JP2002118516A - Optical space transmission device - Google Patents

Optical space transmission device

Info

Publication number
JP2002118516A
JP2002118516A JP2000310918A JP2000310918A JP2002118516A JP 2002118516 A JP2002118516 A JP 2002118516A JP 2000310918 A JP2000310918 A JP 2000310918A JP 2000310918 A JP2000310918 A JP 2000310918A JP 2002118516 A JP2002118516 A JP 2002118516A
Authority
JP
Japan
Prior art keywords
light receiving
optical system
light
effective
space transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310918A
Other languages
Japanese (ja)
Other versions
JP4590083B2 (en
JP2002118516A5 (en
Inventor
Takashi Omuro
隆司 大室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000310918A priority Critical patent/JP4590083B2/en
Publication of JP2002118516A publication Critical patent/JP2002118516A/en
Publication of JP2002118516A5 publication Critical patent/JP2002118516A5/ja
Application granted granted Critical
Publication of JP4590083B2 publication Critical patent/JP4590083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical space transmission device which restrains a spherical aberration from being worsened, which restrains a light receiving optical system from becoming large-sized and high-cost, and which can enhance the directivity of the light receiving optical system. SOLUTION: A light receiving element 13 is arranged at a position which is defocused on the side of a light receiving optical system 12 from the focal position of the optical system 12. The focal position refers to the position at which a projection optical system 11 is installed at the most distant position from the optical system 12 in the specifications of a product. The defocused position refers to the position at which the spot diameter of a light beam becomes 75% of the diameter of an effective light receiving part in the light receiving element 13 when the light beam emitted from the optical system 11 is converged by the optical system 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、信号発生部と投光
光学系から成る投光手段から光ビームを発し、受光光学
系と信号検出部から成る受光手段で受光して光通信を行
う光空間伝送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to light for performing optical communication by emitting a light beam from a light projecting means comprising a signal generating section and a light projecting optical system and receiving the light beam by a light receiving means comprising a light receiving optical system and a signal detecting section. The present invention relates to a spatial transmission device.

【0002】[0002]

【従来の技術】従来のこの種の光空間伝送装置は、図6
に示すように投光手段の投光光学系1と受光手段の受光
光学系2とから成り、受光手段は受光素子3を備えてい
る。このような光空間伝送装置が、投光光学系1の光軸
と受光光学系2の光軸とのずれ量を検出するずれ量検出
手段と、この検出手段により検出したずれ量に基づいて
光軸のずれを補正する光軸補正手段とを備えていない場
合には、大気の揺らぎ等によるビームの曲がりなどを補
正できないため、受光光学系2の指向性をより広げてお
くことが望ましい。
2. Description of the Related Art A conventional optical space transmission apparatus of this type is shown in FIG.
As shown in (1), the light receiving means comprises a light projecting optical system 1 of the light projecting means and a light receiving optical system 2 of the light receiving means. Such an optical space transmission device includes a shift amount detecting means for detecting a shift amount between the optical axis of the light projecting optical system 1 and the optical axis of the light receiving optical system 2, and an optical signal based on the shift amount detected by the detecting means. If there is no optical axis correction means for correcting the deviation of the axis, it is not possible to correct the bending of the beam due to the fluctuation of the atmosphere or the like. Therefore, it is desirable to further widen the directivity of the light receiving optical system 2.

【0003】図7は受光光学系2の模式図であり、実線
で示す光ビームLaは受光素子3の有効受光部3’の光
軸上に入射し、1点鎖線で示す光ビームLbは有効受光
部3’のほぼ端部に入射し、2点鎖線で示す光ビームL
cは有効受光部3’の端部から外れて入射する様子を表
している。また、これらの光ビームLa〜Lcはほぼ焦
点を合わせた状態となっている。
FIG. 7 is a schematic diagram of the light receiving optical system 2. A light beam La indicated by a solid line is incident on an optical axis of an effective light receiving portion 3 'of the light receiving element 3, and a light beam Lb indicated by a chain line is effective. A light beam L which is incident on almost the end of the light receiving section 3 'and is indicated by a two-dot chain line
“c” indicates a state in which the light is incident off the end of the effective light receiving unit 3 ′. These light beams La to Lc are almost in focus.

【0004】図8は光ビームLa〜Lcと有効受光部
3’との位置関係の模式図であり、図8(a)では光ビー
ムLaのスポットの全体が有効受光部3’内に収まって
おり、有効受光部3’は取り込んだ光ビームLaの全部
を検出できる状態になっている。図8(b)では光ビーム
Lbのスポットのほぼ半分が有効受光部3’から外れ、
有効受光部3’は取り込んだ光ビームLbのほぼ半分を
検出できる状態になっている。そして、図8(c)では光
ビームLcのスポットの全体が有効受光部3’から外
れ、有効受光部3’は光ビームLcを検出できない状態
になっている。
FIG. 8 is a schematic diagram showing the positional relationship between the light beams La to Lc and the effective light receiving portion 3 '. In FIG. 8A, the entire spot of the light beam La is contained in the effective light receiving portion 3'. Thus, the effective light receiving section 3 'is in a state capable of detecting all of the captured light beam La. In FIG. 8B, almost half of the spot of the light beam Lb deviates from the effective light receiving unit 3 ',
The effective light receiving section 3 'is in a state capable of detecting substantially half of the light beam Lb taken in. Then, in FIG. 8C, the entire spot of the light beam Lc deviates from the effective light receiving unit 3 ', and the effective light receiving unit 3' cannot detect the light beam Lc.

【0005】図9は光ビームLa〜Lcと有効受光部
3’との位置関係のグラフ図であり、図8をグラフ化し
ている。横軸は光ビームLa〜Lcのスポットの中心と
受光光学系2の光軸との距離つまり像高hと有効受光部
3’の半径との比率とし、図8(b)に対応する位置を1
00%としている。縦軸は光ビームLa〜Lcが有効受
光部3’に重なっている部分の比率つまり出力比とし、
図8(a)に対応する点Aの位置を100%とし、図8(c)
に対応する点Cの位置を0%としている。図8(b)に対
応する点Bの前後の位置においてその出力は100〜0
%に変化している。この図9は、受光光学系2の焦点を
受光素子3にほぼ合わせた状態では、有効受光部3’の
端部まではほぼ100%の出力が得られるが、有効受光
部3’の端部から僅かに外れた場合には出力が得られな
いことを示している。
FIG. 9 is a graph showing the positional relationship between the light beams La to Lc and the effective light receiving section 3 ', and FIG. 8 is graphed. The horizontal axis is the distance between the center of the spot of the light beams La to Lc and the optical axis of the light receiving optical system 2, that is, the ratio between the image height h and the radius of the effective light receiving unit 3 ', and the position corresponding to FIG. 1
00%. The vertical axis represents the ratio of the portion where the light beams La to Lc overlap the effective light receiving portion 3 ', that is, the output ratio,
Assuming that the position of the point A corresponding to FIG.
Is 0%. At positions before and after point B corresponding to FIG.
% Has changed. FIG. 9 shows that when the focus of the light receiving optical system 2 is substantially focused on the light receiving element 3, almost 100% output is obtained up to the end of the effective light receiving unit 3 '. Indicates that no output can be obtained if the value is slightly out of the range.

【0006】[0006]

【発明が解決しようとする課題】このような従来例で
は、図6に示すように受光光学系2の指向性をその光軸
に垂直で投光光学系1の開口を含む面において受光領域
Raで表すことができるが、受光領域Ra内に投光光学
系1の開口が存在しない場合には通信が不可能になる。
これに対し、ずれ量検出手段と光軸補正手段を備えてい
る場合には、図10に示すように少なくとも受光光学系
2の光軸を投光光学系1の開口内に向けることが可能と
なり、受光光学系2の指向性が狭くとも受光領域Raを
投光光学系1の開口に合わせて通信可能な状態にするこ
とができる。
In such a conventional example, as shown in FIG. 6, the directivity of the light receiving optical system 2 is perpendicular to its optical axis and the light receiving region Ra However, if the opening of the light projecting optical system 1 does not exist in the light receiving area Ra, communication becomes impossible.
On the other hand, in the case of including the displacement amount detecting means and the optical axis correcting means, it is possible to direct at least the optical axis of the light receiving optical system 2 into the opening of the light projecting optical system 1 as shown in FIG. Even if the directivity of the light receiving optical system 2 is narrow, the light receiving area Ra can be brought into a communication-enabled state in accordance with the opening of the light projecting optical system 1.

