき103.60cps、0.17°のとき419.58cpsである。したがって、標準試料1についての蛍光X線強度Ia1,Ib1の比である標準試料1の粒度係数PF1は、PF1=103.60/419.58=0.25である。なお、前記定量分析用の照射角度φc=0.09°での検量線を用いて、Ni−Kα線の強度をニッケルの汚染量に換算すると、約1.5×1012atoms/cmとなる。
粒状の標準試料2については、Ni−Kα線の強度は0.09°のとき404.91cps、0.17°のとき415.30cpsである。したがって、標準試料2についての蛍光X線強度Ia2,Ib2の比である標準試料2の粒度係数PF2は、PF2=404.91/415.30=0.97である。これにより、前記粒度係数PF1とPF2の比は、PF1/PF2=0.25/0.97≒1/4となる。
Case 2: When the irradiation angle φa = 0.09 ° and φb = 0.17 ° are selected
In this case, as a result of total reflection X-ray fluorescence measurement of the film-shaped standard sample 1, the intensity of the Ni-Kα ray is 103.60 cps at 0.09 ° and 419.58 cps at 0.17 °. Therefore, the particle size coefficient PF1 of the standard sample 1, which is the ratio of the fluorescent X-ray intensities Ia1 and Ib1 for the standard sample 1, is PF1 = 103.60 / 419.58 = 0.25. When the intensity of the Ni-Kα ray was converted into the amount of nickel contamination using the calibration curve at the irradiation angle φc = 0.09 ° for the quantitative analysis , it was about 1.5 × 10 12 atoms / cm 2 . Become.
Regarding the granular standard sample 2, the intensity of the Ni-Kα ray is 404.91 cps at 0.09 ° and 415.30 cps at 0.17 °. Therefore, the particle size coefficient PF2 of the standard sample 2, which is the ratio of the fluorescent X-ray intensities Ia2 and Ib2 for the standard sample 2, is PF2 = 404.91 / 415.30 = 0.97. Thus, the ratio between the particle size coefficients PF1 and PF2 is PF1 / PF2 = 0.25 / 0.97 ≒ 1/4.

このとき、係数Aは、A=(Ia2/Ia1)・(PF1/PF2)=(404.91/103.60)・(0.25/0.97)≒1である。したがって、ケース1を含む種々のケースのうち、ケース2の係数Aが1に近いので、ケース2の照射角度φa=0.09°,φb=0.17°に決定する。 At this time, the coefficient A is A = (Ia2 / Ia1) · (PF1 / PF2) = (404.91 / 103.60) · (0.25 / 0.97) ≒ 1. Therefore, among the various cases including Case 1, the coefficient A of Case 2 is close to 1, so that the irradiation angles φa = 0.09 ° and φb = 0.17 ° of Case 2 are determined.

つぎに、被測定物の付着形態が未知の測定対象試料について、前記決定した照射角度φa=0.09°,φb=0.17°で全反射蛍光X線測定する。粒状の測定対象試料の場合、前記標準試料2の場合と同様に、Ni−Kα線の強度Ia3,Ib3は、0.09°のとき404.91cps、0.17°のとき415.30cpsである。したがって、測定対象試料についての蛍光X線強度Ia3,Ib3の比である測定対象試料の粒度係数PF3は、PF3=404.91/415.30=0.97である。   Next, the total reflection fluorescent X-ray measurement is performed at the determined irradiation angles φa = 0.09 ° and φb = 0.17 ° with respect to the sample to be measured whose adhesion form is unknown. In the case of the granular sample to be measured, similarly to the case of the standard sample 2, the intensity Ia3, Ib3 of the Ni-Kα ray is 404.91 cps at 0.09 ° and 415.30 cps at 0.17 °. . Therefore, the particle size coefficient PF3 of the measurement target sample, which is the ratio of the fluorescent X-ray intensities Ia3 and Ib3 of the measurement target sample, is PF3 = 404.91 / 415.30 = 0.97.

