JP2002110114A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JP2002110114A
JP2002110114A JP2000296270A JP2000296270A JP2002110114A JP 2002110114 A JP2002110114 A JP 2002110114A JP 2000296270 A JP2000296270 A JP 2000296270A JP 2000296270 A JP2000296270 A JP 2000296270A JP 2002110114 A JP2002110114 A JP 2002110114A
Authority
JP
Japan
Prior art keywords
lead
bushing
pole
protrusion
lead bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000296270A
Other languages
Japanese (ja)
Inventor
Hiroya Abe
泰也 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000296270A priority Critical patent/JP2002110114A/en
Publication of JP2002110114A publication Critical patent/JP2002110114A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead-acid battery having terminals in which a lead pole is inserted into a lead bushing to be welded together, therein securing a depth of the junction between the lead pole and lead bushing is secured, preventing a lead drip in welding, and suppressing the occurrence of crack in a junction between the lead pole and lead bushing, which is remarkably found especially in negative electrode absorbing type lead-acid battery. SOLUTION: A protrusion 4 disposed around a lead pole 3 is welded to the inner wall of a lead bushing 2. In a state in which the lead pole 3 is inserted into the lead bushing 2, the internal diameter of the part corresponding to the protrusion 4 on the inner wall of the lead bushing 2 is indicated as R. The internal diameter of the lead bushing 2 positioned above the part corresponding to the protrusion 4 is indicated as RU. The internal diameter of the lead bushing 2 positioned below the part corresponding to the protrusion 4 is indicated as RL. In such a case, the R is wider than RU and RL.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池の端子部の
構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a terminal of a lead storage battery.

【0002】[0002]

【従来の技術】鉛蓄電池、特に非常用電源等に用いる大
型の産業用鉛蓄電池の端子封口部の構造は従来図2に示
すようになっていた。すなわち電槽蓋10にインサート
成型等で埋め込まれた鉛ブッシング20に電池極板群と
接続された鉛極柱30を挿通し、鉛ブッシング20と鉛
極柱30とを溶接することが行われていた。
2. Description of the Related Art The structure of a terminal sealing portion of a lead-acid battery, particularly a large-sized industrial lead-acid battery used for an emergency power supply or the like, has conventionally been as shown in FIG. That is, the lead pole 30 connected to the battery electrode plate group is inserted into the lead bushing 20 embedded in the battery case cover 10 by insert molding or the like, and the lead bushing 20 and the lead pole 30 are welded. Was.

【0003】通常、鉛ブッシング20は下方、すなわち
電槽内側方向に向けてその内径が大きくなるようにテー
パー20aが設けられているが、鉛極柱30については
その外径は極柱長さ方向にわたってほぼ同一である。鉛
ブッシング20と鉛極柱30との溶接時には鉛極柱30
の一部50をバーナー火炎等の熱源で溶融させて、溶融
鉛を鉛極柱30と鉛ブッシング20との間に流入させて
冷却凝固させることにより、鉛ブッシング20と鉛極柱
30との接合部60を形成させていた。
Usually, the lead bushing 20 is provided with a taper 20a so that its inner diameter increases downward, that is, toward the inside of the battery case. Are almost the same. When the lead bushing 20 and the lead pole 30 are welded, the lead pole 30 is welded.
Is melted by a heat source such as a burner flame, and the molten lead is allowed to flow between the lead pole 30 and the lead bushing 20 to cool and solidify, thereby joining the lead bushing 20 and the lead pole 30. The part 60 was formed.

【0004】このような従来の構造では、鉛極柱30の
外径が鉛ブッシング20の内径に対して小さすぎると鉛
極柱30と鉛ブッシング20との溶接時に発生する溶融
鉛が垂れて電槽内に流れ込んでしまう。このような垂れ
鉛は極板群を構成する正極−負極間を短絡させる。ま
た、溶接にバーナー炎を用いる場合、鉛極柱30の一部
50によって、溶接部までバーナー炎が到達し難くな
り、接合部60の深さLが浅く溶接不良が発生し易くな
る。
In such a conventional structure, when the outer diameter of the lead pole 30 is too small with respect to the inner diameter of the lead bushing 20, molten lead generated at the time of welding the lead pole 30 and the lead bushing 20 is dripped. It flows into the tank. Such dripping lead causes a short circuit between the positive electrode and the negative electrode constituting the electrode plate group. When a burner flame is used for welding, the part 50 of the lead pole 30 makes it difficult for the burner flame to reach the welded portion, and the depth L of the joint portion 60 is shallow, so that poor welding is likely to occur.

【0005】また、接合部60からの溶融鉛の落下を防
止するために接合部60から下方、すなわち電槽内部方
向では鉛極柱30と鉛ブッシング20との隙間を極力少
なくする必要がある。ところが、特に負極の鉛極柱30
は蓄電池の使用中に表面が腐食し、腐食生成物として硫
酸鉛が生成される。この腐食生成物により鉛極柱30の
外周部が体積膨張し、鉛ブッシング20の内壁に鉛ブッ
シング20の外周方向への応力を発生させる。この応力
は鉛極柱30と鉛ブッシング20との接合部60を引き
剥がすように作用する結果、接合部60に亀裂が生じ、
この亀裂を通しての電解液の漏れや蓄電池内の気密が損
なわれることによる容量低下という課題が発生する。特
に前記した接合部60の深さLが充分に確保されていな
い場合には比較的短期間で接合部60に亀裂が発生す
る。また、このような腐食発生は鉛ブッシング20と鉛
極柱30間の隙間量に大きく影響されることがわかって
きた。具体的にはこの隙間量が1mm以下の場所で腐食
が顕著に進行し、1mmを超える場所では殆ど進行しな
い。これは隙間の電解液保持度合いにより腐食速度が影
響されるものである。また、この隙間に保持された電解
液中の硫酸濃度によっても影響される。
Further, in order to prevent the molten lead from dropping from the joint 60, it is necessary to minimize the gap between the lead pole 30 and the lead bushing 20 below the joint 60, that is, inside the battery case. However, in particular, the lead pole 30 of the negative electrode
The surface of the battery corrodes during use of the storage battery, and lead sulfate is generated as a corrosion product. This corrosion product causes the outer peripheral portion of the lead pole column 30 to expand in volume, and generates a stress on the inner wall of the lead bushing 20 in the outer peripheral direction of the lead bushing 20. This stress acts to peel off the joint 60 between the lead pole 30 and the lead bushing 20, resulting in a crack in the joint 60,
Problems such as leakage of electrolyte through the crack and loss of airtightness in the storage battery cause a problem of capacity reduction. In particular, when the depth L of the joint 60 is not sufficiently ensured, a crack is generated in the joint 60 in a relatively short time. It has also been found that the occurrence of such corrosion is greatly affected by the amount of gap between the lead bushing 20 and the lead pole 30. Specifically, corrosion progresses remarkably in a place where the gap amount is 1 mm or less, and hardly progresses in a place where the gap amount exceeds 1 mm. This is because the corrosion rate is affected by the degree of retention of the electrolytic solution in the gap. It is also affected by the concentration of sulfuric acid in the electrolyte held in the gap.

【0006】この課題は極板群全体が電解液中に浸漬さ
れた構成の液式の鉛蓄電池では殆ど発生しない。極板群
に電解液を含浸させることにより、充電時に発生する酸
素ガスを負極で吸収する負極吸収式の鉛蓄電池に顕著に
発生する課題である。
This problem hardly occurs in a liquid-type lead-acid battery in which the entire electrode group is immersed in an electrolytic solution. This is a problem that is remarkably generated in a negative electrode absorption type lead-acid battery in which an oxygen gas generated during charging is absorbed by a negative electrode by impregnating the electrode group with an electrolytic solution.

【0007】[0007]

【発明が解決しようとする課題】本発明は前記したよう
な鉛蓄電池において鉛極柱と鉛ブッシングとの接合部の
深さを確保するとともに、特に負極吸収式の鉛蓄電池で
顕著である鉛極柱の腐食によって発生する鉛極柱と鉛ブ
ッシングとの接合部の亀裂の発生を抑制することを目的
とする。
SUMMARY OF THE INVENTION The present invention relates to a lead-acid battery as described above, which ensures the depth of the joint between the lead pole and the lead bushing, and is particularly remarkable in a negative electrode absorption type lead-acid battery. An object of the present invention is to suppress the occurrence of cracks at the joint between a lead pole pillar and a lead bushing caused by corrosion of the pillar.

【0008】[0008]

【課題を解決するための手段】前記した課題を解決する
ために本発明の請求項1記載に係る発明は、電槽蓋に設
けられた鉛ブッシングとこの鉛ブッシングに挿通した鉛
極柱とが接合された構成を有する鉛蓄電池において、鉛
極柱の外周に突起部を設け、この突起部と鉛ブッシング
の内壁とが接合されている鉛蓄電池を示したものであ
る。本発明の請求項2記載に係る発明は請求項1に記載
の構成を有する鉛蓄電池において、鉛ブッシングと鉛極
柱とが挿通された状態において鉛ブッシングの内壁の突
起部に対応する部分の鉛ブッシング内径をR、突起部に
対応する部分より上方での鉛ブッシング内径をRU、こ
の突起部に対応する部分より下方での鉛ブッシング内径
をRLとした場合にR>RL,R>RUとするものであ
る。本発明の請求項3記載に係る発明は請求項2に記載
の構成を有する鉛蓄電池において、鉛ブッシングの内壁
の突起部に対応する部分より上方に行くに従い鉛ブッシ
ング内径が大となる第1のテーパー部と、鉛ブッシング
の内壁の突起部に対応する部分より下方に行くに従い鉛
ブッシング内径が大となる第2のテーパー部を設けた鉛
蓄電池を示したものである。本発明の請求項4記載に係
る発明は請求項1,2もしくは3のいずれかに記載する
構成を有する鉛蓄電池において、極板群から遊離する電
解液を殆ど有しないで、電槽内部で発生する酸素ガスを
負極で吸収する構成としたものである。また本発明の請
求項5記載に係る発明は、請求項1,2もしくは3のい
ずれかに記載する構成を有する鉛蓄電池において、電解
液面から極板群が露出することにより、電槽内部で発生
する酸素ガスを負極で吸収する構成としたものである。
本発明の請求項6記載に係る発明は請求項4または5記
載の構成を有する鉛蓄電池において、極板群を構成する
極板の高さ寸法と幅寸法との比率が1.5を超えること
を特徴とするものである。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention comprises a lead bushing provided on a battery case cover and a lead pole inserted through the lead bushing. In the lead storage battery having a joined configuration, a lead storage battery is shown in which a protrusion is provided on the outer periphery of a lead pole and the protrusion is joined to the inner wall of a lead bushing. According to a second aspect of the present invention, there is provided a lead-acid battery having the configuration according to the first aspect, wherein a lead corresponding to a protrusion on an inner wall of the lead bushing in a state where the lead bushing and the lead pole are inserted. the bushing inner diameter R, a lead bushing inner diameter R U in the above the portions corresponding to the protrusions, if the lead bushing inner diameter was R L to R> R L at lower than a portion corresponding to the protrusion, R> R U. According to a third aspect of the present invention, there is provided a lead-acid battery having the configuration according to the second aspect, wherein the inner diameter of the lead bushing becomes larger as going upward from a portion corresponding to the projection on the inner wall of the lead bushing. FIG. 4 shows a lead-acid battery provided with a tapered portion and a second tapered portion in which the inner diameter of the lead bushing increases as going downward from a portion corresponding to a protrusion on the inner wall of the lead bushing. According to a fourth aspect of the present invention, there is provided a lead-acid battery having the structure according to any one of the first, second and third aspects, wherein the lead-acid battery has almost no electrolytic solution released from the electrode group and is generated inside the battery case. The oxygen gas to be absorbed is absorbed by the negative electrode. According to a fifth aspect of the present invention, there is provided a lead-acid battery having the configuration according to any one of the first, second, and third aspects, wherein the electrode group is exposed from the electrolyte surface so that the inside of the battery case is reduced. The oxygen gas generated is absorbed by the negative electrode.
According to a sixth aspect of the present invention, in the lead-acid battery having the configuration of the fourth or fifth aspect, a ratio of a height dimension to a width dimension of the electrode plates constituting the electrode group is more than 1.5. It is characterized by the following.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の鉛蓄電池の端子部の溶接前
の状態を示す図面である。図1において1は電槽蓋、2
は鉛ブッシングを示す。極板群(図示せず)を構成する
極板の耳部を集合溶接したストラップ部(図示せず)に
接続された鉛極柱3が挿通されている。鉛極柱3の外周
には突起部4が設けられている。突起部4は上方、すな
わち電池外側方向に行くに従い極柱径が小さくなるテー
パー部4aと、下方、すなわち電池内部方向に行くに従
い極柱径が小さくなるテーパー部4bを有している。こ
れら2つのテーパー部4a,4bの間は、ほぼ極柱径が
一定となるように突起部4が形成されている。鉛ブッシ
ング2の内径にはこの突起部4に設けられたテーパー部
4aの下端を境にして上方に行くに従い内径が大きくな
る第1のテーパー部2aと、下方に行くに従い内径が大
きくなる第2のテーパー部2bが設けられている。鉛極
柱3に突起部4と鉛ブッシング2の内径には第1のテー
パー部2aと第2のテーパー部2bが設けられているこ
とから、この突起部4を境にして上に向かって広がる空
間5と下に開かれた空間6とが形成される。
FIG. 1 is a view showing a state before welding of a terminal portion of a lead storage battery of the present invention. In FIG. 1, 1 is a battery case cover, 2
Indicates a lead bushing. A lead pole 3 connected to a strap portion (not shown) obtained by collectively welding ears of electrode plates constituting an electrode plate group (not shown) is inserted. A protrusion 4 is provided on the outer periphery of the lead pole 3. The protruding portion 4 has a tapered portion 4a whose pole diameter decreases as it goes upward, that is, toward the outside of the battery, and a taper portion 4b whose pole diameter decreases as it goes downward, that is, toward the inside of the battery. A projection 4 is formed between these two tapered portions 4a and 4b so that the diameter of the pole is substantially constant. The inner diameter of the lead bushing 2 has a first tapered portion 2a whose inner diameter increases as it goes upward from the lower end of the tapered portion 4a provided on the protrusion 4, and a second taper portion whose inner diameter increases as it goes downward. Is provided. Since the first tapered portion 2a and the second tapered portion 2b are provided on the inner diameter of the protrusion 4 and the lead bushing 2 on the lead pole 3, the protrusion spreads upward from the protrusion 4 as a boundary. A space 5 and a space 6 opened below are formed.