【0007】そして、ずれ量検出手段と光軸補正手段と
を備えていない場合には、投光光学系1の光軸と受光光
学系2の光軸のずれを補正できないので、図11に示す
ように受光光学系2の指向性を広げてその受光領域R
a’が投光光学系1の開口を含むようにする必要があ
る。
[0007] When the displacement amount detecting means and the optical axis correcting means are not provided, the displacement between the optical axis of the light projecting optical system 1 and the optical axis of the light receiving optical system 2 cannot be corrected. The directivity of the light receiving optical system 2 is expanded as
It is necessary that a ′ includes the opening of the light projecting optical system 1.

【0008】しかしながら、現状では受光素子3の大き
さを自由に選択できないので、光ビームLa〜Lcを受
光素子3に導くためには、受光光学系2の焦点距離を短
くする必要がある。また、受光光学系2が必要とする光
エネルギの絶対値を落とさないためには、受光光学系2
の開口を小さくすることができない。従って、光ビーム
La〜Lcを受光素子3に導くためには、受光光学系2
の開口の大きさを変化させずに焦点距離を短くすること
となり、F値を小さくすることと等価となる。
However, at present, the size of the light receiving element 3 cannot be freely selected. Therefore, in order to guide the light beams La to Lc to the light receiving element 3, it is necessary to shorten the focal length of the light receiving optical system 2. In order not to reduce the absolute value of the light energy required by the light receiving optical system 2, the light receiving optical system 2
Cannot be made smaller. Therefore, in order to guide the light beams La to Lc to the light receiving element 3, the light receiving optical system 2
The focal length is shortened without changing the size of the aperture, which is equivalent to reducing the F value.

【0009】例えば、以下に具体的な数値で示す。投光
光学系1と受光光学系2の間の通信距離(D)が1k
m、投光光学系1の開口(O1)が60mm、受光光学
系2の位置における投光光学系1のビームの径(O2
が2m、受光素子3の有効径(R)が0.2mmであ
り、受光光学系2の指向性を投光光学系1と同等とした
場合には、投光光学系1の光軸と受光光学系2の光軸と
の最大ずれ量(E)が1mとなり、R/(2E)≪1で
あるため、受光光学系2の必要な焦点距離(f)は実質
的にf/{O2D/(O2−O1)}=R/(2E)から計算で
き、f=103mmとなる。一方、受光光学系2の受光
感度を保つためには、受光光学系2の開口をあまり小さ
くすることができない。ここで、受光光学系2の開口を
投光光学系1の開口(O1)と同じ60mmとすると、
受光光学系2に必要なF値は1.7となる。
For example, specific numerical values are shown below. The communication distance (D) between the light projecting optical system 1 and the light receiving optical system 2 is 1 k
m, the aperture (O 1 ) of the light projecting optical system 1 is 60 mm, and the beam diameter (O 2 ) of the light projecting optical system 1 at the position of the light receiving optical system 2
Is 2 m, the effective diameter (R) of the light receiving element 3 is 0.2 mm, and the directivity of the light receiving optical system 2 is equivalent to that of the light projecting optical system 1. Since the maximum deviation (E) from the optical axis of the optical system 2 is 1 m and R / (2E) ≪1, the required focal length (f) of the light receiving optical system 2 is substantially f / {O 2. D / (O 2 −O 1 )} = R / (2E), and f = 103 mm. On the other hand, in order to maintain the light receiving sensitivity of the light receiving optical system 2, the aperture of the light receiving optical system 2 cannot be made too small. Here, assuming that the opening of the light receiving optical system 2 is 60 mm, which is the same as the opening (O 1 ) of the light projecting optical system 1,
The F value required for the light receiving optical system 2 is 1.7.

【0010】このように、指向性を広げながら受光光の
エネルギを確保するためには、F値の小さなレンズが必
要になる。更に、指向性を広げたり、より多くの光エネ
ルギを確保しようとF値を更に小さくしたりすると、球
面収差の悪化が無視できなくなる。この球面収差の悪化
を抑制するためには、レンズ枚数の増加を招いたり、高
価な非球面レンズを使用せざるを得なくなり、結果とし
て装置が大型化したり、製造コストが高くなるという問
題点が生ずる。
As described above, in order to secure the energy of the received light while expanding the directivity, a lens having a small F value is required. Further, when the directivity is widened or the F-number is further reduced to secure more light energy, deterioration of spherical aberration cannot be ignored. In order to suppress the deterioration of the spherical aberration, the number of lenses must be increased, or an expensive aspherical lens must be used. As a result, the apparatus becomes large and the manufacturing cost increases. Occurs.

【0011】本発明の目的は、上述の問題点を解消し、
受光光学系の大型化と高コスト化を抑制して受光光学系
の指向性を向上させ得る光空間伝送装置を提供すること
にある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide an optical space transmission device capable of improving the directivity of a light receiving optical system while suppressing an increase in size and cost of the light receiving optical system.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る光空間伝送装置は、信号発生部と投光光
学系から成る投光手段から光ビームを発し、受光光学系
と信号検出部から成る受光手段で受光して光通信を行う
光空間伝送装置において、前記信号検出部を構成する受
光素子を、前記投光光学系と前記受光光学系が光通信を
行える範囲内で最も離れて位置するときの前記受光光学
系の焦点位置からデフォーカスさせたことを特徴とす
る。
According to the present invention, there is provided a space optical transmission apparatus according to the present invention, which emits a light beam from a light projecting means comprising a signal generating section and a light projecting optical system, and transmits a signal to a light receiving optical system. In an optical space transmission device that performs optical communication by receiving light with a light receiving unit including a detecting unit, the light receiving element that constitutes the signal detecting unit is set to the maximum within a range where the light projecting optical system and the light receiving optical system can perform optical communication. It is characterized in that defocusing is performed from the focal position of the light receiving optical system when it is located at a distance.

【0013】[0013]

【発明の実施の形態】本発明を図1〜図5に図示の実施
の形態に基づいて詳細に説明する。図1は第1の実施の
形態の構成を説明するための模式図であり、光空間伝送
装置は図示しない信号発生部と投光光学系11を含む投
光手段と、受光光学系12と受光素子13を含む受光手
段とから構成されている。図2は受光素子13の位置を
説明するための受光光学系12の模式図であり、受光素
子13の有効受光部13’は光軸上に配置されている。
投光光学系11から発した光ビームLa〜Lcのうち
で、実線で示す光ビームLaの中心は光軸上に入射し、
1点鎖線で示す光ビームLbの中心は有効受光部13’
のほぼ端部に入射し、2点鎖線で示す光ビームLcの中
心は有効受光部13’を完全に外れて通過している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is a schematic diagram for explaining the configuration of the first embodiment. An optical space transmission apparatus includes a light emitting unit including a signal generating unit (not shown) and a light emitting optical system 11, a light receiving optical system 12, and a light receiving unit 12. And light receiving means including the element 13. FIG. 2 is a schematic diagram of the light receiving optical system 12 for explaining the position of the light receiving element 13, and the effective light receiving section 13 'of the light receiving element 13 is arranged on the optical axis.
Among the light beams La to Lc emitted from the light projecting optical system 11, the center of the light beam La indicated by a solid line is incident on the optical axis,
The center of the light beam Lb indicated by the dashed line is the effective light receiving portion 13 '.
And the center of the light beam Lc indicated by the two-dot chain line completely passes through the effective light receiving portion 13 '.

【0014】ここで、受光素子13の有効受光部13’
は、従来では光ビームLa〜Lcが受光光学系12で収
斂したほぼ焦点位置に配置されていたが、この第1の実
施の形態では前記焦点位置よりも受光光学系12側にデ
フォーカスされた位置に配置されている。このとき、投
光光学系11は製品仕様において受光光学系12から最
も離れた位置に設置されている。また、デフォーカス位
置は投光光学系11から発した光ビームLa〜Lcが受
光光学系12で収斂したときに、光ビームLa〜Lcの
スポット径が有効受光部13’の径の75%となる位置
とされている。
Here, the effective light receiving portion 13 'of the light receiving element 13
In the prior art, the light beams La to Lc are arranged at a substantially focal position where the light beams converge in the light receiving optical system 12, but in the first embodiment, the light beams La to Lc are defocused toward the light receiving optical system 12 from the focal position. Is located in the position. At this time, the light projecting optical system 11 is installed at a position farthest from the light receiving optical system 12 in the product specifications. When the light beams La to Lc emitted from the light projecting optical system 11 converge in the light receiving optical system 12, the defocus position is such that the spot diameter of the light beams La to Lc is 75% of the diameter of the effective light receiving unit 13 '. Position.

【0015】図3は光ビームLa〜Lcと有効受光部1
3’の位置関係の模式図であり、(a)は光ビームLaの
スポットの全部が有効受光部13’内に収まっているこ
とを示している。(b)は光ビームLbのスポットのほぼ
半分が有効受光部13’から外れ、取り込んだ光ビーム
Lbのほぼ半分が信号検出に使用し得る状態にあること
を示している。(c)は光ビームLcのスポットの中心が
有効受光部13’から外れているが、有効受光部13’
をデフォーカスした位置に配置しているので、スポット
の一部が有効受光部13’に重なっていることを示して
いる。
FIG. 3 shows the light beams La to Lc and the effective light receiving section 1.
It is a schematic diagram of the positional relationship of 3 ', and (a) shows that all of the spots of the light beam La fall within the effective light receiving section 13'. (b) shows that almost half of the spot of the light beam Lb has deviated from the effective light receiving portion 13 ', and almost half of the taken light beam Lb is ready for signal detection. In (c), the center of the spot of the light beam Lc is deviated from the effective light receiving portion 13 ', but the effective light receiving portion 13'
Is located at the defocused position, which indicates that a part of the spot overlaps with the effective light receiving unit 13 '.

【0016】図4は図3の光ビームLa〜Lcと有効受
光部13’の位置関係のグラフ図であり、横軸は光ビー
ムLa〜Lcのスポットの中心と受光光学系12の光軸
との距離つまり像高hと有効受光部13’の半径との比
率としている。そして、縦軸は光ビームLa〜Lcが有
効受光部13’に重なっている部分の比率つまり出力比
とし、図3(a)に対応する点Aの位置を100%とし、
図3(b)に対応する点Bの前後の位置を100〜5%と
し、図3(c)に対応する点Cの位置を5%としている。
FIG. 4 is a graph showing the positional relationship between the light beams La to Lc of FIG. 3 and the effective light receiving section 13 '. The horizontal axis represents the center of the spot of the light beams La to Lc and the optical axis of the light receiving optical system 12. , Ie, the ratio between the image height h and the radius of the effective light receiving portion 13 '. The vertical axis represents the ratio of the portion where the light beams La to Lc overlap the effective light receiving portion 13 ', that is, the output ratio. The position of the point A corresponding to FIG.
The position before and after the point B corresponding to FIG. 3B is 100 to 5%, and the position of the point C corresponding to FIG. 3C is 5%.

【0017】図3(a)に示すように、光ビームLaのス
ポットの全部が有効受光部13’内に完全に収まってい
ると100%の受信レベルが得られ、像高hが大きくな
って光ビームLaのスポットの一部が有効受光部13’
から外れ始めるまで、そのレベルを維持する。次に、図
3(b)に示すように像高hがより大きくなって光ビーム
Lbのスポットの一部が有効受光部13’から外れ始め
ると、出力比は漸次に減少して50%程度となる。そし
て、図3(c)に示すように像高hが更に大きくなって光
ビームLcのスポットの中心が有効受光部13’のほぼ
端部に位置すると、出力比は5%程度となってその後に
0%になる。
As shown in FIG. 3A, when all the spots of the light beam La are completely contained in the effective light receiving portion 13 ', a reception level of 100% is obtained, and the image height h becomes large. Part of the spot of the light beam La is used as the effective light receiving portion 13 '.
Maintain that level until you start to fall off. Next, as shown in FIG. 3B, when the image height h becomes larger and a part of the spot of the light beam Lb starts to deviate from the effective light receiving portion 13 ', the output ratio gradually decreases to about 50%. Becomes Then, as shown in FIG. 3 (c), when the image height h further increases and the center of the spot of the light beam Lc is located substantially at the end of the effective light receiving portion 13 ', the output ratio becomes about 5% and thereafter. To 0%.

【0018】この第1の実施の形態では、受光素子13
を、最遠方に位置する投光光学系11から発した光ビー
ムLa〜Lcが受光光学系12で収斂したときに、光ビ
ームLa〜Lcのスポット径が最小となる位置、つまり
焦点位置から受光光学系12側に近付いた位置に設定し
た。投光光学系11には光ビームLa〜Lcの指向性を
変化させる機構を設けていないので、投光光学系11と
受光光学系12を近接させて通信距離を短くしても、光
ビームLa〜Lcのスポット径が受光素子13上で最小
になることはない。逆に、受光素子13上の光ビームL
a〜Lcのスポット径は単調に増加するので、距離の自
乗に比例して増大するそのエネルギ量を補正することが
できる。
In the first embodiment, the light receiving element 13
When the light beams La to Lc emitted from the light projecting optical system 11 located at the farthest position converge in the light receiving optical system 12, light is received from the position where the spot diameter of the light beams La to Lc is minimized, that is, from the focal position. It was set at a position close to the optical system 12 side. Since the light projecting optical system 11 is not provided with a mechanism for changing the directivity of the light beams La to Lc, even if the light projecting optical system 11 and the light receiving optical system 12 are brought close to each other to shorten the communication distance, the light beam La The spot diameter of Lc does not become minimum on the light receiving element 13. Conversely, the light beam L on the light receiving element 13
Since the spot diameters a to Lc increase monotonically, the energy amount that increases in proportion to the square of the distance can be corrected.

【0019】これに対し、通信距離を規定通りに維持す
る場合には、従来の受信範囲をカバーすべき光ビームL
a〜Lbの光エネルギ量は大きく変化していないので、
回路系への負担も増やすことはない。また、受光光学系
12への負担、例えばレンズの枚数を増やすことなく、
図3(c)に示す範囲まで受光光学系12の指向性を広げ
ることができる。仮に、回路系が出力比5%までの低下
が許容できるものならば、受光光学系12の指向性を像
高hで換算した割合で従来の1.6倍程度に広げること
ができる。
On the other hand, when the communication distance is maintained as specified, the light beam L that should cover the conventional reception range is used.
Since the light energy amounts of a to Lb do not change significantly,
The burden on the circuit system is not increased. Also, without increasing the load on the light receiving optical system 12, for example, increasing the number of lenses,
The directivity of the light receiving optical system 12 can be extended to the range shown in FIG. If the circuit system can tolerate a reduction of the output ratio to 5%, the directivity of the light receiving optical system 12 can be increased to about 1.6 times the conventional value in terms of the image height h.

【0020】図5は第2の実施の形態を説明するための
図4に対応するグラフ図であり、光ビームLa〜Lcの
スポット径が有効受光部13’の径の20%となる位置
に受光素子13をデフォーカスさせている。この第2の
実施の形態では、出力比を第1の実施の形態と同様な5
%まで許容した場合に、受光光学系12の指向性を第1
の実施の形態と同様な換算で1.15倍程度に広げるこ
とができる。
FIG. 5 is a graph corresponding to FIG. 4 for explaining the second embodiment, and is located at a position where the spot diameter of the light beams La to Lc is 20% of the diameter of the effective light receiving portion 13 '. The light receiving element 13 is defocused. In the second embodiment, the output ratio is set to 5 as in the first embodiment.
%, The directivity of the light receiving optical system 12 is changed to the first.
It can be expanded to about 1.15 times in the same conversion as in the embodiment.

【0021】なお、光ビームLa〜Lcのスポット径が
有効受光部13’の20%以下となる位置、つまりスポ
ットの大きさが未だ極めて小さい位置に受光素子13を
デフォーカスさせた場合には、従来の受光素子を焦点位
置に配置する方法における製造上の誤差があった場合と
何ら変わらなくなってしまうので、受光素子13は光ビ
ームLa〜Lcのスポット径が有効受光部13’の径の
20%以上となる位置にデフォーカスさせる必要があ
る。また、デフォーカス時のスポット径が受光素子13
よりも大きくなることは、光ビームLaの位置に置いて
も、得られるエネルギが従来よりも低下してしまうの
で、際限なくデフォーカスさせればよいと云うものでも
ない。
When the light receiving element 13 is defocused at a position where the spot diameter of the light beams La to Lc is 20% or less of the effective light receiving portion 13 ', that is, at a position where the spot size is still extremely small, Since there is no difference from the case where there is a manufacturing error in the conventional method of arranging the light receiving element at the focal position, the light receiving element 13 has a spot diameter of the light beams La to Lc of 20 mm of the diameter of the effective light receiving section 13 '. % Must be defocused. The spot diameter at the time of defocusing is
If it is larger than that, even if it is placed at the position of the light beam La, the obtained energy will be lower than in the past, so it does not mean that defocusing should be performed without limit.

【0022】[0022]

【発明の効果】以上説明したように本発明に係る光空間
伝送装置は、本信号検出部を構成する受光素子を、投光
光学系と受光光学系が光通信を行える範囲内で最も離れ
て位置するときの受光光学系の焦点位置からデフォーカ
スさせたので、通信距離を短くしても光ビームのスポッ
ト径が受光素子上で最小になることはなく、逆に受光素
子上の光ビームのスポット径は単調に増加するため、距
離の自乗に比例して増大する光ビームのエネルギ量を補
正することができる。また、通信距離を規定通りに維持
する場合には、従来の受信範囲をカバーする光ビームの
エネルギ量の変化は少ないので、回路系の負担を増やす
ことなく、受光光学系への負担、例えばレンズの枚数を
増加させる必要もない。そのため、受光光学系の大型化
や高コスト化を抑制して受光光学系の指向性を向上させ
ることが可能となる。
As described above, in the optical space transmission apparatus according to the present invention, the light receiving element constituting the present signal detecting section is located at the most distant position within a range where the light projecting optical system and the light receiving optical system can perform optical communication. Since the focus is defocused from the focus position of the light receiving optical system when it is located, the spot diameter of the light beam does not become the minimum on the light receiving element even if the communication distance is shortened. Since the spot diameter increases monotonically, the energy amount of the light beam that increases in proportion to the square of the distance can be corrected. Further, when the communication distance is maintained as specified, the change in the energy amount of the light beam covering the conventional reception range is small, so that the load on the light receiving optical system, such as a lens, is not increased without increasing the load on the circuit system. It is not necessary to increase the number of sheets. For this reason, it is possible to improve the directivity of the light receiving optical system while suppressing an increase in the size and cost of the light receiving optical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態の構成を説明するための模式
図である。
FIG. 1 is a schematic diagram for explaining a configuration of a first embodiment.

【図2】受光素子の位置を説明するための受光光学系の
模式図である。
FIG. 2 is a schematic diagram of a light receiving optical system for explaining a position of a light receiving element.

【図3】光ビームのスポットと受光素子の有効受光部と
の位置関係の模式図である。
FIG. 3 is a schematic diagram of a positional relationship between a light beam spot and an effective light receiving section of a light receiving element.

【図4】像高/有効受光部半径と出力比のグラフ図であ
る。
FIG. 4 is a graph illustrating an image height / effective light receiving unit radius and an output ratio.

【図5】第2の実施の形態を説明するための図4に対応
するグラフ図である。
FIG. 5 is a graph for explaining the second embodiment and corresponding to FIG. 4;

【図6】従来例の模式図である。FIG. 6 is a schematic diagram of a conventional example.

【図7】従来例の受光素子の位置を説明するための受光
光学系の模式図である。
FIG. 7 is a schematic diagram of a light receiving optical system for explaining a position of a light receiving element in a conventional example.

【図8】従来例の光ビームのスポットと受光素子の有効
受光部の関係の模式図である。
FIG. 8 is a schematic diagram showing a relationship between a light beam spot and an effective light receiving section of a light receiving element in a conventional example.

【図9】従来例の像高/有効受光部半径と出力比のグラ
フ図である。
FIG. 9 is a graph showing the relationship between image height / effective light receiving unit radius and output ratio in a conventional example.

【図10】従来例の指向方向を変化させた場合の模式図
である。
FIG. 10 is a schematic diagram of a conventional example in which the directional direction is changed.

【図11】従来例の指向性を広げた場合の模式図であ
る。
FIG. 11 is a schematic diagram of a conventional example in which the directivity is expanded.

【符号の説明】[Explanation of symbols]

11 投光光学系 12 受光光学系 13 受光素子 13’ 有効受光部 La〜Lc 光ビーム DESCRIPTION OF SYMBOLS 11 Projection optical system 12 Light receiving optical system 13 Light receiving element 13 'Effective light receiving section La-Lc Light beam

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 信号発生部と投光光学系から成る投光手
段から光ビームを発し、受光光学系と信号検出部から成
る受光手段で受光して光通信を行う光空間伝送装置にお
いて、前記信号検出部を構成する受光素子を、前記投光
光学系と前記受光光学系が光通信を行える範囲内で最も
離れて位置するときの前記受光光学系の焦点位置からデ
フォーカスさせたことを特徴とする光空間伝送装置。
1. An optical space transmission apparatus for performing optical communication by emitting a light beam from a light projecting means comprising a signal generating unit and a light projecting optical system and receiving light by a light receiving means comprising a light receiving optical system and a signal detecting unit. A light receiving element constituting a signal detection unit is defocused from a focal position of the light receiving optical system when the light projecting optical system and the light receiving optical system are located farthest apart in a range where optical communication can be performed. Optical space transmission device.
【請求項2】 前記受光素子は前記受光光学系に近い方
向にデフォーカスさせたことを特徴とする請求項1に記
載の光空間伝送装置。
2. The optical space transmission apparatus according to claim 1, wherein the light receiving element is defocused in a direction close to the light receiving optical system.
【請求項3】 前記受光素子は前記受光光学系で収斂し
た光ビームのスポット径が前記受光素子の有効受光部の
径の略20%以上となる位置にデフォーカスさせたこと
を特徴とする請求項2に記載の光空間伝送装置。
3. The light receiving element is defocused to a position where a spot diameter of a light beam converged by the light receiving optical system is approximately 20% or more of a diameter of an effective light receiving section of the light receiving element. Item 3. An optical space transmission device according to item 2.
【請求項4】 前記受光素子は前記受光光学系で収斂し
た光ビームのスポット径が前記受光素子の有効受光部の
径の略75%となる位置にデフォーカスさせたことを特
徴とする請求項2に記載の光空間伝送装置。
4. The light receiving device according to claim 1, wherein a spot diameter of the light beam converged by the light receiving optical system is defocused to a position where the spot diameter is approximately 75% of a diameter of an effective light receiving portion of the light receiving device. 3. The optical space transmission device according to 2.
JP2000310918A 2000-10-11 2000-10-11 Optical space transmission equipment Expired - Fee Related JP4590083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310918A JP4590083B2 (en) 2000-10-11 2000-10-11 Optical space transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310918A JP4590083B2 (en) 2000-10-11 2000-10-11 Optical space transmission equipment

Publications (3)

Publication Number Publication Date
JP2002118516A true JP2002118516A (en) 2002-04-19
JP2002118516A5 JP2002118516A5 (en) 2007-11-22
JP4590083B2 JP4590083B2 (en) 2010-12-01

Family

ID=18790780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310918A Expired - Fee Related JP4590083B2 (en) 2000-10-11 2000-10-11 Optical space transmission equipment

Country Status (1)

Country Link
JP (1) JP4590083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device
JPWO2014122909A1 (en) * 2013-02-06 2017-01-26 日本電気株式会社 Light receiving device, optical space communication device, and optical space communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596704A (en) * 1982-07-02 1984-01-13 Hitachi Ltd Intervehicle information transmission line coupling device
JPS60101852U (en) * 1983-12-16 1985-07-11 日新工機株式会社 optical signal transceiver
JP2001188149A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communicating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596704A (en) * 1982-07-02 1984-01-13 Hitachi Ltd Intervehicle information transmission line coupling device
JPS60101852U (en) * 1983-12-16 1985-07-11 日新工機株式会社 optical signal transceiver
JP2001188149A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communicating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366420B2 (en) 2003-03-27 2008-04-29 Canon Kabushiki Kaisha Optical transmission device
JPWO2014122909A1 (en) * 2013-02-06 2017-01-26 日本電気株式会社 Light receiving device, optical space communication device, and optical space communication method

Also Published As

Publication number Publication date
JP4590083B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US6166842A (en) Scanning image forming lens and optical scanning apparatus
US10009535B2 (en) Lens driving device, camera, and camera-equipped electronic device
JP2015153889A (en) laser combining optical device
JP2009014905A (en) Projection lens, image projector and optical instrument
JP2002118516A (en) Optical space transmission device
JP2005175842A (en) Photodetector and optical space transmission apparatus
US6081364A (en) Laser light source for emitting a plurality of laser beams, method adjusting focusing of the laser light source, and scanning optical system
JP2001203641A (en) Spatial light transmission unit
JP7124712B2 (en) Optical communication device
JP2010169424A (en) Apparatus for evaluating optical performance
US20110304838A1 (en) Exposure system and adjustment method thereof
JP2959830B2 (en) Optical scanning device
JP3118849B2 (en) Focus detection device
JPH07287165A (en) Optical system
US6570696B2 (en) Optical system for scanning and optical scanning apparatus
JP2679990B2 (en) Semiconductor laser optical device
KR102619111B1 (en) Optical device and Flange back adjusting method using the same
JPH11245067A (en) Laser processing device
KR20040039913A (en) A moving-camera having function for position correction of lens and control method thereof
JPH04146410A (en) Scanning optical system
JP2001142015A (en) Multibeam light source device
JP4543379B2 (en) Receiving apparatus and method for correcting optical axis deviation of receiving apparatus
JP2004303876A (en) Alignment device of lens and laser chip in laser diode
JP2018056598A (en) Laser combining optical device
JPS61107315A (en) Optical scanner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees