JP2002115491A - Diagnosis method for lining concrete and its diagnosis device - Google Patents

Diagnosis method for lining concrete and its diagnosis device

Info

Publication number
JP2002115491A
JP2002115491A JP2000308938A JP2000308938A JP2002115491A JP 2002115491 A JP2002115491 A JP 2002115491A JP 2000308938 A JP2000308938 A JP 2000308938A JP 2000308938 A JP2000308938 A JP 2000308938A JP 2002115491 A JP2002115491 A JP 2002115491A
Authority
JP
Japan
Prior art keywords
lining concrete
wave
waveform
reflected wave
shock wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000308938A
Other languages
Japanese (ja)
Inventor
Yoshio Ishizuka
与志雄 石塚
Noriji Miyake
紀治 三宅
Kiyoshi Nakagawa
清 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2000308938A priority Critical patent/JP2002115491A/en
Publication of JP2002115491A publication Critical patent/JP2002115491A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diagonosis method for a linining cocrete and its diagnosis device, capable of simply and efficiently diagnosing deterioration conditions of the lining concrete of a tunnel. SOLUTION: The diagnosis device is constituted of a shock-wave generating means 5 for producing a shock wave S acting on the lining concrete 4 of the tunnel, a reflected wave measuring means 6 for measuring a reflected wave R of the shock wave S, a waveform recording means 7 for recording the reflected wave R to be measured and a wave form analysis/valuation means 8 for analyzing and valuating the wave form of the reflected wave R to be recorded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は覆工コンクリートの
診断方法及びその診断装置に係り、特に鉄道、道路、導
水路、共同溝などの各種トンネルの覆工コンクリートの
劣化、ひび割れ発生状態等を簡易な手段により精度よく
できるようにした覆工コンクリートの診断方法及びその
診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing lining concrete and a diagnosing apparatus therefor, and more particularly to a method for diagnosing lining concrete of various tunnels such as railroads, roads, headraces, and common ditches, and the state of crack generation. The present invention relates to a method for diagnosing lining concrete and a diagnostic apparatus for the lining concrete, which can be accurately performed by various means.

【0002】[0002]

【従来の技術】従来、山岳トンネルの覆工コンクリート
の劣化状況や背面の空隙の有無、ひび割れ発生状況等を
観察し、判定する方法として、観察者の叩くハンマーの
打撃音の変化による判定方法(打音検査)などが実施さ
れている。また、ひび割れを含むコンクリートの劣化や
背面の空隙の有無の判断は、専門家による目視識別やマ
イクロフォンで測定して波形を分析する方法(AE法)
等で行なわれている。さらに、赤外線カメラを用いて覆
工コンクリート表面を撮影し、その結果によって表面ひ
び割れの分布や大きさ、剥離状況を観察する方法等も用
いられている。
2. Description of the Related Art Conventionally, as a method of observing the deterioration state of lining concrete in a mountain tunnel, the presence or absence of voids on the back surface, the state of occurrence of cracks, and the like, a judgment method based on a change in the impact sound of a hammer hit by an observer ( Hammering test). Deterioration of concrete including cracks and the presence or absence of voids on the back can be determined by visual identification by an expert or by measuring with a microphone and analyzing the waveform (AE method).
And so on. Further, a method of taking an image of the lining concrete surface using an infrared camera and observing the distribution and size of surface cracks and the state of peeling according to the result is also used.

【0003】[0003]

