JP3913031B2 - X-ray photoelectric converter - Google Patents

X-ray photoelectric converter Download PDF

Info

Publication number
JP3913031B2
JP3913031B2 JP2001328640A JP2001328640A JP3913031B2 JP 3913031 B2 JP3913031 B2 JP 3913031B2 JP 2001328640 A JP2001328640 A JP 2001328640A JP 2001328640 A JP2001328640 A JP 2001328640A JP 3913031 B2 JP3913031 B2 JP 3913031B2
Authority
JP
Japan
Prior art keywords
layer
ray
electrode layer
photoelectric converter
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001328640A
Other languages
Japanese (ja)
Other versions
JP2003133576A (en
Inventor
和彦 島
陽一郎 志村
秀生 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2001328640A priority Critical patent/JP3913031B2/en
Publication of JP2003133576A publication Critical patent/JP2003133576A/en
Application granted granted Critical
Publication of JP3913031B2 publication Critical patent/JP3913031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、X線光導電層と電極の間に下引層を設けた電界印加型X線光電変換器の技術分野に関する。
【0002】
【従来の技術】
X線を電気信号に変換し、取出した電荷をデジタル化し処理する技術は、産業用や医療用など幅広く活用されはじめている。
【0003】
本発明者らは、X線を電気信号に変換し取出すためのX線光電変換器として、平行する電極間にX線光導電層を設けたX線光電変換器を研究していたが、X線光電変換器に電界を与えたときの電流値(ノイズ)が大きく、電界を与えたX線光電変換器にX線を照射した時の電流値(シグナル)とノイズの比(S/N比)が小さくなってしまった。
また、電極間に高電界を与えると、X線光電変換器が放電破壊を起こし、外的エネルギーに対して弱いものであった。
【0004】
【発明が解決しようとする課題】
本発明は、電界印加型X線光電変換器について、S/N比を向上させること、外的エネルギーに高い耐久性を示すことを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、真空雰囲気でSiO2を含有する成膜材料からSiO2粒子を放出させることによって成膜された下引層を、X線光導電層の下部、即ち電荷収集電極とX線光導電層との間に設けることにより、上記課題を解決できることを見出した。
【0006】
かかる知見に基づいてなされた請求項1記載の発明は、基板と、前記基板上に配置された電荷収集電極と、前記電荷収集電極上に配置されたX線光導電層と、金薄膜からなり、前記X線光導電層上に配置された上部電極とを有し、前記電荷収集電極と前記上部電極との間に電圧を印加した状態でX線を照射すると、前記X線光導電層内に潜像が形成されるX線光電変換器であって、前記電荷収集電極と前記X線光導電層との間には下引層が配置され、前記下引層は、前記基板と、SiO2を主成分とする成膜材料とを真空雰囲気に配置し、前記真空雰囲気で前記成膜材料からSiO2粒子を放出させることによって、前記基板上の前記電荷収集電極上に成膜され、前記下引層の膜厚は0.1μm以上100μm以下にされ、前記X線光導電層は無定形セレン薄膜であり、前記X線光導電層は前記下引層上に形成され、前記X線光導電層の表面には、前記上部電極層と、電荷輸送層と、セレンの結晶転移点温度以下で形成された上引層のいずれかの層が密着して配置されたX線光電変換器である
請求項2記載の発明は、請求項1記載のX線光電変換器であって、前記SiO2粒子は、真空加熱蒸着法により前記真空雰囲気に放出されたX線光電変換器である。
請求項3記載の発明は、請求項1記載のX線光電変換器であって、前記SiO2粒子は、スパッタリング法により前記真空雰囲気に放出されたX線光電変換器である。
請求項4記載の発明は、基板と、前記基板上に配置された電荷収集電極層と、前記電荷収集電極層上に配置された下引層と、前記下引層上に配置されたX線光導電層と、金薄膜からなり、前記X線光導電層上に配置された上部電極層とを有し、前記電荷収集電極層と前記上部電極層との間に電圧を印加した状態でX線を照射すると、前記X線光導電層内に潜像が形成されるX線光電変換器を製造するX線光電変換器の製造方法であって、前記電荷収集電極層が形成された前記基板と、SiO 2 を主成分とする成膜材料とを真空雰囲気に配置し、前記真空雰囲気で前記成膜材料からSiO 2 粒子を放出させることによって、前記電荷収集電極層上に膜厚が0.1μm以上100μm以下の下引層を成膜し、前記下引層上に、無定形セレン膜からなる前記X線光導電層を成膜した後、前記上部電極層と、電荷輸送層と、セレンの結晶転移点温度以下で形成された上引層のいずれかの層を、前記X線光導電層の表面に密着形成するX線光電変換器の製造方法である。
【0007】
本発明は上記のように構成されており、下引層の成膜に用いられる成膜材料はSiO2を主成分とし、溶剤を含有しない。従って、本発明の下引層は緻密なSiO2の膜であって、スピンコート法等により形成したSiO2薄膜のように溶媒などの不純物が残留することがない。
尚、成膜材料に添加剤を添加することができ、例えば、添加剤として着色剤を添加すれば、下引層を着色することができる。
【0008】
また、本発明では成膜材料から直接SiO2粒子が放出され、該SiO2粒子が電荷収集電極上に堆積することによって成膜される。従って、成膜材料としてシラン化合物を用い、該シラン化合物を重合させてSiO2膜を成膜する場合のように、成膜材料を重合させる必要がなく、成膜の際に反応の副生成物が生じないので、得られるSiO2膜の膜質が優れている。
【0009】
【発明の実施の形態】
本発明の電界印加型X線光電変換器の実施形態を以下に示すが、これに限定されるものではない。
【0010】
図1の符号11はX線光電変換器の製造に用いられる真空加熱蒸着装置の一例を示している。真空加熱蒸着装置11は真空槽12を有しており、真空槽12内の底壁側にはるつぼ又はボート等の容器15が配置されている。真空槽12外部には真空排気系14が設置されている。
【0011】
この真空加熱蒸着装置11を用いてX線光電変換器を製造するには、先ず、真空排気系14を起動して、真空槽12内を真空排気し、該真空槽12内に所定真空度の真空雰囲気を形成する。
【0012】
次に、真空雰囲気を維持したまま、片面に電荷収集電極2が形成されたガラスからなる基板1を真空槽12内に搬入し、電荷収集電極2が形成された面を下に向けた状態で、該ガラス基板1を容器15上方に配置する。
【0013】
容器15内には二酸化ケイ素(SiO2)粉末からなる成膜材料17が予め収容されており、容器15に設けられた不図示の加熱手段に通電して容器15を昇温させ、容器15内の成膜材料17を加熱して成膜材料17を蒸発させ、真空雰囲気中にSiO2粒子を蒸気として放出させる。
真空雰囲気中に放出させたSiO2粒子が電荷収集電極2表面に到達すると、電荷収集電極2表面にケイ素酸化物(SiO2)の薄膜からなる下引層が形成される(真空加熱蒸着法)。
【0014】
下引層が形成された状態の基板1を別の真空加熱蒸着装置へ搬入し、成膜材料としてセレンを用いて下引層3表面にセレン薄膜からなるX線光導電層を形成した後、更に基板1を別の真空加熱蒸着装置へ搬入し、成膜材料として金を用いてX線光導電層表面に金薄膜からなる上部電極5を形成すると、本発明のX線光電変換器が得られる。図2の符号10は上部電極5が形成された状態のX線光電変換器を示している。
【0015】
以上は、X線光導電層4を下引層3表面に形成する場合について説明したが、本発明はこれに限定されるものではなく、例えば、図3に示すX線光電変換器20のように、下引層3の上に電荷輸送層6を設けてもよい。また、図4に示すX線光電変換器30のように、X線光導電層4と上部電極5との間に電荷輸送層6を設けることもできる。更に、図5に示すX線光電変換器40のように、上部電極5の上に保護層7を設けてもよい。更にまた、図6に示すX線光電変換器50のように、X線光導電層4と上部電極5との間に上引層8を設けてもよい。
【0016】
なお、特に図示はしないが、電荷輸送層6と、保護層7と、上引層8とを同じX線光電変換器に設けることもできる。
本発明の下引層3は、上述した真空加熱蒸着法のように、真空雰囲気で熱や電子ビーム、イオン衝突などのエネルギーを成膜材料であるSiO2に与えることによって、該成膜材料からSiO2粒子を放出させて形成される。
【0017】
下引層3を形成する具体的方法としては、真空加熱蒸着法以外にも、Arガスのような不活性ガスを基板1が配置された真空雰囲気中に導入し、該真空雰囲気中で不活性ガスのプラズマを発生させてSiO2からなるターゲット(成膜材料)をスパッタリングして成膜するスパッタリング法を用いることができる。
【0018】
下引層3は透明でもよく着色されていてもよい。下引層3の膜厚は特に限定されないが0.1μm以上100μm以下が好ましい。また、上記のような方法で得られたケイ素酸化物からなる下引層3は、電気抵抗が高いもので、アモルファス状態でもよく結晶状態でもよい。
【0019】
本発明の電荷収集電極2としては、金、アルミニウム、ITO(インジウム・錫酸化物)などを用いることができる。この電極2はX線照射領域を覆うように一様に形成してもよく、また、マトリクス状やストライプ状に形成してもよい。また、ガラス基板1と電荷収集電極2との間にトランジスタを設けたTFT(薄膜トランジスタ)としてもよい。
【0020】
本発明のX線光導電層4としては、X線を電気変換する材料を用いる。この材料としては、セレン、セレンテルル化合物、セレンヒ素化合物、硫化カドミウム、酸化亜鉛、アモルファスシリコン等の無機材料を用いることができ、セレン若しくはセレン化合物が好ましい。
【0021】
X線光導電層4は、用いる材料によって異なるが、真空加熱蒸着、スパッタリング、CVDなどによって形成できる。形成されたX線光導電層4の膜厚も、用いる材料によって異なるが、50μm以上2000μm以下程度に形成する。
【0022】
本発明の上部電極5としては、金、アルミニウム、ITOなどを用いることができる。また、上部電極5の成膜方法は真空加熱蒸着法に限定されるものではなく、スパッタリング法等種々の方法で成膜することができる。
【0023】
本発明に用いることができる電荷輸送層6は、ノイズの更なる低減効果がある。電荷輸送層6の材料としては、三硫化二アンチモン、テルル化亜鉛カドミウムなどの無機材料を用いることができる。また、電荷移動性を示す有機材料を用いることもできる。
【0024】
本発明に用いることができる保護層7及び上引層8としては、有機または無機の高抵抗膜を用いることができる。X線光導電層4としてセレンを用いる場合は、セレンの結晶転移点温度以下で形成できるものが好ましい。
【0025】
また、X線を照射する位置も特に限定されるものではなく、結果としてX線がX線光導電層4に到達するのであれば、X線を上部電極5に対して照射しても良いし、ガラス基板1に対して照射しても良い。
【0026】
【実施例】
以下、実施例によって本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
【0027】
<実施例1>
ガラス基板1上に電荷収集電極2としてITOをマトリックス形成したものを用意し、それを真空加熱蒸着装置11内に設置する。真空加熱蒸着装置11の容器15に成膜材料17であるSiO2を各々散布し、真空状態にし、SiO2を散布した容器を1800℃に加熱し、電荷収集電極2表面に膜厚1μmの下引層3を形成した。