形態決定手段8は、測定対象試料についての粒度係数PF3の値により、粒度係数PFの例えば、PF=0.5を判断基準として、PF≦0.5の場合はフィルム状、PF>0.5の場合は粒状と判断する。もちろん、この0.5という基準は分析条件や必要な情報によって変化する。本実施形態では、PF3=0.97で、PF>0.5であるので、被測定物の付着形態を粒状と決定する。   Based on the value of the particle size coefficient PF3 for the sample to be measured, the morphological determination means 8 determines the particle size coefficient PF, for example, PF = 0.5 as a criterion. Is determined to be granular. Of course, the standard of 0.5 changes depending on analysis conditions and necessary information. In this embodiment, since PF3 = 0.97 and PF> 0.5, the adhesion form of the measured object is determined to be granular.

こうして、本発明は、Ia2・PF1/PF2の値がIa1の値に近づくように、つまり、係数Aが1に近づくように、照射角度φa、φbを決定し、この決定した照射角度φa、φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3の比PF3から、被測定物の付着形態を正確に決定することができる。   Thus, the present invention determines the irradiation angles φa and φb so that the value of Ia2 · PF1 / PF2 approaches the value of Ia1, that is, the coefficient A approaches 1, and determines the determined irradiation angles φa and φb. From the ratio PF3 of the fluorescence X-ray intensities Ia3 and Ib3 of the sample to be measured in the above, the adhesion form of the measurement object can be accurately determined.

なお、本実施形態では、測定対象試料についての蛍光X線の強度比から、被測定物の付着形態を決定しているが、蛍光X線の強度差によって、強度比と同じようにして、被測定物の付着形態を決定するようにしてもよい。   In the present embodiment, the attachment form of the object is determined from the intensity ratio of the fluorescent X-rays for the sample to be measured. The attachment form of the measurement object may be determined.

なお、図4のように、測定した複数の照射角度に対する蛍光X線強度曲線を1次微分することによって得られた図2の曲線によって、被測定物の付着形態を決定してもよい。すなわち、図4(B)の粒状の測定対象試料の蛍光X線強度曲線は、図4(A)のフィルム状の標準試料の蛍光X線強度曲線に比較してピーク位置が前方にあり、これら図4(A)、(B)の蛍光X線強度曲線を1次微分することによってそれぞれ得られた図2(A)、(B)の曲線から、図2(B)のピーク位置P2が図2(A)のピーク位置P1に比較して前方に位置することに基づいて、測定対象試料の被測定物の付着形態を粒状であると決定することができる。 As shown in FIG. 4 , the attachment form of the measurement object may be determined based on the curve of FIG. 2 obtained by first-order differentiating the fluorescent X-ray intensity curve with respect to a plurality of measured irradiation angles. In other words, the fluorescent X-ray intensity curve of the measured sample of particulate in FIG. 4 (B), there compared to the forward peak position to the fluorescent X-ray intensity curve of the standard sample film-like in FIG. 4 (A), the these fluorescent X-ray intensity curve obtained respectively by first derivative to FIG. 2 (a), the a curve of the (B), the peak position P2 shown in FIG. 2 (B) diagram of Fig. 4 (a), (B) Based on the fact that the sample is located ahead of the peak position P1 of 2 (A) , it is possible to determine that the attachment form of the measurement target sample to the measurement target is granular.

本発明の一実施形態に係る蛍光X線分析装置を示す側面図である。FIG. 1 is a side view showing an X-ray fluorescence analyzer according to one embodiment of the present invention. (A)、(B)は1次微分した蛍光X線強度と1次X線の照射角度との関係を示す特性図である。(A), (B) is a characteristic diagram showing the relationship between the primary differentiated fluorescent X-ray intensity and the primary X-ray irradiation angle. (A)〜(C)は被測定物の形態を示す側面図である。(A)-(C) is a side view which shows the form of an object to be measured. (A)〜(C)は蛍光X線強度と1次X線の照射角度との関係を示す特性図である。(A)-(C) are characteristic diagrams showing the relationship between the fluorescent X-ray intensity and the primary X-ray irradiation angle.

符号の説明Explanation of reference numerals

5…測定手段、6…演算手段、8…形態決定手段、50…試料、B1…1次X線、B3…蛍光X線。   5: measuring means, 6: calculating means, 8: morphological determining means, 50: sample, B1: primary X-ray, B3: fluorescent X-ray.