【発明が解決しようとする課題】しかし、たとえば上述
したハンマーの打撃音による判定方法では、覆工コンク
リートをハンマーで直接打撃して行われるため、トンネ
ル全長にわたる診断には非常に多くの時間と労力を必要
とする等の課題があり、また赤外線カメラを用いた方法
では、コンクリートの表面性状は調査できても、コンク
リート内部の劣化や背面の空隙の有無を判定することは
きわめて困難であり、いずれも覆工コンクリートの劣化
状況などを効率的に診断できないものであった。そこ
で、本発明の目的は、上述した課題を解決するために、
トンネルの覆工コンクリートの劣化状況などをきわめて
簡単にかつ効率的に診断できるようにした覆工コンクリ
ートの診断方法及びその診断装置を提供することにあ
る。
However, for example, in the above-described determination method based on the impact sound of a hammer, the lining concrete is directly impacted with a hammer, so that it takes much time and labor to diagnose the entire length of the tunnel. In addition, although the method using an infrared camera can investigate the surface properties of concrete, it is extremely difficult to determine the deterioration inside the concrete and the presence or absence of voids on the back. However, it was not possible to efficiently diagnose the state of deterioration of the lining concrete. Therefore, an object of the present invention is to solve the above-described problem.
It is an object of the present invention to provide a method for diagnosing lining concrete and a diagnostic apparatus therefor, which make it possible to diagnose the state of deterioration of lining concrete in a tunnel very easily and efficiently.

【0004】[0004]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明は覆工コンクリートの診断方法は、覆工コ
ンクリートに衝撃波を作用させ、コンクリート表面から
の反射波を測定して収録し、その収録波形を分析・評価
し、前記覆工コンクリートの状態を診断、表示すること
を特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for diagnosing lining concrete by applying a shock wave to the lining concrete and measuring and recording a reflected wave from the concrete surface. The recorded waveform is analyzed and evaluated, and the condition of the lining concrete is diagnosed and displayed.

【0005】その診断装置として、覆工コンクリートに
衝撃波を作用させる衝撃波発生手段と、前記衝撃波の反
射波を測定する反射波測定手段と、測定された前記反射
波の波形を収録する波形収録手段と、収録された前記反
射波の波形を分析・評価する波形分析・評価手段とを備
えたことを特徴とする。このとき、衝撃波発生手段とし
ては、覆工コンクリートに衝撃波を非接触でかつリモー
トコントロールで作用させることが好適である。また、
衝撃波発生手段に代えて直接打撃発生手段を備えてもよ
く、その場合にもリモートコントロールによって打撃間
隔や打撃強度を自在に調節可能な装置とすることが好ま
しい。
The diagnostic device includes a shock wave generating means for applying a shock wave to the lining concrete, a reflected wave measuring means for measuring a reflected wave of the shock wave, and a waveform recording means for recording a measured waveform of the reflected wave. And a waveform analyzing / evaluating means for analyzing / evaluating the waveform of the recorded reflected wave. At this time, as the shock wave generating means, it is preferable to apply the shock wave to the lining concrete in a non-contact manner and by remote control. Also,
Instead of the shock wave generating means, a direct impact generating means may be provided, and in such a case, it is preferable to use a device capable of freely adjusting the impact interval and the impact strength by remote control.

【0006】[0006]

【発明の実施の形態】以下、本発明の覆工コンクリート
の診断方法及びその診断装置の一実施の形態について、
添付図面を参照して説明する。図1、図2は、トンネル
坑内に配備された覆工コンクリートの診断方法に用いる
診断装置の一例を示している。同図に示したように、診
断装置は、トンネル軌道1上を走行する自走台車2と、
自走台車2上に搭載されトンネル3の覆工コンクリート
4の表面を網羅するように形鋼を略1/4円状に加工し
たガイドレール21上をステップ移動可能な走行ホルダ
22と、走行ホルダ22にノズル5aが取り付けられ、
本体が台車2に搭載された所定波速の衝撃波Sを発生可
能な衝撃波発生手段5と、衝撃波Sの反射干渉波Rを計
測する反射波測定手段6と、測定された反射波の波形あ
るいは干渉状態を収録する反射波収録手段7と、収録さ
れた反射波の波形を加工し、あるいは可視化して干渉状
態を分析し、評価する分析・評価手段8とから構成され
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method for diagnosing lining concrete and a diagnostic apparatus therefor according to the present invention will be described.
This will be described with reference to the accompanying drawings. 1 and 2 show an example of a diagnostic device used for a method of diagnosing lining concrete provided in a tunnel pit. As shown in the figure, the diagnostic device includes a self-propelled truck 2 traveling on a tunnel track 1,
A traveling holder 22 mounted on the self-propelled trolley 2 and capable of step-moving on a guide rail 21 in which a shaped steel is machined into a substantially quarter circle so as to cover the surface of the lining concrete 4 of the tunnel 3; Nozzle 5a is attached to 22,
Shock wave generating means 5 having a main body mounted on a trolley 2 for generating a shock wave S of a predetermined wave speed, reflected wave measuring means 6 for measuring a reflected interference wave R of the shock wave S, and a waveform or interference state of the measured reflected wave And a analyzing / evaluating means 8 for processing or visualizing the waveform of the recorded reflected wave to analyze and evaluate the interference state.

