JP2002116259A - Applied electric field type x-ray detector - Google Patents

Applied electric field type x-ray detector

Info

Publication number
JP2002116259A
JP2002116259A JP2000307665A JP2000307665A JP2002116259A JP 2002116259 A JP2002116259 A JP 2002116259A JP 2000307665 A JP2000307665 A JP 2000307665A JP 2000307665 A JP2000307665 A JP 2000307665A JP 2002116259 A JP2002116259 A JP 2002116259A
Authority
JP
Japan
Prior art keywords
ray
electric field
carbon atoms
branched alkyl
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000307665A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shima
和彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Yamanashi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd, Yamanashi Electronics Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2000307665A priority Critical patent/JP2002116259A/en
Publication of JP2002116259A publication Critical patent/JP2002116259A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly reliable detector without decrease in mechanical strength, such as cracks or warpages under low-temperature and high-temperature environments, the decrease in sensor characteristics due to the decrease in resistance caused by the crystallization of selenium, and further discharge breakdown or the like due to the application of a high voltage, without having to use materials, such as resin and adhesives, or protection layers. SOLUTION: In the electric field application type X-ray detector, where an X-ray latent image is formed by directly applying an electric field to an X-ray light sensitive layer, carriers that are generated by applying the electric field and X rays are allowed to run in a sensor, and obtained electric charges are subjected to image processing; an X-ray photoconductive layer 2 is provided on a substrate 1, where an electric charge collection electrode is formed on a glass plate, and a protection layer 4 containing a thermosetting silicide that is generated by performing the hydrolysis of a silane compound is provided on the X-ray photoconductive layer 2 and an upper electrode 3; thus easily obtaining a high electrical resistance which covers with almost no difference in the thermal coefficient of expansion with a glass substrate and having without the problems of warpages and cracks due to environmental changes, and hence very much improving durability to mechanical, physical, and electrical stresses required for long operation to a field requiring a flat surface and a large area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電界印加型X線検出器に
関し、さらに詳細には、ガラスプレート上に電荷収集電
極を形成した基板上にX線光導電層を設け、このX線光
導電層上にシラン化合物を加水分解して生成される熱硬
化性のケイ素化合物を含む保護層を設けてなる、電界印
加型X線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray detector applied with an electric field, and more particularly, to an X-ray photoconductive layer provided on a substrate having a charge collecting electrode formed on a glass plate. The present invention relates to an electric field applied X-ray detector comprising a protective layer containing a thermosetting silicon compound formed by hydrolyzing a silane compound on a layer.

【0002】[0002]

【従来の技術】X線やγ線のような放射線を用いた検出
器は、医療用や産業用として近年幅広く活用されている
が、中でも医療用ではX線CTに代表されるデジタル画
像診断、また写真分野ではDSA、CR(DR)等のデ
ジタル化、さらに最新のものとしては超音波装置のデジ
タル化が注目される。
2. Description of the Related Art Detectors using radiation such as X-rays and γ-rays have been widely used in recent years for medical and industrial purposes. In the field of photography, digitization of DSA, CR (DR), etc., and more recently, digitization of ultrasonic devices have attracted attention.

【0003】デジタル化の背景には、アナログ系に匹敵
する画質、撮像機器類の価格低下、操作の容易化等が挙
げられるが、デジタル化された画像情報の多面的利用や
画像ネットワーク接続による診断効率化といった当該産
業分野の要請を考えると、さらなる質の向上、経費削減
を伴ったX線画像記録、読み出し方法の確立が望まれ
る。
[0003] The background of digitization is image quality comparable to that of an analog system, reduction in the price of imaging equipment, simplification of operation, and the like. In view of the demands of the industrial field such as efficiency, it is desired to establish an X-ray image recording and reading method with further improvement in quality and cost reduction.

【0004】ところで、X線画像の記録・検出に、蓄積
X線エネルギーに可視光線を照射して蛍光を発生させる
いわゆる輝尽性蛍光フィルムが提案されているが、画像
処理の時間遅れがあり、リアルタイム画像処理はできな
い。
A so-called stimulable fluorescent film which emits visible light to accumulated X-ray energy to generate fluorescence has been proposed for recording and detecting an X-ray image. However, there is a time delay in image processing. Real-time image processing is not possible.

【0005】また、X線イメージセンサ用受光体である
無定形Seの特異的性質を利用して、X線フォトコン層
に電界を印加しX線イメージセンサを直接電気信号に変
換して取り出すシステムの開発がなされているが、この
方式ではX線フォトコン層に直接高電界を印加するこ
と、センサに入射されたX線の強弱を平面的に取り出す
こと、観測対象となる被測定物が人体等による大面積で
あること、ガラス等の絶縁基板上にパタニングされた基
板電極が形成されていること等が要求されるという制約
がある。
[0005] Further, a system is used in which an electric field is applied to an X-ray photo-con- erator layer to directly convert the X-ray image sensor into an electric signal by utilizing the peculiar properties of amorphous Se as a photoreceptor for an X-ray image sensor. In this method, a high electric field is directly applied to the X-ray photocon layer, the intensity of X-rays incident on the sensor is extracted in a plane, and the object to be observed is a human body. Therefore, there is a restriction that a large area is required, and a patterned substrate electrode is formed on an insulating substrate such as glass.

【0006】また、ガラス基板と光導電層の熱膨張係数
の差異から生ずる面積の膨張収縮差等の低温高温等の熱
的ストレスにより割れ、反りが生じやすいし、さらに、
長期放置等による光導電体の熱的な体積抵抗低下、空
気、水等による表面抵抗の低下といった、光導電層の電
気的性質変化は、連続印加高電界に対する劣化の原因と
なる。
In addition, cracks and warpages are liable to occur due to thermal stress such as low temperature and high temperature such as a difference in expansion and contraction of the area resulting from a difference in thermal expansion coefficient between the glass substrate and the photoconductive layer.
Changes in the electrical properties of the photoconductive layer, such as a decrease in the thermal volume resistance of the photoconductor due to long-term storage or a decrease in the surface resistance due to air, water, etc., cause deterioration due to a continuously applied high electric field.

【0007】このような問題点を解決するために表面保
護剤による被覆が考えられるが、表面保護剤としてポリ
カーボネート、アクリル樹脂等の高分子化合物を用いた
場合所定の表面抵抗は得られるものの、ガラス基板との
熱膨張係数の差異により、大面積化の場合の割れ、反り
が避けられない。
In order to solve such problems, coating with a surface protective agent is conceivable. When a polymer compound such as polycarbonate or acrylic resin is used as the surface protective agent, a predetermined surface resistance is obtained, but glass is used. Due to the difference in the coefficient of thermal expansion from the substrate, cracks and warpage in the case of a large area cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】このように、低温、高
温環境下での割れ、反りといった機械的強度の問題及び
セレンの結晶化によるセンサ特性の低下、さらには高電
圧印加に伴う放電破壊等で、信頼性の高い検出器が得ら
れなかったが、これを解決するのが本発明の課題であ
る。
As described above, problems such as mechanical strength such as cracking and warping in low-temperature and high-temperature environments, degradation of sensor characteristics due to crystallization of selenium, and discharge breakdown due to application of high voltage. Thus, a highly reliable detector could not be obtained, but it is an object of the present invention to solve this.

【課題を解決するための手段】[Means for Solving the Problems]

【0009】本発明者は前記のような問題点を解決すべ
く鋭意検討した結果、シランカップリング剤として特定
のシラン化合物を組合せ調合して加水分解し、X線検出
器上へ塗布し、比較的低温で硬化させることによって、
硬度も十分で、放電破壊をし難く、環境温度変化のある
長期動作にも十分耐え得て、かつ信頼性の高いX線検出
器が得られることを見出し、本発明を完成するに至っ
た。シランカップリング剤の加水分解物の硬化は、脱水
縮合反応させてSi−O−Si直鎖結合のシロキサン構
造とし、基板ガラスと同様な熱膨張係数や電気的性質を
もつ同質材で挟みこんで行い、その結果高耐久性が得ら
れる。さらにその上にガラスを接着させると、より高耐
久性にすることができる。
The present inventors have conducted intensive studies to solve the above problems, and as a result, prepared a specific silane compound as a silane coupling agent in combination, hydrolyzed, applied to an X-ray detector and compared. By curing at a very low temperature,
The present inventors have found that an X-ray detector having sufficient hardness, hardly causing discharge breakdown, and being able to withstand long-term operation with environmental temperature change, and having high reliability can be obtained, and completed the present invention. The curing of the hydrolyzate of the silane coupling agent is carried out by a dehydration condensation reaction to form a siloxane structure having a linear bond of Si-O-Si, and sandwiched between homogeneous materials having the same thermal expansion coefficient and electrical properties as the substrate glass. As a result, high durability is obtained. If glass is further adhered thereon, higher durability can be achieved.

【0010】すなわち本発明は、X線光感度層に直接電
界を与えてX線潜像を形成し、電界及びX線照射による
発生キャリアをセンサ内で走行させ、得られた電荷を画
像処理するX線検出器において、該検出器が、ガラスプ
レート上に電荷収集電極を形成した基板上にX線光導電
層を設け、このX線光導電層上にシラン化合物を加水分
解して生成される熱硬化性のケイ素化合物を含む保護層
を設けてなることを特徴とする電界印加型X線検出器を
提供するものである。
That is, according to the present invention, an electric field is directly applied to the X-ray photosensitivity layer to form an X-ray latent image, carriers generated by the electric field and X-ray irradiation are caused to travel in the sensor, and the obtained charges are subjected to image processing. In an X-ray detector, the detector is formed by providing an X-ray photoconductive layer on a substrate having a charge collecting electrode formed on a glass plate, and hydrolyzing a silane compound on the X-ray photoconductive layer. It is an object of the present invention to provide an electric field application type X-ray detector comprising a protective layer containing a thermosetting silicon compound.

【0011】本発明はさらには、該シラン化合物が下記
A群から選ばれた少なくとも1種のエポキシシラン化合
物、下記B群から選ばれた少なくとも1種のアルコキシ
アルキルシラン化合物、及び下記C群から選ばれた少な
くとも1種のアミノシラン化合物である、前記の電界印
加型X線検出器を提供するものである。
In the present invention, the silane compound may be at least one epoxy silane compound selected from the following group A, at least one alkoxyalkyl silane compound selected from the following group B, and selected from the following group C: It is another object of the present invention to provide the above-mentioned electric field application type X-ray detector, which is at least one kind of aminosilane compound.

【0012】ただし、上記一般式において、R1は炭素
数6以下の直鎖又は分岐アルキルであり、R2は炭素数
4以下の直鎖又は分岐アルキルであり、R3は炭素数4
以下の直鎖若しくは分岐アルキル又はアルコキシであ
り、R4は炭素数8以下の直鎖又は分岐アルキルであ
り、R5は炭素数2から4までの直鎖又は分岐アルキル
であり、nは3以下の整数である。
In the above general formula, R 1 is a straight or branched alkyl having 6 or less carbon atoms, R 2 is a straight or branched alkyl having 4 or less carbon atoms, and R 3 is 4 or more carbon atoms.
The following linear or branched alkyl or alkoxy, R 4 is linear or branched alkyl having 8 or less carbon atoms, R 5 is linear or branched alkyl having 2 to 4 carbon atoms, and n is 3 or less. Is an integer.

【0013】前記一般式で表される化合物としては、A
群については、β−グリシドキシエチルプロピルジプロ
ポキシシラン、β−グリシドキシエチルプロピルジブト
キシシラン、γ−グリシドキシエチルプロピルジメトキ
シシラン、γ−グリシドキシエチルプロピルジエトキシ
シラン、γ−グリシドキシエチルプロピルジプロキシシ
ラン、γ−グリシドキシエチルプロピルジブトキシシラ
ン等がある。
The compound represented by the above general formula includes A
For the groups, β-glycidoxyethylpropyldipropoxysilane, β-glycidoxyethylpropyldibutoxysilane, γ-glycidoxyethylpropyldimethoxysilane, γ-glycidoxyethylpropyldiethoxysilane, γ-glycidyl Sidoxyethylpropyldiproxysilane, γ-glycidoxyethylpropyldibutoxysilane and the like.

【0014】B群については、モノメチルトリメトキシ
シラン、ジメチルジメトキシシラン、モノメチルトリエ
トキシシラン、ジメチルジエトキシシラン、モノエチル
トリメトキシシラン、ジエチルジメトキシシラン、モノ
エチルトリエトキシシラン、ジエチルジエトキシシラ
ン、テトラメトキシシラン、テトラエトキシシラン、テ
トラプロポキシシラン、テトラブトキシシラン等があ
る。
Group B includes monomethyltrimethoxysilane, dimethyldimethoxysilane, monomethyltriethoxysilane, dimethyldiethoxysilane, monoethyltrimethoxysilane, diethyldimethoxysilane, monoethyltriethoxysilane, diethyldiethoxysilane, tetramethoxysilane There are silane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like.

【0015】C群については、アミノメチルトリメトキ
シシラン、アミノメチルトリエトキシシラン、アミノメ
チルプロポキシシラン、アミノプロピルトリメトキシシ
ラン、アミノプロピルトリエトキシシラン、アミノプロ
ピルトリブトキシシラン、N−β−アミノエチル−γ−
アミノプロピルトリメトキシシラン等がある。
Group C includes aminomethyltrimethoxysilane, aminomethyltriethoxysilane, aminomethylpropoxysilane, aminopropyltrimethoxysilane, aminopropyltriethoxysilane, aminopropyltributoxysilane, N-β-aminoethyl- γ-
Examples include aminopropyltrimethoxysilane.

【0016】組成割合は、A群、B群及びC群の化合物
をそれぞれ2〜10容量部用い、さらに水を1〜6容量
部使用するのが好ましい。これらA群からC群までのシ
ラン化合物のそれぞれ1種以上を選んで混合した後、水
を加えて加水分解を行い、所望により加水分解終了後直
ちにメタノ−ル,エタノ−ル等の有機溶媒を加えて加水
分解の濃度を調節する。
The composition ratio is preferably such that 2 to 10 parts by volume of the compounds of Group A, B and C are used, and 1 to 6 parts by volume of water. After selecting and mixing at least one of each of the silane compounds from Group A to Group C, hydrolysis is performed by adding water, and if desired, an organic solvent such as methanol or ethanol is immediately added after the completion of the hydrolysis. In addition, the concentration of the hydrolysis is adjusted.

【0017】本発明においては、加水分解のために触媒
を必要とせず、シラン化合物の混合物に純水を添加し攪
拌するのみで加水分解反応が進行し、加水分解時間も非
常に短い。
In the present invention, a catalyst is not required for the hydrolysis, and the hydrolysis reaction proceeds only by adding pure water to the mixture of the silane compounds and stirring, and the hydrolysis time is very short.

【0018】加水分解後に添加する有機溶媒としては親
水性のものが好ましく、メタノ−ル、エタノ−ル、プロ
パノ−ル、ジオキサン、メチルセロソルブ、エチルセロ
ソルブ等が使用可能である。これらの有機溶媒の添加量
は、50〜300容量部が好ましい。有機溶媒溶液を光
導電層上に塗布し、加熱硬化させる。加熱温度20〜8
0℃で、1時間以内に硬化する。このような低温度での
硬化は、非晶質セレン等で光導電層が形成されている場
合、セレンの結晶化による感光性能を防止する意味で極
めて有利である。
The organic solvent to be added after the hydrolysis is preferably a hydrophilic one, and methanol, ethanol, propanol, dioxane, methyl cellosolve, ethyl cellosolve and the like can be used. The addition amount of these organic solvents is preferably from 50 to 300 parts by volume. An organic solvent solution is applied on the photoconductive layer and cured by heating. Heating temperature 20-8
Cures at 0 ° C. within one hour. Curing at such a low temperature is extremely advantageous in the case where the photoconductive layer is formed of amorphous selenium or the like, in order to prevent photosensitive performance due to crystallization of selenium.

【0019】さらに本発明のシラン化合物は、ガラスあ
るいは樹脂プレート等の絶縁材料との接着性が高いの
で、中間材として用いることもできる。本発明における
保護層の膜厚は特に限定されないが、0.1μm〜50
mmが好ましい。
Further, the silane compound of the present invention has high adhesiveness to an insulating material such as glass or a resin plate, so that it can be used as an intermediate material. The thickness of the protective layer in the present invention is not particularly limited.
mm is preferred.

【0020】本発明では、シラン化合物の加水分解によ
る保護層形成のために、前述した3種類のシラン化合物
をそれぞれ一定量加えることにより、各々のシラン化合
物同志が加水分解と同時に化学量論的に脱水縮合し、強
固なケイ素と酸素の共有結合した高分子層を形成するも
のである。
In the present invention, in order to form a protective layer by hydrolysis of the silane compound, a fixed amount of each of the above-mentioned three types of silane compounds is added so that each of the silane compounds becomes stoichiometrically simultaneously with hydrolysis. The polymer layer is formed by dehydration condensation to form a strong polymer layer in which silicon and oxygen are covalently bonded.

【0021】本発明のX線検出器には、TFT(薄膜ト
ランジスタ)、櫛型電極等の電極付きガラス基板が使用
される。基板上のX線光導電層には、セレン、セレンテ
ルル化合物、セレンヒ素化合物、硫化カドミウム、酸化
亜鉛、アモルファスシリコン等の無機光導電体、上部電
極には、金、アルミニウム、ニッケル等の導電材料が使
用され、光導電体と基板あるいは上部電極との間に酸化
アルミニウム等の金属酸化物、硫化アンチモン等の金属
硫化物、ポリウレタン、セルロース、ポリカーボネート
等の高分子材料等のバリア層を設けてもよい。また、基
板と上部電極との間には、光導電体とバリア層あるいは
パターン電極等とを複数に積層し、機能分離型にしても
よい。
For the X-ray detector of the present invention, a glass substrate with electrodes such as a TFT (thin film transistor) and a comb electrode is used. The X-ray photoconductive layer on the substrate is made of an inorganic photoconductor such as selenium, a selenium telluride compound, a selenium arsenide compound, cadmium sulfide, zinc oxide, amorphous silicon, and the upper electrode is made of a conductive material such as gold, aluminum, and nickel. A barrier layer made of a metal oxide such as aluminum oxide, a metal sulfide such as antimony sulfide, or a polymer material such as polyurethane, cellulose, or polycarbonate may be provided between the photoconductor and the substrate or the upper electrode. . Further, between the substrate and the upper electrode, a photoconductor and a barrier layer or a pattern electrode or the like may be laminated in a plural number to form a function separation type.

【0022】これらの光導電層の上にシラン化合物を主
成分とした高耐久性の保護層を形成させる。形成方法
は、浸漬塗布法、スピンナ法、スプレー法、ラングミュ
アプロジェクト法等がある。また、前記A,B,C群の
加水分解には、塩酸、硫酸、酢酸等の酸やこれらの塩類
を触媒として用いてもよく、加水分解反応後には、メタ
ノール、エタノール、ジオキサン、メチルセロソルブ、
エチルセロソルブ等の有機溶剤を用いて濃度及び架橋反
応を調整してもよい。本発明の電界印加型X線検出器
は、高品質な画像が得られるので医療用のみならず各種
産業用として有用である。
A highly durable protective layer containing a silane compound as a main component is formed on these photoconductive layers. As a forming method, there are a dip coating method, a spinner method, a spray method, a Langmuir project method and the like. In the hydrolysis of the groups A, B and C, acids such as hydrochloric acid, sulfuric acid and acetic acid and salts thereof may be used as a catalyst. After the hydrolysis reaction, methanol, ethanol, dioxane, methyl cellosolve,
The concentration and the crosslinking reaction may be adjusted using an organic solvent such as ethyl cellosolve. INDUSTRIAL APPLICABILITY The electric field application type X-ray detector of the present invention can provide high-quality images and is useful not only for medical purposes but also for various industrial uses.

【0023】図1〜図3は、本発明の構成図を示す。1
は電極付ガラス基板、2はセレン層、3は上部電極、4
は保護層、5はガラス板を表す。図4は、温度プロファ
イルを示し、縦軸は温度、横軸は時間である。
1 to 3 show the configuration of the present invention. 1
Is a glass substrate with electrodes, 2 is a selenium layer, 3 is an upper electrode, 4
Represents a protective layer, and 5 represents a glass plate. FIG. 4 shows a temperature profile, in which the vertical axis represents temperature and the horizontal axis represents time.

【0024】[0024]

【実施例】以下、実施例によって本発明をさらに具体的
に説明するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples without departing from the scope of the invention.

【0025】実施例1 β−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン2.4容量部、モノメチルトリメトキシシ
ラン4.8容量部、γ−アミノプロピルトリエトキシシ
ラン2.4容量部を混合し、これに水1.2容量部を加
えて室温で激しく攪拌し、加水分解反応を進行させて保
護層形成用塗液とした。次に、ガラス基板上にITOを
マトリックス形成した電荷収集電極に、膜厚500μm
のセレンと次いで0.1μmの金薄膜を形成した。その
上に前記保護層形成用塗液を塗り、これを40℃で24
時間加熱し、透明な保護層を形成して保護層形成X線検
出器とした。
Example 1 2.4 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 4.8 parts by volume of monomethyltrimethoxysilane, and 2.4 parts by volume of γ-aminopropyltriethoxysilane were mixed. Then, 1.2 parts by volume of water was added thereto, and the mixture was vigorously stirred at room temperature to allow a hydrolysis reaction to proceed to obtain a coating liquid for forming a protective layer. Next, a 500 μm-thick film was formed on a charge collecting electrode in which ITO was formed in a matrix on a glass substrate.
And then a 0.1 μm gold thin film was formed. The coating liquid for forming a protective layer is applied thereon, and the coating liquid is applied at 40 ° C. for 24 hours.
After heating for a time, a transparent protective layer was formed to obtain a protective layer-formed X-ray detector.

【0026】実施例2 γ−グリシドキシエチルプロピルトリメトキシシラン
5.2容量部、ジメチルジメトキシシラン6.4容量
部、N−β(アミノエチル)γ−アミノプロピルトリメ
トキシシラン2.4容量部、水2.2容量部を混合して
実施例1と同様に塗液をつくった。得られた塗液を実施
例1と同様に塗布し、保護層形成X線検出器とした。
Example 2 5.2 parts by volume of γ-glycidoxyethylpropyltrimethoxysilane, 6.4 parts by volume of dimethyldimethoxysilane, 2.4 parts by volume of N-β (aminoethyl) γ-aminopropyltrimethoxysilane And 2.2 parts by volume of water were mixed to prepare a coating liquid in the same manner as in Example 1. The obtained coating liquid was applied in the same manner as in Example 1 to obtain a protective layer forming X-ray detector.

【0027】実施例3 β−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン4.2容量部、ジメチルジメトキシシラン
3.8容量部、γ−アミノプロピルトリエトキシシラン
4.4容量部、水2.2容量部を混合して実施例1と同
様に塗液をつくった。得られた塗液を実施例1と同様に
塗布し、保護層形成X線検出器とした。
Example 3 4.2 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3.8 parts by volume of dimethyldimethoxysilane, 4.4 parts by volume of γ-aminopropyltriethoxysilane, water 2 2 parts by volume were mixed to prepare a coating liquid in the same manner as in Example 1. The obtained coating liquid was applied in the same manner as in Example 1 to obtain a protective layer forming X-ray detector.

【0028】実施例4 γ−グリシドキシプロピルトリメトキシシラン5.8容
量部、テトラメトキシシラン1.2容量部、N−β(ア
ミノエチル)γ−アミノプロピルメチルジメトキシシラ
ン4.6容量部、水3.8容量部を混合して実施例1と
同様に塗液をつくった。得られた塗液を実施例1と同様
に塗布し、保護層形成X線検出器とした。
Example 4 5.8 parts by volume of γ-glycidoxypropyltrimethoxysilane, 1.2 parts by volume of tetramethoxysilane, 4.6 parts by volume of N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, A coating liquid was prepared in the same manner as in Example 1 by mixing 3.8 parts by volume of water. The obtained coating liquid was applied in the same manner as in Example 1 to obtain a protective layer forming X-ray detector.

【0029】実施例5 β−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン2.6容量部、メトキシトリメチルシラン
4.8容量部、アミノメチルトリメトキシシラン2.8
容量部、水4.2容量部を混合して実施例1と同様に塗
液をつくった。得られた塗液を実施例1と同様に塗布
し、保護層形成X線検出器とした。
Example 5 2.6 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 4.8 parts by volume of methoxytrimethylsilane, 2.8 parts by weight of aminomethyltrimethoxysilane
A coating solution was prepared in the same manner as in Example 1 by mixing 4.2 parts by volume of water and 4.2 parts by volume of water. The obtained coating liquid was applied in the same manner as in Example 1 to obtain a protective layer forming X-ray detector.

【0030】実施例6 β−(3,4−エポキシシクロヘキシル)エチルトリメ
トキシシラン2.4容量部、モノメチルトリメトキシシ
ラン4.8容量部、γ−アミノプロピルトリエトキシシ
ラン2.4容量部を混合し、これに水1.2容量部を加
えて室温で激しく攪拌し、加水分解反応を進行させて保
護層形成用塗液とした。次に、ガラス基板上にITOを
マトリックス形成した電荷収集電極に、膜厚500μm
のセレンと次いで0.1μmの金薄膜を形成した。その
上に前記保護層形成用塗液を塗り、さらに前記保護層上
に高圧印加部のみをくりぬいたガラスをのせ、そのまま
40℃で24時間加熱し、保護層形成X線検出器とし
た。
EXAMPLE 6 2.4 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 4.8 parts by volume of monomethyltrimethoxysilane and 2.4 parts by volume of γ-aminopropyltriethoxysilane were mixed. Then, 1.2 parts by volume of water was added thereto, and the mixture was vigorously stirred at room temperature to allow a hydrolysis reaction to proceed to obtain a coating liquid for forming a protective layer. Next, a 500 μm-thick film was formed on a charge collecting electrode in which ITO was formed in a matrix on a glass substrate.
And then a 0.1 μm gold thin film was formed. The coating liquid for forming a protective layer was applied thereon, and a glass having only a high-voltage application portion cut out was placed on the protective layer, and heated at 40 ° C. for 24 hours to obtain an X-ray detector for forming a protective layer.