【0011】鉛極柱3と鉛ブッシング2との空間5にバ
ーナー火炎をあてることにより空間5に隣接する突起部
4や鉛ブッシング2の内壁を溶融して両者を接合するこ
とで図1(b)に示したような接合部7が形成される。
A burner flame is applied to the space 5 between the lead pole 3 and the lead bushing 2 to melt the projection 4 adjacent to the space 5 and the inner wall of the lead bushing 2 and join them together, as shown in FIG. 2) is formed.

【0012】このような手段によれば溶接時のバーナー
炎で接合部7を直接加熱することができるので接合部7
の深さLを充分に確保することができる。また、空間5
は下方に行くに従い、狭まっているので溶融した鉛の電
池内への流入を抑制できる。
According to such a means, the joint 7 can be directly heated by the burner flame at the time of welding.
Can be sufficiently secured. Space 5
The width of the lead decreases as it goes down, so that the flow of molten lead into the battery can be suppressed.

【0013】また、鉛ブッシング2の内壁に設けられた
第2のテーパー部2bにより下に広がった空間6が形成
される。このような空間6が形成されることにより、鉛
極柱3の外周に腐食生成物が堆積しても腐食堆積物が鉛
ブッシング2の内壁に応力を及ぼすことを抑制すること
ができる。また、電池が通常定められていない高温雰囲
気下で使用された場合は特に負極柱での腐食速度は大き
く、腐食生成物の堆積量は増大する。このような場合に
は空間6が腐食生成物で満たされて鉛ブッシング2の内
壁に応力が及ぶが、接合部深さLが従来のものに比較し
て大きく確保できるので接合部7の亀裂を抑制すること
ができる。
A space 6 extending downward is formed by the second tapered portion 2b provided on the inner wall of the lead bushing 2. By forming such a space 6, even if corrosion products accumulate on the outer periphery of the lead pole 3, it is possible to suppress the corrosion deposits from exerting stress on the inner wall of the lead bushing 2. In addition, when the battery is used in a high-temperature atmosphere in which the battery is not usually determined, the corrosion rate particularly at the negative electrode pillar is high, and the deposition amount of the corrosion product increases. In such a case, the space 6 is filled with the corrosion product and stress is applied to the inner wall of the lead bushing 2. However, since the joint depth L can be larger than that of the conventional one, cracks in the joint 7 can be prevented. Can be suppressed.

【0014】ここで鉛ブッシング2に設けた第1のテー
パー部2a,第2のテーパー部2bは空間5,6を構成
するために設けたのであって、鉛極柱3の外周に突起部
4を設けて、突起部4と鉛ブッシング2の内壁とを溶接
するとともに、これら鉛ブッシング2と鉛極柱3とが挿
通された状態において鉛ブッシングの内壁の突起部4に
対応する部分の内径をR、突起部4に対応する部分より
上方での鉛ブッシング2の内径をRU、突起部4に対応
する部分より下方での前記鉛ブッシング2の内径をRL
とした場合にR>RL,R>RUとすればよい。
Here, the first tapered portion 2a and the second tapered portion 2b provided on the lead bushing 2 are provided to form the spaces 5 and 6, and the protrusions 4 are formed on the outer periphery of the lead pole column 3. Is provided, and the projection 4 and the inner wall of the lead bushing 2 are welded. When the lead bushing 2 and the lead pole 3 are inserted, the inner diameter of a portion corresponding to the projection 4 on the inner wall of the lead bushing is adjusted. R, the inner diameter of the lead bushing 2 above the portion corresponding to the protrusion 4 is R U , and the inner diameter of the lead bushing 2 below the portion corresponding to the protrusion 4 is R L
And it may be R> R L, and R> R U in the case of.

【0015】例えば鉛ブッシング2の内径を段階的に大
きくしてもこの目的は達成できる。しかしながら鉛ブッ
シング2の鋳造性等を考えればテーパー部を設けた方が
より生産性に優れることは言うまでもない。
For example, this object can be achieved even if the inner diameter of the lead bushing 2 is increased stepwise. However, considering the castability of the lead bushing 2 and the like, it is needless to say that providing the tapered portion is more excellent in productivity.

【0016】また、上記した構成は電解液量が制限され
た密閉形の鉛蓄電池に適用することが好ましい。極柱に
付着した電解液中の硫酸は極柱を構成する鉛合金と化合
して硫酸鉛を生成する。この反応により極柱に付着した
電解液中の硫酸濃度は低下して中性領域となる。さらに
極柱表面の一部が酸化されている場合には中性領域から
塩基性領域となり、極柱の腐食がさらに加速されるから
である。密閉形鉛蓄電池は液量が制限されて、極柱表面
を這い上がってくる硫酸量しか補給されないため、極柱
表面の液性が中性から塩基性になる頻度が高く、極柱表
面の腐食速度が増大するからである。
The above-described structure is preferably applied to a sealed lead-acid battery having a limited amount of electrolyte. Sulfuric acid in the electrolytic solution attached to the pole combines with the lead alloy constituting the pole to form lead sulfate. Due to this reaction, the concentration of sulfuric acid in the electrolytic solution attached to the pole decreases, and a neutral region is formed. Further, when a part of the surface of the pole is oxidized, the region changes from the neutral region to the basic region, and the corrosion of the pole is further accelerated. In sealed lead-acid batteries, the amount of liquid is limited and only the amount of sulfuric acid creeping up the pole surface is replenished, so the polarity of the pole surface frequently changes from neutral to basic, resulting in corrosion of the pole surface. This is because the speed increases.

【0017】また、さらに極板形状が縦長形状を有して
いる場合、蓄電池の充放電により電解液は成層化して、
極板群上部の電解液中の硫酸濃度が極端に低下するの
で、前記したような負極性の腐食はより顕著に進むた
め、本発明の構成を採用することが好ましい。
Further, when the electrode plate has a vertically long shape, the electrolyte is stratified by charging and discharging of the storage battery.
Since the concentration of sulfuric acid in the electrolyte solution on the upper part of the electrode plate group extremely decreases, the above-described negative polarity corrosion progresses more remarkably. Therefore, it is preferable to employ the configuration of the present invention.

【0018】[0018]

【実施例】以下本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0019】本発明の構成と比較例の構成について鉛極
柱と鉛ブッシングとを溶接し、垂れ鉛の発生率と溶接深
さLの測定を行った。
With respect to the structure of the present invention and the structure of the comparative example, the lead pole and the lead bushing were welded, and the occurrence rate of dripping lead and the welding depth L were measured.

【0020】本発明例 図1(a)に示したように鉛極柱3と鉛ブッシング2を
用いて鉛蓄電池の端子部を形成した。鉛極柱3の外径は
38mm、突起部4を含む部分での外径は43mm、鉛
ブッシング2の内径は突起部4に対応する最も小さい部
分で43.5mmとしている。突起部4の平坦な部分
(径が一定の部分)の長さは6.5mm、この平坦な部
分から上下に20°の角度でテーパー部4a,4bを形
成している。鉛ブッシング2の第1のテーパー部2aは
テーパー部4aと同じ20°の傾斜とした。また、鉛ブ
ッシング2に設けた第2のテーパー部2bは10°の傾
斜とした。このような鉛ブッシング2と鉛極柱3により
形成される空間5にガスバーナー炎を供給して両者を溶
接した。
Inventive Example As shown in FIG. 1A, a terminal portion of a lead storage battery was formed by using a lead pole 3 and a lead bushing 2. The outer diameter of the lead pole 3 is 38 mm, the outer diameter of the portion including the protrusion 4 is 43 mm, and the inner diameter of the lead bushing 2 is 43.5 mm at the smallest portion corresponding to the protrusion 4. The length of the flat portion (the portion having a constant diameter) of the protrusion 4 is 6.5 mm, and the tapered portions 4a and 4b are formed at an angle of 20 ° up and down from the flat portion. The first tapered portion 2a of the lead bushing 2 had the same inclination of 20 ° as the tapered portion 4a. The second tapered portion 2b provided in the lead bushing 2 was inclined at 10 °. A gas burner flame was supplied to the space 5 formed by the lead bushing 2 and the lead pole 3 to weld them together.

【0021】このような構成によれば接合部直下の鉛極
柱3と鉛ブッシング2との間には2.5mm以上の隙間
が形成される。
According to such a configuration, a gap of 2.5 mm or more is formed between the lead pole 3 and the lead bushing 2 immediately below the joint.

【0022】比較例 図2(a)に示したように鉛極柱30と鉛ブッシング2
0とを溶接して鉛蓄電池の端子部を作製した。鉛極柱3
0の鉛ブッシング20に挿通された部分の外径は38m
mで一定とした。また鉛ブッシング20についても図1
(a)に示したと同様の第1のテーパー部20aと第2
のテーパー部20bを形成している。この鉛ブッシング
20の最小内径は38.5mmである。このような比較
例の構成で鉛ブッシング20と鉛極柱30との溶接した
後の接合部の直下の間隙は0.05〜0.5mmとな
る。
Comparative Example As shown in FIG. 2A, the lead pole 30 and the lead bushing 2
0 was welded to produce a terminal portion of the lead storage battery. Lead pole 3
The outer diameter of the portion inserted through the lead bushing 20 is 38 m.
m and kept constant. The lead bushing 20 is also shown in FIG.
A first tapered portion 20a similar to that shown in FIG.
Is formed. The minimum inner diameter of the lead bushing 20 is 38.5 mm. In such a configuration of the comparative example, the gap immediately below the joint between the lead bushing 20 and the lead pole 30 after welding is 0.05 to 0.5 mm.

【0023】これらの本発明例と比較例での端子部の接
合深さLの測定結果(測定個数を100とする)および
接合部からの垂れ鉛の発生率を表1に示す。
Table 1 shows the measurement results (assuming that the number of measurement points is 100) of the junction depth L of the terminal portion and the incidence of dripping lead from the junction portion in the present invention example and the comparative example.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、本発明の構成は比較例
の構成に比べて接合深さを大きく、かつばらつきを少な
く構成することができる。これは鉛極柱に設けた突起部
により、ガスバーナー炎が深い接合部に直接供給できる
ので溶接深さLを大きく形成できた。
As shown in Table 1, the structure of the present invention can be configured to have a larger junction depth and less variation than the structure of the comparative example. This is because the gas burner flame can be directly supplied to the deep joint by the projection provided on the lead pole, so that the welding depth L can be formed large.

【0026】つぎに前記した本発明例の端子部と比較例
の端子部を負極に備えた鉛蓄電池を作製した。
Next, a lead-acid battery having the above-described terminal portion of the present invention and the terminal portion of the comparative example on the negative electrode was manufactured.

【0027】これらの鉛蓄電池は表2に示すように極板
幅を150mmと一定とし、極板長さを変更するととも
に、極板群から遊離する電解液が殆どない状態に制限さ
れた負極吸収式と、極板がすべて電解液に浸漬された状
態の液式の鉛蓄電池をそれぞれ構成した。これらの鉛蓄
電池は公称電圧2V、10時間率定格容量100Ahで
ある。極板寸法の違い、あるいは液式,負極吸収式とい
った電池構成の違いにより活物質利用率が異なるので、
極板群構成枚数と1枚当たりの活物質充填量を調整し
て、すべての蓄電池が同容量となるように蓄電池を構成
した。
As shown in Table 2, these lead-acid batteries have a constant electrode plate width of 150 mm, change the electrode plate length, and limit the negative electrode absorption to a state where almost no electrolyte is released from the electrode plate group. The formula and a liquid type lead-acid battery in which the electrode plates are all immersed in the electrolytic solution were constructed. These lead-acid batteries have a nominal voltage of 2 V and a rated capacity of 100 hours per hour. Since the active material utilization rate differs due to the difference in electrode plate size or the difference in battery configuration such as liquid type and negative electrode absorption type,
The storage batteries were configured such that all storage batteries had the same capacity by adjusting the number of electrode plate groups and the amount of active material charged per sheet.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示した電池について60℃中での充
放電サイクルを行った。2.3V定電圧、最大電流40
Aで一週間連続充電を行った後、10A放電(放電終止
電圧1.75V)の充放電サイクルを8サイクル行った
後の負極端子部の状態観察を行った。その結果を表3に
示す。
The batteries shown in Table 2 were subjected to a charge / discharge cycle at 60 ° C. 2.3V constant voltage, maximum current 40
After the battery was continuously charged at A for one week, the state of the negative electrode terminal portion was observed after eight charge / discharge cycles of 10 A discharge (discharge end voltage 1.75 V). Table 3 shows the results.

【0030】[0030]

【表3】 [Table 3]

【0031】表3に示したように本発明の構成によれ
ば、鉛極柱と鉛ブッシング間に腐食堆積物が発生しても
鉛極柱−鉛ブッシング間に間隙が確保されているので腐
食堆積物による接合部のクラックの発生を抑制すること
ができる。また、表3からわかるように鉛極柱と鉛ブッ
シング間の距離を確保すれば腐食の進行自体を抑制でき
るために鉛極柱と鉛ブッシング間の距離を確保したこ
と、さらには接合部の深さもより大きく確保できること
も相まって、接合部のクラックの発生を顕著に抑制する
ことができる。
As shown in Table 3, according to the structure of the present invention, even if corrosive deposits are generated between the lead pole and the lead bushing, the gap is secured between the lead pole and the lead bushing, so that the corrosion is prevented. It is possible to suppress the occurrence of cracks in the joint due to the deposits. Further, as can be seen from Table 3, if the distance between the lead pole and the lead bushing is secured, the progress of corrosion itself can be suppressed, so that the distance between the lead pole and the lead bushing is secured, and furthermore, the depth of the joint is increased. In addition, combined with the fact that a larger size can be secured, the occurrence of cracks at the joint can be significantly suppressed.

【0032】また、電解液量が制限された密閉形の構成
で特に極板の縦横比(高さ/幅比)が1.5以上となる
ような場合に腐食堆積物の量が多い(厚みが厚い)。こ
の腐食堆積物量の変化は極板群上部に付着している電解
液中の硫酸濃度に起因するものであると推測される。特
に縦長構成の場合には極板群上部に対応する電解液中の
硫酸濃度は成層化して低下することにより腐食が促進さ
れたと推測される。
Further, in a closed type structure in which the amount of the electrolytic solution is limited, especially when the aspect ratio (height / width ratio) of the electrode plate is 1.5 or more, the amount of corrosive deposits is large (thickness Is thick). This change in the amount of corrosion deposits is presumed to be due to the sulfuric acid concentration in the electrolytic solution attached to the upper part of the electrode plate group. In particular, in the case of the vertical configuration, it is presumed that the concentration of sulfuric acid in the electrolyte solution corresponding to the upper part of the electrode group was stratified and decreased, thereby promoting corrosion.

【0033】したがって前記したような極板の縦横比
(高さ/幅比)が1.5以上となるような形状を有した
密閉形鉛蓄電池に本発明の構成を適用することが最も好
ましい。
Therefore, it is most preferable to apply the structure of the present invention to a sealed lead-acid battery having such a shape that the aspect ratio (height / width ratio) of the electrode plate is 1.5 or more.

【0034】[0034]

【発明の効果】以上、説明してきたように、本発明の構
成によれば、鉛ブッシングに鉛極柱が挿通されて両者が
溶接された端子部を有する鉛蓄電池において、鉛ブッシ
ングと鉛極柱との間での接合部深さを確保できるととも
に、溶接時の垂れ鉛を抑制することができる。また、特
に負極に本発明を適用すれば鉛極柱上で進行する腐食を
抑制するとともに、この腐食による鉛ブッシング−鉛極
柱接合部でのクラックの発生を抑制できるという顕著な
効果を有するので工業上、極めて有用である。
As described above, according to the structure of the present invention, in a lead-acid battery having a terminal portion in which a lead pole is inserted into a lead bushing and both are welded, the lead bushing and the lead pole And the depth of the joint between them can be secured, and dripping lead during welding can be suppressed. In particular, if the present invention is applied to the negative electrode, it has a remarkable effect that it is possible to suppress corrosion that proceeds on the lead pole and to suppress the occurrence of cracks at the lead bushing-lead pole joint due to this corrosion. It is extremely useful industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例の端子溶接部の断面図FIG. 1 is a sectional view of a terminal welding portion according to an embodiment of the present invention.

【図2】比較例の端子溶接部の断面図FIG. 2 is a cross-sectional view of a terminal welding portion of a comparative example.

【符号の説明】[Explanation of symbols]

1,10 電槽蓋 2,20 鉛ブッシング 2a,20a 第1のテーパー部 2b,20b 第2のテーパー部 3,30 鉛極柱 4 突起部 4a,4b テーパー部 5,6 空間 7,60 接合部 1,10 Battery case cover 2,20 Lead bushing 2a, 20a First taper part 2b, 20b Second taper part 3,30 Lead pole 4 Projection part 4a, 4b Taper part 5,6 Space 7,60 Joint part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電槽蓋に設けられた鉛ブッシングとこの
鉛ブッシングに挿通した鉛極柱とが接合された鉛蓄電池
であって、前記鉛極柱の外周に突起部を設けて、前記突
起部と前記鉛ブッシングの内壁とを接合したことを特徴
とする鉛蓄電池。
1. A lead storage battery in which a lead bushing provided on a battery case lid and a lead pole inserted into the lead bushing are joined, wherein a protrusion is provided on an outer periphery of the lead pole, and the protrusion is provided. A lead storage battery, wherein a portion and an inner wall of the lead bushing are joined.
【請求項2】 前記鉛ブッシングと前記鉛極柱とが挿通
された状態において前記鉛ブッシングの内壁の前記突起
部に対応する部分の前記鉛ブッシング内径をR、前記突
起部に対応する部分より上方での前記鉛ブッシング内径
をRU、前記突起部に対応する部分より下方での前記鉛
ブッシング内径をRLとした場合にR>RL,R>RU
したことを特徴とする請求項1に記載の鉛蓄電池。
2. When the lead bushing and the lead pole are inserted, the inner diameter of the lead bushing corresponding to the protrusion on the inner wall of the lead bushing is R, which is higher than the portion corresponding to the protrusion. claims the lead bushing inside diameter and characterized in that a R U, R> the lead bushing inner diameter at lower than a portion corresponding to the protrusion in the case of the R L R L, R> R U in 2. The lead storage battery according to 1.
【請求項3】 前記鉛ブッシングの内壁の前記突起部に
対応する部分より上方に行くに従い前記鉛ブッシング内
径が大となる第1のテーパー部と、前記鉛ブッシングの
内壁の前記突起部に対応する部分より下方に行くに従い
前記鉛ブッシング内径が大となる第2のテーパー部を設
けたことを特徴とする請求項2に記載の鉛蓄電池。
3. The lead bushing corresponds to a first tapered portion in which the inner diameter of the lead bushing increases as going upward from a portion of the inner wall of the lead bushing corresponding to the protrusion, and a protrusion of the inner wall of the lead bushing. 3. The lead-acid battery according to claim 2, wherein a second tapered portion is provided in which the inner diameter of the lead bushing increases as going downward from the portion.
【請求項4】 極板群から遊離する電解液を殆ど有しな
いで電槽内部で発生する酸素ガスを負極で吸収する請求
項1,2もしくは3のいずれかに記載の鉛蓄電池。
4. The lead-acid battery according to claim 1, wherein the negative electrode absorbs oxygen gas generated inside the battery case with almost no electrolytic solution released from the electrode plate group.
【請求項5】 電解液面から極板群が露出することによ
り、電槽内部で発生する酸素ガスを負極で吸収する請求
項1,2もしくは3のいずれかに記載の鉛蓄電池。
5. The lead-acid battery according to claim 1, wherein the electrode group is exposed from the surface of the electrolyte so that oxygen gas generated inside the battery case is absorbed by the negative electrode.
【請求項6】 前記極板群を構成する極板の高さ寸法と
幅寸法との比率が1.5を超える請求項4または5に記
載の鉛蓄電池。
6. The lead-acid battery according to claim 4, wherein a ratio of a height dimension to a width dimension of the electrode plates constituting the electrode plate group exceeds 1.5.
JP2000296270A 2000-09-28 2000-09-28 Lead-acid battery Pending JP2002110114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296270A JP2002110114A (en) 2000-09-28 2000-09-28 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296270A JP2002110114A (en) 2000-09-28 2000-09-28 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2002110114A true JP2002110114A (en) 2002-04-12

Family

ID=18778566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296270A Pending JP2002110114A (en) 2000-09-28 2000-09-28 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002110114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313442B1 (en) 2011-11-17 2013-10-01 세방전지(주) Battery terminal structure for avoiding electrolyte leakage
WO2016038786A1 (en) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 Lead acid storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101313442B1 (en) 2011-11-17 2013-10-01 세방전지(주) Battery terminal structure for avoiding electrolyte leakage
WO2016038786A1 (en) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 Lead acid storage battery
JPWO2016038786A1 (en) * 2014-09-09 2017-04-27 株式会社Gsユアサ Lead acid battery
US10211445B2 (en) 2014-09-09 2019-02-19 Gs Yuasa International Ltd. Lead-acid battery

Similar Documents

Publication Publication Date Title
JP2002110114A (en) Lead-acid battery
WO2017085922A1 (en) Lead storage battery and method for producing same
JPH11250894A (en) Lead-acid battery, and manufacture thereof
JP3158433B2 (en) Sealed lead-acid battery
JP2010108682A (en) Lead-acid battery
JP2008218258A (en) Lead acid battery
JP2002270150A (en) Lead-acid battery
JPH1145697A (en) Lead acid battery
WO2023243387A1 (en) Bonding method
JP2003323881A (en) Control valve lead-acid battery
CN215418511U (en) Welding structure of battery pole
JPH06310120A (en) Manufacture of lead-acid battery
JP2002170550A (en) Closed type lead storage battery
JP2003331814A (en) Method of manufacturing control valve lead battery
JP2001015097A (en) Manufacture of lead-acid battery terminal
JP2000082473A (en) Sealed lead-acid battery
JPH06243855A (en) Sealed lead-acid battery
JP2014120359A (en) Valve-regulated lead-acid battery
JP2005347183A (en) Manufacturing method of lead-acid storage battery
JPH07169454A (en) Lead-acid battery
JPS609057A (en) Storage battery
CN109719421A (en) A kind of lead-acid accumulator cast welding agent and the welding method using the cast welding agent
JPH0294358A (en) Strap of lead-acid battery and automotive lead-acid battery having this strap
JP2005166326A (en) Lead storage battery
JPH04248250A (en) Organic electrolyte cell