【0007】衝撃波発生手段5は、本実施の形態では、
ピストン機構により高圧化された駆動気体を利用して再
現性の高い衝撃波を発生可能な衝撃波管が搭載されてい
る。この他、衝撃波発生手段5としては、少量火薬の燃
焼によるガス圧縮化を図り、高圧ガスを利用した衝撃波
管等も装置の小型化のために好適である。これらの衝撃
波管を搭載した衝撃波発生手段5は、トンネル3の覆工
コンクリート4に対して非接触でかつリモートコントロ
ールによって衝撃波Sを作用させることができる。ま
た、衝撃波Sの作用位置は、図1,図2に示したよう
に、覆工コンクリート全面を網羅するため、衝撃波発生
手段を取り付けた走行ホルダ22がガイドレール21上
をステップ移動できるようになっている。そして停止位
置となる標準測点11(図中、(・)点)を網羅するよ
うに移動し、各標準測点11での測定データは、測点座
標データとともに反射波収録手段7に収集、蓄積され
る。このとき空洞30、コンクリートひび割れ31等の
存在は、それらの測定データの解析により明確に確認さ
れる。
In this embodiment, the shock wave generating means 5 is
A shock tube capable of generating a shock wave with high reproducibility using a driving gas whose pressure is increased by a piston mechanism is mounted. In addition, as the shock wave generating means 5, a gas compression by combustion of a small amount of explosive is achieved, and a shock tube using a high pressure gas or the like is also suitable for downsizing the apparatus. The shock wave generating means 5 equipped with these shock tubes can apply the shock wave S to the lining concrete 4 of the tunnel 3 without contact and by remote control. As shown in FIGS. 1 and 2, the operation position of the shock wave S covers the entire surface of the lining concrete, so that the traveling holder 22 to which the shock wave generating means is attached can move stepwise on the guide rail 21. ing. Then, the movement is performed so as to cover the standard measuring point 11 (the point (•) in the figure) that is the stop position, and the measurement data at each standard measuring point 11 is collected in the reflected wave recording means 7 together with the measurement point coordinate data. Stored. At this time, the existence of the cavity 30, the concrete crack 31, and the like is clearly confirmed by analyzing the measurement data thereof.

【0008】なお、衝撃波発生手段5の代わりとして、
覆工コンクリート4に打撃を作用させる打撃発生手段
(図省略)が備え付けられる場合もあり、その場合にも
リモートコントロールによって打撃間隔や打撃強度など
を自在に調節できるようになっている。
Incidentally, instead of the shock wave generating means 5,
In some cases, a striking means (not shown) for striking the lining concrete 4 is provided. In such a case, the striking interval and striking strength can be freely adjusted by a remote control.

【0009】反射波測定手段6では、衝撃波Sが作用し
た覆工コンクリート表面で反射した際に得られた反射波
Rが覆工コンクリート4の近くで測定される。図3に示
したように、その測定精度を高めるために、反射波測定
手段6は衝撃波発生手段5の先端付近に設置されてい
る。
In the reflected wave measuring means 6, a reflected wave R obtained when the shock wave S is reflected on the surface of the lining concrete on which the shock wave S acts is measured near the lining concrete 4. As shown in FIG. 3, the reflected wave measuring means 6 is installed near the tip of the shock wave generating means 5 in order to increase the measurement accuracy.

【0010】波形収録手段7において、反射波測定手段
6によって測定された反射波Rの波形は、図示しないプ
リアンプ、所定のフィルターを介して、必要に応じてA
/D変換され、各測点ごとに所定のフォーマットに整形
された波形として記憶部(図示せず)に収録される。
[0010] In the waveform recording means 7, the waveform of the reflected wave R measured by the reflected wave measuring means 6 is passed through a preamplifier (not shown) and a predetermined filter, if necessary, to A
/ D converted and recorded in a storage unit (not shown) as a waveform shaped into a predetermined format for each measurement point.

【0011】波形分析・評価手段8では、波形収録手段
7で所定のフォーマットで収録された反射波Rの各測定
点ごとの卓越周波数、振幅の抽出、スペクトル解析等の
解析を行い、得られた個別データを評価する。これらの
個別データは、反射面を構成する覆工コンクリートのコ
ンクリート表面ひび割れ31、内部の骨材の集積状態
や、覆工の背面に隠れた空洞30の存在により組成、密
度のむらが生じ、それらの構成状態の相違により、反射
波形、波形スペクトルに固有の特徴が得られる。この波
形パターン、スペクトルを把握することにより、覆工コ
ンクリート4の状態の的確な診断を行うことができる。
The waveform analyzing / evaluating means 8 performs analysis such as extraction of the dominant frequency and amplitude at each measurement point of the reflected wave R recorded in a predetermined format by the waveform recording means 7 and spectrum analysis. Evaluate individual data. These individual data show that the concrete surface cracks 31 of the lining concrete constituting the reflecting surface, the accumulation state of the aggregate inside, and the existence of the cavity 30 hidden behind the lining cause unevenness in the composition and density. Due to the difference in the configuration state, characteristics unique to the reflection waveform and the waveform spectrum can be obtained. By grasping the waveform pattern and spectrum, an accurate diagnosis of the state of the lining concrete 4 can be performed.

【0012】また、衝撃波によって生じた干渉波をデー
タとして取り扱うと、可視的にコンクリートの状態を把
握することができる。そのための装置としてはホログラ
フィー干渉計等が好適である。可視化された干渉状態を
観察することで、覆工コンクリートの劣化等の状況を直
接把握することができる。また、干渉状態を可視化可能
な波形処理手段であれば、種々の公知装置を使用でき
る。
Further, when the interference wave generated by the shock wave is handled as data, the state of the concrete can be visually grasped. A holographic interferometer or the like is suitable as an apparatus therefor. By observing the visualized interference state, the situation such as deterioration of the lining concrete can be directly grasped. Various known devices can be used as long as the waveform processing means can visualize the interference state.

【0013】覆工コンクリート4表面に設けられる測定
点の間隔は、診断の目的によって異なるが、トンネル3
の全延長を行う場合は、坑口から所定間隔で全域にわた
り、またトンネル3内での部分的な劣化があらかじめ明
らかな場合は、その部分を中心とした影響範囲におい
て、トンネル3の軸方向および円周方向の2方向の覆工
コンクリート4の断面について、図1,図2に模式的に
(・)点で示したように、所定間隔の縦横に分布する標
準測点11に対して(例えば50cmピッチ)で実施す
る。このとき測点間の状態は、反射波のデータの傾向か
ら補完解析し、判断・評価を行うことができるが、必要
に応じて追加測点12で追加データを収集することが好
ましい。このとき標準測点11はトンネル寸法をもとに
測定間隔を適宜設定することができ、また、追加測点1
2の軸方向、周方向における特定は既存の探知手段、計
測手段を適用することができる。
The interval between the measurement points provided on the surface of the lining concrete 4 varies depending on the purpose of diagnosis.
When the entire length of the tunnel 3 is to be extended, it extends over the entire area at a predetermined interval from the wellhead, and when partial deterioration in the tunnel 3 is apparent in advance, the axial direction of the tunnel 3 and the circle Regarding the cross section of the lining concrete 4 in the two circumferential directions, as shown schematically by (•) points in FIGS. 1 and 2, with respect to the standard measuring points 11 distributed at predetermined intervals vertically and horizontally (for example, 50 cm). (Pitch). At this time, the state between the measurement points can be complemented and analyzed based on the tendency of the data of the reflected wave, and judgment and evaluation can be performed. However, it is preferable to collect additional data at the additional measurement point 12 as necessary. At this time, the standard station 11 can set the measurement interval appropriately based on the tunnel size.
For the specification in the axial direction and the circumferential direction, existing detection means and measurement means can be applied.

【0014】覆工コンクリート4の各測定点で評価され
た診断結果は、トンネル3の軸方向および周方向の二方
向の断面について、現場あるいは坑外においてPC(パ
ーソナルコンピュータ)等により計測データを処理後、
可視化可能な測定結果表示手段9によりそれぞれトンネ
ル縦断を表示可能な展開図等によって画面上あるいはプ
ロッタ出力により図化される。図4は、出力された展開
図の一例を模式的に示したものである。同図に示したよ
うに、格子状に位置する所定の標準測点11に加えて、
マニュアル操作により追加測点12での測定を行うこと
により、平面的な状況をより正確に把握することができ
る。
Diagnosis results evaluated at each measurement point of the lining concrete 4 are obtained by processing measurement data by a PC (personal computer) or the like on the site or outside the mine for the cross section of the tunnel 3 in the axial direction and the circumferential direction. rear,
The measurement result display means 9 which can be visualized is plotted on a screen or by a plotter output in a developed view or the like in which the tunnel section can be displayed. FIG. 4 schematically shows an example of the output development view. As shown in the figure, in addition to the predetermined standard measuring points 11 located in a grid,
By performing the measurement at the additional measuring point 12 by manual operation, the planar situation can be grasped more accurately.

【0015】各測点での結果では、ひび割れ31、背面
の空洞30の存在を模式的に図示するほか、あからじめ
準備された評価基準に照らして行った測点毎のランク付
け等も併せて表示したり、診断結果を一覧表としても出
力できる。これらの情報に基づいて覆工コンクリート4
の劣化やひび割れ31等の性状、背面の空洞30の有無
などを確認して、覆工コンクリート4の健全度を総合的
に評価、診断することができる。
The results at each measurement point schematically show the existence of the cracks 31 and the cavities 30 on the back surface. In addition, the ranking of each measurement point based on evaluation criteria prepared in advance is also shown. It can be displayed together, and the diagnostic results can be output as a list. Lining concrete 4 based on these information
Deterioration of the lining concrete 4 can be evaluated and diagnosed comprehensively by checking the deterioration of the concrete, the properties of the cracks 31 and the like, the presence or absence of the cavity 30 on the back surface, and the like.

【0016】[0016]

【発明の効果】この発明は以上説明した通りであり、覆
工コンクリートに衝撃波を作用させ、その反射波を測定
しかつその波形を分析・評価することにより、覆工コン
クリートの性状を定量的に評価することができるため、
トンネル全体の覆工コンクリートの診断をきわめて簡単
かつ効率的におこなうことができ、診断に要する時間、
労力を大幅に低減できる効果を奏する。したがって、こ
の診断方法及びその診断装置による覆工コンクリートの
診断を定期的に実施することにより、時間の経過に伴う
変化を把握することができ、特定箇所の詳細な調査や補
修等に対しても的確な対応を行えるという効果も期待で
きる。
As described above, the present invention applies a shock wave to lining concrete, measures its reflected wave, and analyzes and evaluates its waveform to quantitatively determine the properties of the lining concrete. Can be evaluated,
Diagnosis of the lining concrete of the entire tunnel can be performed extremely easily and efficiently, and the time required for the diagnosis,
This has the effect of greatly reducing labor. Therefore, by diagnosing lining concrete by this diagnostic method and its diagnostic device periodically, changes over time can be grasped, and detailed investigation and repair of specific places can be performed. The effect of being able to respond appropriately can also be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】覆工コンクリートの診断方法及びその診断装置
を示すトンネルの横断面図。
FIG. 1 is a cross-sectional view of a tunnel showing a method for diagnosing lining concrete and a diagnostic device therefor.

【図2】覆工コンクリートの診断方法及びその診断装置
を示すトンネルの縦断面図。
FIG. 2 is a longitudinal sectional view of a tunnel showing a method of diagnosing lining concrete and a diagnostic device thereof.

【図3】覆工コンクリートの診断システムの構成を示す
説明図。
FIG. 3 is an explanatory diagram showing a configuration of a diagnostic system for lining concrete.

【図4】診断結果の一例を示した展開図。FIG. 4 is a developed view showing an example of a diagnosis result.

【符号の説明】[Explanation of symbols]

1 軌道 2 走行台車 3 トンネル 4 覆工コンクリート 5 衝撃波発生手段 6 反射波測定手段 7 波形収録手段 8 波形分析・評価手段 9 診断結果表示手段 11 標準測点 12 追加測点 S 衝撃波 R 反射波 DESCRIPTION OF SYMBOLS 1 Track 2 Carriage 3 Tunnel 4 Lining concrete 5 Shock wave generating means 6 Reflected wave measuring means 7 Waveform recording means 8 Waveform analysis / evaluation means 9 Diagnostic result display means 11 Standard measuring point 12 Additional measuring point S Shock wave R Reflected wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 清 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 Fターム(参考) 2D055 LA13 LA16 LA17 2F068 AA49 BB26 CC11 DD07 FF03 FF12 FF21 GG00 GG05 GG09 JJ12 JJ15 JJ17 KK14 QQ00 RR01 RR13 TT21 2G047 AA10 BA03 BA07 BC04 BC11 CA03 CA07 EA09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Nakagawa 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Corporation F-term (reference) 2D055 LA13 LA16 LA17 2F068 AA49 BB26 CC11 DD07 FF03 FF12 FF21 GG00 GG05 GG09 JJ12 JJ15 JJ17 KK14 QQ00 RR01 RR13 TT21 2G047 AA10 BA03 BA07 BC04 BC11 CA03 CA07 EA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】覆工コンクリートに衝撃波を作用させ、コ
ンクリート表面からの反射波を測定して収録し、その収
録波形を分析・評価し、前記覆工コンクリートの状態を
診断することを特徴とする覆工コンクリートの診断方
法。
The present invention is characterized in that a shock wave is applied to lining concrete, a reflected wave from the concrete surface is measured and recorded, the recorded waveform is analyzed and evaluated, and a condition of the lining concrete is diagnosed. Diagnosis method for lining concrete.
【請求項2】覆工コンクリートに衝撃波を作用させる衝
撃波発生手段と、前記衝撃波の反射波を測定する反射波
測定手段と、測定された前記反射波の波形を収録する波
形収録手段と、その収録波形を分析・評価する波形分析
・評価手段とを備えたことを特徴とする覆工コンクリー
トの診断装置。
2. A shock wave generating means for applying a shock wave to lining concrete; a reflected wave measuring means for measuring a reflected wave of the shock wave; a waveform recording means for recording a measured waveform of the reflected wave; A lining concrete diagnostic device comprising a waveform analyzing / evaluating means for analyzing / evaluating a waveform.
JP2000308938A 2000-10-10 2000-10-10 Diagnosis method for lining concrete and its diagnosis device Pending JP2002115491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000308938A JP2002115491A (en) 2000-10-10 2000-10-10 Diagnosis method for lining concrete and its diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308938A JP2002115491A (en) 2000-10-10 2000-10-10 Diagnosis method for lining concrete and its diagnosis device

Publications (1)

Publication Number Publication Date
JP2002115491A true JP2002115491A (en) 2002-04-19

Family

ID=18789178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308938A Pending JP2002115491A (en) 2000-10-10 2000-10-10 Diagnosis method for lining concrete and its diagnosis device

Country Status (1)

Country Link
JP (1) JP2002115491A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe
WO2004051187A1 (en) * 2002-10-25 2004-06-17 Asahi Kasei Engineering Corporation Device for measuring thickness of vessel steel plate
JP2011242269A (en) * 2010-05-19 2011-12-01 Shimizu Corp Inspection device
JP2012237561A (en) * 2011-05-10 2012-12-06 Shimizu Corp Inspection device
JP2014115202A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Device to inspect wall surface of structure and inspection method
JP2015203572A (en) * 2014-04-10 2015-11-16 株式会社アミック Nondestructive inspection method of artificial structure
CN111562348A (en) * 2020-05-21 2020-08-21 华东交通大学 Tunnel top crack detection device
CN114280146A (en) * 2021-12-10 2022-04-05 招商局重庆交通科研设计院有限公司 A quick collection system of interference wave for concrete inverted arch structure surface

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe
US7530270B2 (en) 2002-05-08 2009-05-12 Sekisui Chemical Co., Ltd. Inspection method and inspection apparatus of reinforced concrete pipe
US7360462B2 (en) 2002-05-08 2008-04-22 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
US7426879B2 (en) 2002-05-08 2008-09-23 Sekisui Chemical Co., Ltd. Inspection method and inspection apparatus of reinforced concrete pipe
WO2003096007A1 (en) * 2002-05-08 2003-11-20 Sekisui Chemical Co., Ltd. Method and equipment for inspecting reinforced concrete pipe
WO2004051187A1 (en) * 2002-10-25 2004-06-17 Asahi Kasei Engineering Corporation Device for measuring thickness of vessel steel plate
US7513161B2 (en) 2002-10-25 2009-04-07 Asahi Kasei Engineering Corporation Device for measuring thickness of vessel steel plate
US7854168B2 (en) 2002-10-25 2010-12-21 Asahi Kasei Engineering Corporation Thickness measuring device for vessel steel plate
JP2011242269A (en) * 2010-05-19 2011-12-01 Shimizu Corp Inspection device
JP2012237561A (en) * 2011-05-10 2012-12-06 Shimizu Corp Inspection device
JP2014115202A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Device to inspect wall surface of structure and inspection method
JP2015203572A (en) * 2014-04-10 2015-11-16 株式会社アミック Nondestructive inspection method of artificial structure
CN111562348A (en) * 2020-05-21 2020-08-21 华东交通大学 Tunnel top crack detection device
CN111562348B (en) * 2020-05-21 2022-04-12 华东交通大学 Tunnel top crack detection device
CN114280146A (en) * 2021-12-10 2022-04-05 招商局重庆交通科研设计院有限公司 A quick collection system of interference wave for concrete inverted arch structure surface

Similar Documents

Publication Publication Date Title
US8060319B2 (en) Acoustic structural integrity monitoring system and method
JP4214290B2 (en) Concrete structure diagnostic apparatus and diagnostic method using the same
WO2021142861A1 (en) Tbm-carried rock compressive strength quick prediction system and method based on rock components and fabric
US20060266122A1 (en) In-track wheel inspection system
JP2015007571A (en) Hammering sound evaluation inspection device for structure
JP2006284578A (en) Method and system for inspecting object using ultrasonic scan data
Guthrie et al. Automated air-coupled impact-echo testing of a concrete bridge deck from a continuously moving platform
CN108519596A (en) A kind of section of jurisdiction Hidden Fracture recognition methods based on match tracing and wavelet transformation
CN103868992B (en) There is the single lossless detection method of surveying surface concrete structure
JP2002115491A (en) Diagnosis method for lining concrete and its diagnosis device
CN103792287A (en) Large-area structural damage detection method based on Lamb wave
JP7125712B2 (en) Non-destructive test equipment for structures and its non-destructive test method
JP2002296244A (en) Method and device for diagnosing concrete structure
GB2383413A (en) Detecting rail defects using acoustic surface waves
Delatte et al. Application of nondestructive evaluation to subway tunnel systems
JP3016426B2 (en) Ground evaluation method and device for TBM method by excavation sound analysis
JP2003043019A (en) Condition measuring instrument for concrete
JP4598809B2 (en) Soundness diagnosis method by sound analysis
CN207764171U (en) A kind of tunnel bradyseism scroll wheel and its pneumatic type tunnel vacant analysis hammer instrument
CN106645399A (en) Composite material damage detection and evaluation method and system
CN112595598A (en) Inclined layered coal rock physical strength-sound-light-wave integrated testing device and method
JP6773878B1 (en) Concrete structure internal condition inspection method and system used for that method
JP7243983B2 (en) Non-contact acoustic analysis system
RU2446971C2 (en) Method of track diagnostics
CN116519477A (en) Rock instability judging method, device and storage medium