【0031】比較例1 保護層を形成しない以外は、実施例1と同じ方法でX線
検出器を作成した。
Comparative Example 1 An X-ray detector was prepared in the same manner as in Example 1 except that no protective layer was formed.

【0032】比較例2 実施例1の3種類のシラン化合物の代わりに、ポリカー
ボネート100容量部をクロロホルム100容量部に攪
拌しながら溶解させて保護層形成用塗液をつくり、実施
例1と同様の方法でX線検出器を作成した。
COMPARATIVE EXAMPLE 2 Instead of the three silane compounds of Example 1, 100 parts by volume of polycarbonate was dissolved in 100 parts by volume of chloroform while stirring to prepare a coating liquid for forming a protective layer. An X-ray detector was created by the method.

【0033】比較例3 実施例1の3種類のシラン化合物の代わりに、ポリメタ
クリレート(PMMA)100容量部をテトラヒドロフ
ラン(THF)100容量部に攪拌しながら溶解させ
た。これにβ−(3,4−エポキシシクロヘキシル)エ
チルトリメトキシシラン30容量部を加えてよく混合
し、溶液を調製した。そして、実施例1と同様の方法で
X線検出器を作成した。(この反応では、加水分解によ
る縮重合反応は起きていない)
Comparative Example 3 Instead of the three silane compounds of Example 1, 100 parts by volume of polymethacrylate (PMMA) were dissolved in 100 parts by volume of tetrahydrofuran (THF) with stirring. To this, 30 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added and mixed well to prepare a solution. Then, an X-ray detector was prepared in the same manner as in Example 1. (In this reaction, no condensation polymerization reaction occurs due to hydrolysis.)

【0034】実施例及び比較例の評価結果を、表1に示
す。評価項目及び内容は以下のとおりである。 a)環境試験;図4に示すように25℃の室温から上下
に温度プロファイルで試験を行い、室温復帰後に割れ、
反りの程度を評価した。 b)寿命試験;X線連続照射のまま、金電極に対し、1
V/μm/hで印加電圧を上げ、放電破壊した電界を値
とした。この時のX線照射条件としては、X線管電圧1
20kVで線量としては18R/minである。 c)剥離試験;セロハンテープを最表面層(保護層)に
貼り、勢いよく剥がして電極付ガラス基板と光導電層と
の界面の接着強度を評価する d)硬度試験;公知の鉛筆硬度測定法による
Table 1 shows the evaluation results of the examples and comparative examples. The evaluation items and contents are as follows. a) Environmental test: As shown in FIG. 4, a test was performed with a temperature profile up and down from a room temperature of 25 ° C.
The degree of warpage was evaluated. b) Life test: X-ray continuous irradiation, 1
The applied voltage was increased at V / μm / h, and the electric field at which the discharge was destroyed was taken as a value. The X-ray irradiation conditions at this time include an X-ray tube voltage of 1
At 20 kV, the dose is 18 R / min. c) Peeling test; a cellophane tape is stuck on the outermost surface layer (protective layer) and vigorously peeled off to evaluate the adhesive strength at the interface between the glass substrate with electrodes and the photoconductive layer. d) Hardness test; a known pencil hardness measuring method by

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【効果】本発明では、X線検出器表面がシランカップリ
ング剤の加水分解及び脱水縮合反応により、シロキサン
構造となる為、ガラス基板との熱膨張係数の差が殆どな
く、環境変化による反り割れ等の問題がなく、高電気抵
抗被膜が容易に得られる。平面で大面積を要する本分野
にとって長期動作に必要な機械的、物理的、電気的スト
レスに対する耐久性を著しく向上させることができる。
According to the present invention, since the surface of the X-ray detector has a siloxane structure due to the hydrolysis and dehydration condensation reaction of the silane coupling agent, there is almost no difference in the thermal expansion coefficient between the X-ray detector and the glass substrate. And the like, and a high electric resistance film can be easily obtained. For the field requiring a large area in a plane, the durability against mechanical, physical and electrical stress required for long-term operation can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成図を示す。FIG. 1 shows a configuration diagram of the present invention.

【図2】本発明の他の構成図を示す。FIG. 2 shows another configuration diagram of the present invention.

【図3】本発明のさらに他の構成図を示す。FIG. 3 shows still another configuration diagram of the present invention.

【図4】温度プロファイルを示す。FIG. 4 shows a temperature profile.

【符号の説明】[Explanation of symbols]

1 電極付ガラス基板 2 セレン層 3 上部電極 4 保護層 5 ガラス板 DESCRIPTION OF SYMBOLS 1 Glass substrate with an electrode 2 Selenium layer 3 Upper electrode 4 Protective layer 5 Glass plate

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年11月29日(2001.11.
29)
[Submission date] November 29, 2001 (2001.11.
29)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【化1】 Embedded image

【化2】 B群; Embedded image Group B;

【化3】 C群; Embedded image Group C;

【化4】 Embedded image

【化5】 ただし、上記一般式において、R1は炭素数6以下の直
鎖又は分岐アルキレンであり、R2は炭素数4以下の直
鎖又は分岐アルキルであり、R3は炭素数4以下の直鎖
若しくは分岐アルキル又はアルコキシであり、R4は炭
素数8以下の直鎖又は分岐アルキレンであり、R5は炭
素数2から4までの直鎖又は分岐アルキレンであり、n
は3以下の整数である。
Embedded image However, in the above general formula, R 1 is straight-chain or branched alkylene having 6 or less carbon atoms, R 2 is a straight-chain or branched alkyl having 4 or less carbon atoms, R 3 is a straight chain having 4 or less carbon atoms or a branched alkyl or alkoxy, R 4 is the following straight-chain or branched alkylene 8 carbon atoms, R 5 is a straight-chain or branched alkylene of from 2 carbon atoms up to 4, n
Is an integer of 3 or less.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】本発明はさらには、該シラン化合物が下記
A群から選ばれた少なくとも1種のエポキシシラン化合
物、下記B群から選ばれた少なくとも1種のアルコキシ
アルキルシラン化合物、及び下記C群から選ばれた少な
くとも1種のアミノシラン化合物である、前記の電界印
加型X線検出器を提供するものである。 A群;
In the present invention, the silane compound may be at least one epoxy silane compound selected from the following group A, at least one alkoxyalkyl silane compound selected from the following group B, and selected from the following group C: It is another object of the present invention to provide the above-mentioned electric field application type X-ray detector, which is at least one kind of aminosilane compound. Group A;

【化6】 Embedded image

【化7】 B群; Embedded image Group B;

【化8】 C群; Embedded image Group C;

【化9】 Embedded image

【化10】 Embedded image

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】ただし、上記一般式において、R1は炭素
数6以下の直鎖又は分岐アルキレンであり、R2は炭素
数4以下の直鎖又は分岐アルキルであり、R3は炭素数
4以下の直鎖若しくは分岐アルキル又はアルコキシであ
り、R4は炭素数8以下の直鎖又は分岐アルキレンであ
り、R5は炭素数2から4までの直鎖又は分岐アルキ
であり、nは3以下の整数である。
[0012] However, in the above general formula, R 1 is straight-chain or branched alkylene having 6 or less carbon atoms, R 2 is a straight-chain or branched alkyl having 4 or less carbon atoms, R 3 is 4 or less carbon atoms linear or a branched alkyl or alkoxy, R 4 is a straight-chain or branched alkylene of 8 carbon atoms, straight-chain or branched alkyl les of R 5 from 2 to 4 carbon atoms
And n is an integer of 3 or less.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】前記一般式で表される化合物としては、A
群については、β−グリシドキシエチルプロピルジプロ
ポキシシラン、β−グリシドキシエチルプロピルジブト
キシシラン、γ−グリシドキシエチルプロピルジメトキ
シシラン、γ−グリシドキシエチルプロピルジエトキシ
シラン、γ−グリシドキシエチルプロピルジプロキシ
シラン、γ−グリシドキシエチルプロピルジブトキシシ
ラン等がある。
The compound represented by the above general formula includes A
For the groups, β-glycidoxyethylpropyldipropoxysilane, β-glycidoxyethylpropyldibutoxysilane, γ-glycidoxyethylpropyldimethoxysilane, γ-glycidoxyethylpropyldiethoxysilane, γ-glycidyl Sid carboxyethyl propyl dipropionate Po Kishishiran, there is γ- glycidoxypropyltrimethoxysilane ethylpropyl dibutoxy silane.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】C群については、アミノメチルトリメトキ
シシラン、アミノメチルトリエトキシシラン、アミノメ
チルトリプロポキシシラン、アミノプロピルトリメトキ
シシラン、アミノプロピルトリエトキシシラン、アミノ
プロピルトリブトキシシラン、N−β−アミノエチル−
γ−アミノプロピルトリメトキシシラン等がある。
[0015] For Group C, aminomethyl trimethoxy silane, aminomethyl triethoxysilane, aminomethyl tripropoxysilane, aminopropyltrimethoxysilane, aminopropyltriethoxysilane, aminopropyl tributoxy silane, N-beta-aminoethyl −
γ-aminopropyltrimethoxysilane and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 31/0248 H01L 31/00 A 31/0264 31/08 H 31/108 L H04N 5/32 31/10 C Fターム(参考) 2G088 EE01 EE27 FF02 FF14 GG21 JJ10 JJ35 JJ37 LL11 4M118 AA08 AA10 BA05 CA14 CA32 CB05 CB06 CB14 FB13 GA10 5C024 AX11 CY47 5F049 MA05 MB03 MB05 NA07 NB05 RA02 RA08 SS01 SZ12 WA07 5F088 AA04 AA11 AB01 AB05 AB09 BA11 BB03 DA05 EA04 EA08 GA02 HA12 LA08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 31/0248 H01L 31/00 A 31/0264 31/08 H 31/108 L H04N 5/32 31/10 CF term (reference) 2G088 EE01 EE27 FF02 FF14 GG21 JJ10 JJ35 JJ37 LL11 4M118 AA08 AA10 BA05 CA14 CA32 CB05 CB06 CB14 FB13 GA10 5C024 AX11 CY47 5F049 MA05 MB03 MB05 NA07 NB05 RA02 AA1A08 AB01 EA04 EA08 GA02 HA12 LA08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線光感度層に直接電界を与えてX線潜
像を形成し、電界及びX線照射による発生キャリアをセ
ンサ内で走行させ、得られた電荷を画像処理するX線検
出器において、該検出器が、ガラスプレート上に電荷収
集電極を形成した基板上にX線光導電層を設け、このX
線光導電層上にシラン化合物を加水分解して生成される
熱硬化性のケイ素化合物を含む保護層を設けてなること
を特徴とする、電界印加型X線検出器。
1. An X-ray detection device for applying an electric field directly to an X-ray photosensitivity layer to form an X-ray latent image, causing carriers generated by the electric field and X-ray irradiation to travel in a sensor, and performing image processing on the obtained charges. A detector provided with an X-ray photoconductive layer on a substrate having a charge collecting electrode formed on a glass plate;
An electric field application type X-ray detector, comprising a protective layer containing a thermosetting silicon compound formed by hydrolyzing a silane compound on a linear photoconductive layer.
【請求項2】 該シラン化合物が下記A群から選ばれた
少なくとも1種のエポキシシラン化合物、 下記B群から選ばれた少なくとも1種のアルコキシアル
キルシラン化合物、及び下記C群から選ばれた少なくと
も1種のアミノシラン化合物である、請求項1に記載の
電界印加型X線検出器。 ただし、上記一般式において、R1は炭素数6以下の直
鎖又は分岐アルキルであり、R2は炭素数4以下の直鎖
又は分岐アルキルであり、R3は炭素数4以下の直鎖若
しくは分岐アルキル又はアルコキシであり、R4は炭素
数8以下の直鎖又は分岐アルキルであり、R5は炭素数
2から4までの直鎖又は分岐アルキルであり、nは3以
下の整数である。
2. The method according to claim 1, wherein the silane compound is at least one epoxy silane compound selected from the following group A, at least one alkoxyalkylsilane compound selected from the following group B, and at least one selected from the following group C: The electric field application type X-ray detector according to claim 1, which is a kind of aminosilane compound. However, in the above general formula, R 1 is a straight or branched alkyl having 6 or less carbon atoms, R 2 is a straight or branched alkyl having 4 or less carbon atoms, and R 3 is a straight or branched alkyl having 4 or less carbon atoms. R 4 is a linear or branched alkyl having 8 or less carbon atoms, R 5 is a linear or branched alkyl having 2 to 4 carbon atoms, and n is an integer of 3 or less.
JP2000307665A 2000-10-06 2000-10-06 Applied electric field type x-ray detector Withdrawn JP2002116259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307665A JP2002116259A (en) 2000-10-06 2000-10-06 Applied electric field type x-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307665A JP2002116259A (en) 2000-10-06 2000-10-06 Applied electric field type x-ray detector

Publications (1)

Publication Number Publication Date
JP2002116259A true JP2002116259A (en) 2002-04-19

Family

ID=18788136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307665A Withdrawn JP2002116259A (en) 2000-10-06 2000-10-06 Applied electric field type x-ray detector

Country Status (1)

Country Link
JP (1) JP2002116259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093545A (en) * 2005-09-30 2007-04-12 Toshiba Corp Radiation detector
JP2008175709A (en) * 2007-01-19 2008-07-31 Fujifilm Corp Radiation image detector
WO2011042930A1 (en) 2009-10-05 2011-04-14 株式会社島津製作所 Radiation detector
US8324556B2 (en) 2008-04-08 2012-12-04 Shimadzu Corporation Radiation detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093545A (en) * 2005-09-30 2007-04-12 Toshiba Corp Radiation detector
JP2008175709A (en) * 2007-01-19 2008-07-31 Fujifilm Corp Radiation image detector
US8324556B2 (en) 2008-04-08 2012-12-04 Shimadzu Corporation Radiation detector
WO2011042930A1 (en) 2009-10-05 2011-04-14 株式会社島津製作所 Radiation detector

Similar Documents

Publication Publication Date Title
JP5523803B2 (en) Radiation sensor and radiographic imaging apparatus
TW526241B (en) Curable composition, composition for optical material, optical material, liquid crystal display device, transparent conductive film, and method for producing the same
JPS62100765A (en) Photostatic type image forming member and image former
JPH0786694B2 (en) Photoreceptor overcoated with polysiloxane
EP3381969B1 (en) Polymetalloxane, method for producing same, composition thereof, cured film and method for producing same, and members and electronic components provided with same
JPH0658539B2 (en) Method for manufacturing overcoated electrophotographic imaging member
US9411231B2 (en) Silane composition and cured film thereof, and method for forming negative resist pattern using same
US20170010562A1 (en) Electrophotographic member, developing apparatus and image forming apparatus
JP2000047414A (en) Photoconductive image pickup member
US5013624A (en) Glassy metal oxide layers for photoreceptor applications
JP2002116259A (en) Applied electric field type x-ray detector
EP1398648A2 (en) Radiation converting substrate, radiation image pickup apparatus and radiation image pickup system
JPS5816247A (en) Peelable coat material for photosensor
JP2003051586A (en) X-ray photoelectric converter
JPH09143429A (en) Coating agent for carrier for developing electrostatic latent image and the carrier
JPH10206905A (en) Uv-absorbing transparent conductive substrate
JPS6354168B2 (en)
JP2002023400A (en) Organic electronic device, electrophotographic photoreceptor, electrophotographic device for image formation and process cartridge
JP2004020649A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2005148695A (en) Release agent for non-substrate liquid crystal display
JP3913031B2 (en) X-ray photoelectric converter
KR101914133B1 (en) Manufacturing method of X-ray detector
JP2003005413A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, method for forming image, image forming device and process cartridge
JP2010091402A (en) Method for manufacturing radiation detector and radiation detector
JP3293534B2 (en) Method for forming photocatalyst-containing coating film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091125