JP2002118114A - Silicon wafer and its manufacturing method - Google Patents

Silicon wafer and its manufacturing method

Info

Publication number
JP2002118114A
JP2002118114A JP2000310130A JP2000310130A JP2002118114A JP 2002118114 A JP2002118114 A JP 2002118114A JP 2000310130 A JP2000310130 A JP 2000310130A JP 2000310130 A JP2000310130 A JP 2000310130A JP 2002118114 A JP2002118114 A JP 2002118114A
Authority
JP
Japan
Prior art keywords
wafer
less
defects
temperature
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000310130A
Other languages
Japanese (ja)
Other versions
JP3452042B2 (en
Inventor
Yoshinori Shirakawa
義徳 白川
Tamio Motoyama
民雄 本山
Tatsumi Kusaba
辰巳 草場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000310130A priority Critical patent/JP3452042B2/en
Publication of JP2002118114A publication Critical patent/JP2002118114A/en
Application granted granted Critical
Publication of JP3452042B2 publication Critical patent/JP3452042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon wafer where there are no grown-in and oxygen sludge defects and no slits in the activation region of a surface layer, and the existence density of the internal oxygen sludge is large, and to provide a method for manufacturing the silicon wafer. SOLUTION: In this silicon wafer, oxygen sludge density at the internal bulk section is set to 5×105/cm or more, and the number of the grown-in defects with a size of at least 0.09 μm is set to 1.6×10-2/cm2 or less in an arbitrary surface in parallel with a surface at a range from the surface that becomes an active region to a depth of 10 μm. In the method for manufacturing the wafer, the content of nitrogen is set to 1×1013 to 5×1015 atoms/cm3, dispensing is carried out from a silicon single crystal grown by setting a pulling speed to at least 1.2 mm/min, a heat-up temperature in heat treatment in hydrogen atmosphere is set to 60 deg.C/min or less, 10 deg.C/min or less, and 2 deg.C/min or less when temperature is set to 1000 deg.C or less, exceeds 1000 deg.C and is equal to 1100 deg.C or less, and exceeds 1100 deg.C, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、半導体材料として
使用される、シリコン単結晶から得られる集積回路を形
成させるためのウェーハと、その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer for forming an integrated circuit obtained from a silicon single crystal, which is used as a semiconductor material, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体の集積回路などデバイスに用いら
れるシリコンウェーハは、主にチョクラルスキー法(C
Z法)より製造されている。CZ法は、石英るつぼ内の
溶融したシリコンに種結晶を浸け引上げて、単結晶を成
長させるものであるが、このシリコン単結晶の引上げ育
成技術の進歩により、欠陥の少ない、無転位の大型単結
晶が製造されるようになっている。
2. Description of the Related Art Silicon wafers used for devices such as semiconductor integrated circuits are mainly manufactured by the Czochralski method (C
Z method). In the CZ method, a single crystal is grown by immersing a seed crystal in molten silicon in a quartz crucible and pulling it up. However, with the progress of the silicon single crystal pulling and growing technique, a large number of dislocation-free large single crystals has been developed. Crystals are to be produced.

【0003】半導体デバイスは、単結晶から得られたウ
ェーハを基板とし、多数のプロセスを経過して製品化さ
れる。その過程で基板には数多くの物理的処理、化学的
処理、さらには熱的処理が施され、中には1100℃を超え
る高温処理など、過酷な熱的環境での処理も含まれる。
このため、単結晶の製造のままの状態では見出されなく
てもデバイスの製造過程で顕在化し、その性能を低下さ
せる結果をもたらすおそれのある酸素析出物や、結晶育
成時に導入されデバイスの性能に大きく影響してくる格
子欠陥、すなわちグロウンイン(grown-in)欠陥などが
問題になる。
[0003] Semiconductor devices are manufactured as products through a number of processes using wafers obtained from single crystals as substrates. In the process, the substrate is subjected to a number of physical, chemical, and thermal treatments, including treatments in harsh thermal environments, such as high-temperature treatments exceeding 1100 ° C.
For this reason, even if it is not found in the state in which the single crystal is manufactured as it is, it becomes apparent during the manufacturing process of the device, and may cause oxygen precipitates that may result in a decrease in the performance. Lattice defects, which have a large effect on the temperature, that is, grown-in defects and the like become a problem.

【0004】CZ法により製造されたこのウェーハに
は、石英るつぼなどからの混入により通常1018atoms/cm
3程度の酸素が含まれている。この酸素はウェーハの強
度向上や、デバイス形成時の熱処理によりBMD(Bulk
Micro Defect)といわれる酸化物を主とする微細な析
出物を生じ、これが重金属不純物のゲッタリング作用を
示すことなどの有用な効果をもたらす。しかし、ウェー
ハ上でのデバイスが形成される部分、すなわちデバイス
活性化領域に析出すると、デバイスの性能を損なうこと
になる。このため、1100〜1200℃の高温での熱処理など
をおこなって、表面近くの酸素濃度を析出物発生限界以
下に下げ、内部には析出するが表面のデバイス活性化領
域には析出しないようにする方法が採用されている。
This wafer manufactured by the CZ method usually contains 10 18 atoms / cm 2 by mixing from a quartz crucible or the like.
Contains about 3 oxygen. This oxygen is added to the BMD (Bulk
Fine precipitates mainly composed of oxides referred to as microdefects are generated, and these have useful effects such as exhibiting a gettering action of heavy metal impurities. However, deposition on a portion where a device is formed on a wafer, that is, a device activation region, impairs the performance of the device. For this reason, heat treatment at a high temperature of 1100 to 1200 ° C. is performed to lower the oxygen concentration near the surface to below the precipitate generation limit, and to precipitate inside but not to the device activation region on the surface. The method has been adopted.

【0005】活性化領域には、grown-in欠陥が存在すれ
ば、酸素析出物は抑止できても十分な性能のデバイスを
得ることができない。grown-in欠陥には空洞形欠陥(C
OP:Crystal Originated Particleなど)や転位クラ
スター形欠陥などがあり、一般的に単結晶の育成速度が
速い場合は空洞形欠陥を生じ、育成速度が遅くなると転
位クラスター欠陥が発生しやすいとされている。転位ク
ラスター形欠陥は発生するとデバイス特性を阻害して良
品が得られなくなることや、この欠陥の発生傾向の大き
い条件は単結晶育成速度が遅く生産性を悪くすることも
あって、通常は空洞形欠陥の生じやすい領域で単結晶育
成がおこなわれる。しかし、この空洞形の微少欠陥は、
デバイスのパターンが微少化してくると、薄膜化したゲ
ート酸化膜の耐圧特性を大きく劣化させるので、高集積
度化への対応を困難にさせる。
[0005] If grown-in defects are present in the activated region, a device with sufficient performance cannot be obtained even if oxygen precipitates can be suppressed. Grown-in defects (C
OP: Crystal Originated Particle, etc.) and dislocation cluster type defects. In general, when the growth rate of a single crystal is high, a cavity type defect is generated, and when the growth rate is low, dislocation cluster defects are likely to occur. . When dislocation cluster-type defects occur, device characteristics are hindered and non-defective products cannot be obtained.In addition, under conditions where these defects are highly likely to occur, single crystal growth speed is slow and productivity is poor. A single crystal is grown in a region where defects are likely to occur. However, this hollow defect is
When the device pattern becomes finer, the withstand voltage characteristic of the thinned gate oxide film is greatly deteriorated, which makes it difficult to cope with high integration.