Claims (6)

試料表面に1次X線を照射し、試料表面部に存在する被測定物から発生した蛍光X線を測定する蛍光X線分析方法であって、
前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定し、そのうち任意の2つの照射角度で得られた蛍光X線強度の大小関係から、被測定物の形態を決定する蛍光X線分析方法。
A fluorescent X-ray analysis method of irradiating a sample surface with primary X-rays and measuring fluorescent X-rays generated from an object to be measured existing on a sample surface portion,
The primary X-rays are irradiated at a plurality of different irradiation angles φ1 to φn, and the intensity of the fluorescent X-rays is measured, and the intensity of the fluorescent X-rays obtained at any two irradiation angles is determined based on the magnitude relation of the fluorescent X-ray intensities. An X-ray fluorescence analysis method for determining the form of a measurement object.
請求項1において、前記2つの照射角度における蛍光X線強度の大小関係が、蛍光X線の強度比または強度差である蛍光X線分析方法。 2. The fluorescent X-ray analysis method according to claim 1, wherein the magnitude relationship between the fluorescent X-ray intensities at the two irradiation angles is an intensity ratio or an intensity difference between the fluorescent X-rays. 請求項2において、
被測定物の存在量は等しいが、被測定物の形態が異なる標準試料1および2について、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定し、そのうち任意の2つの照射角度φa ,φb (φa <φb )の複数の組について、それぞれ標準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数PF1として求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試料2の粒度係数PF2として求めて、これら得られた各組についての蛍光X線強度Ia1,Ia2および粒度係数PF1、PF2から、Ia2・PF1/PF2の値がIa1の値に最も近づくように、照射角度φa,φbの組を選択し、
前記選択した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3から、被測定物の形態を決定する蛍光X線分析方法。
In claim 2,
The primary X-rays are radiated at a plurality of different irradiation angles φ1 to φn for the standard samples 1 and 2 having the same abundance of the DUT, but having different forms of the DUT, to reduce the intensity of the fluorescent X-rays. The ratio of the fluorescent X-ray intensities Ia1 and Ib1 of the standard sample 1 was determined as the particle size coefficient PF1 of the standard sample 1 for each of a plurality of arbitrary two irradiation angles φa and φb (φa <φb). The ratio between the fluorescent X-ray intensities Ia2 and Ib2 of the sample 2 is determined as the particle size coefficient PF2 of the standard sample 2, and from the obtained fluorescent X-ray intensities Ia1 and Ia2 and the particle size coefficients PF1 and PF2, Ia2 · PF1 A pair of irradiation angles φa and φb is selected such that the value of / PF2 is closest to the value of Ia1,
An X-ray fluorescence analysis method for determining a form of an object to be measured based on X-ray fluorescence intensities Ia3 and Ib3 of a sample to be measured at the selected irradiation angles φa and φb.
請求項1から3のいずれか1項において、決定すべき被測定物の形態が、被測定物の付着形態である蛍光X線分析方法。 The X-ray fluorescence analysis method according to any one of claims 1 to 3, wherein the form of the measured object to be determined is an attached form of the measured object. 請求項1から3のいずれか1項において、決定すべき被測定物の形態が、被測定物の大きさである蛍光X線分析方法。 The X-ray fluorescence analysis method according to any one of claims 1 to 3, wherein the form of the object to be determined is the size of the object. 試料表面に1次X線を照射し、試料表面部に存在する被測定物から発生した蛍光X線を測定する蛍光X線分析装置であって、
被測定物の存在量は等しいが、被測定物の形態が異なる標準試料1および2について、前記1次X線をそれぞれ相異なる複数の照射角度φ1〜φnで照射して蛍光X線の強度を測定する測定手段と、
前記測定された複数の照射角度のうち任意の2つの照射角度φa ,φb (φa <φb )の複数の組について、それぞれ標準試料1の蛍光X線強度Ia1,Ib1の比を標準試料1の粒度係数PF1として求め、標準試料2の蛍光X線強度Ia2,Ib2の比を標準試料2の粒度係数PF2として求めて、これら得られた各組についての蛍光X線強度Ia1,Ia2および粒度係数PF1、PF2から、Ia2・PF1/PF2の値がIa1の値に最も近づくように、照射角度φa,φbの組を選択する演算手段と、
前記選択した照射角度φa,φbにおける測定対象試料についての蛍光X線の強度Ia3,Ib3から、被測定物の形態を決定する形態決定手段とを備えた蛍光X線分析装置。
An X-ray fluorescence analyzer for irradiating a sample surface with primary X-rays and measuring X-ray fluorescence generated from an object to be measured present on a sample surface portion,
The primary X-rays are irradiated at different irradiation angles φ1 to φn on the standard samples 1 and 2 which have the same amount of the object to be measured, but have different forms of the object to be measured, so that the intensity of the fluorescent X-rays is increased. Measuring means for measuring;
The measured plurality of arbitrary two irradiation angles .phi.a of irradiation angle, φb (φa <φb) a plurality of sets for each X-ray fluorescence intensity Ia1, particle size ratio of the standard sample 1 of Ib1 of the standard sample 1 The ratio of the fluorescent X-ray intensities Ia2, Ib2 of the standard sample 2 is determined as the particle size coefficient PF2 of the standard sample 2, and the fluorescent X-ray intensity Ia1, Ia2 and the particle size coefficient PF1, Calculating means for selecting a pair of irradiation angles φa and φb from PF2 such that the value of Ia2 · PF1 / PF2 is closest to the value of Ia1;
A fluorescent X-ray analyzer comprising: a form determining means for determining the form of the measured object from the fluorescent X-ray intensities Ia3 and Ib3 of the sample to be measured at the selected irradiation angles φa and φb.
JP2004223425A 2004-07-30 2004-07-30 X-ray fluorescence analysis method and apparatus Expired - Fee Related JP3811721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223425A JP3811721B2 (en) 2004-07-30 2004-07-30 X-ray fluorescence analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223425A JP3811721B2 (en) 2004-07-30 2004-07-30 X-ray fluorescence analysis method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000314961A Division JP2002122557A (en) 2000-10-16 2000-10-16 Method and apparatus for fluorescent x-ray analysis

Publications (3)

Publication Number Publication Date
JP2004354392A JP2004354392A (en) 2004-12-16
JP2004354392A5 true JP2004354392A5 (en) 2005-07-28
JP3811721B2 JP3811721B2 (en) 2006-08-23

Family

ID=34056430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223425A Expired - Fee Related JP3811721B2 (en) 2004-07-30 2004-07-30 X-ray fluorescence analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP3811721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290439B (en) * 2016-09-21 2018-10-16 海南中航特玻科技有限公司 Quickly measure Na in saltcake2SO4、NaCl、Fe2O3The method of content

Similar Documents

Publication Publication Date Title
US9746433B2 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
US7899153B2 (en) Automated x-ray fluorescence analysis
JP2013015539A (en) Inspection method and inspection device
EP3139158B1 (en) Analysis method and x-ray photoelectron spectroscope
EP1076222A1 (en) X-ray fluorescence measurement of aluminium sheet thickness
JP2848751B2 (en) Elemental analysis method
US6041096A (en) Method and apparatus for total reflection X-ray fluorescence spectroscopy
JP4517323B2 (en) Electron microanalyzer measurement data correction method
JP2002122558A (en) Method and apparatus for fluorescent x-ray analysis
KR102134181B1 (en) Measurement of small features using xrf
Spolnik et al. Optimization of measurement conditions of an energy dispersive X-ray fluorescence spectrometer with high-energy polarized beam excitation for analysis of aerosol filters
JP2012508379A (en) Dynamic change of shaping time of X-ray detector
JP3811721B2 (en) X-ray fluorescence analysis method and apparatus
JP2004354392A5 (en)
JP2005140767A (en) Three-dimensional surface analysis method
JP3814644B2 (en) X-ray fluorescence analysis method and apparatus
JP2928688B2 (en) Pollution element analysis method and device
JP3610256B2 (en) X-ray fluorescence analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP2008532030A (en) Methods and systems for physicochemical analysis using laser pulse ablation
JP2004361414A5 (en)
Tougaard XPS for quantitative analysis of surface nano-structures
JP2002122557A (en) Method and apparatus for fluorescent x-ray analysis
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
EP3822622B1 (en) X-ray analysis system, x-ray analysis device, and vapor phase decomposition device