JP2002106789A - Liquefied gas force feed equipment - Google Patents

Liquefied gas force feed equipment

Info

Publication number
JP2002106789A
JP2002106789A JP2000299467A JP2000299467A JP2002106789A JP 2002106789 A JP2002106789 A JP 2002106789A JP 2000299467 A JP2000299467 A JP 2000299467A JP 2000299467 A JP2000299467 A JP 2000299467A JP 2002106789 A JP2002106789 A JP 2002106789A
Authority
JP
Japan
Prior art keywords
liquefied gas
gas
pump
liquefied
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000299467A
Other languages
Japanese (ja)
Inventor
Michiharu Matsuda
美智春 松田
Atsushi Kobayashi
篤 小林
Kazunori Uemori
一範 上森
Keigo Makita
啓吾 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2000299467A priority Critical patent/JP2002106789A/en
Publication of JP2002106789A publication Critical patent/JP2002106789A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide liquefied gas force feed equipment which prevents generation of cavitation by making a pump suck a liquefied gas in the super cooled state, and surely sends out the liquefied gas under a prescribed pressure. SOLUTION: This equipment for sending the liquefied gas in the liquefied gas container 12 by raising its pressure upto a prescribed one by a pump 13, comprises a liquid reservoir container 14 having, as super cooling means for making the liquefied gas in the super cooled sate, on the suction side of the pump 13, a liquefied gas inflow path 15 connected to the liquefied gas container 12; a liquefied gas outflow path 16 connecting a liquid phase part 14a with the pump 13; and a gas discharge path 17 provided with a gas discharge valve 18 for discharging a gas in a vapor phase part 14b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化ガス圧送設備
に関し、詳しくは、低温液化ガスを圧送するポンプでの
キャビテーションの発生を防止して液化ガスの圧送を確
実に行うことができる液化ガス圧送設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquefied gas pumping system, and more particularly to a liquefied gas pumping system capable of preventing the occurrence of cavitation in a pump for pumping a low-temperature liquefied gas and reliably performing the liquefied gas pumping. Equipment related.

【0002】[0002]

【従来の技術】一般に、液体を圧送するポンプにおいて
は、該ポンプ内で液体がガス化して液体内に空洞(気
泡)が発生すると、ポンプの吸込力や圧縮力を前記気泡
が吸収してしまうため、すなわち、気化ガスによってポ
ンプのキャビテーション(ガス噛み、空打ち)が発生し
てしまうため、液体を所定圧力で送出することができな
くなるだけでなく、ポンプにも損傷を与えることがあ
る。このようなキャビテーションを防止するためには、
ポンプの吸込圧力(吸上げ揚程)や回転数(ピストン速
度)、送液量、液温度等を適正に設定する必要があり、
有効吸込揚程ヘッド(NPSH)が一つの指標として用
いられている。
2. Description of the Related Art Generally, in a pump for pumping a liquid, when the liquid is gasified in the pump and a cavity (bubble) is generated in the liquid, the bubble absorbs a suction force and a compressive force of the pump. Therefore, the cavitation (gas biting, idling) of the pump is generated by the vaporized gas, so that not only the liquid cannot be delivered at a predetermined pressure, but also the pump may be damaged. To prevent such cavitation,
It is necessary to properly set the pump suction pressure (suction lift), rotation speed (piston speed), liquid supply amount, liquid temperature, etc.
Effective suction lift head (NPSH) is used as one index.

【0003】一方、高圧ガス容器に酸素ガスや窒素ガス
等の圧縮ガスを充填する設備では、液化ガス容器内の液
化ガスを液体状態でポンプにより所定圧力まで昇圧した
後、蒸発器で気化させてガス化してから高圧ガス容器内
に充填するようにしている。このとき、常温の水をポン
プで圧送する場合、水は大気圧での飽和温度である10
0℃に比べて十分に低い温度であるのに対し、液化ガス
の場合は、ほとんどの場合が飽和温度乃至それよりも僅
かに低い温度で液化ガス容器内に貯留されているため、
NPSHの値が水に比べて極めて大きくなり、例えば1
4m程度にも達してしまう。
On the other hand, in a facility for filling a high-pressure gas container with a compressed gas such as oxygen gas or nitrogen gas, the liquefied gas in the liquefied gas container is pressurized to a predetermined pressure by a pump in a liquid state, and then vaporized by an evaporator. After gasification, it is filled into a high-pressure gas container. At this time, when water at normal temperature is pumped by a pump, the water has a saturation temperature of 10 at atmospheric pressure.
Although the temperature is sufficiently lower than 0 ° C., in the case of liquefied gas, most of the time is stored in the liquefied gas container at a saturation temperature or a slightly lower temperature,
The value of NPSH is much larger than that of water, for example, 1
It reaches about 4m.

【0004】NPSHが14mということは、ポンプに
吸込まれる液体に14mの液圧が必要と言うことにな
り、逆に言えば、約140kPa(質問:単位はMPa
の方が良いでしょうか)の圧力で液化ガスをポンプに押
込む必要があるということを示している。
[0004] The fact that the NPSH is 14 m means that the liquid sucked into the pump requires a liquid pressure of 14 m. Conversely, about 140 kPa (question: unit is MPa)
Liquefied gas needs to be pumped into the pump at a pressure of?

【0005】ここで、液化ガスを貯留する液化ガス容器
としては、比較的大規模な充填設備の敷地内に一つの建
造物として設置される液化ガス貯槽と、トラック等で運
搬が可能な可搬式液化ガス容器とがある。
The liquefied gas container for storing the liquefied gas includes a liquefied gas storage tank installed as a single building on the site of a relatively large-scale filling facility, and a portable type that can be transported by a truck or the like. There is a liquefied gas container.

【0006】液化ガス貯槽は、内容積が最小でも約30
00リットル、高さが4m以上のものであって、該液化
ガス貯槽への液化ガスの充填は、液化ガス製造工場から
ローリーを介して直接的に行われている。液化ガス貯槽
内の液化ガスは、該貯槽自体の断熱性能が高いため、液
化ガス製造工場で製造した直後と同様の過冷却状態を比
較的よく維持しており、例えば、液化酸素の場合は1気
圧で−183℃以下の過冷却状態となっている。また、
仮に液化ガスの消費量が少なくなっても、断熱性能が優
れているので、過冷却状態を長時間維持することができ
る。
The liquefied gas storage tank has a minimum internal volume of about 30
The liquefied gas storage tank has a capacity of 00 liters and a height of 4 m or more, and the liquefied gas storage tank is directly filled with liquefied gas from a liquefied gas manufacturing plant via a lorry. The liquefied gas in the liquefied gas storage tank maintains a supercooled state relatively well as immediately after it is manufactured in the liquefied gas manufacturing plant because the storage tank itself has a high heat insulation performance. It is in a supercooled state of -183 ° C or less at atmospheric pressure. Also,
Even if the consumption of the liquefied gas decreases, the supercooled state can be maintained for a long time because the heat insulation performance is excellent.

【0007】したがって、この液化ガス貯槽内の液化ガ
スをポンプで圧送する場合には、液面高さが十分にあ
り、飽和温度に比べて十分低温状態となっているので、
ポンプでのキャビテーションが発生しにくく、貯槽から
ポンプに至る配管や、ポンプ自体の断熱を十分に考慮す
れば、液化ガスの圧送をほとんど問題なく行うことがで
きる。
Therefore, when the liquefied gas in the liquefied gas storage tank is pumped by a pump, the liquid level is sufficiently high and the temperature is sufficiently lower than the saturation temperature.
Cavitation in the pump is unlikely to occur, and if the piping from the storage tank to the pump and the heat insulation of the pump itself are sufficiently considered, the liquefied gas can be pumped with almost no problem.

【0008】[0008]

【発明が解決しようとする課題】しかし、前記可搬式液
化ガス容器は、内容積が最大でも500リットル程度、
高さも最大で1.5m程度のものであって、液化ガス製
造工場や大規模充填設備等で需要予測に基づいてあらか
じめ液化ガスを充填した状態で保管され、需要に応じて
客先等に運搬されている。また、可搬式液化ガス容器
は、断熱構造を有してはいるものの、前記液化ガス貯槽
の比べて断熱性能が劣るものが多く、しかも、可搬式液
化ガス容器内の液化ガス充填量が少ないことから、外部
からの熱侵入によって容器内の液化ガスが容易に飽和状
態になってしまう。
However, the portable liquefied gas container has an internal volume of at most about 500 liters,
The height is about 1.5m at the maximum. It is stored in a liquefied gas manufacturing plant or a large-scale filling facility with liquefied gas filled in advance based on demand forecast, and transported to customers according to demand. Have been. Further, although the portable liquefied gas container has a heat insulating structure, it often has poor heat insulation performance as compared with the liquefied gas storage tank, and the liquefied gas filling amount in the portable liquefied gas container is small. Therefore, the liquefied gas in the container easily becomes saturated due to heat intrusion from the outside.

【0009】このように、飽和状態で、かつ、液ヘッド
も十分にとれない状態の液化ガスは、ポンプに吸込まれ
るときのNPSH不足で容易にガス化してキャビテーシ
ョンを発生させてしまう。これを回避するためには、可
搬式液化ガス容器を高所に設置してポンプに対する液面
を十分に高くするか、液化ガスの温度をポンプ内でガス
化しない程度にまで十分に低くする必要がある。
As described above, a liquefied gas in a saturated state and a state in which a liquid head cannot be sufficiently taken out is easily gasified due to a shortage of NPSH when sucked into a pump, causing cavitation. To avoid this, it is necessary to install a portable liquefied gas container at a high place to raise the liquid level to the pump sufficiently, or to lower the temperature of the liquefied gas enough to prevent gasification in the pump. There is.

【0010】そこで本発明は、ポンプに吸込まれる液化
ガスを過冷却状態とすることによってキャビテーション
の発生を防止し、液化ガスを所定圧力で確実に送出する
ことができる液化ガス圧送設備を提供することを目的と
している。
Accordingly, the present invention provides a liquefied gas pumping equipment capable of preventing the occurrence of cavitation by setting the liquefied gas sucked into the pump in a supercooled state and reliably sending out the liquefied gas at a predetermined pressure. It is intended to be.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の液化ガス圧送設備は、液化ガス容器内の液
化ガスをポンプで所定圧力に昇圧して送出するための設
備であって、前記ポンプの吸込側に、液化ガスを過冷却
状態にするための過冷却手段を設けたことを特徴として
いる。
In order to achieve the above object, a liquefied gas pumping facility of the present invention is a facility for pumping liquefied gas in a liquefied gas container to a predetermined pressure by a pump and sending out the same. It is characterized in that a supercooling means for bringing the liquefied gas into a supercooled state is provided on the suction side of the pump.

【0012】そして、前記過冷却手段が液溜め容器であ
り、該液溜め容器は、前記液化ガス容器に接続した液化
ガス流入経路と、該液溜め容器の液相部とポンプとを接
続する液化ガス流出経路と、該液溜め容器の気相部のガ
スを放出するガス放出経路及び該ガス放出経路に設けら
れたガス放出弁とを備えていることを特徴としている。
The supercooling means is a liquid reservoir, and the liquid reservoir is a liquefied gas inflow path connected to the liquefied gas container, and a liquefier connecting a liquid phase part of the liquid reservoir and a pump. It is characterized by comprising a gas outflow path, a gas release path for releasing gas in a gas phase portion of the liquid storage container, and a gas release valve provided in the gas release path.

【0013】また、前記過冷却手段が熱交換器であり、
該熱交換器は、前記液化ガス容器に接続した液化ガス流
入経路と、ポンプに接続した液化ガス流出経路と、前記
ポンプで昇圧した液化ガスの一部を導入する昇圧液化ガ
ス流入経路と、該経路から流入した昇圧液化ガスを降圧
させる手段と、降圧した液化ガスと前記液化ガス流入経
路から液化ガス流出経路に向かって流れる前記液化ガス
とを熱交換させる熱交換部とを備えていることを特徴と
している。さらに、前記過冷却手段には、前記液化ガス
と冷流体とを熱交換させる熱交換器を使用することもで
きる。
Further, the supercooling means is a heat exchanger,
The heat exchanger includes a liquefied gas inflow path connected to the liquefied gas container, a liquefied gas outflow path connected to a pump, a pressurized liquefied gas inflow path that introduces a part of the liquefied gas pressurized by the pump, Means for reducing the pressure of the pressurized liquefied gas flowing from the path, and a heat exchange unit for exchanging heat between the lowered liquefied gas and the liquefied gas flowing from the liquefied gas inflow path toward the liquefied gas outflow path. Features. Further, a heat exchanger for exchanging heat between the liquefied gas and the cold fluid may be used as the supercooling means.

【0014】[0014]

【発明の実施の形態】図1は、本発明の液化ガス圧送設
備の第1形態例を示す系統図であり、液化ガスの過冷却
手段として液溜め容器を設置した例を示している。本形
態例に示す液化ガス圧送設備は、高圧ガス容器(ボン
ベ)11にガスを充填する充填設備の一部を構成するも
のであって、液化ガスを貯留した可搬式の液化ガス容器
12と、液化ガスを昇圧するポンプ13との間に、液溜
め容器14を設置している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing a first embodiment of a liquefied gas pumping equipment according to the present invention, and shows an example in which a liquid reservoir is installed as a means for supercooling liquefied gas. The liquefied gas pumping equipment shown in this embodiment constitutes a part of a filling equipment for filling a high-pressure gas container (cylinder) 11 with gas, and includes a portable liquefied gas container 12 storing liquefied gas; A liquid reservoir 14 is provided between the liquefied gas and a pump 13 for increasing the pressure.

【0015】液溜め容器14は、断熱構造を有する密閉
容器であって、前記液化ガス容器12に接続した液化ガ
ス流入経路15と、該液溜め容器14の液相部14aと
前記ポンプ13の吸込口13aとを接続する液化ガス流
出経路16と、該液溜め容器14の気相部14bのガス
を放出するガス放出経路17及び該ガス放出経路17に
設けられたガス放出弁18と、ポンプ13のガス抜き口
13bに接続したガス抜き経路19とを備えている。
The liquid reservoir 14 is a closed container having a heat insulating structure, and includes a liquefied gas inflow path 15 connected to the liquefied gas container 12, a liquid phase portion 14a of the liquid reservoir 14 and a suction port of the pump 13. A liquefied gas outflow path 16 connecting the port 13a, a gas release path 17 for releasing gas from the gas phase portion 14b of the liquid reservoir 14, a gas release valve 18 provided in the gas release path 17, and a pump 13 And a gas vent path 19 connected to the gas vent 13b.

【0016】液化ガス容器12内の液化ガスは、液化ガ
ス流入経路15を通って液溜め容器14内に流入し、該
液溜め容器14の底部から液化ガス流出経路16を通っ
てポンプ13に吸込まれ、該ポンプ13で所定圧力に昇
圧された後、吐出口13cから昇圧液化ガス経路20を
通って蒸発器21に導入される。蒸発器21では、大気
等との熱交換により液化ガスが蒸発して気化ガスとな
り、充填経路22を通って各高圧ガス容器11に充填さ
れる。なお、符号23は、充填経路22に設けられた圧
力計である。
The liquefied gas in the liquefied gas container 12 flows into the reservoir 14 through the liquefied gas inflow path 15, and is sucked into the pump 13 from the bottom of the reservoir 14 through the liquefied gas outflow path 16. In rare cases, the pressure is increased to a predetermined pressure by the pump 13 and then introduced into the evaporator 21 from the discharge port 13c through the pressurized liquefied gas path 20. In the evaporator 21, the liquefied gas evaporates by heat exchange with the atmosphere or the like, becomes a vaporized gas, and is filled into each high-pressure gas container 11 through the filling path 22. Reference numeral 23 denotes a pressure gauge provided in the filling path 22.

【0017】このような充填設備に設けられた液化ガス
圧送設備において、液化ガス容器12内の液化ガスが外
部からの熱侵入等によって温度が上昇すると、液化ガス
の一部が液化ガス容器12内で蒸発し、気相の圧力が上
昇して飽和状態となる。例えば、液化酸素の場合は、図
2の蒸気圧線図に示すように、温度と圧力との関係が、
点Aの−183℃、100kPa(略大気圧)、点Bの
約−170℃、300kPa、点Cの約−165℃、5
00kPaがそれぞれ飽和状態となる点である。
When the temperature of the liquefied gas in the liquefied gas container 12 rises due to heat intrusion from the outside or the like in the liquefied gas pumping equipment provided in such a filling device, a part of the liquefied gas is removed from the liquefied gas container 12. , And the pressure of the gas phase rises to a saturated state. For example, in the case of liquefied oxygen, as shown in the vapor pressure diagram of FIG.
Point A at -183 ° C, 100 kPa (substantially atmospheric pressure), Point B at about -170 ° C, 300 kPa, Point C at about -165 ° C, 5
00 kPa is a point at which each becomes a saturated state.

【0018】ここで、NPSHが14mのポンプ13で
液化酸素を送液する際の液化ガス容器12内の液化酸素
が点C(−160℃、500kPa)の飽和状態であ
り、ポンプ13と液化ガス容器12とが略同じ高さにあ
るとすると、ポンプ13のピストン24が後退して液化
酸素を吸込むとき、吸込力によって140kPaの圧力
低下を生じるため、ポンプ13内の圧力は約360kP
aとなる。このとき、ポンプ13に吸込まれた液化酸素
は、断熱膨張により温度が約3℃低下するので、図2に
おいて点Cの状態から点Dの−163℃、360kPa
という状態になる。この点Dは、ガス相内にあるため、
液化酸素の一部が蒸発ガス化してポンプ13内の液化ガ
ス中に空洞が発生し、ポンプ13のキャビテーションを
生じることとなる。
Here, the liquefied oxygen in the liquefied gas container 12 when the liquefied oxygen is sent by the pump 13 whose NPSH is 14 m is in a saturated state at the point C (-160 ° C., 500 kPa). Assuming that the container 12 and the container 12 are at substantially the same height, when the piston 24 of the pump 13 retreats and sucks liquefied oxygen, a pressure drop of 140 kPa occurs due to the suction force, so that the pressure in the pump 13 becomes approximately 360 kP.
a. At this time, the temperature of the liquefied oxygen sucked into the pump 13 is reduced by about 3 ° C. due to adiabatic expansion.
It will be in the state. Since this point D is in the gas phase,
Part of the liquefied oxygen is vaporized and gasified, and a cavity is generated in the liquefied gas in the pump 13, causing cavitation of the pump 13.

【0019】このような場合に、前記ガス放出弁18を
開いて液溜め容器14内を大気に開放し、気相部14b
のガス、即ち酸素ガスを外部に放出することによって液
溜め容器14内の圧力を下げることにより、飽和温度、
即ち液温を低下させることができる。
In such a case, the gas release valve 18 is opened to open the liquid reservoir 14 to the atmosphere, and the gaseous phase portion 14b
By lowering the pressure in the liquid reservoir 14 by releasing the gas, ie, oxygen gas, to the outside, the saturation temperature,
That is, the liquid temperature can be lowered.

【0020】液溜め容器14内の液温が適当な温度まで
低下したとき、例えば点Eの−163℃まで低下したと
きにガス放出弁18を閉じると、液化ガス容器12内の
圧力500kPaの液化酸素が液溜め容器14内に一部
が蒸発しながら流入するので、該液化ガス容器12内の
液化酸素は、温度が−163℃のまま圧力が500kP
aまで上昇して点Fの状態となる。これにより、液化ガ
ス容器12内の液化酸素は、点Cの飽和状態に対して3
℃低い温度となり、過冷却状態となる。
When the temperature of the liquid in the liquid reservoir 14 drops to an appropriate temperature, for example, when the temperature drops to -163 ° C. at the point E, the gas discharge valve 18 is closed. Since oxygen partially flows into the liquid reservoir 14 while evaporating, the liquefied oxygen in the liquefied gas container 12 has a pressure of 500 kP while the temperature is -163 ° C.
a and the state at the point F is reached. As a result, the liquefied oxygen in the liquefied gas container 12 becomes 3
The temperature becomes lower by ℃, and it becomes supercooled.

【0021】このようにして液化酸素を過冷却状態にす
ることにより、ポンプ13に吸込まれて圧力が360k
Paまで低下したとしても、断熱膨張によって温度が3
℃低下するので、点Fの状態から点Gの−166℃、3
60kPaの状態となる。この点Gにおける温度は、3
60kPaにおける飽和温度であるから、ポンプ13内
で液化酸素が蒸発してガス化することがなくなり、ポン
プ13のキャビテーションを防止することができる。し
たがって、ガス放出弁18を開いて液溜め容器14内の
液温を−163℃より低い温度、例えば300kPaの
飽和温度である−170℃まで低下させておくことによ
り、ポンプ13のキャビテーションを確実に防止するこ
とができる。
By bringing the liquefied oxygen into a supercooled state in this manner, the liquefied oxygen is sucked into the pump 13 and the pressure becomes 360 k.
Even if the temperature decreases to 3 Pa, the temperature becomes 3 due to adiabatic expansion.
° C, from the state of the point F to -166 ° C of the point G, 3
The state becomes 60 kPa. The temperature at this point G is 3
Since the saturation temperature is 60 kPa, liquefied oxygen does not evaporate and gasify in the pump 13 and cavitation of the pump 13 can be prevented. Therefore, by opening the gas release valve 18 and lowering the liquid temperature in the liquid reservoir 14 to a temperature lower than −163 ° C., for example, −170 ° C., which is a saturation temperature of 300 kPa, the cavitation of the pump 13 is ensured. Can be prevented.

【0022】なお、ガス放出弁18から放出される酸素
ガスは、そのまま大気に放出してもよく、バルーン等に
回収してもよい。さらに、ガス放出弁18からは、低温
の酸素ガスが放出されるので、これを冷却源として利用
することも可能である。また、液化窒素等の他の液化ガ
スにおいても、飽和状態における温度と圧力との関係が
液化酸素と異なるだけであり、上記同様にしてポンプ1
3のキャビテーションを防止することができる。
The oxygen gas released from the gas release valve 18 may be released to the atmosphere as it is, or may be collected in a balloon or the like. Further, since a low-temperature oxygen gas is released from the gas release valve 18, it can be used as a cooling source. Also, in the case of other liquefied gases such as liquefied nitrogen, the relationship between temperature and pressure in the saturated state is different from that of liquefied oxygen only.
No. 3 cavitation can be prevented.

【0023】図3は、本発明の第2形態例を示す系統図
であって、液化ガス圧送設備における液化ガス容器12
とポンプ13との間に熱交換器31を設置した例を示し
ている。なお、以下の説明において、前記第1形態例の
構成要素と同一の構成要素には同一の符号を付して詳細
な説明は省略する。
FIG. 3 is a system diagram showing a second embodiment of the present invention.
2 shows an example in which a heat exchanger 31 is provided between the heat exchanger 31 and the pump 13. In the following description, the same components as those of the first embodiment will be denoted by the same reference numerals, and detailed description will be omitted.

【0024】この熱交換器31は、前記液化ガス容器1
2に接続した液化ガス流入経路32と、前記ポンプ13
に接続した液化ガス流出経路33と、ポンプ13で昇圧
した液化ガスの一部を導入する昇圧液化ガス流入経路3
4及び該経路34に設けられた昇圧液化ガス導入弁35
と、昇圧液化ガス流入経路34から流入した昇圧液化ガ
スを降圧させた液化ガスLGと前記液化ガス流入経路3
2から液化ガス流出経路33に向かって流れる前記液化
ガスとを熱交換させる熱交換部36とを備えている。
The heat exchanger 31 is connected to the liquefied gas container 1.
A liquefied gas inflow path 32 connected to the
Liquefied gas outflow path 33 connected to the liquefied gas and pressurized liquefied gas inflow path 3 for introducing a part of the liquefied gas pressurized by pump
4 and a pressurized liquefied gas introduction valve 35 provided in the passage 34
A liquefied gas LG obtained by reducing the pressure of the pressurized liquefied gas flowing from the pressurized liquefied gas inflow path 34 and the liquefied gas inflow path 3
2 and a heat exchange unit 36 for exchanging heat with the liquefied gas flowing toward the liquefied gas outflow path 33.

【0025】なお、本形態例では、熱交換部36を大気
開放した断熱容器37内に設置し、昇圧液化ガス流入経
路34からの昇圧液化ガスを断熱容器37内に流入させ
ることにより、該昇圧液化ガスの圧力を大気圧に開放し
て降圧させるようにしており、これが昇圧液化ガスを降
圧させる手段となっているが、断熱容器37を密閉容器
としてガス放出弁や保圧弁のような降圧手段を設置する
ようにしてもよい。
In this embodiment, the heat exchange section 36 is installed in a heat-insulated container 37 that is open to the atmosphere, and the pressurized liquefied gas from the pressurized liquefied gas inflow path 34 flows into the heat-insulated container 37 to increase the pressure. The pressure of the liquefied gas is released to the atmospheric pressure to reduce the pressure. This is means for reducing the pressure of the pressurized liquefied gas. May be installed.

【0026】さらに、熱交換部36は、本形態例では液
化ガス容器12からポンプ13に向かう昇圧前の液化ガ
スをコイル管内に流し、このコイル管を断熱容器37内
に設置しているが、これとは逆に、液化ガス容器12か
らポンプ13に向かう液化ガスを密閉断熱容器内に貯留
するような状態とし、該密閉断熱容器内に、圧力降下さ
せた昇圧液化ガスが流れるコイル管を設置するようにし
てもよい。
Further, in the present embodiment, the heat exchange section 36 allows the liquefied gas before the pressure increase from the liquefied gas container 12 to the pump 13 to flow into the coil tube, and the coil tube is installed in the heat insulating container 37. Conversely, the liquefied gas flowing from the liquefied gas container 12 to the pump 13 is stored in a closed insulated container, and a coil tube through which the pressure-reduced pressurized liquefied gas flows is installed in the closed insulated container. You may make it.

【0027】前記熱交換器を構成する断熱容器37内に
は、ポンプ13で所定圧力、例えば19.6MPaに昇
圧して吐出口13cから昇圧液化ガス経路20に吐出さ
れた液化ガスの一部が昇圧液化ガス流入経路34に分岐
して流入する。断熱容器37内に流入した昇圧液化ガス
は、該断熱容器37が大気開放されているため、100
kPaまで圧力が低下するのに伴う断熱膨張によって温
度が低下し、例えば100kPaでの飽和温度(−18
3℃)に近い温度となる。
A part of the liquefied gas which has been pressurized to a predetermined pressure, for example, 19.6 MPa by the pump 13 and discharged from the discharge port 13 c into the pressurized liquefied gas path 20 is placed in the heat insulating container 37 constituting the heat exchanger. It branches and flows into the pressurized liquefied gas inflow path 34. The pressurized liquefied gas that has flowed into the heat insulating container 37 has a temperature of 100% because the heat insulating container 37 is open to the atmosphere.
The temperature drops due to adiabatic expansion accompanying the pressure drop to kPa, for example, the saturation temperature (−18) at 100 kPa.
3 ° C).

【0028】したがって、液化ガス容器12から液化ガ
ス流入経路32を経て熱交換部36のコイル管内を流れ
る昇圧前の液化ガスと、コイル管外の温度低下した液化
ガスLGとを熱交換させることにより、熱交換部36か
ら液化ガス流出経路33を通ってポンプ13に吸込まれ
る前の液化ガスの温度を、キャビテーションが発生しな
いような十分に低い温度に冷却することができる。前記
昇圧液化ガス導入弁35は、断熱容器37内の液化ガス
LG量に応じて開閉したり、ポンプ13に吸込まれる液
化ガスの温度に応じて開閉したりすればよい。
Therefore, heat exchange is performed between the liquefied gas before pressure increase flowing through the coil pipe of the heat exchange section 36 from the liquefied gas container 12 through the liquefied gas inflow path 32 and the liquefied gas LG outside the coil pipe whose temperature has decreased. In addition, the temperature of the liquefied gas before being sucked into the pump 13 from the heat exchange unit 36 through the liquefied gas outflow path 33 can be cooled to a sufficiently low temperature so that cavitation does not occur. The pressurized liquefied gas introduction valve 35 may be opened and closed according to the amount of liquefied gas LG in the heat insulating container 37 or may be opened and closed according to the temperature of the liquefied gas sucked into the pump 13.

【0029】図4は、本発明の第3形態例を示す系統図
であって、前記第2形態例と同様に形成した熱交換器3
1において、前記ポンプ13で昇圧した液化ガスの一部
に代えて経路34から別の冷流体を導入するように形成
した例を示している。
FIG. 4 is a system diagram showing a third embodiment of the present invention, in which a heat exchanger 3 formed in the same manner as in the second embodiment is shown.
1 shows an example in which another cold fluid is introduced from a passage 34 instead of a part of the liquefied gas pressurized by the pump 13.

【0030】すなわち、本形態例では、経路34から断
熱容器37内に冷流体Gを導入し、該冷流体Gと液化ガ
スとを熱交換部36で熱交換させることにより、液化ガ
スを所定の過冷却状態にしている。前記冷流体Gは、ポ
ンプ13に吸込まれる液化ガスを所定の過冷却状態にで
きるものならばよく、例えば液化ガスが液化アルゴンの
場合は、液化窒素を冷流体として用いることができる。
また、ガス抜き経路19からのガスは、回収容器(図示
せず)に回収することもできる。
That is, in this embodiment, the liquefied gas is introduced into the heat-insulating container 37 through the passage 34 and the liquefied gas is exchanged with the liquefied gas by the heat exchanging unit 36 so that the liquefied gas is converted into a predetermined gas. It is supercooled. The cold fluid G only needs to be able to bring the liquefied gas sucked into the pump 13 into a predetermined supercooled state. For example, when the liquefied gas is liquefied argon, liquefied nitrogen can be used as the cold fluid.
Further, the gas from the degassing path 19 can be collected in a collection container (not shown).

【0031】なお、前記第1形態例における液溜め容器
14の容積やガス放出経路17からガス放出弁18を経
て放出されるガス量(経路配管及び弁の口径)、あるい
は、第2、第3形態例における熱交換器の構造等は、液
化ガスの種類や処理量、ポンプの性能や吸込口に至る液
化ガス流出経路の液抵抗等に応じて適宜に設定すればよ
く、温度センサや圧力センサの検出値に応じて自動開閉
する弁を設けることによって自動運転が可能である。さ
らに、ポンプ13における電流値の変化によってキャビ
テーションの発生を知ることができるので、この電流値
に応じて弁を自動開閉することによっても自動運転が可
能である。
In the first embodiment, the volume of the liquid reservoir 14 and the amount of gas discharged from the gas discharge passage 17 through the gas discharge valve 18 (the diameter of the passage pipe and the valve), or the second and third gas. The structure and the like of the heat exchanger in the embodiment may be appropriately set according to the type and processing amount of the liquefied gas, the performance of the pump, the liquid resistance of the liquefied gas outflow path to the suction port, and the like. Automatic operation is possible by providing a valve that automatically opens and closes in accordance with the detected value of. Furthermore, since the occurrence of cavitation can be known from the change in the current value in the pump 13, automatic operation can be performed by automatically opening and closing the valve according to the current value.

【0032】[0032]

【発明の効果】以上説明したように、本発明の液化ガス
圧送設備によれば、液化ガスを過冷却状態にしてからポ
ンプに吸込ませるようにしたので、ポンプ吸込時の圧力
低下によって液化ガスが蒸発ガス化することがなくな
り、これによってキャビテーションの発生を防止するこ
とができる。
As described above, according to the liquefied gas pumping equipment of the present invention, the liquefied gas is sucked into the pump after the liquefied gas is supercooled. Evaporation gasification does not occur, so that cavitation can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の液化ガス圧送設備の第1形態例を示
す系統図である。
FIG. 1 is a system diagram showing a first embodiment of a liquefied gas pumping facility of the present invention.

【図2】 液化酸素の蒸気圧線図である。FIG. 2 is a vapor pressure diagram of liquefied oxygen.

【図3】 本発明の第2形態例を示す系統図である。FIG. 3 is a system diagram showing a second embodiment of the present invention.

【図4】 本発明の第3形態例を示す系統図である。FIG. 4 is a system diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…高圧ガス容器(ボンベ)、12…液化ガス容器、
13…ポンプ、13a…吸込口、14…液溜め容器、1
4a…液相部、14b…気相部、15…液化ガス流入経
路、16…液化ガス流出経路、17…ガス放出経路、1
8…ガス放出弁、19…ガス抜き経路、20…昇圧液化
ガス経路、21…蒸発器、22…充填経路、23…圧力
計、31…熱交換器、32…液化ガス流入経路、33…
液化ガス流出経路、34…昇圧液化ガス流入経路、35
…昇圧液化ガス導入弁、36…熱交換部、37…断熱容
11: high pressure gas container (cylinder), 12: liquefied gas container,
13: Pump, 13a: Suction port, 14: Reservoir container, 1
4a: liquid phase section, 14b: gas phase section, 15: liquefied gas inflow path, 16: liquefied gas outflow path, 17: gas release path, 1
8: gas release valve, 19: gas release path, 20: pressurized liquefied gas path, 21: evaporator, 22: filling path, 23: pressure gauge, 31: heat exchanger, 32: liquefied gas inflow path, 33 ...
Liquefied gas outflow path, 34 ... pressurized liquefied gas inflow path, 35
... Pressurized liquefied gas introduction valve, 36 ... Heat exchange unit, 37 ... Insulated container

【手続補正書】[Procedure amendment]

【提出日】平成13年9月5日(2001.9.5)[Submission date] September 5, 2001 (2001.9.5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】NPSHが14mということは、ポンプに
吸込まれる液体に14mの液圧が必要と言うことにな
り、逆に言えば、約140kPaの圧力で液化ガスをポ
ンプに押込む必要があるということを示している。
[0004] The fact that the NPSH is 14 m means that the liquid sucked into the pump needs a liquid pressure of 14 m. Conversely, it is necessary to push the liquefied gas into the pump at a pressure of about 140 kPa. It indicates that.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】このような充填設備に設けられた液化ガス
圧送設備において、液化ガス容器12内の液化ガスが外
部からの熱侵入等によって温度が上昇すると、液化ガス
の一部が液化ガス容器12内で蒸発し、気相の圧力が上
昇して飽和状態となる。例えば、液化酸素の場合は、図
2の蒸気圧線図に示すように、温度と圧力との関係が、
点Aの−183℃、100kPa(略大気圧)、点Bの
約−170℃、300kPa、点Cの約−160℃、5
00kPaがそれぞれ飽和状態となる点である。
When the temperature of the liquefied gas in the liquefied gas container 12 rises due to heat intrusion from the outside or the like in the liquefied gas pumping equipment provided in such a filling device, a part of the liquefied gas is removed from the liquefied gas container 12. , And the pressure of the gas phase rises to a saturated state. For example, in the case of liquefied oxygen, as shown in the vapor pressure diagram of FIG.
Point A at -183 ° C, 100 kPa (approximately atmospheric pressure), Point B at about -170 ° C, 300 kPa, Point C at about -160 ° C , 5
00 kPa is a point at which each becomes a saturated state.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上森 一範 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 牧田 啓吾 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 3E072 DB01 3E073 DB03 3H075 AA15 CC01 DA11 DA13 DA20 DA30 3J071 AA23 BB02 BB11 BB14 CC01 CC11 DD14 FF03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazunori Uemori 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Inside Nippon Sanso Co., Ltd. (72) Keigo Makita 1-16- Nishi-Shimbashi, Minato-ku, Tokyo 7 F-term within Nippon Sanso Corporation (reference) 3E072 DB01 3E073 DB03 3H075 AA15 CC01 DA11 DA13 DA20 DA30 3J071 AA23 BB02 BB11 BB14 CC01 CC11 DD14 FF03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液化ガス容器内の液化ガスをポンプで所
定圧力に昇圧して送出するための設備であって、前記ポ
ンプの吸込側に、液化ガスを過冷却状態にするための過
冷却手段を設けたことを特徴とする液化ガス圧送設備。
1. A facility for boosting a liquefied gas in a liquefied gas container to a predetermined pressure by a pump and delivering the liquefied gas, wherein a supercooling means for bringing the liquefied gas into a supercooled state is provided on a suction side of the pump. Liquefied gas pumping equipment, characterized in that:
【請求項2】 前記過冷却手段が液溜め容器であり、該
液溜め容器は、前記液化ガス容器に接続した液化ガス流
入経路と、該液溜め容器の液相部とポンプとを接続する
液化ガス流出経路と、該液溜め容器の気相部のガスを放
出するガス放出経路及び該ガス放出経路に設けられたガ
ス放出弁とを備えていることを特徴とする請求項1記載
の液化ガス圧送設備。
2. The liquefied gas inflow path connected to the liquefied gas container, and the liquefied gas connecting the liquid phase portion of the liquefied gas reservoir and a pump, wherein the supercooling means is a liquid reservoir. 2. The liquefied gas according to claim 1, further comprising a gas outflow path, a gas release path for releasing gas in a gas phase portion of the liquid storage container, and a gas release valve provided in the gas release path. Pumping equipment.
【請求項3】 前記過冷却手段が熱交換器であり、該熱
交換器は、前記液化ガス容器に接続した液化ガス流入経
路と、ポンプに接続した液化ガス流出経路と、前記ポン
プで昇圧した液化ガスの一部を導入する昇圧液化ガス流
入経路と、該経路から流入した昇圧液化ガスを降圧させ
る手段と、降圧した液化ガスと、前記液化ガス流入経路
から液化ガス流出経路に向かって流れる前記液化ガスと
を熱交換させる熱交換部とを備えていることを特徴とす
る請求項1記載の液化ガス圧送設備。
3. The liquefied gas inflow path connected to the liquefied gas container, the liquefied gas outflow path connected to a pump, and the pressure in the heat exchanger is increased by the pump. A pressurized liquefied gas inflow path for introducing a part of the liquefied gas, a means for reducing the pressure of the pressurized liquefied gas flowing from the path, the reduced pressure liquefied gas, and the liquefied gas flowing from the liquefied gas inflow path toward the liquefied gas outflow path. 2. The liquefied gas pumping equipment according to claim 1, further comprising a heat exchange unit for exchanging heat with the liquefied gas.
JP2000299467A 2000-09-29 2000-09-29 Liquefied gas force feed equipment Pending JP2002106789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299467A JP2002106789A (en) 2000-09-29 2000-09-29 Liquefied gas force feed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299467A JP2002106789A (en) 2000-09-29 2000-09-29 Liquefied gas force feed equipment

Publications (1)

Publication Number Publication Date
JP2002106789A true JP2002106789A (en) 2002-04-10

Family

ID=18781269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299467A Pending JP2002106789A (en) 2000-09-29 2000-09-29 Liquefied gas force feed equipment

Country Status (1)

Country Link
JP (1) JP2002106789A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747373B1 (en) 2006-07-28 2007-08-07 대우조선해양 주식회사 System and method for carrying equipments of lng carrier for its maintenace and lng carrier
JP2007525619A (en) * 2004-03-01 2007-09-06 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic fluid pump system
JP2008309195A (en) * 2007-06-12 2008-12-25 Tokyo Gas Co Ltd Device and method for re-liquefying bog generated in lng storage tank
JP2009020031A (en) * 2007-07-13 2009-01-29 Taiyo Nippon Sanso Corp Liquefied gas sampling container
KR101341794B1 (en) 2011-07-29 2013-12-17 한국과학기술원 Export equipment to pressurize low-temperature liquid
KR20140055600A (en) * 2012-10-31 2014-05-09 현대중공업 주식회사 Device and method of control of suction drum for liquefied gas pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007525619A (en) * 2004-03-01 2007-09-06 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic fluid pump system
KR100747373B1 (en) 2006-07-28 2007-08-07 대우조선해양 주식회사 System and method for carrying equipments of lng carrier for its maintenace and lng carrier
JP2008309195A (en) * 2007-06-12 2008-12-25 Tokyo Gas Co Ltd Device and method for re-liquefying bog generated in lng storage tank
JP2009020031A (en) * 2007-07-13 2009-01-29 Taiyo Nippon Sanso Corp Liquefied gas sampling container
KR101341794B1 (en) 2011-07-29 2013-12-17 한국과학기술원 Export equipment to pressurize low-temperature liquid
KR20140055600A (en) * 2012-10-31 2014-05-09 현대중공업 주식회사 Device and method of control of suction drum for liquefied gas pump
KR101884025B1 (en) 2012-10-31 2018-07-31 현대중공업 주식회사 Device and method of control of suction drum for liquefied gas pump

Similar Documents

Publication Publication Date Title
JP6567333B2 (en) Apparatus and method for supplying fluid
US7131278B2 (en) Tank cooling system and method for cryogenic liquids
JP4796491B2 (en) Controlled storage of liquefied gas
CN100554682C (en) Vacuum pumping method and device thereof
US9546645B2 (en) Device and method for pumping a cryogenic fluid
CN103759497B (en) The mounting structure of small-sized prizing liquefied natural gas boil-off gas recovery device of liquefied again
JP2010516975A (en) Environmentally friendly liquefied natural gas (LNG) vaporization system
US20210300758A1 (en) System for preparing deepy subcooled liquid oxygen based on mixing of liquid oxygen and liquid nitrogen and then vacuumm-pumping
CN111578570A (en) System for acquiring large supercooling degree of liquid oxygen by utilizing liquid hydrogen cooling capacity
NO333065B1 (en) Apparatus and method for keeping tanks for storing or transporting a liquid gas cold
CN104142033A (en) Carbon dioxide refrigeration device structure
US7165408B2 (en) Method of operating a cryogenic liquid gas storage tank
JP2002106789A (en) Liquefied gas force feed equipment
CN113800140A (en) System and method for managing pressure in an underground cryogenic liquid storage tank
CN213178918U (en) A equipment that is used for LNG receiving station and big jar flash distillation gas of transfer station to retrieve
US3364689A (en) Sub-cooled pipe line for removal of liquid from refrigerated storage tank
CN206176035U (en) Carbon dioxide sends and splits ware and fill installation
JP2016133194A (en) Boil-off gas release preventing controlling method of liquefied natural gas (lng) vehicle
JP6922769B2 (en) BOG suppression method and equipment for cryogenic gas storage tank
WO2011019284A1 (en) A plant comprising a tank for storing of liquid natural gas (lng) as marine fuel
WO2015012883A1 (en) Storage and delivery system for a liquid cryogen
CN205014753U (en) Liquefaction recovery unit of LNG container evaporation gas
CN209839685U (en) Gas recovery device for unloading liquefied natural gas tank wagon
KR102063526B1 (en) Apparatus and Method for producing supercooling cryogenic liquid.
JP2000266292A (en) Heat insulating storage tank device for transporting low temperature liquefied gas