【0006】これに対して、ウェーハにて水素雰囲気中
での熱処理をおこなえば、空洞形欠陥が消失または低減
し、ゲート酸化膜の耐圧特性が改善されることが知られ
ている。この水素雰囲気中での熱処理の効果は、シリコ
ン単結晶の育成条件によって影響されるようで、例えば
特開平10-208987号公報に提示された発明では、単結晶
の育成時、1150〜1080℃の温度域の冷却速度を2.0℃/mi
n以上とすることにより単結晶での空洞形欠陥の発生密
度を高め、それによってウェーハの水素中熱処理時の欠
陥消滅速度が増大するとしている。
[0006] On the other hand, it is known that when a heat treatment is performed on a wafer in a hydrogen atmosphere, cavity defects are eliminated or reduced, and the withstand voltage characteristics of the gate oxide film are improved. The effect of the heat treatment in the hydrogen atmosphere seems to be affected by the growth conditions of the silicon single crystal. For example, in the invention disclosed in Japanese Patent Application Laid-Open No. 10-208987, when growing the single crystal, the temperature of 1150 to 1080 ° C. 2.0 ° C / mi cooling rate in temperature range
By setting n or more, the generation density of cavity-shaped defects in a single crystal is increased, and thereby the defect disappearance rate during heat treatment of the wafer in hydrogen is increased.

【0007】また特開平11-186277号公報には、成長速
度を0.6mm/min以上とし、酸素濃度16ppma(0.8×1018at
oms/cm3)以下と低くした、COPのサイズが60〜130nm
であるシリコン単結晶から得たウェーハに、水素を含む
還元性雰囲気で1200℃以上の熱処理を施す無欠陥シリコ
ンウェーハの製造方法の発明が開示されている。
Japanese Patent Application Laid-Open No. 11-186277 discloses that the growth rate is set to 0.6 mm / min or more and the oxygen concentration is set to 16 ppma (0.8 × 10 18 at
oms / cm 3 ) The size of COP was reduced to 60-130 nm or less.
Discloses a method of manufacturing a defect-free silicon wafer in which a wafer obtained from a silicon single crystal is subjected to a heat treatment at 1200 ° C. or more in a reducing atmosphere containing hydrogen.

【0008】このように、単結晶の製造条件を制御して
COPなど空洞形欠陥の発生分布を変え、ウェーハを熱
処理して低欠陥化する方法として、窒素を含有させる発
明が特開平10-98047号公報に開示された。この場合、酸
素濃度を0.4×1018/cm3以上とした単結晶に窒素を1×10
14/cm3以上含ませることにより、とくに単結晶の育成時
に冷却を制御しなくても、850〜1100℃を急速冷却した
ものと同等の、小さな欠陥が多く分布した状態となり、
この単結晶によるウェーハは1000℃以上で1時間以上の
熱処理にて、容易に低欠陥化できるという。(なおこの
公報における元素の濃度は、いずれも0.4×1018/cm3や1
×1014/cm3などと記述されているが、これらは0.4×10
18atoms/cm3または1×1014atoms/cm3などに表示される
べきものではないかと推定される。) 窒素を添加すると酸素析出物の析出分布状況が異なって
くることは、特開平11-189493号公報にも開示されてい
る。この発明は、1018atoms/cm3程度の通常量の酸素を
含む単結晶の育成時、窒素を1013atoms/cm3以上含有さ
せると、OSF(Oxidation-induced Stacking Fault:
酸素誘起積層欠陥)の核となる酸素析出物が均一かつ高
密度に分布するようになるため、不純物に対するゲッタ
リング作用の大きいエピタキシャルウェーハの下地用材
として、この単結晶を活用するものである。
As described above, as a method for controlling the production conditions of a single crystal to change the generation distribution of hollow defects such as COP and heat-treating a wafer to reduce the number of defects, Japanese Patent Application Laid-Open No. Hei 10-98047 discloses a method in which nitrogen is contained. Was disclosed in the official gazette. In this case, nitrogen was added to the single crystal having an oxygen concentration of 0.4 × 10 18 / cm 3 or more at 1 × 10 18
By including 14 / cm 3 or more, in particular without controlling the cooling during the growth of the single crystal, a state in which equivalent to that rapid cooling to 850 to 1100 ° C., small defects distributed more,
It is said that the single crystal wafer can be easily reduced in defects by heat treatment at 1000 ° C. or more for 1 hour or more. (Note that the element concentrations in this publication are 0.4 × 10 18 / cm 3 and 1
× 10 14 / cm 3 etc., but these are 0.4 × 10
It is estimated that it should be displayed at 18 atoms / cm 3 or 1 × 10 14 atoms / cm 3 . It is also disclosed in Japanese Patent Application Laid-Open No. H11-189493 that addition of nitrogen changes the distribution of oxygen precipitates. According to the present invention, when growing a single crystal containing a normal amount of oxygen of about 10 18 atoms / cm 3 , if nitrogen is contained at 10 13 atoms / cm 3 or more, an OSF (Oxidation-induced Stacking Fault:
Since oxygen precipitates serving as nuclei of oxygen-induced stacking faults are distributed uniformly and at high density, the single crystal is used as a base material for an epitaxial wafer having a large gettering effect on impurities.

【0009】このように窒素の添加は、原因が単結晶育
成段階で形成されその後の熱履歴などで顕在化してくる
酸素析出物や空洞形欠陥などに対し、その分布や大きさ
に大きく影響することが明らかになっている。これは、
窒素の存在がこれら欠陥の発生原因となる単結晶内部の
核のようなものを、微細にかつ均一に分散させる作用が
あり、それによって熱処理の効果を加速したり増大させ
たりしているように思われる。
As described above, the addition of nitrogen greatly affects the distribution and size of oxygen precipitates, cavity defects, and the like that are formed during the single crystal growth stage and become apparent due to the subsequent thermal history. It is clear that this is,
The presence of nitrogen has the effect of finely and evenly dispersing nuclei inside the single crystal that cause these defects, thereby accelerating and increasing the effect of heat treatment. Seem.

【0010】窒素を添加して単結晶を作製し、得られた
ウェーハを熱処理することにより欠陥の少ない活性化領
域を表面層に形成させる発明が、特開平11-322490号公
報および特開平11-322491号公報に開示されている。こ
れらの発明は、添加する窒素濃度を1×1010〜1×1015at
oms/cm3として酸素濃度が1.2×1018atoms/cm3以下の単
結晶を育成し、それから得られたウェーハを、酸素、水
素、アルゴンあるいはこれらの混合雰囲気中にて、900
℃以上シリコンの融点以下の温度で熱処理し、表面に低
COP欠陥の活性化領域を形成させるものである。特開
平11-322490号公報の発明では、熱処理温度が1100℃以
上で急熱急冷により1〜60秒間の加熱とし、特開平11-32
2491号公報の発明では、実施例は1000℃、10時間の加熱
となっている。
Japanese Patent Application Laid-Open Nos. 11-322490 and 11-322490 disclose a method in which a single crystal is produced by adding nitrogen, and an activated region having few defects is formed in the surface layer by heat-treating the obtained wafer. It is disclosed in Japanese Patent No. 322491. In these inventions, the concentration of nitrogen to be added is 1 × 10 10 to 1 × 10 15 at.
A single crystal having an oxygen concentration of 1.2 × 10 18 atoms / cm 3 or less as oms / cm 3 is grown, and a wafer obtained therefrom is treated with an oxygen, hydrogen, argon or a mixed atmosphere thereof at 900.
The heat treatment is performed at a temperature of not less than ° C. and not more than the melting point of silicon to form an active region with low COP defects on the surface. In the invention of Japanese Patent Application Laid-Open No. 11-322490, the heat treatment temperature is 1100 ° C. or higher and heating is performed for 1 to 60 seconds by rapid heating and rapid cooling.
In the invention of Japanese Patent No. 2491, the example is heating at 1000 ° C. for 10 hours.

【0011】上述のように、窒素を添加して酸素を適度
に含む単結晶を育成し、これから得たウェーハに適当な
熱処理を施すことにより、内部のバルク部分には不純物
のゲッタリングシンクを有し、表面部には欠陥の少ない
活性化領域を有するウェーハが、容易に得られる可能性
があるように推測される。しかしながら、ウェーハ内部
のゲッタリングシンク十分に有し、かつ表層部は極めて
欠陥の少ないウェーハ、およびそのウェーハを得るため
の効率的な製造方法が十分確立されているとはいい難
い。
As described above, a single crystal containing a suitable amount of oxygen is grown by adding nitrogen, and an appropriate heat treatment is applied to a wafer obtained from the single crystal. However, it is presumed that a wafer having an active region with few defects on the surface may be easily obtained. However, it is difficult to say that a wafer having a sufficient gettering sink inside the wafer and having very few defects in the surface layer, and an efficient manufacturing method for obtaining the wafer have not been sufficiently established.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、表面
から10μmを超える深さまでの活性化領域に空洞型欠陥
すなわちgrown-in欠陥(以下grown-in欠陥と記述す
る)、酸素析出物欠陥およびスリップがなく、バルク部
分にはゲッタリングシンクとなるBMDないしは酸素析
出物の存在密度が十分大きい、シリコンウェーハおよび
その製造方法の提供にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cavity type defect, that is, a grown-in defect (hereinafter referred to as a grown-in defect), an oxygen precipitate defect in an activated region from the surface to a depth exceeding 10 μm. Another object of the present invention is to provide a silicon wafer and a method for producing the same, which have no slip and have a sufficiently high BMD or oxygen precipitate density serving as a gettering sink in a bulk portion.

【0013】[0013]

【課題を解決するための手段】本発明者らは、育成され
たシリコン単結晶のgrown-in欠陥および酸素析出物欠陥
の大きさや分布が、窒素の含有により変化する効果につ
いて種々調査し、得られるウェーハの性能向上あるいは
製造条件合理化の可能性についての検討をおこなった。
Means for Solving the Problems The present inventors have conducted various investigations on the effect of changing the size and distribution of grown-in defects and oxygen precipitate defects in a grown silicon single crystal due to the nitrogen content, and obtained the results. The possibility of improving the performance of the used wafer or rationalizing the manufacturing conditions was examined.

【0014】その結果、まずこれまでに知られているよ
うに、窒素を添加するとgrown-in欠陥のサイズが小さく
なること、そして酸素析出物の分布密度が大きくなって
均一に分散することが確認された。次に単結晶の育成速
度の影響を調べてみると、一般に速度は大きくなるとgr
own-in欠陥は小さくなる傾向があるが、窒素が添加され
た場合、とくにその効果が顕著であることがわかった。
As a result, it was first confirmed that addition of nitrogen reduces the size of grown-in defects and increases the distribution density of oxygen precipitates, and is uniformly dispersed, as previously known. Was done. Next, when examining the effect of the growth rate of the single crystal, it was found that the gr
Although own-in defects tend to be small, it was found that the effect was particularly remarkable when nitrogen was added.

【0015】ウェーハを熱処理する目的の一つは、微少
欠陥の排除や不純物の拡散除去である。しかし、これら
欠陥や不純物の熱処理前の存在形態が変われば、熱処理
による効果が異なったものとなる可能性がある。そこ
で、この窒素を添加し、引き上げ速度を大きくした単結
晶から得たウェーハを用い、表面には欠陥の存在しない
DZ(Denuded Zone)を形成させ、そしてそれをgrown-i
n欠陥のない無欠陥層とするための熱処理条件、さらに
は内部の有効なBMDを増す条件を種々検討してみた。
One of the purposes of heat-treating a wafer is to eliminate minute defects and to diffuse impurities. However, if the existing form of these defects and impurities before the heat treatment changes, the effect of the heat treatment may be different. Therefore, using a wafer obtained from a single crystal in which the nitrogen is added and the pulling rate is increased, a DZ (Denuded Zone) having no defect on the surface is formed, and the grown DZ is formed.
Various heat treatment conditions for obtaining a defect-free layer having no n-defects and conditions for increasing the effective BMD inside were examined.

【0016】COPなど空洞形の微少欠陥は、水素を含
む雰囲気中で高温に加熱すると、縮小し消失する。一方
DZの形成には多段の熱処理、すなわち高温(>1100
℃)の非酸化性雰囲気中での酸素外方拡散処理、低温
(600〜750℃)での有効析出核形成処理、および中間温
度でのバルク欠陥形成処理、等が必要とされている。
[0016] Microscopic defects having a hollow shape such as COP shrink and disappear when heated to a high temperature in an atmosphere containing hydrogen. On the other hand, the formation of DZ requires a multi-step heat treatment, that is, high temperature (> 1100
C.) in a non-oxidizing atmosphere, effective precipitation nucleation at a low temperature (600 to 750 ° C.), and bulk defect formation at an intermediate temperature.

【0017】これに対し、上記の窒素を添加し引き上げ
速度を大きくした単結晶によるウェーハにて、空洞形微
少欠陥の除去とDZの形成について調べてみると、水素
雰囲気中にて昇温速度を速くしてそれほど高くない温度
に加熱する、という熱処理によっても表層部に欠陥がな
いDZが形成されることがわかった。
On the other hand, when the removal of hollow minute defects and the formation of DZ were examined on a single crystal wafer to which the above-mentioned nitrogen was added and the pulling rate was increased, the rate of temperature rise was increased in a hydrogen atmosphere. It was found that heat treatment of increasing the temperature to a not so high temperature also formed DZ having no defect in the surface layer.

【0018】これは、前述のように窒素を添加し速い引
き上げ速度で単結晶を育成することにより、grown-in欠
陥は微細化する一方、比較的大きな酸素析出物となる核
のようなものが、均一に単結晶内に形成されたためでは
ないかと推定された。一般的にバルク中に存在する微少
粒子は、同じ含有量であれば、その大きさが小さいほ
ど、より容易に析出、消失、合体、成長などが進行す
る。これは、体積に対する表面積の比が大きい場合に
は、活性が高くなるためである。
This is because, as described above, by adding nitrogen and growing a single crystal at a high pulling rate, grown-in defects are refined, while nuclei such as relatively large oxygen precipitates are formed. It was presumed that this was due to uniform formation within the single crystal. In general, as the size of the fine particles present in the bulk is the same, the smaller the size, the more easily the precipitation, disappearance, coalescence, growth and the like proceed. This is because the activity increases when the ratio of surface area to volume is large.

【0019】表面層のDZの形成のみに着目すれば、こ
の窒素添加単結晶によるウェーハは急速加熱が可能と思
われた。ところが、この急速加熱による短時間熱処理の
活用の検討をさらに進めていくと、スリップのような転
位による欠陥が生じやすいこと、およびウェーハ内部の
BMDの形成が不十分であることわかってきた。
If attention is paid only to the formation of DZ on the surface layer, it seems that the wafer made of this nitrogen-added single crystal can be rapidly heated. However, as the study of utilizing the short-time heat treatment by the rapid heating is further advanced, it has been found that defects such as slip are easily generated by dislocation, and that the BMD inside the wafer is insufficiently formed.

【0020】速く昇温するとは昇温途中でのウェーハ外
周部と中央部との温度差が大きくなりがちであり、それ
に基づく熱膨張の差により生じる応力のため、スリップ
のような転位による欠陥が生じやすくなる。このスリッ
プは、窒素を添加し引き上げ速度を大きくした単結晶で
は発生が抑止される傾向があるが、やはり昇温速度を速
くすることは好ましくなく速度向上には限界がある。
When the temperature is increased quickly, the temperature difference between the outer peripheral portion and the central portion of the wafer tends to increase during the temperature increase. Due to the stress caused by the difference in thermal expansion based on the temperature, defects due to dislocation such as slip may occur. It is easy to occur. Such a slip tends to be suppressed in a single crystal in which nitrogen is added and the pulling rate is increased, but it is still not preferable to increase the temperature increasing rate, and there is a limit to the rate improvement.

【0021】また、BMDの形成が不十分であるのは、
急速加熱することにより酸素析出物が形成しやすい温度
域を通過する時間が短すぎ、酸素が析出しにくくなって
しまうのではないかと推定された。そこで、スリップが
発生せず、BMDが十分形成される条件を種々調査した
結果、温度域により昇温速度を制御することが有効であ
ることを見出した。
In addition, the formation of BMD is insufficient because
It was presumed that the rapid heating resulted in too short a time for passing through a temperature range in which oxygen precipitates were easily formed, which would make it difficult for oxygen to precipitate. Therefore, as a result of various investigations on conditions under which no slip occurs and BMD is sufficiently formed, it has been found that it is effective to control the temperature rising rate in accordance with the temperature range.

【0022】熱処理の加熱到達温度は、ウェーハのgrow
n-in欠陥の大きさやその多少により、DZを十分形成さ
せるために適宜選定する必要がある。しかし、その到達
温度の如何に関わらずスリップを発生させず、しかもB
MDを多くするには、昇温速度は温度範囲によってその
上限を定めればよいことがわかったのである。
The ultimate temperature of the heat treatment is determined by the growth of the wafer.
Depending on the size of the n-in defect and its size, it is necessary to appropriately select the DZ in order to sufficiently form the DZ. However, no slip occurs regardless of the temperature reached, and B
It has been found that in order to increase the MD, the upper limit of the heating rate may be determined according to the temperature range.

【0023】目標温度に到達した後の保持時間は、高温
になるほどその最小限必要とする時間が短くなる。熱処
理の生産性向上のためには、昇温時間の短縮とともに保
持時間の短縮も必要である。
The minimum required holding time after reaching the target temperature becomes shorter as the temperature becomes higher. In order to improve the productivity of the heat treatment, it is necessary to shorten the heating time and the holding time.

【0024】以上のような知見から、さらにそれぞれの
条件の限界を明らかにして、本発明を完成させた。本発
明の要旨は次のとおりである。 (1) ウェーハ内部のバルク部分における酸素析出物密度
が5×105個/cm2以上で、活性領域となる表面から深さ10
μmまでの範囲においては、0.09μm以上のグロウンイン
欠陥の数が1.6×10-2個/cm2以下であることを特徴とす
るシリコンウェーハ。 (2) 窒素含有量が1×1013〜5×1015atoms/cm3で、成長
速度を1.2mm/min以上として育成したシリコン単結晶か
ら切り出したウェーハを用い、水素雰囲気中で加熱する
熱処理を施す際の昇温速度を、1000℃以下の温度範囲で
は60℃/min以下、1000℃を超え1100以下の温度範囲では
10℃/min以下、1100℃を超える温度範囲では2℃/min以
下とすることを特徴とする、上記(1)のシリコンウェー
ハの製造方法。 (3) 熱処理の加熱温度をT℃とするとき、少なくとも下
記式を満足する時間保持することを特徴とする上記
(2)のシリコンウェーハの製造方法。
Based on the above findings, the present invention was completed by further clarifying the limitations of the respective conditions. The gist of the present invention is as follows. (1) The oxygen precipitate density in the bulk portion inside the wafer is 5 × 10 5 / cm 2 or more, and the depth from the surface to be the active region is 10
A silicon wafer characterized in that the number of grown-in defects of 0.09 μm or more is 1.6 × 10 −2 / cm 2 or less in a range up to μm. (2) Heat treatment in a hydrogen atmosphere using a wafer cut from a silicon single crystal grown with a nitrogen content of 1 × 10 13 to 5 × 10 15 atoms / cm 3 and a growth rate of 1.2 mm / min or more. The temperature rise rate when applying is 60 ° C / min or less in the temperature range of 1000 ° C or less, and in the temperature range of over 1000 ° C and 1100 or less.
(1) The method for producing a silicon wafer according to the above (1), wherein the temperature is set to 2 ° C / min or less in a temperature range of 10 ° C / min or less and 1100 ° C or more. (3) When the heating temperature of the heat treatment is T ° C., the temperature is maintained for at least a time satisfying the following expression.
(2) The method for manufacturing a silicon wafer.

【0025】 保持時間(秒)≧10-10×exp{40000/(T+273)} ・・・・ Holding time (seconds) ≧ 10 −10 × exp {40000 / (T + 273)}

【0026】[0026]

【発明の実施の形態】本発明のシリコンウェーハは、表
面から深さ10μmまでの範囲においては、表面と平行な
任意の面で大きさが0.09μm以上であるgrown-in欠陥の
数が、1.6×10 -2個/cm2以下であり、かつ内部のバルク
部分においては、酸素析出物の検出密度がウェーハに対
し5×105個/cm2以上であることとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The silicon wafer of the present invention
In the range from the plane to a depth of 10 μm,
For grown-in defects with a size of 0.09 μm or more on any surface
Number is 1.6 × 10 -2Pieces / cmTwoLess than and bulk inside
In some areas, the detected density of oxygen precipitates
5 × 10FivePieces / cmTwoThat is all.

【0027】表面から深さ10μmまでの範囲の欠陥数を
限定するのは、活性化領域すなわちデバイスが形成され
る表面部分は10μm以内であり、この部分にてgrown-in
欠陥の数が、1.6×10-2個/cm2以下であれば、実質的に
欠陥が存在しないと同等であると考えられるからであ
る。また、その欠陥の大きさを0.09μm以上のものとす
るのは、大きさが0.09μm未満では存在していてもデバ
イスの性能劣化に影響を及ぼさないからであり、現状で
は安定して検出可能な大きさのほぼ下限であるからであ
る。
The limitation of the number of defects in the range from the surface to a depth of 10 μm is that the active region, that is, the surface portion where the device is formed is within 10 μm, and the growth-in
This is because if the number of defects is 1.6 × 10 −2 / cm 2 or less, it is considered that there is substantially no defect, which is equivalent. In addition, the reason why the size of the defect is 0.09 μm or more is that even if the size is less than 0.09 μm, it does not affect the performance degradation of the device, so that it can be detected stably at present. This is because the size is almost the lower limit.