【0028】
次いで、成膜材料としてセレンを用い、真空加熱蒸着法により下引層3上に膜厚500μmのセレン層(X線光導電層)4を成膜し、次いで成膜材料として金を用い、真空加熱蒸着法によりX線光導電層4上に膜厚0.1μmの金薄膜(上部電極)5を形成し、実施例1のX線光電変換器10を作製した。
【0029】
<比較例1>
実施例1において、下引層を形成せずに電荷収集電極上に膜厚500μmのセレン層と次いで膜厚0.1μmの金薄膜を形成し、下引層を有しない比較例1のX線光電変換器を作製した。
【0030】
<比較例2>
ポリカーボネート100容量部を溶剤であるクロロホルム100容量部に添加し、攪拌しながらポリカーボネイトを溶解させ、下引層形成用塗液とした。次に、ガラス基板上にITOをマトリックス形成した電荷収集電極の上に上記下引層形成用塗液を塗り、これを100℃で5時間加熱してクロロホルムを蒸発させ、膜厚1μmの透明なポリカーボネイト薄膜からなる下引層を形成した。更に、該下引層上に、実施例1と同様にX線光導電層と上部電極とを成膜し、比較例2のX線光電変換器を作製した。
【0031】
<比較例3>
上記実施例1で用いたSiO2に変え、成膜材料としてCeO2を用いた以外は実施例1と同じ条件で電荷収集電極上にCeO2からなる下引層を形成した後、該下引層上に実施例1と同じ条件でX線光導電層と上部電極とをそれぞれ成膜し、比較例3のX線光電変換器を作成した。
【0032】
<比較例4>
ポリメチルメタクリレート(PMMA)100容量部をテトラヒドロフラン100容量部でよく攪拌しながら溶解させた。これにシランカップリング剤であるβ−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン30容量部を加えてよく混合し、溶液を調整し下引層形成用塗液とした。次に、ガラス基板上にITOをマトリックス形成した電荷収集電極に、上記下引層形成用塗液を塗り、これを100℃で5時間加熱し、膜厚1μmの透明な下引層を形成した。尚、この反応では、シランカップリング剤の加水分解による縮重合反応は起こらず、下引層はSiO2ではなく、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを主成分とする。
【0033】
更に、この下引層上に実施例1と同じ条件でX線光導電層と上部電極とを形成して比較例4のX線光電変換器を作製した。
尚、上記実施例1及び比較例2〜4で作製されたX線光電変換器は図2に示したX線光電変換器10と同じ構造を有する。
【0034】
<評価>
実施例及び比較例1〜4で作製されたX線光電変換器に対する評価項目を以下に示す。
【0035】
▲1▼耐久性試験
X線光電変換器10を図7に示すように回路接続し、X線放射装置61から上部電極5表面にX線65を照射したまま、上部電極5に対し、1V/μm/時間で印加電圧を上げ、放電破壊した電界値を測定し、耐久性試験とした。この時のX線照射条件としては、X線管電圧120kVで線量は18R/分である。
【0036】
▲2▼S/N比
X線光電変換器10を図7に示すように回路接続し、電界を10V/μmとした場合に、X線を照射せずに暗所10分放置したときの電流値をノイズ電流値Nとし、18R/分のX線を照射をさせたときの電流値をシグナル電流値Sとした。得られたシグナル電流値Sとノイズ電流値Nの比(S/N比)を算出した。
【0037】
上記▲1▼及び▲2▼の試験の評価結果を下記表1に示す。
【0038】
【表1】

Figure 0003913031
【0039】
上記表1によると、SiO2を真空加熱蒸着で形成させてなるケイ素酸化物からなる下引層3が設けられている実施例1のX線光電変換器10は、耐久性試験において20V/μmの電界を与えても放電破壊せず、連続使用にも耐え得ることがわかった。また、S/N比は4500以上であり優れた特性を示すことがわかった。
【0040】
一方、下引層を全く設けていない比較例1やシラン化合物からなる下地層を設けた比較例4では、耐久性試験においてそれぞれ12V/μm、15V/μmで放電破壊を起こし、また、S/N比も非常に小さく、ノイズ電流が大きく実用に耐えないことがわかった。
【0041】
また、ポリカーボネートからなる下引層を設けた比較例2及びCeO2からなる下引層を設けた比較例3は、耐久性試験において15V/μmで放電破壊を起こし高電界の印加に弱いことがわかった。
【0042】
尚、真空加熱蒸着法に変え、SiO2からなるターゲットを用いてスパッタリング法により下引層3を形成したところ、耐久性とS/N比が上記実施例1と同程度に優れたX線光電変換器10が得られた。
【0043】
【発明の効果】
以上の結果より、真空中でSiO2にエネルギーを与えて飛翔させて形成させてなるケイ素酸化物からなる下引層が設けられている本発明のX線光電変換器は、高電界印加に対する耐久性が高く、S/N比の高い優れたX線光電変換器である。
【図面の簡単な説明】
【図1】本発明のX線光電変換器の製造に用いる真空加熱蒸着装置の一例を示す断面図
【図2】本発明のX線光電変換器の第一例を示す断面図
【図3】本発明のX線光電変換器の第二例を示す断面図
【図4】本発明のX線光電変換器の第三例を示す断面図
【図5】本発明のX線光電変換器の第四例を示す断面図
【図6】本発明のX線光電変換器の第五例を示す断面図
【図7】寿命試験及びS/N比を測定するための回路接続図
【符号の説明】
1……ガラス基板
2……電荷収集電極
3……下引層
4……X線光導電層
5……上部電極
6……電荷輸送層
7……保護層
8……上引層
10、20、30、40、50……X線光電変換器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the technical field of an electric field application type X-ray photoelectric converter in which an undercoat layer is provided between an X-ray photoconductive layer and an electrode.
[0002]
[Prior art]
Technology for converting X-rays into electrical signals and digitizing the extracted charges has begun to be widely used in industrial and medical applications.
[0003]
The present inventors have studied an X-ray photoelectric converter in which an X-ray photoconductive layer is provided between parallel electrodes as an X-ray photoelectric converter for converting X-rays into electric signals and extracting them. The current value (noise) when an electric field is applied to the X-ray photoelectric converter is large, and the ratio of the current value (signal) to noise (S / N ratio) when the X-ray photoelectric converter applied with the electric field is irradiated with X-rays ) Has become smaller.
Moreover, when a high electric field was applied between the electrodes, the X-ray photoelectric converter caused discharge breakdown and was weak against external energy.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to improve the S / N ratio and to show high durability against external energy for an electric field application type X-ray photoelectric converter.
[0005]
[Means for Solving the Problems]
The inventors of the present invention applied an undercoat layer formed by releasing SiO 2 particles from a film-forming material containing SiO 2 in a vacuum atmosphere to the lower part of the X-ray photoconductive layer, that is, the charge collection electrode and the X-rays. It has been found that the above-mentioned problems can be solved by providing it between the photoconductive layer.
[0006]
The invention according to claim 1 made on the basis of such knowledge includes a substrate, a charge collecting electrode layer disposed on the substrate, an X-ray photoconductive layer disposed on the charge collecting electrode layer , and a gold thin film. And an upper electrode layer disposed on the X-ray photoconductive layer, and when X-rays are irradiated with a voltage applied between the charge collection electrode layer and the upper electrode layer , An X-ray photoelectric converter in which a latent image is formed in a line photoconductive layer , wherein an undercoat layer is disposed between the charge collection electrode layer and the X-ray photoconductive layer, The charge collecting electrode layer on the substrate is arranged by disposing the substrate and a film forming material mainly composed of SiO 2 in a vacuum atmosphere and releasing SiO 2 particles from the film forming material in the vacuum atmosphere. is deposited on the film thickness of the undercoat layer is in the 0.1μm or 100μm or less, wherein The line photoconductive layer is an amorphous selenium thin film, the X-ray photoconductive layer is formed on the undercoat layer, and on the surface of the X-ray photoconductive layer, the upper electrode layer, a charge transport layer, The X-ray photoelectric conversion device according to claim 2 , wherein any one of the overcoating layers formed at or below the crystal transition temperature of selenium is in close contact with each other. The SiO 2 particles are X-ray photoelectric converters released into the vacuum atmosphere by a vacuum heating deposition method.
A third aspect of the present invention is the X-ray photoelectric converter according to the first aspect, wherein the SiO 2 particles are released into the vacuum atmosphere by a sputtering method.
The invention according to claim 4 is a substrate, a charge collection electrode layer disposed on the substrate, an undercoat layer disposed on the charge collection electrode layer, and an X-ray disposed on the undercoat layer. A photoconductive layer, and an upper electrode layer made of a gold thin film and disposed on the X-ray photoconductive layer, with a voltage applied between the charge collection electrode layer and the upper electrode layer. An X-ray photoelectric converter manufacturing method for manufacturing an X-ray photoelectric converter in which a latent image is formed in the X-ray photoconductive layer when irradiated with rays, wherein the substrate on which the charge collection electrode layer is formed And a film-forming material containing SiO 2 as a main component in a vacuum atmosphere, and SiO 2 particles are released from the film-forming material in the vacuum atmosphere . An undercoat layer of 1 μm or more and 100 μm or less is formed, and an amorphous selenium film is formed on the undercoat layer. After forming the X-ray photoconductive layer, any one of the upper electrode layer, the charge transport layer, and the overcoat layer formed at a crystal transition temperature of selenium or lower is used as the X-ray photoconductive layer. It is the manufacturing method of the X-ray photoelectric converter which carries out close_contact | adherence formation on the surface of this.
[0007]
The present invention is configured as described above, and the film forming material used for forming the undercoat layer contains SiO 2 as a main component and does not contain a solvent. Therefore, the undercoat layer of the present invention is a dense SiO 2 film, and impurities such as a solvent do not remain unlike a SiO 2 thin film formed by spin coating or the like.
An additive can be added to the film forming material. For example, if a colorant is added as an additive, the undercoat layer can be colored.
[0008]
In the present invention, the SiO 2 particles are directly emitted from the film forming material, and the SiO 2 particles are deposited on the charge collecting electrode. Therefore, it is not necessary to polymerize the film forming material as in the case of using the silane compound as the film forming material and polymerizing the silane compound to form the SiO 2 film, and the reaction by-product is formed during the film forming. Therefore, the quality of the obtained SiO 2 film is excellent.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the electric field application type X-ray photoelectric converter of the present invention are shown below, but are not limited thereto.
[0010]
The code | symbol 11 of FIG. 1 has shown an example of the vacuum heating vapor deposition apparatus used for manufacture of an X-ray photoelectric converter. The vacuum heating vapor deposition apparatus 11 has a vacuum chamber 12, and a container 15 such as a crucible or a boat is disposed on the bottom wall side in the vacuum chamber 12. A vacuum exhaust system 14 is installed outside the vacuum chamber 12.
[0011]
In order to manufacture an X-ray photoelectric converter using this vacuum heating vapor deposition apparatus 11, first, the vacuum exhaust system 14 is activated, the vacuum chamber 12 is evacuated, and the vacuum chamber 12 has a predetermined degree of vacuum. A vacuum atmosphere is formed.
[0012]
Next, while maintaining the vacuum atmosphere, the substrate 1 made of glass having the charge collecting electrode 2 formed on one side is carried into the vacuum chamber 12, and the surface on which the charge collecting electrode 2 is formed faces downward. The glass substrate 1 is disposed above the container 15.
[0013]
A film forming material 17 made of silicon dioxide (SiO 2 ) powder is previously stored in the container 15, and the container 15 is heated by energizing a heating means (not shown) provided in the container 15. The film forming material 17 is heated to evaporate the film forming material 17, and the SiO 2 particles are released as vapor in a vacuum atmosphere.
When the SiO 2 particles released in the vacuum atmosphere reach the surface of the charge collection electrode 2, an undercoat layer made of a thin film of silicon oxide (SiO 2 ) is formed on the surface of the charge collection electrode 2 (vacuum heating deposition method). .
[0014]
After carrying the substrate 1 with the undercoat layer formed into another vacuum heating vapor deposition apparatus and forming selenium thin film on the surface of the undercoat layer 3 using selenium as a film forming material, Further, when the substrate 1 is carried into another vacuum heating vapor deposition apparatus and the upper electrode 5 made of a gold thin film is formed on the surface of the X-ray photoconductive layer using gold as a film forming material, the X-ray photoelectric converter of the present invention is obtained. It is done. Reference numeral 10 in FIG. 2 indicates an X-ray photoelectric converter in which the upper electrode 5 is formed.
[0015]
Although the case where the X-ray photoconductive layer 4 is formed on the surface of the undercoat layer 3 has been described above, the present invention is not limited to this. For example, the X-ray photoelectric converter 20 shown in FIG. In addition, the charge transport layer 6 may be provided on the undercoat layer 3. Moreover, the charge transport layer 6 can also be provided between the X-ray photoconductive layer 4 and the upper electrode 5 like the X-ray photoelectric converter 30 shown in FIG. Furthermore, you may provide the protective layer 7 on the upper electrode 5, like the X-ray photoelectric converter 40 shown in FIG. Furthermore, an overcoat layer 8 may be provided between the X-ray photoconductive layer 4 and the upper electrode 5 as in the X-ray photoelectric converter 50 shown in FIG.
[0016]
Although not particularly illustrated, the charge transport layer 6, the protective layer 7, and the overcoat layer 8 can be provided in the same X-ray photoelectric converter.
The undercoat layer 3 of the present invention is formed by applying energy such as heat, electron beam, and ion collision to the SiO 2 film forming material in a vacuum atmosphere as in the above-described vacuum heating deposition method. It is formed by releasing SiO 2 particles.
[0017]
As a specific method for forming the undercoat layer 3, in addition to the vacuum heating vapor deposition method, an inert gas such as Ar gas is introduced into the vacuum atmosphere in which the substrate 1 is disposed, and the inert layer is inactive in the vacuum atmosphere. A sputtering method can be used in which a gas plasma is generated to sputter a target (film forming material) made of SiO 2 to form a film.
[0018]
The undercoat layer 3 may be transparent or colored. The thickness of the undercoat layer 3 is not particularly limited, but is preferably 0.1 μm or more and 100 μm or less. Further, the undercoat layer 3 made of silicon oxide obtained by the above method has a high electric resistance, and may be in an amorphous state or a crystalline state.
[0019]
As the charge collecting electrode 2 of the present invention, gold, aluminum, ITO (indium / tin oxide), or the like can be used. The electrode 2 may be uniformly formed so as to cover the X-ray irradiation region, or may be formed in a matrix shape or a stripe shape. Alternatively, a TFT (thin film transistor) in which a transistor is provided between the glass substrate 1 and the charge collecting electrode 2 may be used.
[0020]
For the X-ray photoconductive layer 4 of the present invention, a material that electrically converts X-rays is used. As this material, inorganic materials such as selenium, a selenium tellurium compound, a selenium arsenic compound, cadmium sulfide, zinc oxide, and amorphous silicon can be used, and selenium or a selenium compound is preferable.
[0021]
The X-ray photoconductive layer 4 can be formed by vacuum heating vapor deposition, sputtering, CVD, or the like, depending on the material used. The film thickness of the formed X-ray photoconductive layer 4 also varies depending on the material used, but is formed to be about 50 μm or more and 2000 μm or less.
[0022]
As the upper electrode 5 of the present invention, gold, aluminum, ITO or the like can be used. The film formation method of the upper electrode 5 is not limited to the vacuum heating vapor deposition method, and can be formed by various methods such as a sputtering method.
[0023]
The charge transport layer 6 that can be used in the present invention has an effect of further reducing noise. As a material for the charge transport layer 6, inorganic materials such as antimony trisulfide and zinc cadmium telluride can be used. An organic material exhibiting charge mobility can also be used.
[0024]
As the protective layer 7 and the overcoat layer 8 that can be used in the present invention, an organic or inorganic high resistance film can be used. When selenium is used as the X-ray photoconductive layer 4, it can be formed at a temperature below the crystal transition temperature of selenium.
[0025]
Further, the position of X-ray irradiation is not particularly limited, and as a result, X-rays may be irradiated to the upper electrode 5 as long as the X-rays reach the X-ray photoconductive layer 4. The glass substrate 1 may be irradiated.
[0026]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
[0027]
<Example 1>
A glass substrate 1 having an ITO matrix formed as a charge collecting electrode 2 is prepared and installed in a vacuum heating vapor deposition apparatus 11. The container 15 of the vacuum heating vapor deposition apparatus 11 is sprinkled with SiO 2 as the film forming material 17 to be in a vacuum state, the container sprinkled with SiO 2 is heated to 1800 ° C., and the surface of the charge collecting electrode 2 has a thickness of 1 μm. The drawing layer 3 was formed.
[0028]
Next, selenium is used as a film forming material, and a selenium layer (X-ray photoconductive layer) 4 having a film thickness of 500 μm is formed on the undercoat layer 3 by a vacuum heating vapor deposition method. A gold thin film (upper electrode) 5 having a film thickness of 0.1 μm was formed on the X-ray photoconductive layer 4 by a heat evaporation method, and the X-ray photoelectric converter 10 of Example 1 was produced.
[0029]
<Comparative Example 1>
In Example 1, the selenium layer having a thickness of 500 μm and the gold thin film having a thickness of 0.1 μm are formed on the charge collecting electrode without forming the undercoat layer, and the X-ray of Comparative Example 1 having no undercoat layer is formed. A photoelectric converter was produced.
[0030]
<Comparative example 2>
100 parts by volume of polycarbonate was added to 100 parts by volume of chloroform as a solvent, and polycarbonate was dissolved while stirring to obtain a coating solution for forming an undercoat layer. Next, the coating solution for forming the undercoat layer is applied on a charge collecting electrode in which ITO is matrix-formed on a glass substrate, and this is heated at 100 ° C. for 5 hours to evaporate chloroform, and a transparent film having a thickness of 1 μm is obtained. An undercoat layer made of a polycarbonate thin film was formed. Further, an X-ray photoconductive layer and an upper electrode were formed on the undercoat layer in the same manner as in Example 1 to produce an X-ray photoelectric converter of Comparative Example 2.
[0031]
<Comparative Example 3>
A subbing layer made of CeO 2 was formed on the charge collection electrode under the same conditions as in Example 1 except that CeO 2 was used as the film forming material instead of SiO 2 used in Example 1 and then the subbing was performed. An X-ray photoconductive layer and an upper electrode were formed on the layer under the same conditions as in Example 1 to prepare an X-ray photoelectric converter of Comparative Example 3.
[0032]
<Comparative example 4>
100 parts by volume of polymethyl methacrylate (PMMA) was dissolved in 100 parts by volume of tetrahydrofuran with good stirring. 30 parts by volume of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, which is a silane coupling agent, was added thereto and mixed well to prepare a coating solution for forming an undercoat layer. Next, the coating solution for forming the undercoat layer was applied to the charge collecting electrode in which ITO was matrix-formed on the glass substrate, and this was heated at 100 ° C. for 5 hours to form a transparent undercoat layer having a thickness of 1 μm. . In this reaction, a condensation polymerization reaction due to hydrolysis of the silane coupling agent does not occur, and the undercoat layer is mainly composed of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, not SiO 2 .
[0033]
Further, an X-ray photoconductive layer and an upper electrode were formed on the undercoat layer under the same conditions as in Example 1 to produce an X-ray photoelectric converter of Comparative Example 4.
In addition, the X-ray photoelectric converter produced by the said Example 1 and Comparative Examples 2-4 has the same structure as the X-ray photoelectric converter 10 shown in FIG.
[0034]
<Evaluation>
Evaluation items for the X-ray photoelectric converters produced in Examples and Comparative Examples 1 to 4 are shown below.
[0035]
(1) Durability test The X-ray photoelectric converter 10 is connected to a circuit as shown in FIG. 7, and the X-ray radiation device 61 irradiates the surface of the upper electrode 5 with X-rays 65, and 1V / The applied voltage was raised at μm / hour, and the electric field value at which the discharge was broken was measured to make a durability test. The X-ray irradiation conditions at this time are an X-ray tube voltage of 120 kV and a dose of 18 R / min.
[0036]
(2) Current when the S / N ratio X-ray photoelectric converter 10 is connected in a circuit as shown in FIG. 7 and the electric field is 10 V / μm and left for 10 minutes in the dark without being irradiated with X-rays. The value was the noise current value N, and the current value when X-rays were irradiated at 18 R / min was the signal current value S. The ratio (S / N ratio) between the obtained signal current value S and noise current value N was calculated.
[0037]
The evaluation results of the tests (1) and (2) are shown in Table 1 below.
[0038]
[Table 1]
Figure 0003913031
[0039]
According to Table 1 above, the X-ray photoelectric converter 10 of Example 1 provided with the undercoat layer 3 made of silicon oxide formed by vacuum heating vapor deposition of SiO 2 is 20 V / μm in the durability test. It was found that even when an electric field of about 10 mm was applied, the discharge was not broken and it could withstand continuous use. Moreover, it was found that the S / N ratio was 4500 or more, indicating excellent characteristics.
[0040]
On the other hand, in Comparative Example 1 in which no undercoat layer was provided and in Comparative Example 4 in which a base layer made of a silane compound was provided, discharge breakdown was caused at 12 V / μm and 15 V / μm, respectively, in the durability test. It was found that the N ratio was very small and the noise current was large and could not be put into practical use.
[0041]
Further, Comparative Example 2 provided with a subbing layer made of polycarbonate and Comparative Example 3 provided with a subbing layer made of CeO 2 are susceptible to discharge breakdown at 15 V / μm in a durability test and are vulnerable to application of a high electric field. all right.
[0042]
In addition, when the undercoat layer 3 was formed by sputtering using a target made of SiO 2 instead of the vacuum heating vapor deposition method, the X-ray photoelectric conversion was excellent in durability and S / N ratio to the same extent as in Example 1 above. A transducer 10 was obtained.
[0043]
【The invention's effect】
From the above results, the X-ray photoelectric converter of the present invention provided with an undercoat layer made of silicon oxide formed by applying energy to SiO 2 in a vacuum and flying is durable against high electric field application. This is an excellent X-ray photoelectric converter having high properties and a high S / N ratio.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a vacuum heating vapor deposition apparatus used for manufacturing the X-ray photoelectric converter of the present invention. FIG. 2 is a cross-sectional view showing a first example of the X-ray photoelectric converter of the present invention. FIG. 4 is a cross-sectional view showing a second example of the X-ray photoelectric converter of the present invention. FIG. 4 is a cross-sectional view showing a third example of the X-ray photoelectric converter of the present invention. FIG. 6 is a sectional view showing a fifth example of the X-ray photoelectric converter of the present invention. FIG. 7 is a circuit connection diagram for measuring the life test and S / N ratio.
DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Charge collection electrode 3 ... Undercoat layer 4 ... X-ray photoconductive layer 5 ... Upper electrode 6 ... Charge transport layer 7 ... Protective layer 8 ... Overcoat layers 10, 20 , 30, 40, 50 ... X-ray photoelectric converter

Claims (4)

基板と、
前記基板上に配置された電荷収集電極と、
前記電荷収集電極上に配置されたX線光導電層と、
金薄膜からなり、前記X線光導電層上に配置された上部電極とを有し、
前記電荷収集電極と前記上部電極との間に電圧を印加した状態でX線を照射すると、前記X線光導電層内に潜像が形成されるX線光電変換器であって、
前記電荷収集電極と前記X線光導電層との間には下引層が配置され、
前記下引層は、前記基板と、SiO2を主成分とする成膜材料とを真空雰囲気に配置し、前記真空雰囲気で前記成膜材料からSiO2粒子を放出させることによって、前記基板上の前記電荷収集電極上に成膜され、
前記下引層の膜厚は0.1μm以上100μm以下にされ、
前記X線光導電層は無定形セレン薄膜であり、前記X線光導電層は前記下引層上に形成され、
前記X線光導電層の表面には、前記上部電極層と、電荷輸送層と、セレンの結晶転移点温度以下で形成された上引層のいずれかの層が密着して配置されたX線光電変換器。
A substrate,
A charge collection electrode layer disposed on the substrate;
An X-ray photoconductive layer disposed on the charge collection electrode layer ;
An upper electrode layer made of a gold thin film and disposed on the X-ray photoconductive layer;
An X-ray photoelectric converter in which a latent image is formed in the X-ray photoconductive layer when irradiated with X-rays while a voltage is applied between the charge collection electrode layer and the upper electrode layer ,
An undercoat layer is disposed between the charge collection electrode layer and the X-ray photoconductive layer,
The undercoat layer is formed on the substrate by disposing the substrate and a film forming material mainly composed of SiO 2 in a vacuum atmosphere and releasing SiO 2 particles from the film forming material in the vacuum atmosphere. Deposited on the charge collection electrode layer ;
The thickness of the undercoat layer is 0.1 μm or more and 100 μm or less,
The X-ray photoconductive layer is an amorphous selenium thin film, and the X-ray photoconductive layer is formed on the undercoat layer;
X-rays in which any one of the upper electrode layer, the charge transport layer, and the overcoat layer formed below the crystal transition temperature of selenium is in close contact with the surface of the X-ray photoconductive layer Photoelectric converter.
前記SiO2粒子は、真空加熱蒸着法により前記真空雰囲気に放出された請求項1記載のX線光電変換器。The X-ray photoelectric converter according to claim 1, wherein the SiO 2 particles are released into the vacuum atmosphere by a vacuum heating vapor deposition method. 前記SiO2粒子は、スパッタリング法により前記真空雰囲気に放出された請求項1記載のX線光電変換器。The X-ray photoelectric converter according to claim 1, wherein the SiO 2 particles are released into the vacuum atmosphere by a sputtering method. 基板と、A substrate,
前記基板上に配置された電荷収集電極層と、  A charge collection electrode layer disposed on the substrate;
前記電荷収集電極層上に配置された下引層と、  An undercoat layer disposed on the charge collection electrode layer;
前記下引層上に配置されたX線光導電層と、  An X-ray photoconductive layer disposed on the undercoat layer;
金薄膜からなり、前記X線光導電層上に配置された上部電極層とを有し、  An upper electrode layer made of a gold thin film and disposed on the X-ray photoconductive layer;
前記電荷収集電極層と前記上部電極層との間に電圧を印加した状態でX線を照射すると、前記X線光導電層内に潜像が形成されるX線光電変換器を製造するX線光電変換器の製造方法であって、  X-rays for producing an X-ray photoelectric converter in which a latent image is formed in the X-ray photoconductive layer when X-rays are irradiated with a voltage applied between the charge collection electrode layer and the upper electrode layer A method of manufacturing a photoelectric converter,
前記電荷収集電極層が形成された前記基板と、SiO  The substrate on which the charge collecting electrode layer is formed; and SiO. 22 を主成分とする成膜材料とを真空雰囲気に配置し、前記真空雰囲気で前記成膜材料からSiOAnd a film-forming material containing as a main component in a vacuum atmosphere, and from the film-forming material in the vacuum atmosphere SiO 2 22 粒子を放出させることによって、前記電荷収集電極層上に膜厚が0.1μm以上100μm以下の下引層を成膜し、By releasing particles, a subbing layer having a thickness of 0.1 μm or more and 100 μm or less is formed on the charge collection electrode layer,
前記下引層上に、無定形セレン膜からなる前記X線光導電層を成膜した後、  After forming the X-ray photoconductive layer made of an amorphous selenium film on the undercoat layer,
前記上部電極層と、電荷輸送層と、セレンの結晶転移点温度以下で形成された上引層のいずれかの層を、前記X線光導電層の表面に密着形成するX線光電変換器の製造方法。An X-ray photoelectric converter in which any one of the upper electrode layer, the charge transport layer, and an overcoat layer formed at a temperature lower than the crystal transition temperature of selenium is formed in close contact with the surface of the X-ray photoconductive layer. Production method.
JP2001328640A 2001-10-26 2001-10-26 X-ray photoelectric converter Expired - Fee Related JP3913031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328640A JP3913031B2 (en) 2001-10-26 2001-10-26 X-ray photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328640A JP3913031B2 (en) 2001-10-26 2001-10-26 X-ray photoelectric converter

Publications (2)

Publication Number Publication Date
JP2003133576A JP2003133576A (en) 2003-05-09
JP3913031B2 true JP3913031B2 (en) 2007-05-09

Family

ID=19144673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328640A Expired - Fee Related JP3913031B2 (en) 2001-10-26 2001-10-26 X-ray photoelectric converter

Country Status (1)

Country Link
JP (1) JP3913031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137738A (en) * 2005-11-21 2007-06-07 Fujifilm Corp Method for producing oxide thin film and radiation image detector
JP4773375B2 (en) * 2007-01-19 2011-09-14 富士フイルム株式会社 Radiation image detector

Also Published As

Publication number Publication date
JP2003133576A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
US8084743B2 (en) Sensor and image pickup device
US7507512B2 (en) Particle-in-binder X-ray sensitive coating using polyimide binder
CN105492653B (en) Transparent and electrically conductive film and its manufacturing method
JPWO2016060156A1 (en) Solar cell
US7632539B2 (en) Method for manufacturing photoconductive layers that constitute radiation imaging panels
WO2002103388A2 (en) Laminated semiconductor radiation detector
US20050214581A1 (en) Photoconductive layer included in radiation imaging panel
JP3913031B2 (en) X-ray photoelectric converter
JP2004149884A (en) Method for depositing ito transparent electroconductive thin film, ito transparent electroconductive thin film, transparent electrically conductive film, and touch panel
WO2022179258A1 (en) Direct electromagnetic radiation detector and manufacturing method therefor
CN110698077B (en) Cesium-lead halogen perovskite thick film and preparation and application thereof
JP6412209B2 (en) Transparent conductive film and method for producing the same
US8350207B2 (en) Radiation image detection apparatus and manufacturing method of radiation image detector with substrate side charge transport layer
JP5070130B2 (en) Radiation detector
RU194493U1 (en) DEVICE FOR COLLECTING SOLAR RADIATION IN A WIDE RANGE OF WAVE LENGTHS FOR SOLAR BATTERIES
JP6196685B2 (en) Solar cell
JP3913070B2 (en) X-ray photoelectric converter
US20070015091A1 (en) Photoconductive sheet and radiation imaging panel
JP2001244492A (en) Radiation sensor
CN1162575A (en) Alkali metal diffusion barrier layer
US11949029B2 (en) Transparent multi-layer assembly and production method
US7419697B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
TW202145260A (en) Transparent conductive film
JPS622426B2 (en)
JP2005072164A (en) Photoelectric transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees