JP2002118371A - Connecting structure of fiber-reinforced plastic mold - Google Patents

Connecting structure of fiber-reinforced plastic mold

Info

Publication number
JP2002118371A
JP2002118371A JP2000310437A JP2000310437A JP2002118371A JP 2002118371 A JP2002118371 A JP 2002118371A JP 2000310437 A JP2000310437 A JP 2000310437A JP 2000310437 A JP2000310437 A JP 2000310437A JP 2002118371 A JP2002118371 A JP 2002118371A
Authority
JP
Japan
Prior art keywords
fiber
screw
molded product
reinforced plastic
boss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000310437A
Other languages
Japanese (ja)
Inventor
英樹 ▲ぬで▼島
Hideki Nudeshima
Hideaki Tanisugi
英昭 谷杉
Motonori Hiratsuka
元紀 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000310437A priority Critical patent/JP2002118371A/en
Publication of JP2002118371A publication Critical patent/JP2002118371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connection Of Plates (AREA)
  • Casings For Electric Apparatus (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a connecting structure of a fiber-reinforced plastic mold which strongly holds connection to other part through a boss molded integrally with the mold while continuation between connected parts is allowed, related to a fiber-reinforced plastic mold excellent in a mechanical characteristics such as strength and rigidity and electromagnetic wave shielding characteristics. SOLUTION: The connecting structure is provided for the fiber-reinforced plastic mold where a thermo-plastic resin contains a reinforced fiber comprising carbon fiber. Here, the following conditions are provided: [A] the weight- averaged fiber length of carbon fiber contained in the mold is 0.1-1.0 mm; [B] the wall thickness of the mold is 0.6-5.0 mm; [C] the volume-specific resistance of the mold is 102 Ω.cm or less while the surface resistivity is 104 Ω/sq or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばノート型パ
ーソナルコンピュータ、デジタルカメラ、あるいは携帯
電話等、電子機器などを内部に収容する繊維強化プラス
チック製筐体成形品において、セルフタップねじ等のね
じ部材を用いて、2つ以上の筐体部材同士、または筐体
部材と筐体に外装および/または内装される他の部材と
の締結を可能とする、繊維強化プラスチック製成形品の
締結構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded member made of fiber reinforced plastic housing for accommodating an electronic device such as a notebook personal computer, a digital camera or a mobile phone, for example. The present invention relates to a fastening structure of a fiber-reinforced plastic molded product, which enables two or more housing members to be connected to each other, or a housing member and another member to be externally and / or internally provided in the housing.

【0002】[0002]

【従来の技術】周知のようにノート型パーソナルコンピ
ュータ等の電子機器を内部に収容する筐体材料として、
繊維強化プラスチックが広く用いられてきている。繊維
強化プラスチックは、射出成形など生産性や設計自由度
に優れた成形法が可能で、しかも剛性や強度など機械特
性にも優れた成形品が得られる利点がある。
2. Description of the Related Art As is well known, as a housing material for housing electronic equipment such as a notebook personal computer,
Fiber reinforced plastics have been widely used. The fiber reinforced plastic has an advantage that a molding method excellent in productivity and design freedom such as injection molding can be performed, and a molded product excellent in mechanical properties such as rigidity and strength can be obtained.

【0003】特に強化繊維として炭素繊維を使用した場
合には、剛性や強度がさらに向上することに加えて、炭
素繊維が導電性材料であるために成形品としても導電特
性を示し、高い電磁波遮蔽特性を発揮する。また強化繊
維として長繊維タイプの炭素繊維を使用した場合には、
従来の短繊維材料を使用する場合と比較してその性能は
さらに向上する。
[0003] In particular, when carbon fiber is used as a reinforcing fiber, rigidity and strength are further improved. In addition, since carbon fiber is a conductive material, the carbon fiber exhibits a conductive property as a molded product, and a high electromagnetic wave shielding property is obtained. Demonstrate the characteristics. When using long fiber type carbon fiber as the reinforcing fiber,
Its performance is further improved as compared with the case where a conventional short fiber material is used.

【0004】ところで、ノート型パーソナルコンピュー
タ等の電子機器を内部に収容するプラスチック製筐体に
おいては、2つ以上の筐体部材同士の締結、および筐体
と筐体に内装・外装される部材との締結は、製品の組立
時や使用時の負荷にも耐え得るように強固に締結され、
かつ長時間安定的に保持される必要がある。
[0004] In a plastic housing for housing an electronic device such as a notebook personal computer, two or more housing members are fastened to each other, and the housing and members provided inside and outside the housing. Is firmly fastened to withstand loads during product assembly and use,
In addition, it is necessary to stably hold for a long time.

【0005】図2は従来のプラスチック製電子機器筐体
の締結構造を示す斜視図である。図2において、1はプ
ラスチック製筐体成形品を示し、該筐体に一体成形され
た円筒状のボス2の下穴に、内径にめねじを備えた金属
ナット3を熱圧入し、締結部材4を介してめねじに金属
製のおねじ5を締め付けることによって強固に締結・保
持している。
FIG. 2 is a perspective view showing a fastening structure of a conventional plastic electronic device housing. In FIG. 2, reference numeral 1 denotes a molded plastic casing, into which a metal nut 3 having an internal thread is internally press-fitted into a lower hole of a cylindrical boss 2 integrally formed with the casing, and a fastening member is provided. By fastening a metal external thread 5 to the internal thread via the female thread 4, it is firmly fastened and held.

【0006】さらに、この金属ナットの圧入方式の締結
構造によれば、筐体成形品が炭素繊維強化プラスチック
や金属フィラー含有プラスチックのような導電材料の場
合には、以下の経路により筐体成形品と、導電性締結部
材との電気的な導通が可能となり、締結する部材同士を
等電位とすることができ、電磁波遮蔽性および静電気非
帯電性に寄与する。
Further, according to the fastening structure of the metal nut press-fitting method, when the casing molded product is a conductive material such as carbon fiber reinforced plastic or plastic containing metal filler, the casing molded product is formed by the following route. And electrically conductive with the conductive fastening member, and the members to be fastened can be made to have the same potential, which contributes to the electromagnetic wave shielding property and the static electricity non-charging property.

【0007】・導電性筐体→一体成形ボス→金属ナット
→金属製おねじ→締結部材このように、金属ナット圧入
方式の締結構造では、2つ以上の部材を強固に締結・保
持し、かつ導電性部材同士の導通を可能とする性能は高
い。
Conductive housing → Integrally formed boss → Metal nut → Metal screw → Tightening member As described above, in the metal nut press-fitting type fastening structure, two or more members are firmly fastened and held, and The performance that enables conduction between the conductive members is high.

【0008】しかしながら、最近の電子機器製品は薄型
化、軽量化が急速に進んでおり、金属ナット圧入方式で
は、圧入するボスの外径を大径化する必要があり、筐体
内部の電子機器の収容スペースを圧迫している。また、
製品重量削減のために金属ナット自身の重量削減も求め
られている。
However, recent electronic equipment products are rapidly becoming thinner and lighter, and in the metal nut press-fitting method, it is necessary to increase the outer diameter of the boss to be press-fitted. Is squeezing the containment space. Also,
In order to reduce product weight, it is also required to reduce the weight of the metal nut itself.

【0009】コスト面でも、金属ナット圧入方式で締結
するためには、締結箇所と同数以上の金属ナットが必要
であり、かつ金属ナットの熱圧入工程も必要となるた
め、締結箇所が多い場合には筐体製造コストの高騰の原
因となる。
In terms of cost, in order to fasten by the metal nut press-fitting method, the same number of metal nuts as the number of fastening points are required, and a heat press-in step of the metal nut is also required. Causes a rise in housing manufacturing costs.

【0010】また、電子機器製品として使用後に筐体材
料をリサイクル使用する場合には、製品を各部品に分解
し、その中から筐体を回収の上、粉砕し、再コンパウン
ドして再生材料として活用する。しかし、筐体のボスに
金属ナットが圧入されたままであると、そのまま粉砕・
再コンパウンドすることができないために、粉砕前に金
属ナットを除去する必要がある。この金属ナットの除去
工程には手間と費用がかかり好ましくない。
[0010] When the casing material is recycled after use as an electronic device product, the product is disassembled into individual parts, the casing is collected from the components, crushed, re-compounded, and recycled. use. However, if the metal nut is still pressed into the boss of the housing,
Metal nuts must be removed before grinding because they cannot be recompounded. This step of removing the metal nut is troublesome and expensive, and is not preferable.

【0011】そこで、現在では金属ナット圧入方式に変
わり、セルフタップ方式が用いられ始めている。図3は
一般的なセルフタップ方式によるプラスチック製電子機
器筐体の締結構造を示す斜視図である。図において、セ
ルフタップ方式は、外径におねじを備えたセルフタップ
ねじ6を直接ボス2の下穴に締め込むことによって、ボ
ス2の下穴にめねじが同時に形成され、別途金属ナット
を挿入する必要なしに、2つ以上の筐体部材同士の締
結、および筐体と筐体に内装・外装される部材との締結
を可能としている。この方法により金具圧入方法の際の
軽量化問題、コスト問題とリサイクル問題を解決してい
る。
Therefore, at present, the self-tapping method has begun to be used instead of the metal nut press-fitting method. FIG. 3 is a perspective view showing a fastening structure of a plastic electronic device housing by a general self-tap method. In the figure, in the self-tapping method, a female screw is simultaneously formed in a lower hole of the boss 2 by directly screwing a self-tapping screw 6 having a screw on an outer diameter into a lower hole of the boss 2, and a metal nut is separately provided. It is possible to fasten two or more housing members, and to fasten the housing to members that are to be housed or housed inside the housing without the need for insertion. This method solves the problem of weight reduction, cost, and recycling in the metal fitting press-fitting method.

【0012】しかしながら、この方法ではおねじを保持
する部材がプラスチックであることに起因し、金属ナッ
ト圧入方式と比較して製品の組立時・使用時に要求され
る機械的な締結性能を満足することが難しい。この締結
性能とは、一般的に以下のような性能が挙げられる。
However, in this method, since the member holding the male screw is made of plastic, the mechanical fastening performance required at the time of assembling and using the product is satisfied as compared with the metal nut press-fitting method. Is difficult. The fastening performance generally includes the following performance.

【0013】 ・締め付けトルク : 20N・cm以下 ・破壊トルク : 30N・cm以上 ・戻し/設定締め付けトルク比 : トルク比0.5以上 ・引き抜き荷重 : 500N以上 ・締め付け/戻し繰り返し耐久回数 : 繰り返し耐久10回以上 締め付けトルクとは、ねじを締め付けるために必要な最
低限のトルクであり、締め付けトルクが小さい程、小型
のドライバーで簡易に締め付けが可能となる。破壊トル
クとは、ねじを連続的に締め続けたときに、ボスまたは
ねじ山が破壊しねじとして機能しなくなるときのトルク
である。破壊トルクが大きい程、組立時の過大締め付け
トルクによるボスの破壊を防止することができる。戻し
/設定締め付けトルクとは、締め付けトルクより大きく
破壊トルクより小さな設定締め付けトルクで締め付けた
後、常温で24時間後にねじを緩む方向に戻した際に残
存しているトルクである戻しトルクと、設定締め付けト
ルクとの比である。戻し/締め付けトルク比が大きい
程、長時間強固な締結を保持できることになる。引き抜
き荷重とは、設定締め付けトルクで締め付け後に垂直方
向にねじを引き抜く際に必要な荷重である。引き抜き荷
重が大きいほど、締結後のねじまたはボスに加わる外力
を原因とした締結構造の破壊を防止できる。締め付け/
戻しの繰り返し耐久回数とは、設定締め付けトルクで連
続的な締め付け、戻しの繰り返しが締結構造が破壊する
までに何回可能であるかを表す耐久回数である。締め付
け/戻し繰り返し耐久回数が大きい程、組立工程や補修
時のねじ締め耐久力が向上する。
Tightening torque: 20 N · cm or less Breaking torque: 30 N · cm or more Return / set tightening torque ratio: Torque ratio 0.5 or more Pull-out load: 500 N or more The tightening torque is the minimum torque required to tighten the screw, and the smaller the tightening torque, the easier it is to tighten with a small screwdriver. Breaking torque is the torque when the boss or thread breaks and stops functioning as a screw when the screw is continuously tightened. The greater the breaking torque, the more the boss can be prevented from being broken due to excessive tightening torque during assembly. The return / set tightening torque is the return torque that is the torque remaining when the screw is returned to the loosening direction after 24 hours at room temperature after tightening with the set torque that is larger than the tightening torque and smaller than the breaking torque. This is the ratio with the tightening torque. The larger the return / tightening torque ratio, the longer the firm fastening can be maintained. The pull-out load is a load required to pull out the screw in the vertical direction after tightening with the set tightening torque. The larger the pulling load, the more the destruction of the fastening structure due to the external force applied to the screw or boss after fastening can be prevented. Tightening /
The number of repetition endurance times of repetition is the number of endurance times indicating how many times continuous repetition of tightening and reversion can be performed by the set tightening torque before the fastening structure is broken. The greater the number of repeated tightening / returning durability, the higher the screw tightening durability during the assembly process and repair.

【0014】このような締結性能向上のために、材料
的、構造的な改善の試みがなされている。例えば、特開
平10−265666号公報では材料的にセルフタップ
性を向上させる樹脂組成物について記載されている。こ
の樹脂組成物ではセルフタップ性は向上するものの、薄
肉、電磁波遮蔽性が要求される筐体用途としては、引張
強度、曲げ弾性率が十分でなく、かつ導電性が得られな
い。また、特開平10−93258号公報では、セルフ
タップ性を向上させる取り付け構造について記載されて
いる。この取り付け構造ではセルフタップ性は向上する
ものの、導電性が得られない。
[0014] In order to improve such fastening performance, attempts have been made to improve the material and structure. For example, JP-A-10-265666 describes a resin composition that improves the self-tapping property in terms of material. Although the self-tapping property of the resin composition is improved, the resin composition is insufficient in tensile strength and flexural modulus and does not have electrical conductivity as a housing application requiring thinness and electromagnetic wave shielding properties. Japanese Patent Application Laid-Open No. Hei 10-93258 describes a mounting structure for improving self-tapping properties. Although the self-tapping property is improved with this mounting structure, conductivity cannot be obtained.

【0015】[0015]

【発明が解決しようとする課題】本発明は、かかる従来
技術の欠点に鑑み、繊維強化プラスチック製の電子機器
筐体等に使用される成形品において、成形性を保持した
まま強度・剛性に優れ、かつ締結される部品間の導通を
可能として、電磁波遮蔽性に優れた繊維強化プラスチッ
ク製成形品の締結構造を提供せんとするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, the present invention provides a molded article used for a housing of an electronic device made of fiber-reinforced plastic, which has excellent strength and rigidity while maintaining moldability. It is another object of the present invention to provide a fastening structure of a fiber-reinforced plastic molded article having excellent electromagnetic wave shielding properties by enabling conduction between parts to be fastened.

【0016】[0016]

【課題を解決するための手段】本発明は、かかる課題を
解決するために、次の手段を採用するものである。すな
わち、本発明の繊維強化プラスチック製成形品の締結構
造は、合成樹脂に少なくとも炭素繊維からなる強化繊維
が含まれてなる繊維強化プラスチック製成形品の一部と
して一体成形されたボスの下穴にセルフタップねじを直
接締め込み他の部材との締結を可能とする構造であっ
て、次の[A]、[B]および[C]の条件を同時に備
えることを特徴とする。
The present invention employs the following means in order to solve the above problems. That is, the fastening structure of the fiber-reinforced plastic molded product of the present invention is formed in the pilot hole of the boss integrally molded as a part of the fiber-reinforced plastic molded product in which the synthetic resin contains at least the reinforcing fiber composed of carbon fiber. The self-tapping screw has a structure capable of directly tightening and fastening with another member, and is characterized by simultaneously satisfying the following conditions [A], [B] and [C].

【0017】[A]該成形品中に含まれる炭素繊維の重
量平均繊維長が0.1〜1.0mmの範囲内であるこ
と。
[A] The weight-average fiber length of the carbon fibers contained in the molded article is in the range of 0.1 to 1.0 mm.

【0018】[B]該成形品の肉厚が0.6〜5.0m
mの範囲内であること。
[B] The molded product has a thickness of 0.6 to 5.0 m.
m.

【0019】[C]該成形品の体積固有抵抗が102Ω
・cm以下の範囲内であり、かつ表面抵抗率が104Ω
/sq以下の範囲内であること。
[C] The molded product has a volume resistivity of 10 2 Ω.
・ Cm or less and the surface resistivity is 10 4 Ω
/ Sq or less.

【0020】また、該構成に加えてさらに、繊維強化プ
ラスチック製成形品の一部として一体成形されたボスの
下穴にセルフタップねじを直接締め込み他の部材との締
結を可能とする構造であって、次の[D]および[E]
の条件を同時に備えることを特徴とする。
Further, in addition to the above structure, a self-tapping screw is directly screwed into a pilot hole of a boss integrally molded as a part of a fiber-reinforced plastic molded product, so that it can be fastened to another member. Then, the following [D] and [E]
Characterized by the following conditions:

【0021】[D]該セルフタップねじを締め込むボス
の下穴径dとねじの呼び径aとの比d/aが0.70〜
0.95の範囲内であり、ねじ山先端がボスのコア層に
接触していること。
[D] The ratio d / a of the prepared hole diameter d of the boss for tightening the self-tapping screw to the nominal diameter a of the screw is 0.70 to 0.70.
0.95 and the tip of the thread is in contact with the core layer of the boss.

【0022】[E]該セルフタップねじを締め込むボス
の下穴の軸方向にセルフタップねじが接触しているねじ
込み深さLと、ねじの呼び径aとの比L/aが1.0〜
10の範囲内であること。
[E] The ratio L / a of the screwing depth L at which the self-tapping screw is in contact in the axial direction of the prepared hole of the boss for tightening the self-tapping screw to the nominal diameter a of the screw is 1.0. ~
Within the range of 10.

【0023】また、該セルフタップねじを締め込むボス
の外径Dとねじの呼び径aとの比D/aが1.3〜5.
0の範囲内であることを特徴とする。また、成形品に対
する炭素繊維の含有率が5〜40重量%の範囲内である
ことを特徴とする。また、セルフタップねじの体積固有
抵抗が1Ω・cm以下の範囲内であり、かつ表面抵抗率
が102Ω/sq以下の範囲内であることを特徴とす
る。また、成形品が繊維強化熱可塑性樹脂からなること
を特徴とする。また、該セルフタップねじを締め込むボ
スの下穴先端部に面取りまたはザグリ形状を持つことを
特徴とする。さらに、成形品が電子機器を内部に収容す
ることを特徴とする。
The ratio D / a between the outer diameter D of the boss for tightening the self-tapping screw and the nominal diameter a of the screw is 1.3 to 5.
It is characterized by being within the range of 0. Further, the carbon fiber content of the molded article is in the range of 5 to 40% by weight. The self-tapping screw is characterized in that the volume specific resistance is within a range of 1 Ω · cm or less and the surface resistivity is within a range of 10 2 Ω / sq or less. Further, the molded article is made of a fiber-reinforced thermoplastic resin. Also, the boss for tightening the self-tapping screw has a chamfered or counterbored shape at the tip of the prepared hole. Further, the molded article houses the electronic device inside.

【0024】[0024]

【発明の実施の形態】以下、本発明の好ましい実施態様
を実施例の図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0025】図1は、本発明にかかる繊維強化プラスチ
ック製成形品の締結構造の断面図であり、図のものは一
体成形されたボス7を含む繊維強化プラスチック製成形
品20とセルフタップねじ21と締結部材22とからな
る。
FIG. 1 is a sectional view of a fastening structure for a fiber-reinforced plastic molded product according to the present invention. FIG. 1 shows a fiber-reinforced plastic molded product 20 including a boss 7 integrally molded and a self-tapping screw 21. And a fastening member 22.

【0026】繊維強化プラスチック製成形品20は、強
化繊維8が高密度で配向され、高強度かつ高弾性のコア
層9と、コア層9に比べて強化繊維8に対する樹脂成分
の密度が高く、外観面となるスキン層10とで構成さ
れ、コア層9の両面にスキン層10がサンドイッチ状に
積層されている。コア層9とスキン層10は、いずれも
マトリクス樹脂に炭素繊維からなる強化繊維が含まれた
ものである。
The fiber-reinforced plastic molded product 20 has a high-strength and high-elasticity core layer 9 in which the reinforcing fibers 8 are oriented at a high density, and a resin component density with respect to the reinforcing fibers 8 higher than that of the core layer 9. The core layer 9 has a skin layer 10 on both sides of the core layer 9. Each of the core layer 9 and the skin layer 10 includes a matrix resin containing reinforcing fibers made of carbon fibers.

【0027】マトリクス樹脂としては、熱硬化性樹脂を
使用することもできるが、耐衝撃性に優れ、かつ、生産
性の高い射出成形が可能な熱可塑性樹脂がよい。例え
ば、ポリエチレンテレフタレートやポリブチレンテレフ
タレートや液晶ポリエステル等のポリエステル、ポリエ
チレンやポリプロピレンやポリブチレン等のポリオレフ
ィンの他、ポリオキシメチレン、ポリアミド、ポリカー
ボネイト、ポリスチレン、スチレン・アクリルニトリル
共重合体、アクリルニトリル・ブタジエンスチレン共重
合体、アクリレート・スチレン・アクリルニトリル共重
合体、ポリメチレンメタクリレート、ポリ塩化ビニル、
ポリフェニレンスルファイド、ポリフェニレンエーテ
ル、ポリイミド、ポリアミドイミド、ポリエーテルイミ
ド、ポリスルホン、ポリエーテルスルホン、ポリエーテ
ルケトン、ポリエーテルエーテルケトン等を使用するこ
とができる。また、これらの共重合体、変成体および2
種類以上のブレンドした樹脂も使用することができる。
また、更に耐衝撃性向上のために、上記樹脂にエラスト
マーもしくはゴム成分を添加した樹脂も使用することが
できる。
As the matrix resin, a thermosetting resin can be used, but a thermoplastic resin which has excellent impact resistance and can be injection-molded with high productivity is preferable. For example, in addition to polyesters such as polyethylene terephthalate, polybutylene terephthalate, and liquid crystal polyester, polyolefins such as polyethylene, polypropylene, and polybutylene, polyoxymethylene, polyamide, polycarbonate, polystyrene, styrene / acrylonitrile copolymer, and acrylonitrile / butadiene styrene copolymer Polymer, acrylate / styrene / acrylonitrile copolymer, polymethylene methacrylate, polyvinyl chloride,
Polyphenylene sulfide, polyphenylene ether, polyimide, polyamide imide, polyether imide, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, and the like can be used. Further, these copolymers, modified products and 2
More than one type of blended resin can also be used.
Further, in order to further improve impact resistance, a resin obtained by adding an elastomer or a rubber component to the above resin can be used.

【0028】また、強化繊維8としては、軽量、薄肉で
良好な機械特性、電気特性を得るためには少なくともそ
の一部が炭素繊維であることが好ましい。なお、炭素繊
維以外の繊維なども併用する場合には、例えば、ガラス
繊維やアラミド繊維などを用いることが良い。炭素繊維
としてはポリアクリルニトリル(PAN)系炭素繊維を
使用することもできるし、ピッチ系炭素繊維を使用する
こともできる。良好な機械的特性を得るために炭素繊維
単体の引張強度は2,000〜6,000MPaの範囲で
あり、引張弾性率は100〜800GPaの範囲である
ことが好ましい。
It is preferable that at least a part of the reinforcing fiber 8 is a carbon fiber in order to obtain a lightweight, thin, and good mechanical and electrical characteristics. When fibers other than carbon fibers are used in combination, for example, glass fibers or aramid fibers are preferably used. As the carbon fiber, a polyacrylonitrile (PAN) -based carbon fiber can be used, and a pitch-based carbon fiber can also be used. In order to obtain good mechanical properties, the tensile strength of the carbon fiber alone is preferably in the range of 2,000 to 6,000 MPa, and the tensile modulus is preferably in the range of 100 to 800 GPa.

【0029】成形品中の炭素繊維は、連続繊維でも不連
続繊維でも良いが、良好な機械的特性および電気的特性
を得るために、炭素繊維の重量平均繊維長が0.1〜
1.0mmの範囲であることが重要である。0.1mm
未満であると炭素繊維の優れた特性である高強度、高弾
性、高導電といった特性を十分に発揮することができな
くなり、1.0mmを越えると成形品中の強化繊維の分
散性が悪化し、成形品表面の外観面に繊維が露出し易く
なり好ましくない。本発明において、炭素繊維の重量平
均繊維長とは、炭素繊維を含む成形品を10×10mm
の大きさで切り出し、該切り出し片を溶剤に24時間浸
漬して樹脂成分を溶解させる。ここで用いる溶剤は樹脂
の耐溶剤性特性により、最適なものを適宜に選択する。
例えば、ナイロンの場合はギ酸を使用することができ、
あるいはポリカーボネイトの場合は、ジクロロメタンま
たはオルトクロロフェノールを使用することができる。
樹脂分を溶解させた成形品の該切り出し片は、強化繊維
を含む無機分が残存する。これを顕微鏡にて10〜10
0倍の倍率で観察し、視野内の炭素繊維の中で任意の4
00本について繊維長を測定する。個々の炭素繊維の繊
維長をLiとすると、成形品中の重量平均繊維長Lw
は、以下の式(1)により求められるものである。
The carbon fiber in the molded article may be a continuous fiber or a discontinuous fiber, but in order to obtain good mechanical and electrical properties, the carbon fiber has a weight average fiber length of 0.1 to 0.1.
It is important that the range is 1.0 mm. 0.1mm
If it is less than the above, it will not be possible to sufficiently exhibit the properties of carbon fiber such as high strength, high elasticity, and high conductivity. In addition, the fibers are likely to be exposed on the appearance of the surface of the molded product, which is not preferable. In the present invention, the weight average fiber length of the carbon fiber refers to a molded product containing the carbon fiber of 10 × 10 mm.
Then, the cut piece is immersed in a solvent for 24 hours to dissolve the resin component. An optimum solvent is appropriately selected depending on the solvent resistance of the resin.
For example, for nylon, formic acid can be used,
Alternatively, in the case of polycarbonate, dichloromethane or orthochlorophenol can be used.
In the cut piece of the molded product in which the resin component is dissolved, the inorganic component including the reinforcing fiber remains. This is observed with a microscope for 10 to 10
Observe at 0x magnification and select any 4 of the carbon fibers in the field of view.
The fiber length is measured for 00 pieces. Assuming that the fiber length of each carbon fiber is Li, the weight average fiber length Lw in the molded product
Is obtained by the following equation (1).

【0030】[0030]

【式1】 (Equation 1)

【0031】また、成形品の肉厚は0.6〜5.0mm
の範囲内であることが好ましい。肉厚が0.6mm未満
であると、繊維が成形品表面に露出しやすくなるととも
に、十分な剛性が得られないために構造体用途の場合、
脆弱な構造体となり不適である。肉厚が5.0mmより
厚い場合には、十分な強度・剛性が得られるが、樹脂の
収縮量差による成形品の表面の凹凸が顕著となり良好な
表面外観を得ることが困難になってしまう。なお、本発
明において、成形品の肉厚とは、リブ・ボスなどの構造
部分を除いた成形品の厚さをマイクロメータで測定した
結果を平均化した値である。
The thickness of the molded product is 0.6 to 5.0 mm.
Is preferably within the range. When the wall thickness is less than 0.6 mm, the fibers are easily exposed to the surface of the molded product, and sufficient rigidity cannot be obtained.
It becomes a fragile structure and is unsuitable. When the wall thickness is more than 5.0 mm, sufficient strength and rigidity can be obtained, but irregularities on the surface of the molded product due to the difference in the amount of resin shrinkage become remarkable, making it difficult to obtain a good surface appearance. . In the present invention, the thickness of the molded product is a value obtained by averaging the results of measuring the thickness of the molded product by a micrometer, excluding structural parts such as ribs and bosses.

【0032】また、成形品中の炭素繊維の含有率として
は、成形性を確保したまま成形品の機械特性、電気特性
を十分に発揮するためには5〜40重量%であることが
好ましい。最も好ましくは、10〜30重量%を含むこ
とである。特に10〜30重量%を含むと、射出成形時
の成形材料の流動性を損なうことなく、強化繊維を含ま
ない成形材料のように容易な射出成形を可能とし、良好
な表面外観を備えた成形品が得られる。さらに、10〜
30重量%を含むと、ガラス繊維のみで強化した場合と
比較して、成形品にて極めて優れた弾性率、耐衝撃強度
および導電性が得られる。含有率が5重量%未満の場合
には炭素繊維の優れた特性である弾性率、耐衝撃強度、
導電性を十分発揮することができない。また、含有率が
40重量%より多い場合には、繊維強化樹脂の流動性が
低下し成形性に悪影響を生じたり、成形品表面に強化繊
維の露出が目立つようになり、良好な外観の成形品を得
ることが難しくなる。ここで、成形品の炭素繊維の含有
率の測定方法は、JISK 7075に準拠する。
The carbon fiber content in the molded product is preferably 5 to 40% by weight in order to sufficiently exhibit the mechanical and electrical properties of the molded product while maintaining the moldability. Most preferably, it contains 10 to 30% by weight. In particular, when the content is 10 to 30% by weight, the injection molding can be performed as easily as the molding material containing no reinforcing fiber without impairing the fluidity of the molding material at the time of injection molding, and the molding having a good surface appearance can be obtained. Goods are obtained. In addition, 10
When the content is 30% by weight, extremely excellent elastic modulus, impact resistance and conductivity can be obtained in the molded product as compared with the case where the glass fiber is reinforced only. When the content is less than 5% by weight, the excellent properties of carbon fiber such as elastic modulus, impact strength,
The conductivity cannot be sufficiently exhibited. If the content is more than 40% by weight, the flowability of the fiber-reinforced resin is reduced, adversely affecting the moldability, and the exposure of the reinforcing fibers to the surface of the molded article becomes conspicuous, and the molding having a good appearance is obtained. It becomes difficult to obtain goods. Here, the method of measuring the carbon fiber content of the molded article conforms to JISK 7075.

【0033】また、成形品として高い電磁波遮蔽性を発
揮するためには、成形品の体積固有抵抗が102Ω・c
m以下の範囲内であり、かつ表面抵抗率が104Ω/s
q以下の範囲内であることが好ましい。各抵抗が前記範
囲外であると、成形品の導電性が十分でなく電磁波を透
過しやすくなるとともに、成形品と締結部材との間の導
通が十分でなくなる。同様に、セルフタップねじの体積
固有抵抗が1Ω・cm以下の範囲内であり、かつ表面抵
抗率が102Ω/sq以下の範囲内であることが好まし
い。各抵抗が前記範囲外であると、成形品と締結部材と
の間の導通が十分でなくなる。ここで、体積固有抵抗お
よび表面抵抗率はASTM D−257に基づき測定さ
れる。
In order to exhibit high electromagnetic wave shielding properties as a molded product, the volume resistivity of the molded product must be 10 2 Ω · c.
m and a surface resistivity of 10 4 Ω / s
It is preferably within the range of q or less. If each resistance is out of the above range, the conductivity of the molded product is not sufficient and the electromagnetic wave is easily transmitted, and the conduction between the molded product and the fastening member is not sufficient. Similarly, it is preferable that the volume resistivity of the self-tapping screw be within a range of 1 Ω · cm or less and the surface resistivity be within a range of 10 2 Ω / sq or less. If each resistance is outside the above range, conduction between the molded product and the fastening member will not be sufficient. Here, the volume resistivity and the surface resistivity are measured based on ASTM D-257.

【0034】また、強固な締結を保持し、かつ繊維強化
プラスチック製成形品20とセルフタップねじ21との
導通を十分とするために、ねじを締め込むボス7の下穴
径dとセルフタップねじ21の呼び径aとの比d/aが
0.70〜0.95の範囲内であり、セルフタップねじ
21のねじ山先端がボス7のコア層9に接触しているこ
とが好ましい。d/aが0.70未満である場合、ねじ
の締め付け時にボス7に縦割れや横割れが発生し、ボス
が破壊され締結が保持できない。d/aが0.95より
も大きい場合、ねじの締め付け時または締め付け後にね
じが空回りし易く締結が保持できない。また、ねじ山先
端がボス7のコア層9に接触している場合には、高強
度、高弾性なコア層9によりねじが把持されるため強固
な締結が可能になるとともに引き抜き強度も向上する。
加えて、セルフタップねじと、炭素繊維が高密度で充填
されたコア層が直接接することによって、ねじと炭素繊
維が接触する機会が増加し、ねじと成形品との間の導電
性が向上する。金属ナット圧入方式の場合には樹脂を加
熱溶融した上で金属ナットを圧入し、樹脂を冷却固化し
てボス内にナットを固定するため、金属ナットは、炭素
繊維の密度が低いスキン層で成形品と接している。その
点、金属ナット圧入方式と比較し、セルフタップ方式の
方が、ねじと成形品との間の導電性は高い。
Further, in order to maintain a strong fastening and to make the conduction between the fiber-reinforced plastic molded product 20 and the self-tap screw 21 sufficient, the pilot hole diameter d of the boss 7 into which the screw is tightened and the self-tap screw It is preferable that the ratio d / a of the nominal diameter a to the nominal diameter a is in the range of 0.70 to 0.95, and that the thread tip of the self-tapping screw 21 is in contact with the core layer 9 of the boss 7. When d / a is less than 0.70, a vertical crack or a horizontal crack occurs in the boss 7 when the screw is tightened, and the boss is destroyed and the fastening cannot be maintained. When d / a is larger than 0.95, the screw is apt to run idle during or after tightening of the screw, and the tightening cannot be maintained. When the tip of the thread is in contact with the core layer 9 of the boss 7, the screw is gripped by the high-strength and highly-elastic core layer 9, so that a strong fastening is possible and the pull-out strength is improved. .
In addition, the direct contact between the self-tapping screw and the core layer filled with carbon fiber at a high density increases the chance of the screw and the carbon fiber coming into contact with each other and improves the conductivity between the screw and the molded product. . In the case of the metal nut press-fitting method, the resin is heated and melted, then the metal nut is pressed in, the resin is cooled and solidified, and the nut is fixed in the boss.The metal nut is formed of a skin layer with low carbon fiber density In contact with goods. In that respect, the self-tapping method has higher conductivity between the screw and the molded product than the metal nut press-fitting method.

【0035】ねじを締め込むボスの下穴の軸方向にセル
フタップねじが接触しているねじ込み深さLと、ねじの
呼び径aとの比L/aが1.0〜10の範囲内であるこ
とが好ましい。L/aが1.0未満であると、引き抜き
荷重と締め付け/戻し繰り返し耐久回数における十分な
性能が得られない。L/aが10より大きいと成形品と
ねじとの間の摩擦抵抗が増加し、締め付け作業が困難に
なるとともに、薄肉化が求められる電子機器を内部に収
容する筐体用途としては不適である。
When the ratio L / a between the screwing depth L at which the self-tapping screw is in contact with the prepared hole of the boss for tightening the screw in the axial direction and the nominal diameter a of the screw is within the range of 1.0 to 10. Preferably, there is. If L / a is less than 1.0, sufficient performance in the pulling load and the number of repeated tightening / returning durability cannot be obtained. If L / a is greater than 10, the frictional resistance between the molded product and the screw increases, making the tightening operation difficult, and is not suitable for use as a housing for accommodating an electronic device that requires thinning inside. .

【0036】ねじを締め込むボスの外径Dとねじの呼び
径aとの比D/aが1.3〜5.0の範囲内であること
が好ましい。D/aが1.3未満である場合、ねじの締
め付け時にボス7に縦割れや横割れが発生し、ボスが破
壊され締結が保持できない。D/aが5.0より大きい
場合には、ボスの裏側の面にヒケが発生しやすく、外観
上の問題が発生するとともに、筐体に内装される他の部
品の設置スペースを圧迫するため不適である。
The ratio D / a of the outer diameter D of the boss to which the screw is tightened to the nominal diameter a of the screw is preferably in the range of 1.3 to 5.0. When D / a is less than 1.3, a vertical crack or a horizontal crack occurs in the boss 7 when the screw is tightened, and the boss is destroyed and the fastening cannot be maintained. If D / a is greater than 5.0, sink marks are likely to occur on the back surface of the boss, causing problems in appearance and pressing down the installation space for other components installed in the housing. Not suitable.

【0037】ねじを締め込むボスの下穴先端部に面取り
またはザグリ形状を持つことが好ましい。前記形状を備
えることによって、ボス先端部の応力集中を緩和し、ね
じと成形品との締結を長時間強固に保持することができ
る。また、前記形状の設置により締め付け作業において
も、ボス上のねじのすわりが良好で、作業効率が向上す
る。
It is preferable that the boss for tightening the screw has a chamfered or counterbored shape at the tip of the prepared hole. By providing the shape, the stress concentration at the tip portion of the boss can be reduced, and the fastening between the screw and the molded product can be firmly maintained for a long time. Further, even in the tightening work, the setting of the shape allows the screws on the boss to sit well, thereby improving work efficiency.

【0038】本発明の繊維強化プラスチック製成形品の
締結構造は、特に限定されるものではないが、その特徴
である優れた機械特性および電気特性を十分に発揮する
ために、耐衝撃性、高強度、高剛性、電磁波遮蔽性等の
特性が求められるノート型パーソナルコンピュータ、デ
ジタルカメラ、携帯電話等の電子機器を内部に収容する
筐体に関して適用されることが好ましい。
The fastening structure of the fiber-reinforced plastic molded article of the present invention is not particularly limited. However, in order to sufficiently exhibit the excellent mechanical and electrical characteristics, which are the characteristics thereof, impact resistance, It is preferable to apply the present invention to a housing for housing electronic devices such as a notebook personal computer, a digital camera, and a mobile phone that require characteristics such as strength, high rigidity, and electromagnetic wave shielding properties.

【0039】[0039]

【実施例】〈実施例1〉本発明の成形品20の強化繊維
8として、まずPAN系長繊維炭素繊維束(引張強度4
900MPa、引張弾性率230GPa、フィラメント
数12,000、繊度800TEX、比重1.8、体積
固有抵抗1.6×10-3Ω・cm)を電線被覆用のコー
ティングダイ中に通し、押し出し機から250℃で溶融
させたナイロン6樹脂(重量平均分子量15,000)
を吐出させて炭素繊維束の周囲がナイロン6樹脂で被覆
された樹脂被覆炭素繊維を得た。次に、この樹脂被覆炭
素繊維を室温まで冷却後、ストランドカッターで7mm
にカットして射出成形用長繊維炭素繊維強化ペレットを
得た。このペレット中の炭素繊維含有率は20重量%で
あり、重量平均炭素繊維長は7mmである。該ペレット
を型締め力350tfの射出成形機で成形し、外形が2
50mm×200mm、厚さが1.5mmの図4の筐体
状をした射出成形品を得た。この筐体状成形品の肉厚は
1.5mmである。またこの筐体状射出成形品中の炭素
繊維の重量平均繊維長は0.5mmである。
EXAMPLE 1 First, as a reinforcing fiber 8 of a molded article 20 of the present invention, a PAN long fiber carbon fiber bundle (with a tensile strength of 4) was used.
900 MPa, tensile modulus of 230 GPa, number of filaments of 12,000, fineness of 800 TEX, specific gravity of 1.8, volume resistivity of 1.6 × 10 −3 Ω · cm) are passed through a coating die for covering electric wires, and are passed through an extruder for 250. Nylon 6 resin melted at ℃ (weight average molecular weight 15,000)
Was discharged to obtain resin-coated carbon fibers in which the periphery of the carbon fiber bundle was coated with nylon 6 resin. Next, after cooling this resin-coated carbon fiber to room temperature, the strand-cutter was used for 7 mm.
To obtain a long fiber carbon fiber reinforced pellet for injection molding. The carbon fiber content in the pellets is 20% by weight, and the weight average carbon fiber length is 7 mm. The pellets were molded with an injection molding machine having a clamping force of 350 tf,
A 50 mm × 200 mm, 1.5 mm thick injection molded product in the shape of a housing of FIG. 4 was obtained. The thickness of the case-shaped molded product is 1.5 mm. The weight-average fiber length of the carbon fibers in the case-shaped injection-molded article is 0.5 mm.

【0040】成形品の体積固有抵抗は5.0×10-1Ω
・cmであり、表面抵抗率は9.0Ω/sqであった。
また、この筐体状射出成形品にはセルフタップ用のボス
11が150mmのピッチで2箇所設置してある。ボス
11の下穴径はφ1.55(d/a=0.775)であ
り、外径はφ4.0(D/a=2.0)であり、高さは
6mmである。外径該成形品のボス11の下穴に(株)
ハイオス社製のトルクドライバー”CL−3000”を
使用して、厚さ1mmの鋼製ワッシャを介して、日東精
工(株)製のセルフタップねじである”Pタイトねじ”
のM2×長さ5mm規格をねじ頭の根本まで締め付ける
(L/a=2.0)。ここで、締め付けトルクと破壊ト
ルクを(株)ハイオス社製の”HDP5”で測定した。
また、20N・cmで締め付け/緩めを繰り返したとき
に、ねじが機能しなくなるまでの繰り返し耐久回数を測
定した。本実施例1において、ねじの締結特性はいずれ
も良好であった。さらに、2カ所のボス11に鋼製ワッ
シャを介してねじをそれぞれ締め付けた後の、2つのワ
ッシャ間の電気抵抗値をデジタルテスタ”IWATSU
YDAC 81”で測定した。抵抗値は4.0Ωであ
り、本実施例1の締結構造は高い導電性を示した。 〈実施例2〉実施例1と同様の方法で射出成形用長繊維
炭素繊維強化ペレットを得た。このペレット中の炭素繊
維含有率は10重量%であり、重量平均炭素繊維長は7
mmである。該ペレットから実施例1と同様の方法で同
一形状の筐体状射出成形品を得た。この筐体状射出成形
品中の炭素繊維の重量平均繊維長は0.5mmである。
The volume resistivity of the molded product is 5.0 × 10 −1 Ω.
Cm, and the surface resistivity was 9.0 Ω / sq.
In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.775), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. Outer diameter In the prepared hole of the boss 11 of the molded product
"P tight screw", a self-tapping screw manufactured by Nitto Seiko Co., Ltd., using a torque washer "CL-3000" manufactured by Hios Corporation through a steel washer having a thickness of 1 mm.
(L / a = 2.0) to the root of the screw head. Here, the tightening torque and the breaking torque were measured using “HDP5” manufactured by Hios Corporation.
In addition, when the tightening / loosening was repeated at 20 N · cm, the number of repetition durability until the screw stopped functioning was measured. In Example 1, the fastening characteristics of the screws were all good. Further, after tightening the screws to the two bosses 11 via the steel washers, the electric resistance value between the two washers is measured by a digital tester “IWATSU”.
The resistance was 4.0 Ω, and the fastening structure of Example 1 showed high conductivity. <Example 2> Long fiber carbon for injection molding by the same method as in Example 1. A fiber reinforced pellet was obtained, in which the carbon fiber content was 10% by weight, and the weight average carbon fiber length was 7%.
mm. A casing-like injection molded article having the same shape was obtained from the pellets in the same manner as in Example 1. The weight average fiber length of the carbon fibers in the case-shaped injection molded product is 0.5 mm.

【0041】成形品の体積固有抵抗は1.0Ω・cmで
あり、表面抵抗率は12.0Ω/sqであった。また、
この筐体状射出成形品にはセルフタップ用のボス11が
150mmのピッチで2箇所設置してある。ボス11の
下穴径はφ1.55(d/a=0.775)であり、外
径はφ4.0(D/a=2.0)であり、高さは6mm
である。実施例1と同様の方法でボスにセルフタップね
じを締め付け(L/a=2.0)、ねじの締結特性と2
つのワッシャ間の電気抵抗値を測定した。ねじの締結特
性は良好であり、抵抗値も10Ωと高い導電性を示し
た。 〈実施例3〉実施例1と同様の方法で射出成形用長繊維
炭素繊維強化ペレットを得た。このペレット中の炭素繊
維含有率は20重量%であり、重量平均炭素繊維長は4
mmである。該ペレットから実施例1と同様の方法で同
一形状の筐体状射出成形品を得た。この筐体状射出成形
品中の炭素繊維の重量平均繊維長は0.3mmである。
The molded product had a volume resistivity of 1.0 Ω · cm and a surface resistivity of 12.0 Ω / sq. Also,
Two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-like injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.775), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm.
It is. The self-tapping screw was tightened to the boss in the same manner as in Example 1 (L / a = 2.0), and the screw fastening characteristics and 2
The electrical resistance between two washers was measured. The fastening characteristics of the screw were good, and the resistance value was 10Ω, indicating high conductivity. <Example 3> A long fiber carbon fiber reinforced pellet for injection molding was obtained in the same manner as in Example 1. The carbon fiber content in the pellets was 20% by weight, and the weight average carbon fiber length was 4%.
mm. A casing-like injection molded article having the same shape was obtained from the pellets in the same manner as in Example 1. The weight-average fiber length of the carbon fibers in this case-shaped injection-molded product is 0.3 mm.

【0042】成形品の体積固有抵抗は8.0×10-1Ω
・cmであり、表面抵抗率は10.0Ω/sqであっ
た。また、この筐体状射出成形品にはセルフタップ用の
ボス11が150mmのピッチで2箇所設置してある。
ボス11の下穴径はφ1.55(d/a=0.775)
であり、外径はφ4.0(D/a=2.0)であり、高
さは6mmである。実施例1と同様の方法でボスにセル
フタップねじを締め付け(L/a=2.0)、ねじの締
結特性と2つのワッシャ間の電気抵抗値を測定した。ね
じの締結特性は良好であり、抵抗値も8Ωと高い導電性
を示した。 〈比較例1〉実施例1と同様の方法で射出成形用長繊維
炭素繊維強化ペレットを得た。このペレット中の炭素繊
維含有率は3重量%であり、重量平均炭素繊維長は7m
mである。該ペレットから実施例1と同様の方法で同一
形状の筐体状射出成形品を得た。この筐体状射出成形品
中の炭素繊維の重量平均繊維長は0.5mmである。
The volume resistivity of the molded product is 8.0 × 10 −1 Ω.
Cm, and the surface resistivity was 10.0 Ω / sq. In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product.
The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.775)
, The outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. A self-tapping screw was fastened to the boss in the same manner as in Example 1 (L / a = 2.0), and the fastening characteristics of the screw and the electric resistance between the two washers were measured. The screw had good fastening characteristics and a high conductivity of 8 Ω. Comparative Example 1 A long fiber carbon fiber reinforced pellet for injection molding was obtained in the same manner as in Example 1. The carbon fiber content in the pellets was 3% by weight, and the weight average carbon fiber length was 7 m.
m. A casing-like injection molded article having the same shape was obtained from the pellets in the same manner as in Example 1. The weight average fiber length of the carbon fibers in the case-shaped injection molded product is 0.5 mm.

【0043】成形品の体積固有抵抗は3.0×103Ω
・cmであり、表面抵抗率は10.0×105Ω/sq
であった。また、この筐体状射出成形品にはセルフタッ
プ用のボス11が150mmのピッチで2箇所設置して
ある。ボス11の下穴径はφ1.55(d/a=0.7
75)であり、外径はφ4.0(D/a=2.0)であ
り、高さは6mmである。実施例1と同様の方法でボス
にセルフタップねじを締め付け(L/a=2.0)、ね
じの締結特性と2つのワッシャ間の電気抵抗値を測定し
た。ねじの締結特性は良好であるが、抵抗値は5kΩと
低い導電性を示した。 〈比較例2〉実施例1と同様の方法で射出成形用長繊維
炭素繊維強化ペレットを得た。その後、この射出成形用
長繊維炭素繊維強化ペレットを(株)日本製鋼所製の2
軸押し出し機”TEX30”で混練して押し出し、射出
成形用短繊維炭素繊維強化ペレットを得た。このペレッ
ト中の炭素繊維含有率は20重量%であり、重量平均炭
素繊維長は0.2mmである。該ペレットから実施例1
と同様の方法で同一形状の筐体状射出成形品を得た。こ
の筐体状射出成形品中の炭素繊維の重量平均繊維長は
0.08mmである。
The volume resistivity of the molded product is 3.0 × 10 3 Ω
Cm, and the surface resistivity is 10.0 × 10 5 Ω / sq.
Met. In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.7
75), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. A self-tapping screw was fastened to the boss in the same manner as in Example 1 (L / a = 2.0), and the fastening characteristics of the screw and the electric resistance between the two washers were measured. The screw had good fastening characteristics, but exhibited low conductivity of 5 kΩ. Comparative Example 2 A long fiber carbon fiber reinforced pellet for injection molding was obtained in the same manner as in Example 1. After that, the long fiber carbon fiber reinforced pellets for injection molding were manufactured by Nippon Steel Corporation.
The mixture was kneaded and extruded with a shaft extruder “TEX30” to obtain short fiber carbon fiber reinforced pellets for injection molding. The carbon fiber content in the pellets is 20% by weight, and the weight average carbon fiber length is 0.2 mm. Example 1 from the pellet
A housing-like injection molded article having the same shape was obtained in the same manner as in the above. The weight average fiber length of the carbon fibers in the case-shaped injection molded product is 0.08 mm.

【0044】成形品の体積固有抵抗は2.0×103Ω
・cmであり、表面抵抗率4.0×105Ω/sqであ
った。また、この筐体状射出成形品にはセルフタップ用
のボス11が150mmのピッチで2箇所設置してあ
る。ボス11の下穴径はφ1.55(d/a=0.77
5)であり、外径はφ4.0(D/a=2.0)であ
り、高さは6mmである。実施例1と同様の方法でボス
にセルフタップねじを締め付け(L/a=2.0)、ね
じの締結特性と2つのワッシャ間の電気抵抗値を測定し
た。ねじの締結特性は良好であるが、抵抗値は2kΩと
低い導電性を示した。 〈比較例3〉強化繊維8として、3mmの長さで裁断し
たガラス繊維束(引張強度3500MPa、引張弾性率
70GPa、繊度130TEX、比重2.6、体積固有
抵抗1010Ω・cm以上)を使用し、該ガラス繊維束と
ナイロン6樹脂を(株)日本製鋼所製の2軸押し出し
機”TEX30”で混練して押し出し、射出成形用短繊
維ガラス繊維強化ペレットを得た。このペレット中のガ
ラス繊維含有率は20重量%であり、ガラス繊維の重量
平均繊維長は0.7mmである。該ペレットから実施例
1と同様の方法で同一形状の筐体状射出成形品を得た。
この筐体状射出成形品中のガラス繊維の重量平均繊維長
は0.5mmである。
The volume resistivity of the molded product is 2.0 × 10 3 Ω
Cm, and the surface resistivity was 4.0 × 10 5 Ω / sq. In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.77
5), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. A self-tapping screw was fastened to the boss in the same manner as in Example 1 (L / a = 2.0), and the fastening characteristics of the screw and the electric resistance between the two washers were measured. The screw had good fastening characteristics, but exhibited a low conductivity of 2 kΩ. <Comparative Example 3> A glass fiber bundle cut into a length of 3 mm (tensile strength 3500 MPa, tensile modulus 70 GPa, fineness 130 TEX, specific gravity 2.6, volume specific resistance 10 10 Ω · cm or more) was used as the reinforcing fiber 8. Then, the glass fiber bundle and the nylon 6 resin were kneaded and extruded with a twin screw extruder “TEX30” manufactured by Japan Steel Works, Ltd. to obtain short fiber glass fiber reinforced pellets for injection molding. The glass fiber content in the pellets was 20% by weight, and the weight average fiber length of the glass fibers was 0.7 mm. A casing-like injection molded article having the same shape was obtained from the pellets in the same manner as in Example 1.
The weight average fiber length of the glass fibers in this case-like injection molded product is 0.5 mm.

【0045】成形品の体積固有抵抗は1010Ω・cm以
上であり、表面抵抗率は1010Ω/sq以上であった。
また、この筐体状射出成形品にはセルフタップ用のボス
11が150mmのピッチで2箇所設置してある。ボス
11の下穴径はφ1.55(d/a=0.775)であ
り、外径はφ4.0(D/a=2.0)であり、高さは
6mmである。実施例1と同様の方法でボスにセルフタ
ップねじを締め付け(L/a=2.0)、ねじの締結特
性と2つのワッシャ間の電気抵抗値を測定した。破壊ト
ルク、耐久繰り返し回数ともにねじの締結特性は十分で
あるが、抵抗値は20KΩ以上と低い導電性を示した。 〈比較例4〉ナイロン6樹脂を(株)日本製鋼所製の2
軸押し出し機”TEX30”で混練して押し出し、射出
成形用ナイロンペレットを得た。該ペレットから実施例
1と同様の方法で同一形状の筐体状射出成形品を得た。
The molded article had a volume resistivity of 10 10 Ω · cm or more and a surface resistivity of 10 10 Ω / sq or more.
In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.775), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. A self-tapping screw was fastened to the boss in the same manner as in Example 1 (L / a = 2.0), and the fastening characteristics of the screw and the electric resistance between the two washers were measured. Although the fastening characteristics of the screw were sufficient for both the breaking torque and the number of endurance repetitions, the resistance showed a low conductivity of 20 KΩ or more. <Comparative Example 4> Nylon 6 resin was manufactured by Japan Steel Works, Ltd.
The mixture was kneaded and extruded with a shaft extruder “TEX30” to obtain nylon pellets for injection molding. A casing-like injection molded article having the same shape was obtained from the pellets in the same manner as in Example 1.

【0046】成形品の体積固有抵抗は1010Ω・cm以
上であり、表面抵抗率は1010Ω/sq以上であった。
また、この筐体状射出成形品にはセルフタップ用のボス
11が150mmのピッチで2箇所設置してある。ボス
11の下穴径はφ1.55(d/a=0.775)であ
り、外径はφ4.0(D/a=2.0)であり、高さは
6mmである。実施例1と同様の方法でボスにセルフタ
ップねじを締め付け(L/a=2.0)、ねじの締結特
性と2つのワッシャ間の電気抵抗値を測定した。破壊ト
ルク、耐久繰り返し回数ともにねじの締結特性は十分で
なく、抵抗値は20KΩ以上と低い導電性を示した。
The molded product had a volume resistivity of 10 10 Ω · cm or more and a surface resistivity of 10 10 Ω / sq or more.
In addition, two bosses 11 for self-tapping are installed at a pitch of 150 mm in this case-shaped injection molded product. The pilot hole diameter of the boss 11 is φ1.55 (d / a = 0.775), the outer diameter is φ4.0 (D / a = 2.0), and the height is 6 mm. A self-tapping screw was fastened to the boss in the same manner as in Example 1 (L / a = 2.0), and the fastening characteristics of the screw and the electric resistance between the two washers were measured. The fastening characteristics of the screw were not sufficient for both the breaking torque and the number of endurance repetitions, and the resistance showed a low conductivity of 20 KΩ or more.

【0047】以上の結果をまとめたのが次の表1であ
る。
Table 1 summarizes the above results.

【0048】[0048]

【表1】 [Table 1]

【0049】この表1から、繊維強化プラスチック製成
形品の締結構造として、低締め付けトルク、高破壊トル
クおよび高繰り返し耐久回数といった高い締結特性を得
るために、また成形品と締結材との高い導電性を得るた
めには、成形品中に含まれる炭素繊維の重量平均繊維長
が0.1〜1.0mmの範囲内であり、成形品の肉厚が
0.6〜5.0mmの範囲内であり、成形品の体積固有
抵抗が102Ω・cm以下の範囲内であり、かつ表面抵
抗率が104Ω/sq以下の範囲内であることが必要
で、さらに、ねじを締め込むボスの下穴径dとねじの呼
び径aとの比d/aが0.70〜0.95の範囲内であ
り、ねじ山先端がボスのコア層に接触していて、かつね
じを締め込むボスの下穴の軸方向にセルフタップねじが
接触しているねじ込み深さLと、ねじの呼び径aとの比
L/aが1.0〜10の範囲内であるという要件が必要
であることがわかった。
From Table 1, it can be seen that, as a fastening structure for a fiber-reinforced plastic molded article, in order to obtain high fastening characteristics such as a low tightening torque, a high breaking torque and a high number of repetition durability, a high conductivity between the molded article and the fastening material is obtained. In order to obtain the property, the weight-average fiber length of the carbon fibers contained in the molded product is in the range of 0.1 to 1.0 mm, and the thickness of the molded product is in the range of 0.6 to 5.0 mm. It is necessary that the volume resistivity of the molded product is within the range of 10 2 Ω · cm or less and the surface resistivity is within the range of 10 4 Ω / sq or less. The ratio d / a of the prepared hole diameter d to the nominal diameter a of the screw is in the range of 0.70 to 0.95, the thread tip is in contact with the core layer of the boss, and the screw is tightened. Screw-in where the self-tapping screw is in contact with the prepared hole of the boss in the axial direction. It has been found that the requirement that the ratio L / a of the depth L and the nominal diameter a of the screw be in the range of 1.0 to 10 is necessary.

【0050】[0050]

【発明の効果】本発明の繊維強化プラスチック製成形品
の締結構造によれば、成形性を保持したまま強度・剛性
に優れ、かつ締結される部品間の導通を可能として、電
磁波遮蔽性に優れた繊維強化プラスチック製成形品の締
結構造を提供することが可能である。
According to the fastening structure of the fiber-reinforced plastic molded article of the present invention, the strength and rigidity are excellent while maintaining the moldability, and the conduction between the parts to be fastened is possible, and the electromagnetic wave shielding property is excellent. It is possible to provide a fastening structure for a molded article made of fiber-reinforced plastic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る繊維強化プラスチック製成形品の
締結構造の一実施例の断面図である。
FIG. 1 is a sectional view of an embodiment of a fastening structure for a fiber-reinforced plastic molded product according to the present invention.

【図2】従来の繊維強化プラスチック製成形品の締結構
造の一実施例の斜視図である。
FIG. 2 is a perspective view of one embodiment of a conventional fastening structure for a fiber-reinforced plastic molded product.

【図3】従来の繊維強化プラスチック製成形品の締結構
造の一実施例の斜視図である。
FIG. 3 is a perspective view of one embodiment of a conventional fastening structure for a fiber-reinforced plastic molded product.

【図4】本発明に係る繊維強化プラスチック製成形品の
締結構造の一実施例の斜視図である。
FIG. 4 is a perspective view of one embodiment of a fastening structure for a fiber-reinforced plastic molded product according to the present invention.

【符号の説明】[Explanation of symbols]

1:プラスチック製成形品 2:ボス 3:金属ナット 4:締結部材 5:おねじ 6:セルフタップねじ 7:ボス 8:強化繊維 9:コア層 10:スキン層 20:繊維強化プラスチック成形品 21:セルフタップねじ 22:締結部材 1: plastic molded product 2: boss 3: metal nut 4: fastening member 5: male screw 6: self-tapping screw 7: boss 8: reinforced fiber 9: core layer 10: skin layer 20: fiber reinforced plastic molded product 21: Self tapping screw 22: Fastening member

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16B 5/02 F16B 5/02 F // B29K 105:12 B29K 105:12 B29L 31:34 B29L 31:34 Fターム(参考) 3J001 FA02 FA11 GA06 GB01 HA02 JA01 KA19 KA21 KB06 4E360 AB12 AB51 BC05 EA12 ED02 ED27 EE02 FA02 GA11 GA32 GA34 GB46 GC08 4F211 AD05 AD19 AD24 AH42 TA06 TC03 TC16 TD11 TH20 TN76 TQ13 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F16B 5/02 F16B 5 / 02F // B29K 105: 12 B29K 105: 12 B29L 31:34 B29L 31:34 F term ( 3J001 FA02 FA11 GA06 GB01 HA02 JA01 KA19 KA21 KB06 4E360 AB12 AB51 BC05 EA12 ED02 ED27 EE02 FA02 GA11 GA32 GA34 GB46 GC08 4F211 AD05 AD19 AD24 AH42 TA06 TC03 TC16 TD11 TH20 TN76 TQ13

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】合成樹脂に少なくとも炭素繊維からなる強
化繊維が含まれてなる繊維強化プラスチック製成形品の
一部として一体成形されたボスの下穴にセルフタップね
じを直接締め込み他の部材との締結を可能とする構造で
あって、次の[A]、[B]および[C]の条件を備え
ることを特徴とする繊維強化プラスチック製成形品の締
結構造。 [A]該成形品中に含まれる炭素繊維の重量平均繊維長
が0.1〜1.0mmの範囲内であること。 [B]該成形品の肉厚が0.6〜5.0mmの範囲内で
あること。 [C]該成形品の体積固有抵抗が102Ω・cm以下の
範囲内であり、かつ表面抵抗率が104Ω/sq以下の
範囲内であること。
1. A self-tapping screw is directly tightened into a lower hole of a boss integrally formed as a part of a fiber-reinforced plastic molded product in which a synthetic resin contains at least a reinforcing fiber made of carbon fiber and other members. Characterized by the following conditions [A], [B] and [C]. [A] The weight-average fiber length of the carbon fibers contained in the molded article is in the range of 0.1 to 1.0 mm. [B] The thickness of the molded product is in the range of 0.6 to 5.0 mm. [C] The molded product has a volume resistivity of 10 2 Ω · cm or less and a surface resistivity of 10 4 Ω / sq or less.
【請求項2】繊維強化プラスチック製成形品の一部とし
て一体成形されたボスの下穴にセルフタップねじを直接
締め込み他の部材との締結を可能とする構造であって、
次の[D]および[E]の条件を備えることを特徴とす
る請求項1に記載の繊維強化プラスチック製成形品の締
結構造。 [D]該セルフタップねじを締め込むボスの下穴径dと
該ねじの呼び径aとの比d/aが0.70〜0.95の
範囲内であり、ねじ山先端がボスのコア層に接触してい
ること。 [E]該セルフタップねじを締め込むボスの下穴の軸方
向にセルフタップねじが接触しているねじ込み深さL
と、該ねじの呼び径aとの比L/aが1.0〜10の範
囲内であること。
2. A structure in which a self-tapping screw is directly screwed into a prepared hole of a boss integrally molded as a part of a fiber-reinforced plastic molded article to enable fastening with another member,
2. The fastening structure for a fiber-reinforced plastic molded product according to claim 1, wherein the following conditions [D] and [E] are satisfied. [D] The ratio d / a of the prepared hole diameter d of the boss for tightening the self-tapping screw to the nominal diameter a of the screw is in the range of 0.70 to 0.95, and the tip of the thread is the core of the boss. Be in contact with the layer. [E] Screw-in depth L at which the self-tapping screw is in contact in the axial direction of the prepared hole of the boss for tightening the self-tapping screw
And the ratio L / a of the screw to the nominal diameter a of the screw is in the range of 1.0 to 10.
【請求項3】セルフタップねじを締め込むボスの外径D
と該ねじの呼び径aとの比D/aが1.3〜5.0の範
囲内であることを特徴とする請求項1または2に記載の
繊維強化プラスチック製成形品の締結構造。
3. An outer diameter D of a boss for tightening a self-tapping screw.
3. The fastening structure for a fiber-reinforced plastic molded product according to claim 1, wherein a ratio D / a between the screw diameter and the nominal diameter a of the screw is in a range of 1.3 to 5.0. 4.
【請求項4】成形品に対する炭素繊維の含有率が5〜4
0重量%の範囲内であることを特徴とする請求項1〜3
のいずれかに記載の繊維強化プラスチック製成形品の締
結構造。
4. A molded article having a carbon fiber content of 5-4.
4. The composition according to claim 1, wherein the content is within a range of 0% by weight.
The structure for fastening a fiber-reinforced plastic molded product according to any one of the above.
【請求項5】セルフタップねじの体積固有抵抗が1Ω・
cm以下の範囲内であり、かつ表面抵抗率が102Ω/
sq以下の範囲内であることを特徴とする請求項1〜4
のいずれかに記載の繊維強化プラスチック製成形品の締
結構造。
5. The self-tapping screw has a volume resistivity of 1Ω.
cm or less, and the surface resistivity is 10 2 Ω /
5. It is within the range of sq or less.
The structure for fastening a fiber-reinforced plastic molded product according to any one of the above.
【請求項6】該成形品が繊維強化熱可塑性樹脂からなる
ことを特徴とする請求項1〜5のいずれかに記載の繊維
強化プラスチック製成形品の締結構造。
6. The fastening structure for a fiber-reinforced plastic molded product according to claim 1, wherein said molded product is made of a fiber-reinforced thermoplastic resin.
【請求項7】ねじを締め込むボスの下穴先端部に面取り
またはザグリ形状を持つことを特徴とする請求項1〜6
のいずれかに記載の繊維強化プラスチック製成形品の締
結構造。
7. A boss for tightening a screw has a chamfered or counterbored shape at a tip end of a prepared hole.
The structure for fastening a fiber-reinforced plastic molded product according to any one of the above.
【請求項8】成形品が電子機器を内部に収容することを
特徴とする請求項1〜7のいずれかに記載の繊維強化プ
ラスチック製筐体成形品の締結構造。
8. The fastening structure for a molded article made of a fiber-reinforced plastic casing according to claim 1, wherein the molded article houses an electronic device therein.
JP2000310437A 2000-10-11 2000-10-11 Connecting structure of fiber-reinforced plastic mold Pending JP2002118371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310437A JP2002118371A (en) 2000-10-11 2000-10-11 Connecting structure of fiber-reinforced plastic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310437A JP2002118371A (en) 2000-10-11 2000-10-11 Connecting structure of fiber-reinforced plastic mold

Publications (1)

Publication Number Publication Date
JP2002118371A true JP2002118371A (en) 2002-04-19

Family

ID=18790400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310437A Pending JP2002118371A (en) 2000-10-11 2000-10-11 Connecting structure of fiber-reinforced plastic mold

Country Status (1)

Country Link
JP (1) JP2002118371A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035445A (en) * 2004-07-22 2006-02-09 Daicel Chem Ind Ltd Long fiber reinforced thermoplastic resin molded product
US7310236B2 (en) 2003-07-30 2007-12-18 Sony Corporation Electronic device
JP2011249360A (en) * 2010-05-21 2011-12-08 Toshiba Corp Electronic apparatus
JP2011256829A (en) * 2010-06-11 2011-12-22 Ihi Corp Case and mounting boss
WO2016063855A1 (en) * 2014-10-21 2016-04-28 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
JP5976908B1 (en) * 2015-09-04 2016-08-24 レノボ・シンガポール・プライベート・リミテッド Housing member and electronic device
CN106061194A (en) * 2015-04-06 2016-10-26 株式会社电装 Electronic control unit
US20170060187A1 (en) * 2015-08-26 2017-03-02 Lenovo (Singapore) Pte. Ltd. Electronic device having a member for chassis

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310236B2 (en) 2003-07-30 2007-12-18 Sony Corporation Electronic device
JP2006035445A (en) * 2004-07-22 2006-02-09 Daicel Chem Ind Ltd Long fiber reinforced thermoplastic resin molded product
JP2011249360A (en) * 2010-05-21 2011-12-08 Toshiba Corp Electronic apparatus
US8520372B2 (en) 2010-05-21 2013-08-27 Kabushiki Kaisha Toshiba Electronic apparatus display housing assembly
JP2011256829A (en) * 2010-06-11 2011-12-22 Ihi Corp Case and mounting boss
CN107075142A (en) * 2014-10-21 2017-08-18 东丽株式会社 Fiber-reinforced thermoplastic resin products formed and fiber-reinforced thermoplastic resin moulding material
JPWO2016063855A1 (en) * 2014-10-21 2017-08-03 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
CN107075142B (en) * 2014-10-21 2021-03-16 东丽株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
US10583591B2 (en) 2014-10-21 2020-03-10 Toray Industries, Inc. Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
WO2016063855A1 (en) * 2014-10-21 2016-04-28 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
CN106061194B (en) * 2015-04-06 2019-09-20 株式会社电装 Electronic control unit
JP2016197684A (en) * 2015-04-06 2016-11-24 株式会社デンソー Electronic control device
CN106061194A (en) * 2015-04-06 2016-10-26 株式会社电装 Electronic control unit
CN106484039A (en) * 2015-08-26 2017-03-08 联想(新加坡)私人有限公司 Housing part, electronic equipment, the manufacture method of housing part, fastening structure body and fastening method
US20170060187A1 (en) * 2015-08-26 2017-03-02 Lenovo (Singapore) Pte. Ltd. Electronic device having a member for chassis
US9977463B2 (en) * 2015-08-26 2018-05-22 Lenovo (Singapore) Ptd Lte Electronic device having a member for chassis
CN106484039B (en) * 2015-08-26 2019-10-29 联想(新加坡)私人有限公司 Shell component and its manufacturing method, relevant device and fastening method
US10394275B2 (en) 2015-09-04 2019-08-27 Lenovo (Singapore) Pte Ltd Electronic device having a member for chassis
JP5976908B1 (en) * 2015-09-04 2016-08-24 レノボ・シンガポール・プライベート・リミテッド Housing member and electronic device

Similar Documents

Publication Publication Date Title
JP5312783B2 (en) Polybutylene terephthalate resin composition
JP2002118371A (en) Connecting structure of fiber-reinforced plastic mold
EP0790280A1 (en) Thermoplastic resin composition, injection molding method thereof and injection molded article
US10656501B2 (en) Heating device for a camera lens
KR20160067335A (en) Composite Composition for Electromagnetic Wave Shielding and Heat Dissipation
JP6132669B2 (en) Metal resin composite molded body and method for producing the same
JP2004349685A (en) Low-cost thermal management device or heat sink manufactured from conductive filler-loaded resin-based material
KR101397687B1 (en) High modulus composite for emi shielding
EP3613797B1 (en) Composite resin molded article
CN114806034A (en) A casing and sound generating mechanism for sound generating mechanism
KR20210042362A (en) Metal/resin composite structure, manufacturing method and cooling device of metal/resin composite structure
JPH11233200A (en) Connector
KR20080099368A (en) Method for manufacturing conductive composites
JP2004209717A (en) Fiber reinforced molded product
JP2007091842A (en) Polybutylene terephthalate resin composition
JPH08325385A (en) Carbon-fiber reinforced thermoplastic resin molding and its production
JP2016108372A (en) Resin composition, molded article, and method of manufacturing molded article
US11046058B2 (en) Composite material
JP2016025216A (en) Structure
US11480853B2 (en) Heating device for a camera lens
JP2003128799A (en) Carbon fiber for thermoplastic resin composition and thermoplastic resin composition produced by using the carbon fiber
JP2006045330A (en) Electroconductive resin composition
JP2013021054A (en) Electronic apparatus housing
JP2004019055A (en) Carbon fiber and thermoplastic resin composition
JP2015076356A (en) Heat radiation structure and manufacturing method of the same