【0028】一方内部のバルク部分では、重金属汚染の
ゲッタリングに対してシンクサイトとなる酸素析出物な
いしはBMDは多くかつ均一に分散しているほど好まし
く、5×105個/cm2以上あれば十分であると考えられる。
なお酸素析出物の検出はウェーハ断面の劈開面にておこ
なうので、存在量はその観察面における検出密度で表示
する。この場合、通常採用される方法は、ウェーハを割
って{110}の劈開面を出し、ライト液によるエッチ
ングをおこなって、この面における析出密度を求める。
On the other hand, in the inner bulk portion, it is preferable that the amount of oxygen precipitates or BMDs serving as sink sites for gettering of heavy metal contamination is large and uniform, and if it is 5 × 10 5 / cm 2 or more, Deemed sufficient.
Since the detection of oxygen precipitates is performed on the cleavage plane of the cross section of the wafer, the abundance is indicated by the detection density on the observation plane. In this case, a commonly adopted method is to split the wafer to obtain a {110} cleavage plane, perform etching with a light solution, and obtain the deposition density on this plane.

【0029】上記のウェーハの製造には、窒素含有量が
1×1013〜5×1015atoms/cm3で、成長速度を1.2mm/min以
上として育成したシリコン単結晶から切り出したウェー
ハを用いる。窒素含有量を1×1013atoms/cm3以上とする
のは、この値を下回る場合、引き上げ速度を1.2mm/min
以上と速くしたときに得られる、grown-in欠陥の大きさ
を小さくする効果が十分でないからである。また窒素含
有量が多くなると多結晶化する傾向があるので、多くて
も5×1015atoms/cm3までとするのがよい。
In the production of the above wafer, the nitrogen content is
A wafer cut from a silicon single crystal grown at 1 × 10 13 to 5 × 10 15 atoms / cm 3 at a growth rate of 1.2 mm / min or more is used. When the nitrogen content is set to 1 × 10 13 atoms / cm 3 or more, if the value is below this value, the pulling speed is set to 1.2 mm / min.
This is because the effect of reducing the size of the grown-in defect, which is obtained when the speed is increased as described above, is not sufficient. In addition, since polycrystallization tends to occur when the nitrogen content increases, it is preferable to set the nitrogen content to at most 5 × 10 15 atoms / cm 3 .

【0030】窒素添加によるgrown-in欠陥の小さくなる
効果を十分に発揮させるためには、引上げ速度は1.2mm/
min以上とするのが好ましい。なお、引上げ速度は速い
ほどgrown-in欠陥を小さくできるので、とくに上限は定
めないが、安定して健全な単結晶を製造するためには、
引上げ速度は2.5mm/min程度までとするのがよい。
In order to sufficiently exhibit the effect of reducing grown-in defects by adding nitrogen, the pulling speed should be 1.2 mm /
It is preferred to be at least min. The higher the pulling speed, the smaller the grown-in defects can be.There is no particular upper limit, but in order to produce a stable and sound single crystal,
The pulling speed is preferably up to about 2.5 mm / min.

【0031】このようにして得られたシリコン単結晶か
ら切り出したウェーハを用い、水素雰囲気中で加熱する
熱処理を施す際の昇温速度は、1000℃以下の温度範囲で
は60℃/min以下、1000℃を超え1100以下の温度範囲では
10℃/min以下、1100℃を超える温度範囲では2℃/min以
下とする。
Using a wafer cut out of the silicon single crystal thus obtained, the rate of temperature rise when heat treatment in a hydrogen atmosphere is performed is 60 ° C./min or less in a temperature range of 1000 ° C. or less, and 1000 ° C. or less. In the temperature range above ℃ and below 1100
10 ° C / min or less, 2 ° C / min or less in the temperature range exceeding 1100 ° C.

【0032】水素雰囲気とするのは、ウェーハの酸化を
抑止すると共に、表面からの酸素や窒素の離脱を促進
し、ウェーハ表面のDZの形成を容易にするためであ
る。水素は高純度のものが望ましいが、ヘリウムやアル
ゴンなどを混合した実質的水素雰囲気としてもよい。
The hydrogen atmosphere is used to suppress oxidation of the wafer, promote desorption of oxygen and nitrogen from the surface, and facilitate formation of DZ on the wafer surface. Hydrogen is preferably of high purity, but may be a substantially hydrogen atmosphere in which helium, argon, or the like is mixed.

【0033】温度範囲によってそれぞれ昇温速度の上限
を定めるのは、スリップを発生させず、かつBMDを十
分生じさせるためである。スリップは一旦発生すると温
度を高くしても消失しないので、各温度範囲でそれぞれ
昇温速度の上限を定める必要がある。またBMDは各温
度域での発生の状況が異なり、例えば1000℃までの温度
域で60℃/minを超える昇温速度で加熱された場合、その
後1000〜1100℃および1100℃を超える温度域で上記範囲
の昇温速度としても、十分な密度とならない。
The upper limit of the heating rate is determined according to the temperature range in order not to cause slip and to sufficiently generate BMD. Once the slip occurs, it does not disappear even if the temperature is increased, so it is necessary to set the upper limit of the heating rate in each temperature range. In addition, the situation of BMD generation in each temperature range is different, for example, when heated at a temperature rise rate exceeding 60 ° C / min in a temperature range up to 1000 ° C, then in a temperature range exceeding 1000 to 1100 ° C and 1100 ° C Even when the heating rate is in the above range, the density is not sufficient.

【0034】昇温速度の上限は上記のように限定する
が、下限の速度はとくには定めない。これは各温度範囲
で昇温速度を上記範囲内に入れさえすれば本発明の効果
が得られるからで、それぞれの昇温速度をより遅くして
もその効果は変わらない。したがって、遅くすることは
単に処理時間の増大を招くだけで、多少の加熱エネルギ
の節約にはなっても、それ以外には得ることがなく、実
施に際してはできるだけ上記の昇温速度に近づけること
が好ましい。
The upper limit of the heating rate is limited as described above, but the lower limit is not particularly defined. This is because the effect of the present invention can be obtained as long as the heating rate is within the above range in each temperature range, and the effect does not change even if each heating rate is made slower. Therefore, slowing down simply causes an increase in the processing time, and saves some heating energy, but does not provide any other benefit. preferable.

【0035】なお、昇温速度の値はその温度範囲での平
均値とすればよい。通常の加熱においては、温度の低い
範囲では昇温速度は大きく、高い範囲では小さくなるの
で、平均昇温速度を規制すれば、目的の効果を得ること
ができる。また、1000℃までの温度範囲にて上記の60℃
/min以下の昇温速度とするのは、700℃を超えてからで
よい。700℃までの温度範囲での昇温速度の如何は、上
記ウェーハの特性にほとんど影響を及ぼさない。
The value of the heating rate may be an average value in the temperature range. In normal heating, the rate of temperature rise is high in a low temperature range and is low in a high temperature range. Therefore, if the average rate of temperature rise is regulated, the intended effect can be obtained. In addition, the above 60 ℃ in the temperature range up to 1000 ℃
The heating rate of not more than / min may be after the temperature exceeds 700 ° C. The heating rate in the temperature range up to 700 ° C. has almost no effect on the characteristics of the wafer.

【0036】水素中熱処理の温度は、1000〜1250℃とす
るのが望ましい。DZのgrown-in欠陥の数は、加熱温度
が高くなるほど少なくなるが、1250℃を超えて加熱する
ことは、熱処理炉の熱負荷が大きくなり、炉内構造物の
劣化もいちじるしくコストの上昇を招くためであり、ま
た1000℃未満の加熱では欠陥数が十分低下しないからで
ある。
The temperature of the heat treatment in hydrogen is desirably 1000 to 1250 ° C. The number of grown-in defects in DZ decreases as the heating temperature increases, but heating above 1250 ° C increases the heat load of the heat treatment furnace and significantly increases the cost of the furnace internal structure. This is because heating at less than 1000 ° C. does not sufficiently reduce the number of defects.

【0037】窒素は水素雰囲気中処理前のウェーハ中に
1×1013〜5×1015atoms/cm3で含有されておればよく、
処理後のウェーハ中に含まれる量についてはとくには規
制しない。これは、主として所定加熱温度にまで到達す
る過程にて表面層の無欠陥化、および内部の酸素析出物
形成がおこなわれるからである。
Nitrogen is contained in the wafer before processing in a hydrogen atmosphere.
What is necessary is just to contain at 1 × 10 13 to 5 × 10 15 atoms / cm 3 ,
There is no particular restriction on the amount contained in the processed wafer. This is mainly because in the process of reaching the predetermined heating temperature, the surface layer is made defect-free and oxygen precipitates are formed inside.

【0038】目標温度T(℃)に到達した後の保持時間
は、下記を満足するものとする。 保持時間(秒)≧10-10×exp{40000/(T+273)} ・・・・ これは、目的とするDZを形成させ、そこのgrown-in欠
陥の数を低減するのに、低い温度では保持時間が長い方
が好ましく、温度が高ければ短くて済むからである。上
記式を満足する範囲であれば保持時間は長くなっても
かまわない。ただし、長く保持してもそれ以上の効果は
期待できず、加熱エネルギの無駄および生産性を悪くす
るだけなので、長くても2時間以内とするのが望まし
い。
The holding time after reaching the target temperature T (° C.) satisfies the following. Retention time (sec) ≧ 10 −10 × exp {40000 / (T + 273)}... This is because at low temperatures, the desired DZ is formed and the number of grown-in defects there is reduced. This is because the longer the holding time is, the shorter the temperature is. As long as the above expression is satisfied, the holding time may be long. However, no further effect can be expected even if it is maintained for a long time, and it only wastes heating energy and deteriorates productivity.

【0039】高温保持後の冷却条件は、昇温の過程で欠
陥分布等の状態がほぼ決定されるので、とくには規制し
ない。しかしながら、スリップの発生に影響することが
あるので、急速冷却は好ましくなく、30分以上の時間で
冷却されることが望ましい。
The cooling conditions after holding at a high temperature are not particularly limited since the state of the defect distribution and the like is substantially determined in the process of raising the temperature. However, rapid cooling is not preferred because it may affect the occurrence of slip, and it is desirable that cooling be performed in a time of 30 minutes or more.

【0040】[0040]

【実施例】〔実施例1〕p型の抵抗値1〜10Ωcmである
8インチのウェーハを得るための酸素濃度が1.1〜1.3×
1018atoms/cm3以下の単結晶を、引上げ速度1.0mm/minと
し、窒素濃度を変えて育成した。得られた単結晶から厚
さ0.7mmのウェーハを作製し、grown-in欠陥の大きさを
赤外線レーザ光の散乱強度により測定した。この測定
は、いくつかのウェーハにより透過型電子顕微鏡にて欠
陥を直接観察してその大きさを測定し、同じウェーハに
て散乱強度を求めてあらかじめ作製した検量線を用いて
おこなった。この場合、欠陥を球体と見なし、その直径
を大きさとした。欠陥の大きさは窒素量以外は同じ条件
で製造された単結晶から採取したウェーハにて、任意に
1000ヶ所選び、検出されたgrown-in欠陥の大きさを平均
した。得られた窒素添加量と欠陥の平均径との関係を図
1に示す。
[Embodiment 1] The oxygen concentration for obtaining an 8-inch wafer having a p-type resistance value of 1 to 10 Ωcm is 1.1 to 1.3 ×.
A single crystal of 10 18 atoms / cm 3 or less was grown at a pulling rate of 1.0 mm / min while changing the nitrogen concentration. A wafer having a thickness of 0.7 mm was prepared from the obtained single crystal, and the size of the grown-in defect was measured by the scattering intensity of infrared laser light. This measurement was performed using a calibration curve prepared in advance by measuring the size of a defect by directly observing a defect with a transmission electron microscope using several wafers and obtaining the scattering intensity on the same wafer. In this case, the defect was regarded as a sphere and its diameter was made large. Defect size can be determined arbitrarily on a wafer taken from a single crystal manufactured under the same conditions except for the amount of nitrogen.
1000 locations were selected and the size of detected grown-in defects was averaged. FIG. 1 shows the relationship between the obtained nitrogen addition amount and the average diameter of defects.

【0041】この図から明らかなように、単結晶の窒素
濃度は、高くなるほどgrown-in欠陥の大きさの平均値は
小さくなり、とくに1×1013atoms/cm3以上になると、大
幅に欠陥径が小さくなることがわかる。なお窒素濃度は
5×1015atoms/cm3を超えると、多結晶化する傾向があ
る。
As is apparent from this figure, the nitrogen concentration in the single crystal, the average value of the size of grown-in defects as higher decreases, the particular becomes 1 × 10 13 atoms / cm 3 or more, significantly defects It can be seen that the diameter becomes smaller. The nitrogen concentration is
If it exceeds 5 × 10 15 atoms / cm 3 , polycrystallization tends to occur.

【0042】次に窒素を添加しない場合、1×1012atoms
/cm3添加した場合および1×1014atoms/cm3添加した場合
の3種の単結晶を引上げ速度を変えて育成し、上記と同
様にしてgrown-in欠陥の平均の大きさを調べた。図2に
その結果を示すが、いずれの場合も引上げ速度が速くな
るほど欠陥の大きさが小さくなる。窒素を1×1012atoms
/cm3添加した場合は窒素を添加しないものとの差はない
が、窒素が1×1014atoms/cm3添加された単結晶では、欠
陥の大きさが添加しない場合の1/2程度になっている。
窒素添加による効果を十分に発揮させるためには、引上
げ速度を1.2mm/min以上とするのが好ましいと判断され
る。
Next, when nitrogen is not added, 1 × 10 12 atoms
/ cm 3 when the addition and 1 × 10 14 to atoms / cm 3 3 kinds of single crystals of adding grown by changing the pulling rate was examined an average size of grown-in defects in the same manner as described above . FIG. 2 shows the results. In each case, the defect size decreases as the pulling speed increases. Nitrogen is 1 × 10 12 atoms
/ cm 3 does not differ from the case where nitrogen is not added, but in the case of a single crystal in which nitrogen is added at 1 × 10 14 atoms / cm 3 , the size of a defect is about half of that in the case where nitrogen is not added. Has become.
In order to sufficiently exert the effect of adding nitrogen, it is determined that the pulling speed is preferably set to 1.2 mm / min or more.

【0043】〔実施例2〕上述の実施例1と同じ8イン
チの単結晶を A:窒素添加無しで引上げ速度を2.0mm/min B:窒素を1×1014atoms/cm3添加し引上げ速度を1.0mm/
min C:窒素を1×1014atoms/cm3添加し引上げ速度を1.2mm/
min D:窒素を1×1014atoms/cm3添加し引上げ速度を2.0mm/
min として4種育成し、それぞれの単結晶から厚さ0.7mmの
ウェーハを切り出して以下の調査をおこなった。
Example 2 The same 8-inch single crystal as in Example 1 described above was used. A: The pulling speed was 2.0 mm / min without adding nitrogen. B: The pulling speed was 1 × 10 14 atoms / cm 3 of nitrogen. 1.0mm /
min C: Nitrogen is added at 1 × 10 14 atoms / cm 3 and the pulling speed is 1.2 mm /
min D: Nitrogen is added at 1 × 10 14 atoms / cm 3 and the pulling speed is 2.0 mm /
Four types were grown as min, and a wafer having a thickness of 0.7 mm was cut out from each single crystal, and the following investigation was performed.

【0044】縦型バッチ式の炉を用い、高純度水素雰囲
気中で700〜1000℃を5℃/min、1000〜1100℃を1℃/mi
n、1100〜1200℃を0.5℃/minとして1200℃に昇温し、1
時間保持した。常温から6時間かけて1200℃に昇温し、
1時間保持した。冷却後、ウェーハ面を表面から5μmず
つ研磨し、その研磨面にて赤外線レーザによる光散乱を
用いた表面検査装置(KLA-Tencor社製SP-1)により、サ
イズが0.09μm以上のgrown-in欠陥の数を測定した。
Using a vertical batch type furnace, 700-1000 ° C. at 5 ° C./min and 1000-1100 ° C. at 1 ° C./mi in a high-purity hydrogen atmosphere.
n 、 1100 ~ 1200 ℃ 0.5 ℃ / min
Hold for hours. Temperature rises from normal temperature to 1200 ° C over 6 hours,
Hold for 1 hour. After cooling, the wafer surface is polished from the surface in 5 μm increments, and the polished surface is grown-in with a size of 0.09 μm or more using a surface inspection device (SP-1 manufactured by KLA-Tencor) using light scattering by an infrared laser. The number of defects was measured.

【0045】図3に、この表面からの深さ位置における
測定劈開面当たりの欠陥数を示す。これから明らかなよ
うに、Aの単結晶によるウェーハや、Bの単結晶による
ウェーハは、表面から内部へはいるほど欠陥数が増して
いるが、本発明の条件範囲内にある、窒素が1×1014ato
ms/cm3添加され引上げ速度が1.2mm/minであるCの単結
晶によるウェーハ、または窒素量は同じで引上げ速度が
2.0mm/minであるDの単結晶によるウェーハでは、表面
の欠陥数が少ないばかりでなく、内部に入っても欠陥数
は増加せず、活性化領域の欠陥数は十分低くなっている
ことがわかる。
FIG. 3 shows the number of defects per cleaved surface measured at a depth position from the surface. As is clear from the above, the wafer using a single crystal of A or the wafer using a single crystal of B has an increased number of defects as it goes from the surface to the inside, but the nitrogen content within the condition range of the present invention is 1 ×. 10 14 ato
ms / cm 3 added and the pulling speed is 1.2mm / min.
In a wafer made of D single crystal of 2.0 mm / min, not only the number of defects on the surface is small, but also the number of defects does not increase even if it goes inside, and the number of defects in the activated region is sufficiently low. Understand.

【0046】〔実施例3〕上記実施例2のA,B、Cお
よびDの4種の単結晶から採取したそれぞれのウェーハ
に対し、水素雰囲気中にて昇温速度を1000℃以下(700
℃から)、1000℃超1100℃まで、および1100℃超1200℃
までの温度範囲でそれぞれ変え、目標処理温度に達して
から、1時間保持または、前出式で定まる時間保持
後、冷却する処理をおこなった。
[Embodiment 3] Each wafer taken from the four single crystals of A, B, C and D in the above Embodiment 2 was heated at a temperature rising rate of 1000 ° C. or less (700 ° C. or less) in a hydrogen atmosphere.
° C), above 1000 ° C to 1100 ° C, and above 1100 ° C to 1200 ° C
After the temperature reached the target processing temperature, cooling was performed for one hour or after maintaining the time determined by the above formula.

【0047】冷却後、ウェーハのX線トポグラフの手法
によるスリップ発生の有無、深さ10μm位置における大
きさが0.09μm以上のgrown-in欠陥の数、および{11
0}劈開面のライト液エッチングによる酸素析出物(B
MD)のこの面における析出密度、等の調査をおこなっ
た。
After cooling, the presence or absence of slip by the X-ray topography method of the wafer, the number of grown-in defects having a size of 0.09 μm or more at a depth of 10 μm, and
Oxygen precipitate (B
Investigations on the precipitation density on this surface of MD) were conducted.

【0048】ウェーハの熱処理条件と、得られたウェー
ハの調査結果とをまとめて表1に示す。まず、窒素添加
をおこなっていないAの単結晶、または窒素を添加して
も引き上げ速度が本発明で定める1.2mm/min以下である
Bの単結晶から採取した試番1〜8または9〜16のウェー
ハでは、本発明で定めるウェーハの熱処理条件におい
て、スリップの発生がなくgrown-in欠陥の数が少なくか
つBMDの多いウェーハは得られない。
Table 1 summarizes the heat treatment conditions for the wafer and the results of the examination of the obtained wafer. First, sample numbers 1 to 8 or 9 to 16 obtained from a single crystal of A to which nitrogen was not added or a single crystal of B having a pulling speed of 1.2 mm / min or less as defined in the present invention even when nitrogen was added. Under the wafer heat treatment conditions defined in the present invention, a wafer having no slip, a small number of grown-in defects and a large BMD cannot be obtained.

【0049】これに対し、窒素含有量および引上げ速度
が本発明の定める範囲にある単結晶からのウェーハを用
い、水素雰囲気中の熱処理条件を本発明にて定める範囲
とした試番19〜23、27〜31、35〜39および43〜47では、
スリップの発生はなく、grown-in欠陥の数は少なく、か
つBMD密度の大きいものが得られていることがわか
る。
On the other hand, using a wafer made of a single crystal having a nitrogen content and a pulling rate falling within the ranges defined by the present invention, the heat treatment conditions in a hydrogen atmosphere were set to the test numbers 19 to 23, which were within the ranges defined by the present invention. In 27-31, 35-39 and 43-47,
It can be seen that no slip occurred, the number of grown-in defects was small, and a BMD having a large BMD density was obtained.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明の半導体デバイス用ウェーハは、
表面から10μmを超える深さまでの部分に空洞型欠陥す
なわちgrown-in欠陥、酸素析出物欠陥およびスリップが
なく、バルク部分のゲッタリングシンクとなる酸素析出
物の存在密度が十分大きい。このウェーハは、その上に
形成されるデバイスの品質を向上させ、かつ良品歩留ま
り大幅に増大させることができる。またこのような欠陥
の分布状態のウェーハを製造する本発明の方法は、熱処
理工程のスループットを大幅に向上させるものであり、
ウェーハの製造技術の進歩に寄与する効果は大である。
As described above, the semiconductor device wafer of the present invention comprises:
There are no void-type defects, that is, grown-in defects, oxygen precipitate defects, and slips in a portion from the surface to a depth exceeding 10 μm, and the density of oxygen precipitates serving as gettering sinks in the bulk portion is sufficiently large. This wafer can improve the quality of devices formed thereon and greatly increase the yield of non-defective products. In addition, the method of the present invention for producing a wafer having such a defect distribution state significantly improves the throughput of the heat treatment step,
The effect contributing to the progress of the wafer manufacturing technology is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリコン単結晶への窒素添加量と単結晶のgrow
n-in欠陥の径との関係を示す図である。
FIG. 1 Nitrogen addition to silicon single crystal and growth of single crystal
FIG. 3 is a diagram showing a relationship with the diameter of an n-in defect.

【図2】シリコン単結晶引上げ速度とgrown-in欠陥の径
との関係に対して、窒素を添加した場合の効果を示す図
である。
FIG. 2 is a diagram showing the effect of adding nitrogen on the relationship between the silicon single crystal pulling rate and the diameter of grown-in defects.

【図3】ウェーハ表面部分のgrown-in欠陥密度に対す
る、窒素添加および引き上げ速度の影響を示す図であ
る。
FIG. 3 is a diagram showing the effect of nitrogen addition and pulling rate on the grown-in defect density at the wafer surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 草場 辰巳 佐賀県杵島郡江北町大字上小田2201番地住 友金属工業株式会社シチックス事業本部内 Fターム(参考) 4G077 AA02 AB01 CF10 EH09 FE02 FE11 5F053 AA12 AA22 DD01 FF04 GG01 PP03 RR03 RR04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tatsumi Kusaba 2201 Kamioda, Kokita-cho, Kishima-gun, Saga Prefecture F-term (reference) 4G077 AA02 AB01 CF10 EH09 FE02 FE11 5F053 AA12 AA22 DD01 FF04 GG01 PP03 RR03 RR04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ウェーハ内部のバルク部分における酸素析
出物密度が5×105個/cm2以上で、活性領域となる表面か
ら深さ10μmまでの範囲においては、0.09μm以上のグロ
ウンイン欠陥の数が1.6×10-2個/cm2以下であることを
特徴とするシリコンウェーハ。
An oxygen precipitate density in a bulk portion inside a wafer is not less than 5 × 10 5 / cm 2 , and in a range from a surface serving as an active region to a depth of 10 μm, a grown-in defect of 0.09 μm or more is formed. A silicon wafer having a number of 1.6 × 10 -2 pieces / cm 2 or less.
【請求項2】窒素含有量が1×1013〜5×1015atoms/cm3
で成長速度を1.2mm/min以上として育成したシリコン単
結晶から切り出したウェーハを用い、水素雰囲気中で加
熱する熱処理を施す際の昇温速度を、1000℃以下の温度
範囲では60℃/min以下、1000℃を超え1100以下の温度範
囲では10℃/min以下、1100℃を超える温度範囲では2℃/
min以下とすることを特徴とする、請求項1に記載のシ
リコンウェーハの製造方法。
2. A nitrogen content of 1 × 10 13 to 5 × 10 15 atoms / cm 3.
Using a wafer cut from a silicon single crystal grown at a growth rate of 1.2 mm / min or more, the rate of temperature rise when performing a heat treatment of heating in a hydrogen atmosphere is 60 ° C / min or less in a temperature range of 1000 ° C or less. , 10 ° C / min or less in the temperature range exceeding 1000 ° C and 1100 or less, 2 ° C / min in the temperature range exceeding 1100 ° C
2. The method for producing a silicon wafer according to claim 1, wherein the value is not more than min.
【請求項3】熱処理の加熱温度をT℃とするとき、少な
くとも下記式を満足する時間保持することを特徴とす
る請求項2に記載のシリコンウェーハの製造方法。 保持時間(秒)≧10-10×exp{40000/(T+273)} ・・・・
3. The method for producing a silicon wafer according to claim 2, wherein when the heating temperature of the heat treatment is T ° C., the temperature is maintained for at least a time satisfying the following expression. Retention time (seconds) ≧ 10 -10 × exp {40000 / (T + 273)}
JP2000310130A 2000-10-11 2000-10-11 Silicon wafer manufacturing method Expired - Fee Related JP3452042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310130A JP3452042B2 (en) 2000-10-11 2000-10-11 Silicon wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310130A JP3452042B2 (en) 2000-10-11 2000-10-11 Silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2002118114A true JP2002118114A (en) 2002-04-19
JP3452042B2 JP3452042B2 (en) 2003-09-29

Family

ID=18790144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310130A Expired - Fee Related JP3452042B2 (en) 2000-10-11 2000-10-11 Silicon wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP3452042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318160A (en) * 2004-05-10 2007-12-06 Siltron Inc Silicon wafer
US7875117B2 (en) 2004-08-12 2011-01-25 Sumco Techxiv Corporation Nitrogen doped silicon wafer and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318160A (en) * 2004-05-10 2007-12-06 Siltron Inc Silicon wafer
JP2007329488A (en) * 2004-05-10 2007-12-20 Siltron Inc Manufacturing method of silicon wafer
US7875117B2 (en) 2004-08-12 2011-01-25 Sumco Techxiv Corporation Nitrogen doped silicon wafer and manufacturing method thereof

Also Published As

Publication number Publication date
JP3452042B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JP5256195B2 (en) Silicon wafer and manufacturing method thereof
JP4670224B2 (en) Silicon wafer manufacturing method
KR100461893B1 (en) Silicon wafer and method of producing silicon single crystal utilizing same
JP5537802B2 (en) Silicon wafer manufacturing method
KR101102336B1 (en) Silicon wafer and method for manufacturing the same
KR19990077707A (en) Method for producing silicon single crystal wafer and silicon single crystal wafer
JP2004006615A (en) High resistance silicon wafer and its manufacturing method
JP4566478B2 (en) Silicon semiconductor substrate and manufacturing method thereof
KR20140001815A (en) Method of manufacturing silicon substrate, and silicon substrate
JP2016152370A (en) Method of manufacturing silicon wafer
JP5207706B2 (en) Silicon wafer and manufacturing method thereof
JP4013276B2 (en) Manufacturing method of silicon epitaxial wafer
JP2011029429A (en) Method for heat treatment of silicon wafer
KR20140021543A (en) Method of manufacturing silicon substrate and silicon substrate
KR100566824B1 (en) Silicon semiconductor substrate and preparation thereof
JP2003002785A (en) Silicon single crystal wafer having layer free from void defect at surface layer part and diameter of not less than 300 mm, and method for producing the same
JP4615161B2 (en) Epitaxial wafer manufacturing method
JP4549589B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP4380141B2 (en) Silicon wafer evaluation method
JP3452042B2 (en) Silicon wafer manufacturing method
JP2010003922A (en) Production process of silicon wafer
JP2004250263A (en) High-quality wafer and its manufacture method
JP4715402B2 (en) Single crystal silicon wafer manufacturing method, single crystal silicon wafer, and wafer inspection method
JP2001284362A (en) Method of manufacturing silicon wafer
JP2002246396A (en) Method of manufacturing epitaxial wafer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3452042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees