JP2002105690A - ELECTROPLATING METHOD FOR R-Fe-B BASED PERMANENT MAGNET - Google Patents

ELECTROPLATING METHOD FOR R-Fe-B BASED PERMANENT MAGNET

Info

Publication number
JP2002105690A
JP2002105690A JP2000297044A JP2000297044A JP2002105690A JP 2002105690 A JP2002105690 A JP 2002105690A JP 2000297044 A JP2000297044 A JP 2000297044A JP 2000297044 A JP2000297044 A JP 2000297044A JP 2002105690 A JP2002105690 A JP 2002105690A
Authority
JP
Japan
Prior art keywords
plating
magnet
film
magnets
electroplating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000297044A
Other languages
Japanese (ja)
Other versions
JP4696347B2 (en
Inventor
Takeshi Nishiuchi
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000297044A priority Critical patent/JP4696347B2/en
Publication of JP2002105690A publication Critical patent/JP2002105690A/en
Application granted granted Critical
Publication of JP4696347B2 publication Critical patent/JP4696347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroplating method by which R-Fe-B based permanent magnets having plating films exhibiting excellent corrosion resistance even though they are thin can stably be mass-produced. SOLUTION: In this electroplating method in which a plurality of pieces of R-Fe-B based permanent magnets composed of a main phase and a plurality of crystal phases of grain boundary phases having corrosion potential baser than that of the main phase are simultaneously subjected to electroplating, the individual magnets are disposed in a separated state, and film deposition is performed at an average film deposition rate of >=0.1 μm/min from the start of the plating until a plating film with a film thickness of 0.5 μm is deposited on the surfaces of the magnets.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜でも優れた耐
食性を示すめっき被膜を表面に有するR−Fe−B系永
久磁石を安定に量産することができる電気めっき方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroplating method capable of stably mass-producing an R-Fe-B-based permanent magnet having a plating film exhibiting excellent corrosion resistance even on a thin film.

【0002】[0002]

【従来の技術】Nd−Fe−B系永久磁石に代表される
R−Fe−B系永久磁石は、高い磁気特性を有してお
り、今日様々な分野で使用されている。該磁石は、大気
中で酸化腐食されやすい金属種(特にR)を含む。それ
故、表面処理を行わずに使用した場合には、わずかな酸
やアルカリや水分などの影響によって表面から腐食が進
行して錆が発生し、それに伴って、磁気特性の劣化やば
らつきを招くことになる。さらに、磁気回路などの装置
に組み込んだ磁石に錆が発生した場合、錆が飛散して周
辺部品を汚染する恐れがある。これらの問題点を回避す
るために、従来から、該磁石に要求される耐食性を付与
すべく電気めっきを行うことで、耐食性被膜としてのめ
っき被膜をその表面に形成することが行われている。電
気めっきを行うに際しては、大量処理が可能との観点か
ら、バレル式電気めっき法が広く採用されている。
2. Description of the Related Art R-Fe-B permanent magnets represented by Nd-Fe-B permanent magnets have high magnetic properties and are used in various fields today. The magnet contains a metal species (particularly R) that is susceptible to oxidative corrosion in the atmosphere. Therefore, when used without performing surface treatment, corrosion proceeds from the surface due to the influence of a slight acid, alkali, moisture, etc., and rust is generated, which leads to deterioration and variation in magnetic characteristics. Will be. Further, when rust is generated on a magnet incorporated in a device such as a magnetic circuit, the rust may scatter and contaminate peripheral components. In order to avoid these problems, conventionally, a plating film as a corrosion-resistant film is formed on the surface of the magnet by performing electroplating to impart the required corrosion resistance to the magnet. When performing electroplating, a barrel-type electroplating method is widely used from the viewpoint that mass processing is possible.

【0003】[0003]

【発明が解決しようとする課題】バレル式電気めっき法
は、被処理物である磁石とメディア(スチールボールな
ど)をバレル内に多数個収容し、該バレルをめっき浴中
に浸漬し、バレルを回転させて内部の磁石とメディアを
攪拌させながらバレルの電極からメディアを介して磁石
に通電し、磁石の表面にめっき被膜を形成するものであ
り、量産性の点において優れた方法であることは上記の
通りである。ところで、近年、磁石が使用される部品の
小型化が進んでおり、これに伴って、磁石の表面処理に
ついても薄膜化などの対応に迫られている。しかしなが
ら、バレル式電気めっき法で薄膜のめっき被膜を形成し
た場合、磁石間での耐食性のバラツキが大きく、すぐに
発錆する磁石が少なからず見受けられるという問題があ
った。そこで本発明は、薄膜でも優れた耐食性を示すめ
っき被膜を表面に有するR−Fe−B系永久磁石を安定
に量産することができる電気めっき方法を提供すること
を目的とする。
In the barrel type electroplating method, a large number of magnets and media (steel balls, etc.) to be processed are accommodated in a barrel, and the barrel is immersed in a plating bath. While rotating and stirring the magnet and media inside, the magnet is energized from the barrel electrode through the media to form a plating film on the surface of the magnet, which is an excellent method in terms of mass productivity. As described above. By the way, in recent years, miniaturization of parts using magnets has been progressing, and accordingly, surface treatment of magnets is also required to respond to thinning. However, when a thin plating film is formed by the barrel-type electroplating method, there is a problem that the corrosion resistance among the magnets varies widely, and some magnets that rust quickly are found. Therefore, an object of the present invention is to provide an electroplating method capable of stably mass-producing an R-Fe-B-based permanent magnet having a plating film exhibiting excellent corrosion resistance even on a thin film.

【0004】[0004]

【課題を解決するための手段】本発明者は、バレル式電
気めっき法で薄膜のめっき被膜を形成した場合、なぜ上
記のような問題が生じるのか分析することで、以下の知
見を得た。 (1)まず、バレル式電気めっき法で被膜が形成された
磁石のうち、耐食性に劣る磁石の被膜にはピンホールが
数多く存在しており、これが磁石間での耐食性のバラツ
キの原因になっている。 (2)バレル内では磁石とメディアがいわば集合体とし
て存在するので、集合体の外側に存在する磁石は通電が
良好でめっきされやすいが、内部に存在する磁石はめっ
き液に浸漬された状態で存在するに過ぎず腐食されやす
い状態にある。もちろん磁石とメディアは攪拌されては
いるが、形成するめっき被膜が薄膜になるほど、磁石が
単にめっき液に浸漬された状態におかれている影響が大
きくなり、これがめっき被膜のピンホールの原因にな
る。さらに、いったん磁石が腐食すると、めっきがされ
ている間にその腐食部分にめっき液が残存してしまい、
被膜が形成された後も内部に残存しためっき液が磁石の
腐食を進行させる。 (3)特に、Nd−Fe−B系永久磁石の焼結磁石のよ
うに主相(NdFe B相)と主相より卑な腐食電
位を有する粒界相(Nd−rich相)の複数の結晶相
で構成されている磁石においては、粒界相は本質的に腐
食電位が非常に卑な相であるのに加えて、主相との腐食
電位差が大きいため、めっき液によって容易に腐食さ
れ、これが均一なめっき被膜の形成を阻害し、ピンホー
ル発生の原因となる。そして、このような磁石の腐食
は、耐食性向上を目的とした多層めっきを行う場合にお
いてもその耐食性に大きく影響を及ぼす。 (4)Nd−Fe−B系永久磁石は、特に粒界相がめっ
き時に発生する水素を吸蔵することにより、磁気特性の
劣化やめっき被膜との密着性の低下を引き起こす傾向が
強い。そのため、めっきを行うに際しては、水素発生を
抑制するために電流密度を低くする必要がある。バレル
式電気めっき法の場合、バレル内の金属イオン濃度は小
さくなる傾向にあるので、水素がより発生しやすく、ま
た、集合体の内部に発生した水素は、その場所に滞留し
やすいことから、水素発生を極力抑制するためには、電
流密度をより低い値に設定する必要がある。そのため、
平均成膜速度は自ずと遅くなってしまい、磁石がめっき
液に浸漬された状態で存在する時間が長くなり、磁石の
腐食をより促進させてしまう。 (5)また、(2)に記載したように、通電が良好な磁
石は集合体の外側に存在するものに限られており、設定
した電流密度に対する実際の個々の磁石における電流密
度にはバラツキがある。設定した電流密度以上の電流密
度がかかっている部分では水素が多量に発生して(4)
に記載したような問題を引き起こすので、量産時には、
電流密度はそのバラツキを加味して設定しなければなら
ず、その値は自ずと低いものになってしまう。その結
果、めっき液による磁石の腐食に起因する耐食性のバラ
ツキが助長される。 (6)さらに、メディアの存在により、集合体の外側に
存在する磁石の数量は制限されるので、磁石の腐食や形
成される被膜におけるピンホールの発生をより引き起こ
す傾向にある。磁石の腐食を極力抑制するための手段と
しては、バレルの回転速度を上げることによりバレル内
部の磁石とメディアの攪拌効率を上げる方法が考えられ
るが、この方法を採った場合、磁石同士の衝突や磁石と
メディアとの衝突が頻繁に起こったり、強い衝撃力で起
こったりし、その結果、磁石に多数の割れや欠けを発生
させてしまうので好ましくない。 (7)そして、このような磁石の腐食によって、めっき
液中にNdやFeなどの磁石を構成する金属成分が溶出
する。例えばNiめっきを行った場合、溶出した金属成
分のうち、Feは電流密度が小さい状態ではNiと共析
して耐食性に劣る被膜を形成してしまう。Ndはイオン
吸着現象によりNiの安定な析出を阻害し、被膜の密着
不良を引き起こす。バレル電気めっき法においては、上
記のように個々の磁石に対する通電状態にバラツキがあ
るため、電流密度は低い値に設定しなければならず、そ
れではこのような耐食性に劣る被膜の析出を抑制するこ
とは困難である。従って、量産時においては、良質で均
一な被膜形成が困難であり、ロット間での品質のバラツ
キを引き起こす。
Means for Solving the Problems The present inventor has obtained the following knowledge by analyzing why the above-mentioned problems occur when a thin plating film is formed by a barrel type electroplating method. (1) First, among the magnets coated by the barrel-type electroplating method, there are many pinholes in the coating of the magnet having poor corrosion resistance, which causes the variation of the corrosion resistance between the magnets. I have. (2) Since magnets and media exist in the barrel as an aggregate, the magnets outside the aggregate are well energized and are easily plated, but the magnets inside are immersed in the plating solution. It is only present and is in a state of being easily corroded. Of course, the magnet and the media are agitated, but the thinner the plating film that is formed, the greater the effect of the magnet being simply immersed in the plating solution, which causes pinholes in the plating film. Become. Furthermore, once the magnet is corroded, the plating solution remains in the corroded portion during plating,
Even after the film is formed, the plating solution remaining inside causes the corrosion of the magnet to proceed. (3) In particular, the grain boundary phase having a less noble corrosion potential than the main phase as a main phase (Nd 2 Fe 1 4 B phase) as the sintered magnet of Nd-Fe-B permanent magnets (Nd-rich phase) In a magnet composed of a plurality of crystal phases, the grain boundary phase is essentially a phase with a very low corrosion potential and, in addition, has a large corrosion potential difference from the main phase. This hinders the formation of a uniform plating film and causes pinholes. Such corrosion of the magnet greatly affects the corrosion resistance even when performing multilayer plating for the purpose of improving the corrosion resistance. (4) The Nd-Fe-B permanent magnet has a strong tendency to cause deterioration of magnetic properties and decrease in adhesion to a plating film, particularly when the grain boundary phase absorbs hydrogen generated during plating. Therefore, when plating, it is necessary to reduce the current density in order to suppress the generation of hydrogen. In the case of the barrel-type electroplating method, since the metal ion concentration in the barrel tends to be small, hydrogen is more likely to be generated, and the hydrogen generated inside the aggregate is likely to stay at the place, In order to minimize hydrogen generation, it is necessary to set the current density to a lower value. for that reason,
The average film forming rate naturally becomes slow, and the time during which the magnet is immersed in the plating solution becomes longer, which further promotes the corrosion of the magnet. (5) Further, as described in (2), the magnets with good energization are limited to those existing outside the assembly, and the actual current densities of the individual magnets with respect to the set current density vary. There is. A large amount of hydrogen is generated in a portion where a current density higher than the set current density is applied (4).
Causes problems as described in
The current density must be set in consideration of the variation, and the value naturally becomes low. As a result, variations in corrosion resistance due to corrosion of the magnet by the plating solution are promoted. (6) Further, since the number of magnets existing outside the aggregate is limited by the presence of the media, there is a tendency that the corrosion of the magnets and the generation of pinholes in the formed film are more likely to occur. As a means for suppressing the corrosion of the magnet as much as possible, a method of increasing the stirring speed of the magnet and the media inside the barrel by increasing the rotation speed of the barrel can be considered, but if this method is adopted, collision between magnets or The collision between the magnet and the medium frequently occurs or occurs due to a strong impact force, and as a result, a large number of cracks or chips are generated in the magnet, which is not preferable. (7) Then, due to such corrosion of the magnet, metal components constituting the magnet, such as Nd and Fe, are eluted into the plating solution. For example, when Ni plating is performed, of the eluted metal components, Fe is eutectoid with Ni and forms a film having poor corrosion resistance when the current density is low. Nd inhibits stable precipitation of Ni by an ion adsorption phenomenon, and causes poor adhesion of the coating. In the barrel electroplating method, the current density must be set to a low value because the energization state of individual magnets varies as described above, and thus, it is necessary to suppress the deposition of a film having poor corrosion resistance. It is difficult. Therefore, in mass production, it is difficult to form a high-quality and uniform film, which causes variation in quality between lots.

【0005】本発明者は、上記の知見に基づいて種々の
検討を重ねた結果、薄膜でも優れた耐食性を示すめっき
被膜を表面に有する希土類系永久磁石を安定に量産する
ためには、バレル式電気めっき法を採用せず、かつ、め
っき初期の段階で速やかにめっき被膜を形成することが
重要であることに思い至った。本発明は、上記のような
経緯のもとになされたものであり、本発明の電気めっき
方法は、請求項1記載の通り、主相と主相より卑な腐食
電位を有する粒界相の複数の結晶相からなるR−Fe−
B系永久磁石を複数個同時に電気めっきする方法におい
て、個々の磁石を、磁石同士が離間する状態にせしめ、
かつ、めっき開始から膜厚が0.5μmのめっき被膜を
磁石表面に形成するまでは0.1μm/分以上の平均成
膜速度で成膜することを特徴とする。また、請求項2記
載の電気めっき方法は、請求項1記載の電気めっき方法
において、電流密度が20A/dm以下の条件で成膜
することを特徴とする。また、請求項3記載の電気めっ
き方法は、請求項1または2記載の電気めっき方法にお
いて、めっきがNiめっき、ZnめっきおよびCuめっ
きから選ばれるいずれかであることを特徴とする。ま
た、請求項4記載の電気めっき方法は、請求項1乃至3
のいずれかに記載の電気めっき方法において、めっき被
膜の膜厚を1μm〜25μmとすることを特徴とする。
また、本発明の表面にめっき被膜を有するR−Fe−B
系永久磁石は、請求項5記載の通り、請求項1乃至4の
いずれかに記載の電気めっき方法により得られたことを
特徴とする。
As a result of various studies based on the above findings, the present inventor has found that in order to stably mass-produce rare earth permanent magnets having a plated film exhibiting excellent corrosion resistance even on a thin film, a barrel-type permanent magnet is required. I realized that it is important not to use the electroplating method and to form a plating film quickly at the early stage of plating. The present invention has been made under the circumstances as described above, and the electroplating method of the present invention has a main phase and a grain boundary phase having a lower corrosion potential than the main phase. R-Fe- consisting of multiple crystal phases
In a method of electroplating a plurality of B-based permanent magnets simultaneously, the individual magnets are separated from each other,
In addition, a film is formed at an average film forming rate of 0.1 μm / min or more from the start of plating until a plating film having a thickness of 0.5 μm is formed on the magnet surface. The electroplating method according to claim 2 is characterized in that, in the electroplating method according to claim 1, a film is formed under the condition that the current density is 20 A / dm 2 or less. The electroplating method according to claim 3 is characterized in that, in the electroplating method according to claim 1 or 2, the plating is any one of Ni plating, Zn plating, and Cu plating. Further, the electroplating method according to claim 4 is a method according to claims 1 to 3.
Wherein the thickness of the plating film is 1 μm to 25 μm.
Further, R-Fe-B having a plating film on the surface of the present invention.
As described in claim 5, the system-based permanent magnet is obtained by the electroplating method according to any one of claims 1 to 4.

【0006】[0006]

【発明の実施の形態】本発明の電気めっき方法は、主相
と主相より卑な腐食電位を有する粒界相の複数の結晶相
からなるR−Fe−B系永久磁石を複数個同時に電気め
っきする方法において、個々の磁石を、磁石同士が離間
する状態にせしめ、かつ、めっき開始から膜厚が0.5
μmのめっき被膜を磁石表面に形成するまでは0.1μ
m/分以上の平均成膜速度で成膜することを特徴とする
ものである。即ち、本発明の電気めっき方法において
は、複数の磁石が集合体を形成しないように参集させる
ことなく磁石同士が離間する状態にせしめ、かつ、めっ
き初期の平均成膜速度をある一定値以上にすることによ
り、磁石をめっき液に浸漬した後、均一なめっき被膜を
全ての磁石に速やかに形成することで、バレル式電気め
っき法が有する種々の問題点、即ち、磁石の腐食とそれ
に起因するピンホールの発生、水素吸蔵による磁石の磁
気特性の劣化やめっき被膜との密着性の低下を解消する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The electroplating method of the present invention comprises a plurality of R-Fe-B-based permanent magnets comprising a plurality of crystal phases of a main phase and a grain boundary phase having a lower corrosion potential than the main phase. In the plating method, the individual magnets are set in a state where the magnets are separated from each other, and the film thickness is 0.5 mm from the start of plating.
0.1μm until a μm plating film is formed on the magnet surface
The film is formed at an average film forming speed of at least m / min. That is, in the electroplating method of the present invention, the magnets are separated from each other without gathering so that a plurality of magnets do not form an aggregate, and the average film forming speed in the initial plating is set to a certain value or more. By immersing the magnet in the plating solution, a uniform plating film is quickly formed on all the magnets, so that various problems with the barrel-type electroplating method, that is, corrosion of the magnet and its origin Generation of pinholes, deterioration of the magnetic properties of the magnet due to occlusion of hydrogen, and reduction in adhesion to the plating film can be eliminated.

【0007】本発明の電気めっき方法においては、個々
の磁石を、磁石同士が離間する状態にせしめることが重
要な要件となる。個々の磁石をこの状態にせしめること
により、設定した電流密度を全ての磁石に対して均一に
かけることができるので、高電流密度の設定のもとでも
水素発生を抑制することができ、水素が発生しても磁石
の磁気特性に及ぼす影響や磁石とめっき被膜との密着性
に及ぼす影響を極力回避することができる。従って、電
流密度を高くしてめっき被膜の平均成膜速度を上げるこ
とが可能となり、磁石の腐食が始まるまでにその表面に
対して均一なめっき被膜を速やかに形成することができ
る。
[0007] In the electroplating method of the present invention, it is an important requirement that the individual magnets be separated from each other. By setting the individual magnets in this state, the set current density can be applied uniformly to all magnets, so that hydrogen generation can be suppressed even at a high current density setting, and hydrogen can be reduced. Even if it occurs, the effect on the magnetic properties of the magnet and the effect on the adhesion between the magnet and the plating film can be avoided as much as possible. Accordingly, it is possible to increase the average density of the plating film by increasing the current density, and it is possible to quickly form a uniform plating film on the surface of the magnet before the corrosion of the magnet starts.

【0008】ここで、「離間する状態」とは、個々の磁
石が互いに接触する可能性が排除された状態を意味す
る。このような状態は、例えば、ラック式電気めっき
法、即ち、被処理物である磁石を支持するとともに磁石
にめっき電流を供給する導電性支持部材を多数備えるめ
っき治具を使用し、各支持部材に磁石をそれぞれ独立し
て支持させ、めっき液中で支持部材を介して磁石に直接
通電することにより磁石表面にめっき被膜を形成する方
法を採用することにより実現化することができる。
Here, the "separated state" means a state in which the possibility that the individual magnets come into contact with each other is eliminated. Such a state is achieved, for example, by a rack-type electroplating method, that is, using a plating jig provided with a large number of conductive support members that support a magnet as an object to be processed and supply a plating current to the magnet. The method can be realized by adopting a method of forming a plating film on the surface of a magnet by directly supporting a magnet through a supporting member in a plating solution by independently supporting the magnets.

【0009】ラック式電気めっき法に採用される治具に
は様々な態様のものがあるが、磁石に支持跡(接点跡)
を残さない機構を備えた治具を使用することが望まし
い。このような治具としては、例えば、磁石を支持する
とともに磁石にめっき電流を供給する導電性支持部材の
磁石の支持位置が、磁石と部材との関係において相対的
に変化する機構を備えた治具が挙げられる。このような
治具の具体例として、特願平11−91585号明細書
に記載の治具を図1に示す。
There are various types of jigs used in the rack-type electroplating method.
It is desirable to use a jig provided with a mechanism that does not leave any. As such a jig, for example, a jig provided with a mechanism in which a magnet supporting position of a conductive supporting member that supports a magnet and supplies a plating current to the magnet relatively changes in relation to the magnet and the member. Utensils. FIG. 1 shows a specific example of such a jig described in Japanese Patent Application No. 11-91585.

【0010】図1は、磁石を支持する部材の少なくとも
1つの部材を一定周期で他の部材に交替させ、交替した
部材が磁石を支持することにより、磁石の支持位置が変
化するように、磁石を支持する部材を配置した治具であ
る。即ち、この治具は、内側磁石支持部材4−a、4−
bと外側磁石支持部材5−a、5−bを有している。両
部材は金属製であり、内側磁石支持部材は金属製の支持
枠1に、外側磁石支持部材は金属製の支持枠2に取り付
けられている。両部材と両支持枠は必要に応じて所望す
る個所に絶縁被膜が被覆される。支持枠1と支持枠2は
磁石を支持している部材にのみめっき電流が供給される
ようにするための切替装置7に接続されている。かかる
切替装置7により、部材や支持枠の不必要なめっき太り
が抑制される。支持枠2には、絶縁体8を介して電動式
アクチュエータ6が取り付けられており、外側磁石支持
部材5−a、5−bが一定周期で矢示のように上下移動
するようになっている。電動式アクチュエータ6と切替
装置7の作動は制御部9にて制御されている。図1は、
磁石3を外側磁石支持部材5−a、5−bが支持し、切
替装置7によって、該部材にのみめっき電流が供給され
ている状態を示している。電動式アクチュエータ6によ
って外側磁石支持部材を下降させると、磁石は内側磁石
支持部材4−a、4−bに交替して支持され、切替装置
7によって該部材にのみめっき電流が供給されるように
なる。このように磁石3を支持する部材を一定周期で内
側磁石支持部材4−a、4−bと外側磁石支持部材5−
a、5−bとで交替させることにより、部材が支持する
磁石の支持位置が固定化されないので、支持跡のないめ
っき被膜を磁石表面に形成することができる。
FIG. 1 shows a structure in which at least one of the members supporting the magnet is replaced with another member at a constant period, and the replaced member supports the magnet, so that the magnet support position is changed. Is a jig on which a member for supporting is arranged. That is, the jig is used for the inner magnet support members 4-a, 4-a.
b and outer magnet supporting members 5-a and 5-b. Both members are made of metal. The inner magnet support member is attached to a metal support frame 1 and the outer magnet support member is attached to a metal support frame 2. Both members and both support frames are coated with an insulating coating at desired locations as required. The support frame 1 and the support frame 2 are connected to a switching device 7 for supplying a plating current only to members supporting the magnet. The switching device 7 suppresses unnecessary plating thickening of members and the support frame. An electric actuator 6 is attached to the support frame 2 via an insulator 8 so that the outer magnet support members 5-a and 5-b move up and down at regular intervals as shown by arrows. . The operations of the electric actuator 6 and the switching device 7 are controlled by the control unit 9. FIG.
The outer magnet support members 5-a and 5-b support the magnet 3, and the switching device 7 supplies a plating current only to the members. When the outer magnet supporting member is lowered by the electric actuator 6, the magnets are alternately supported by the inner magnet supporting members 4-a and 4-b, and the switching device 7 supplies plating current only to the member. Become. In this way, the members supporting the magnets 3 are changed at regular intervals into the inner magnet support members 4-a and 4-b and the outer magnet support members 5-a.
By switching between a and 5-b, the support position of the magnet supported by the member is not fixed, so that a plating film having no trace of support can be formed on the magnet surface.

【0011】特願平11−91585号明細書に記載の
治具以外の、磁石に支持跡を残さない機構を備えた好適
な治具としては、リング状磁石のめっきに好適な治具と
して、磁石を回転させながらめっきすることにより、支
持位置を移動させることができる機構を備えた治具が挙
げられる。このような治具の具体例としては、特願平1
1−290571号明細書に記載の、円筒形状の内周面
を有するリング状磁石を内周面側から支持するとともに
磁石に回転動作を与える導電性支持部材を設け、磁石を
支持部材に押圧する加負荷部材を設けた治具、特願20
00−174537号明細書に記載の、リング状磁石の
中空部に挿入配置される陽極と、磁石をその中心軸線を
中心に回転させるとともに磁石にめっき電流を供給する
ための導電性支持部材を有する治具、特願2000−2
69986号明細書に記載の、回転軸を中心に公転動作
を行う導電性支持部材を設け、この支持部材は円筒形状
の内周面を有するリング状磁石を内周面側から回動自在
に支持する治具などが挙げられる。また、特願平11−
265400号明細書や特願2000−213427号
明細書に記載されているような、多数の籠状区画室を備
えた導電性支持部材の各区画室に磁石を1個ずつ収容
し、支持部材を回転させながらめっきを行う治具や、特
願2000−64237号明細書に記載の、複数の導電
性ローラ上で磁石を搬送させながらめっきを行う装置も
好適に使用される。
Other than the jig described in Japanese Patent Application No. 11-91585, a preferable jig having a mechanism that does not leave a support mark on the magnet is a jig suitable for plating a ring-shaped magnet. There is a jig provided with a mechanism capable of moving a supporting position by plating while rotating a magnet. As a specific example of such a jig, Japanese Patent Application No. Hei.
A conductive support member that supports a ring-shaped magnet having a cylindrical inner peripheral surface described in the specification of Japanese Patent Application Publication No. 1-290571 from the inner peripheral surface side and imparts a rotating operation to the magnet is provided, and the magnet is pressed against the support member. Jig provided with loading member, Japanese Patent Application No. 20
No. 00-174537, which has an anode inserted into a hollow portion of a ring-shaped magnet and a conductive support member for rotating the magnet around its central axis and supplying a plating current to the magnet. Jig, Japanese Patent Application 2000-2
No. 69986, a conductive support member for revolving around a rotation axis is provided, and this support member rotatably supports a ring-shaped magnet having a cylindrical inner peripheral surface from the inner peripheral surface side. Jig and the like. Also, Japanese Patent Application No. 11-
As described in Japanese Patent Application No. 265400 and Japanese Patent Application No. 2000-213427, one magnet is housed in each compartment of a conductive support member having a large number of cage compartments, and the support member is rotated. A jig that performs plating while performing the plating, and an apparatus that performs plating while carrying a magnet on a plurality of conductive rollers described in Japanese Patent Application No. 2000-64237 are also preferably used.

【0012】次に、本発明の電気めっき方法において
は、めっき開始から膜厚が0.5μmのめっき被膜を磁
石表面に形成するまでは0.1μm/分以上の平均成膜
速度で成膜することが重要な要件となる。個々の磁石
を、磁石同士が離間する状態にせしめても、膜厚が0.
5μmのめっき被膜をめっき開始から5分以内に磁石表
面に形成しなければ、めっき液中で磁石の腐食が始ま
り、被膜中にピンホールを発生させたり、めっき液を劣
化させたりする要因となる。
Next, in the electroplating method of the present invention, a film is formed at an average film forming rate of 0.1 μm / min or more from the start of plating until a plating film having a thickness of 0.5 μm is formed on the magnet surface. Is an important requirement. Even if each magnet is set in a state in which the magnets are separated from each other, the film thickness is not more than 0.
If a plating film of 5 μm is not formed on the magnet surface within 5 minutes from the start of plating, corrosion of the magnet starts in the plating solution, which causes pinholes in the film or deteriorates the plating solution. .

【0013】本発明におけるめっきは、どのようなめっ
きであってもよいが、磁石表面との優れた密着性が得ら
れる被膜であり、しかも低コストにて成膜できる点から
は、Niめっき、Znめっき、Cuめっきが望ましい。
このようなめっきを、めっき開始から膜厚が0.5μm
のめっき被膜を磁石表面に形成するまでは0.1μm/
分以上、望ましくは0.2μm/分以上の平均成膜速度
で行う。このような速度は、個々の磁石を、磁石同士が
離間する状態にせしめることにより、各磁石に対して電
流密度を均等にかけることが可能となる結果、電流密度
を適正値に設定することにより達成することができる。
バレル式電気めっき法においてこのような平均成膜速度
にて成膜しようとしても、個々の磁石における電流密度
にはバラツキがあるため、上記したような種々の問題が
発生してしまい、全ての磁石に対してその表面に均一な
被膜を形成することはできない。
[0013] The plating in the present invention may be any plating, but Ni plating, Ni plating, and the like are preferred because they are films that provide excellent adhesion to the magnet surface and can be formed at low cost. Zn plating and Cu plating are desirable.
The thickness of such plating is 0.5 μm from the start of plating.
0.1μm / until the plating film of
Min, preferably at an average deposition rate of 0.2 μm / min or more. Such a speed is achieved by setting the current density to an appropriate value as a result of allowing each magnet to be in a state where the magnets are separated from each other, so that the current density can be uniformly applied to each magnet. Can be achieved.
Even if an attempt is made to form a film at such an average film forming rate in the barrel-type electroplating method, since the current densities of the individual magnets vary, the above-described various problems occur, and all magnets have problems. However, a uniform film cannot be formed on the surface.

【0014】0.1μm/分以上の平均成膜速度は、通
常、2価の金属イオンを用いるNiめっき、Znめっ
き、Cuめっきを行う場合は電流密度を0.5A/dm
以上に設定することで、また、シアン化銅などの1価
のCuイオンを用いるCuめっきを行う場合は電流密度
を0.25A/dm以上に設定することで達成するこ
とができるが、電流密度は20A/dm以下に設定し
て成膜することが望ましい。電流密度をこの値を超えて
設定した場合、水素発生の問題が顕在化し、磁石の水素
吸蔵による特性劣化やめっき被膜との密着性の低下を引
き起こす恐れがあるからである。電流密度を20A/d
以下に設定して成膜することにより、磁石表面の水
素量を100ppm以下、望ましくは50ppm以下に
抑制することが可能となる。
The average film forming rate of 0.1 μm / min or more is usually set to a current density of 0.5 A / dm when performing Ni plating, Zn plating, or Cu plating using divalent metal ions.
By setting the current density to 2 or more, or when performing Cu plating using monovalent Cu ions such as copper cyanide, it can be achieved by setting the current density to 0.25 A / dm 2 or more. It is desirable that the current density is set to 20 A / dm 2 or less to form a film. If the current density is set to exceed this value, the problem of hydrogen generation becomes apparent, and there is a risk of causing deterioration in characteristics due to hydrogen absorption of the magnet and reduction in adhesion to the plating film. 20 A / d current density
By forming is set to m 2 or less, the amount of hydrogen in the magnet surface 100ppm or less, preferably it is possible to suppress less than 50ppm.

【0015】磁石表面に形成されるめっき被膜の最終的
な膜厚は、望ましくは1μm以上とする。平均成膜速度
は、めっき開始当所からの0.1μm/分以上の平均成
膜速度を固定して維持してもよいし、ある時点で変更し
てもよい。本発明の電気めっき方法によって磁石表面に
形成することのできるめっき被膜の膜厚の上限は特段制
限されるものではないが、本発明の電気めっき方法は、
磁石自体の小型化に基づく要請から、25μm以下、望
ましくは20μm以下、より望ましくは10μm以下の
膜厚のめっき被膜を有するR−Fe−B系永久磁石を安
定に量産するのに適している。近年、より薄膜かつ高耐
食性を示すめっき被膜を簡易なプロセスで安定して量産
することが要求されているが、本発明の電気めっき方法
は、このような時代のニーズに応えることのできる方法
である。
The final thickness of the plating film formed on the magnet surface is desirably 1 μm or more. The average film forming rate may be fixed and maintained at an average film forming rate of 0.1 μm / min or more from the plating start place, or may be changed at a certain time. Although the upper limit of the thickness of the plating film that can be formed on the magnet surface by the electroplating method of the present invention is not particularly limited, the electroplating method of the present invention
In view of the demand for miniaturization of the magnet itself, it is suitable for stably mass-producing R-Fe-B-based permanent magnets having a plating film having a thickness of 25 μm or less, preferably 20 μm or less, more preferably 10 μm or less. In recent years, it has been required to stably mass-produce a thin film and a plating film exhibiting high corrosion resistance by a simple process, but the electroplating method of the present invention is a method capable of meeting the needs of such an era. is there.

【0016】本発明に使用されるめっき液は特段限定さ
れるものではなく、これまでに市販や提案されている各
種のめっき液を使用することができるが、水素発生を極
力抑制するという観点からは電析効率が90%以上の特
性を有するめっき液を使用することが望ましい。また、
一般に低pHのめっき液を使用した場合、磁石を構成す
る金属成分の溶出に伴い、めっき被膜中にピンホールが
発生したり、めっき液が劣化したりする恐れがあり、高
pHのめっき液を使用した場合、磁石表面に水酸化物が
析出して均一なめっき被膜が形成されない恐れがある。
従って、めっき液はpHが5〜13のものを使用するこ
とが望ましく、pHが6〜12のものを使用することが
より望ましい。
The plating solution used in the present invention is not particularly limited, and various plating solutions that have been marketed or proposed can be used, but from the viewpoint of minimizing the generation of hydrogen. It is desirable to use a plating solution having a property of electrodeposition efficiency of 90% or more. Also,
Generally, when a low-pH plating solution is used, pinholes may be generated in the plating film or the plating solution may be deteriorated due to elution of metal components constituting the magnet. When used, hydroxides may precipitate on the magnet surface and a uniform plating film may not be formed.
Therefore, it is desirable to use a plating solution having a pH of 5 to 13, and more desirably a plating solution having a pH of 6 to 12.

【0017】磁石の腐食の大きな要因となるめっき液中
の塩素イオン濃度は20g/L以下に調整することが望
ましく、10g/L以下に調整することがより望まし
い。この観点から、ZnめっきやCuめっきを行う場
合、塩素イオンを含まないシアン化浴やピロリン酸浴な
どの錯化剤を用いたアルカリ浴を使用することが望まし
い。特にCuめっきを行う場合には、このようなアルカ
リ浴を使用することで、磁石表面における磁石を構成す
る金属成分であるRやFeとCuとの置換反応を抑制す
ることができる点においても望ましい。
The chlorine ion concentration in the plating solution, which is a major factor in the corrosion of the magnet, is preferably adjusted to 20 g / L or less, and more preferably to 10 g / L or less. From this viewpoint, when performing Zn plating or Cu plating, it is desirable to use an alkali bath using a complexing agent such as a cyanation bath or a pyrophosphate bath that does not contain chloride ions. In particular, when performing Cu plating, use of such an alkaline bath is also desirable in that the substitution reaction between Cu and R, which is a metal component constituting the magnet on the magnet surface, can be suppressed. .

【0018】めっき液は、磁石表面に対して金属イオン
の供給を確実に行って平均成膜速度を維持するととも
に、水素発生を極力抑制するために、また、水素が発生
しても速やかに磁石表面から発生した水素を排除するた
めに攪拌することが望ましい。また、磁石の全表面に対
して均一なめっき被膜が形成されるように、個々の磁石
に対して異なる少なくとも2方向に陽極を設けることが
望ましい。
The plating solution is used to reliably supply metal ions to the surface of the magnet to maintain the average film forming rate, to suppress hydrogen generation as much as possible, and to quickly generate hydrogen even if hydrogen is generated. It is desirable to stir to remove hydrogen generated from the surface. Also, it is desirable to provide anodes in at least two different directions for each magnet so that a uniform plating film is formed on the entire surface of the magnet.

【0019】本発明に適用されるR−Fe−B系永久磁
石における希土類元素(R)は、Nd、Pr、Dy、H
o、Tb、Smのうち少なくとも1種、あるいはさら
に、La、Ce、Gd、Er、Eu、Tm、Yb、L
u、Yのうち少なくとも1種を含むものが望ましい。ま
た、通常はRのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシュメタルやジジムなど)を入手
上の便宜などの理由によって使用することもできる。さ
らに、Al、Ti、V、Cr、Mn、Bi、Nb、T
a、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、
Zn、Hf、Gaのうち少なくとも1種を添加すること
で、保磁力や減磁曲線の角型性の改善、製造性の改善、
低価格化を図ることが可能となる。また、Feの一部を
Coで置換することによって、得られる磁石の磁気特性
を損なうことなしに温度特性を改善することができる。
The rare earth element (R) in the R—Fe—B permanent magnet applied to the present invention is Nd, Pr, Dy, H
at least one of o, Tb, and Sm, or La, Ce, Gd, Er, Eu, Tm, Yb, and L
Those containing at least one of u and Y are desirable. Usually, one kind of R is sufficient, but in practice, 2 kinds are preferred.
Mixtures of more than one species (such as misch metal or dymium) can also be used for reasons such as availability. Further, Al, Ti, V, Cr, Mn, Bi, Nb, T
a, Mo, W, Sb, Ge, Sn, Zr, Ni, Si,
By adding at least one of Zn, Hf, and Ga, the coercive force and the squareness of the demagnetization curve can be improved, the productivity can be improved,
It is possible to reduce the price. Further, by substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet.

【0020】本発明の電気めっき方法によって磁石表面
に形成されためっき被膜の上に、同種のめっき被膜や異
種のめっき被膜を積層形成してもよいし、化成処理被膜
などの別種の被膜を積層形成してもよい。このような構
成を採用することによって、本発明の電気めっき方法に
よって形成されためっき被膜の特性を増強・補完した
り、更なる機能性を付与したりすることができる。この
ような多層被膜を形成する場合でも、本発明の電気めっ
き方法によって形成されためっき被膜は、その効力を十
分に示し、全体としての膜厚(総膜厚)が薄くても優れ
た耐食性を発揮する。なお、このような総膜厚として
は、1μm〜25μmが望ましい。
The same type of plating film or a different type of plating film may be laminated on the plating film formed on the magnet surface by the electroplating method of the present invention, or another type of film such as a chemical conversion treatment film may be laminated. It may be formed. By adopting such a configuration, the characteristics of the plating film formed by the electroplating method of the present invention can be enhanced or supplemented, or further functionality can be imparted. Even when such a multilayer coating is formed, the plating coating formed by the electroplating method of the present invention sufficiently exhibits its effect, and exhibits excellent corrosion resistance even if the overall thickness (total thickness) is small. Demonstrate. Note that such a total film thickness is desirably 1 μm to 25 μm.

【0021】[0021]

【実施例】本発明を以下の実施例によってさらに詳細に
説明するが、本発明は以下の記載に何ら限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following description.

【0022】(1)使用するR−Fe−B系永久磁石:
例えば、米国特許4770723号公報や米国特許47
92368号公報に記載されているようにして、公知の
鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処
理、表面加工を行うことによって得られた14Nd−7
9Fe−6B−1Co組成の縦15mm×横25mm×
高さ7mm寸法の焼結磁石を使用した。
(1) R-Fe-B permanent magnet used:
For example, US Pat. No. 4,770,723 and US Pat.
As described in JP-A-92368, 14Nd-7 obtained by pulverizing a known casting ingot, performing pulverization, followed by molding, sintering, heat treatment and surface processing.
15mm × 25mm × 9Fe-6B-1Co composition
A sintered magnet having a height of 7 mm was used.

【0023】(2)使用するめっき治具: (イ)本発明の電気めっき方法に好適に使用されるめっ
き治具として図1に示す機構を備え、100個の磁石を
同時に処理することができる治具(横10列×縦10列
配置)を使用した(以下ラック治具と略称する)。 (ロ)バレル式電気めっき法に使用される、断面が1辺
150mmの正六角形で長さが300mmのプラスチッ
ク製の一般的なバレル治具に磁石100個と直径2mm
のスチールボール2kgを投入し、5rpmの回転速度
で回転させて使用した。
(2) Plating jig to be used: (a) The plating jig suitably used in the electroplating method of the present invention is provided with a mechanism shown in FIG. 1 and can process 100 magnets simultaneously. A jig (10 rows × 10 columns) was used (hereinafter abbreviated as a rack jig). (B) A general plastic jig having a cross section of a regular hexagon having a side of 150 mm and a length of 300 mm used in a barrel-type electroplating method and having 100 magnets and a diameter of 2 mm.
2 kg of steel balls were used and rotated at a rotation speed of 5 rpm.

【0024】(3)めっきの前処理:特開平6−574
80号公報に記載の方法に準じて行った。即ち、めっき
治具に磁石をセットした後、これを硝酸ナトリウム0.
2mol/L、硫酸1.5vol%からなる液温30℃
の処理液に4分間浸漬した後、直ちに1μS/cm以下
のイオン交換水で30秒超音波洗浄し、その後速やかに
めっきを開始した。
(3) Pretreatment of plating: JP-A-6-574
The test was performed according to the method described in JP-A-80-80. That is, after a magnet is set on a plating jig, this is fixed to a sodium nitrate solution.
Liquid temperature 30 ° C consisting of 2 mol / L, 1.5 vol% sulfuric acid
After immersion in the treatment solution for 4 minutes, the substrate was immediately ultrasonically washed with ion exchanged water of 1 μS / cm or less for 30 seconds, and then plating was started immediately.

【0025】実施例A:Niめっき(その1) 硫酸ニッケル・6水和物250g/L、塩化ニッケル・
6水和物45g/L、ホウ酸30g/Lからなり、炭酸
ニッケルでpH5.5に調整した液温50℃のめっき浴
を使用し、表1に示す(a)めっき開始から5分後まで
に設定した電流密度、(b)その間の平均成膜速度(n
=10の実測値:蛍光X線膜厚計SFT−7000(セ
イコー電子社製)を使用。以下同じ。)、(c)めっき
開始から5分後以降に設定した電流密度にて膜厚が10
μmのNiめっき被膜を磁石表面に形成した。形成され
ためっき被膜の平均膜厚(n=10の実測値:蛍光X線
膜厚計SFT−7000(セイコー電子社製)を使用。
以下同じ。)とプレッシャー・クッカー・テスト(12
0℃×100%RH×2気圧×72時間)による耐食性
評価結果を表1に示す。表1から、ラック治具を使用し
て、個々の磁石を、磁石同士が離間する状態にせしめ、
かつ、めっき開始から5分間は0.1μm/分以上の平
均成膜速度で成膜したことで、優れた耐食性を示すめっ
き被膜を表面に有する磁石を安定に量産することができ
ることがわかった。また、実施例2で得られた表面にめ
っき被膜を有する磁石のうちの1個について、めっき被
膜を磁石から剥離し、磁石表面の水素量をグロー放電発
光分析(GDS:GDLS−5017:島津製作所社
製)で測定した結果、42ppmと非常に少ないもので
あった。
Example A: Ni plating (1) Nickel sulfate hexahydrate 250 g / L, nickel chloride
Using a plating bath composed of 45 g / L of hexahydrate and 30 g / L of boric acid and adjusted to pH 5.5 with nickel carbonate at a liquid temperature of 50 ° C., and shown in Table 1 (a) from 5 minutes after the start of plating (B) average film formation rate (n)
= Measured value of 10: X-ray fluorescence film thickness meter SFT-7000 (manufactured by Seiko Denshi) is used. same as below. ), (C) a film thickness of 10 at the current density set 5 minutes after the start of plating.
A μm Ni plating film was formed on the magnet surface. The average film thickness of the formed plating film (actual measurement value of n = 10: using a fluorescent X-ray film thickness meter SFT-7000 (manufactured by Seiko Instruments Inc.)).
same as below. ) And pressure cooker test (12
Table 1 shows the results of the corrosion resistance evaluation based on 0 ° C. × 100% RH × 2 atm × 72 hours). From Table 1, using a rack jig, the individual magnets were placed in a state where the magnets were separated from each other.
In addition, it was found that by forming a film at an average film forming rate of 0.1 μm / min or more for 5 minutes from the start of plating, a magnet having a plating film having excellent corrosion resistance on its surface can be stably mass-produced. Further, for one of the magnets having a plating film on the surface obtained in Example 2, the plating film was peeled off from the magnet, and the amount of hydrogen on the magnet surface was measured by glow discharge emission spectrometry (GDS: GDLS-5017: Shimadzu Corporation). (Manufactured by the company) and found to be very low at 42 ppm.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例B:Niめっき(その2) 硫酸ニッケル・6水和物130g/L、クエン酸アンモ
ニウム30g/L、ホウ酸15g/L、塩化アンモニウ
ム8g/L、サッカリン8g/Lからなり、アンモニア
水でpH6.5に調整した液温50℃のめっき浴を使用
し、表2に示す(a)めっき開始から5分後までに設定
した電流密度、(b)その間の平均成膜速度(n=10
の実測値)、(c)めっき開始から5分後以降に設定し
た電流密度にて膜厚が10μmのNiめっき被膜を磁石
表面に形成した。形成されためっき被膜の平均膜厚(n
=10の実測値)とプレッシャー・クッカー・テスト
(120℃×100%RH×2気圧×72時間)による
耐食性評価結果を表2に示す。表2から、ラック治具を
使用して、個々の磁石を、磁石同士が離間する状態にせ
しめ、かつ、めっき開始から5分間は0.1μm/分以
上の平均成膜速度で成膜したことで、優れた耐食性を示
すめっき被膜を表面に有する磁石を安定に量産すること
ができることがわかった。
Example B: Ni Plating (Part 2) Nickel sulfate hexahydrate 130 g / L, ammonium citrate 30 g / L, boric acid 15 g / L, ammonium chloride 8 g / L, saccharin 8 g / L, Using a plating bath at a solution temperature of 50 ° C. adjusted to pH 6.5 with ammonia water, (a) the current density set up to 5 minutes after the start of plating and (b) the average film forming rate during that time shown in Table 2 n = 10
(Measured value), (c) A Ni plating film having a film thickness of 10 μm was formed on the magnet surface at a current density set 5 minutes after the start of plating. Average film thickness (n
Table 2 shows the results of the evaluation of corrosion resistance by the pressure cooker test (120 ° C. × 100% RH × 2 atm × 72 hours). From Table 2, using a rack jig, the individual magnets were separated from each other, and a film was formed at an average film forming rate of 0.1 μm / min or more for 5 minutes from the start of plating. Thus, it was found that a magnet having a plating film having excellent corrosion resistance on the surface can be stably mass-produced.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例C:2層Niめっき 工程1:実施例Bで使用しためっき浴と同じめっき浴を
使用し、表3に示す(a)めっき開始から5分後までに
設定した電流密度、(b)その間の平均成膜速度(n=
10の実測値)、(c)めっき開始から5分後以降に設
定した電流密度にて膜厚が4μmのNiめっき被膜を磁
石表面に形成した。形成されためっき被膜の平均膜厚
(n=10の実測値)を表3に示す。
Example C: Two-layer Ni plating Step 1: Using the same plating bath as that used in Example B, (a) the current density set up to 5 minutes after the start of plating shown in Table 3; (B) Average film forming rate during that time (n =
(Measured value of 10), (c) A Ni plating film having a thickness of 4 μm was formed on the magnet surface at a current density set 5 minutes after the start of plating. Table 3 shows the average film thickness (actually measured value of n = 10) of the formed plating film.

【0030】[0030]

【表3】 [Table 3]

【0031】工程2:硫酸ニッケル・6水和物240g
/L、塩化ニッケル・6水和物45g/L、ホウ酸30
g/L、1,5−ナフタレンジスルホン酸ナトリウム8
g/L、ゼラチン0.01g/Lからなり、pH4.2
の液温50℃のめっき浴を使用し、電流密度0.7A/
dmにて膜厚が16μmのNiめっき被膜を工程1で
形成されたNiめっき被膜表面に形成した。工程1と工
程2で形成されためっき被膜の合計平均膜厚(n=10
の実測値)と中性塩水噴霧試験(5%NaCl×35℃
×168時間)による耐食性評価結果を表4に示す。表
4から、工程1において、ラック治具を使用して、個々
の磁石を、磁石同士が離間する状態にせしめ、かつ、め
っき開始から5分間は0.1μm/分以上の平均成膜速
度で成膜したことで、多層めっきを行った場合において
も、その効果が発揮されることがわかった。
Step 2: 240 g of nickel sulfate hexahydrate
/ L, nickel chloride hexahydrate 45g / L, boric acid 30
g / L, sodium 1,5-naphthalenedisulfonic acid 8
g / L, gelatin 0.01 g / L, pH 4.2
And a current density of 0.7 A /
A Ni plating film having a thickness of 16 μm was formed on the surface of the Ni plating film formed in Step 1 at dm 2 . The total average film thickness of the plating films formed in step 1 and step 2 (n = 10
Measured value) and neutral salt spray test (5% NaCl × 35 ° C.)
× 168 hours) are shown in Table 4. From Table 4, in step 1, using a rack jig, the individual magnets were brought into a state where the magnets were separated from each other, and at an average deposition rate of 0.1 μm / min or more for 5 minutes from the start of plating. It was found that the effect was exhibited even when multilayer plating was performed by forming the film.

【0032】[0032]

【表4】 [Table 4]

【0033】実施例D:量産時におけるめっき液の劣化
の影響 実施例Aの条件でのNiめっきを1つのめっき浴を使用
して繰り返し行った際の50回目の結果を表5に示す。
また、実施例Bの条件でのNiめっきを1つのめっき浴
を使用して繰り返し行った際の50回目の結果を表6に
示す。表5と表6から、本発明の電気めっき方法は、磁
石を構成する金属成分の溶出に伴うめっき液の劣化を効
果的に抑制し、1つのめっき浴を50回繰り返して使用
しても優れた耐食性を示すめっき被膜を表面に有する磁
石を安定に量産することができること、その効果はpH
6以上の方が優れることがわかった。
Example D: Influence of Deterioration of Plating Solution During Mass Production Table 5 shows the results of the 50th cycle when Ni plating under the conditions of Example A was repeated using one plating bath.
Table 6 shows the results of the 50th cycle when Ni plating under the conditions of Example B was repeatedly performed using one plating bath. From Tables 5 and 6, the electroplating method of the present invention effectively suppresses the deterioration of the plating solution due to the elution of the metal components constituting the magnet, and is excellent even when one plating bath is used 50 times. Stable production of magnets with plated coatings showing excellent corrosion resistance on the surface.
It turned out that 6 or more was better.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】実施例E:Znめっき 塩化亜鉛70g/L、塩化カリウム200g/L、ホウ
酸25g/Lからなり、pH5.8の液温25℃のめっ
き浴を使用し、表7に示す(a)めっき開始から5分後
までに設定した電流密度、(b)その間の平均成膜速度
(n=10の実測値)、(c)めっき開始から5分後以
降に設定した電流密度にて膜厚が15μmのZnめっき
被膜を磁石表面に形成した。形成されためっき被膜の平
均膜厚(n=10の実測値)とプレッシャー・クッカー
・テスト(120℃×100%RH×2気圧×72時
間)による耐食性評価結果を表7に示す。表7から、ラ
ック治具を使用して、個々の磁石を、磁石同士が離間す
る状態にせしめ、かつ、めっき開始から5分間は0.1
μm/分以上の平均成膜速度で成膜したことで、優れた
耐食性を示すめっき被膜を表面に有する磁石を安定に量
産することができることがわかった。
Example E: Zn Plating A plating bath composed of 70 g / L of zinc chloride, 200 g / L of potassium chloride, and 25 g / L of boric acid and having a pH of 5.8 and a temperature of 25 ° C. was used. ) The current density set up to 5 minutes after the start of plating, (b) the average film forming rate during that time (actually measured value of n = 10), and (c) the film density at the current density set 5 minutes after the start of plating. A Zn plating film having a thickness of 15 μm was formed on the magnet surface. Table 7 shows the average thickness (measured value of n = 10) of the formed plating film and the corrosion resistance evaluation result by a pressure cooker test (120 ° C. × 100% RH × 2 atm × 72 hours). From Table 7, using a rack jig, the individual magnets were placed in a state where the magnets were separated from each other, and 0.1 mm was used for 5 minutes from the start of plating.
It was found that by forming a film at an average film forming rate of μm / min or more, a magnet having a plating film exhibiting excellent corrosion resistance on its surface can be stably mass-produced.

【0037】[0037]

【表7】 [Table 7]

【0038】実施例F:Cuめっき 硫酸銅・5水和物220g/L、硫酸50g/L、塩化
銅・2水和物120mg/Lからなり、pH0〜2の液
温25℃のめっき浴を使用し、表8に示す(a)めっき
開始から5分後までに設定した電流密度、(b)その間
の平均成膜速度(n=10の実測値)、(c)めっき開
始から5分後以降に設定した電流密度にて膜厚が10μ
mのCuめっき被膜を磁石表面に形成した。形成された
めっき被膜の平均膜厚(n=10の実測値)とプレッシ
ャー・クッカー・テスト(120℃×100%RH×2
気圧×72時間)による耐食性評価結果を表8に示す。
表8から、ラック治具を使用して、個々の磁石を、磁石
同士が離間する状態にせしめ、かつ、めっき開始から5
分間は0.1μm/分以上の平均成膜速度で成膜したこ
とで、優れた耐食性を示すめっき被膜を表面に有する磁
石を安定に量産することができることがわかった。
Example F: Cu plating A plating bath composed of 220 g / L of copper sulfate pentahydrate, 50 g / L of sulfuric acid, and 120 mg / L of copper chloride dihydrate was used. Table 8 shows (a) current density set up to 5 minutes after the start of plating, (b) average film formation rate (measured value of n = 10), (c) 5 minutes after the start of plating The film thickness is 10μ at the current density set thereafter.
m Cu plating film was formed on the magnet surface. The average thickness of the formed plating film (actual value of n = 10) and the pressure cooker test (120 ° C. × 100% RH × 2)
Table 8 shows the results of the corrosion resistance evaluation according to (atmospheric pressure × 72 hours).
From Table 8, using the rack jig, the individual magnets were separated from each other by magnets, and 5 mm from the start of plating.
It was found that by forming a film at an average film forming rate of 0.1 μm / min or more for a minute, a magnet having a plating film having excellent corrosion resistance on its surface can be stably mass-produced.

【0039】[0039]

【表8】 [Table 8]

【0040】[0040]

【発明の効果】本発明の電気めっき方法によれば、主相
と主相より卑な腐食電位を有する粒界相の複数の結晶相
からなるR−Fe−B系永久磁石を複数個同時に電気め
っきする方法において、個々の磁石を、磁石同士が離間
する状態にせしめ、かつ、めっき開始から膜厚が0.5
μmのめっき被膜を磁石表面に形成するまでは0.1μ
m/分以上の平均成膜速度で成膜することにより、磁石
をめっき液に浸漬した後、均一なめっき被膜を全ての磁
石に速やかに形成することで、バレル式電気めっき法が
有する種々の問題点、即ち、磁石の腐食とそれに起因す
るピンホールの発生、水素吸蔵による磁石の磁気特性の
劣化やめっき被膜との密着性の低下を解消し、薄膜でも
優れた耐食性を示すめっき被膜を表面に有するR−Fe
−B系永久磁石を安定に量産することができる。
According to the electroplating method of the present invention, a plurality of R-Fe-B permanent magnets consisting of a main phase and a plurality of crystal phases of a grain boundary phase having a corrosion potential lower than that of the main phase are simultaneously formed. In the plating method, the individual magnets are set in a state where the magnets are separated from each other, and the film thickness is 0.5 mm from the start of plating.
0.1μm until a μm plating film is formed on the magnet surface
By immersing the magnet in the plating solution by forming a film at an average film forming speed of m / min or more, a uniform plating film is quickly formed on all the magnets, thereby obtaining various types of barrel-type electroplating methods. The problem is that the corrosion of the magnet and the occurrence of pinholes due to it, the deterioration of the magnetic properties of the magnet due to the occlusion of hydrogen, and the decrease in the adhesion with the plating film are eliminated, and the plating film showing excellent corrosion resistance even with a thin film R-Fe with
-B-type permanent magnets can be stably mass-produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電気めっき方法に好適に使用される
めっき治具の概略図である。
FIG. 1 is a schematic view of a plating jig suitably used in the electroplating method of the present invention.

【符号の説明】[Explanation of symbols]

1、2 支持枠 3 磁石 4−a、4−b 内側磁石支持部材 5−a、5−b 外側磁石支持部材 6 電動式アクチュエータ 7 切替装置 8 絶縁体 9 制御部 DESCRIPTION OF SYMBOLS 1, 2 Support frame 3 Magnet 4-a, 4-b Inner magnet support member 5-a, 5-b Outer magnet support member 6 Electric actuator 7 Switching device 8 Insulator 9 Control part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/02 H01F 1/04 H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 主相と主相より卑な腐食電位を有する粒
界相の複数の結晶相からなるR−Fe−B系永久磁石を
複数個同時に電気めっきする方法において、個々の磁石
を、磁石同士が離間する状態にせしめ、かつ、めっき開
始から膜厚が0.5μmのめっき被膜を磁石表面に形成
するまでは0.1μm/分以上の平均成膜速度で成膜す
ることを特徴とする電気めっき方法。
1. A method for simultaneously electroplating a plurality of R—Fe—B permanent magnets comprising a main phase and a plurality of crystal phases of a grain boundary phase having a lower corrosion potential than the main phase, wherein each of the magnets comprises: The method is characterized in that the magnets are separated from each other, and a film is formed at an average film forming rate of 0.1 μm / min or more from the start of plating until a plating film having a thickness of 0.5 μm is formed on the magnet surface. Electroplating method.
【請求項2】 電流密度が20A/dm以下の条件で
成膜することを特徴とする請求項1記載の電気めっき方
法。
2. The electroplating method according to claim 1, wherein the film is formed under the condition that the current density is 20 A / dm 2 or less.
【請求項3】 めっきがNiめっき、Znめっきおよび
Cuめっきから選ばれるいずれかであることを特徴とす
る請求項1または2記載の電気めっき方法。
3. The electroplating method according to claim 1, wherein the plating is any one selected from Ni plating, Zn plating, and Cu plating.
【請求項4】 めっき被膜の膜厚を1μm〜25μmと
することを特徴とする請求項1乃至3のいずれかに記載
の電気めっき方法。
4. The electroplating method according to claim 1, wherein the thickness of the plating film is 1 μm to 25 μm.
【請求項5】 請求項1乃至4のいずれかに記載の電気
めっき方法により得られたことを特徴とする表面にめっ
き被膜を有するR−Fe−B系永久磁石。
5. An R—Fe—B permanent magnet having a plating film on a surface, obtained by the electroplating method according to claim 1. Description:
JP2000297044A 2000-09-28 2000-09-28 R-Fe-B permanent magnet electroplating method Expired - Lifetime JP4696347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297044A JP4696347B2 (en) 2000-09-28 2000-09-28 R-Fe-B permanent magnet electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297044A JP4696347B2 (en) 2000-09-28 2000-09-28 R-Fe-B permanent magnet electroplating method

Publications (2)

Publication Number Publication Date
JP2002105690A true JP2002105690A (en) 2002-04-10
JP4696347B2 JP4696347B2 (en) 2011-06-08

Family

ID=18779218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297044A Expired - Lifetime JP4696347B2 (en) 2000-09-28 2000-09-28 R-Fe-B permanent magnet electroplating method

Country Status (1)

Country Link
JP (1) JP4696347B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001855A1 (en) * 2003-06-27 2005-01-06 Tdk Corporation R-t-b based permanent magnet
WO2006016570A1 (en) * 2004-08-10 2006-02-16 Neomax Co., Ltd. Method for producing rare earth element based permanent magnet having copper plating film on surface thereof
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof
JP2008251648A (en) * 2007-03-29 2008-10-16 Hitachi Metals Ltd MANUFACTURING METHOD OF R-Fe-B-BASED PERMANENT MAGNET
JP2008274358A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Corrosion prevention method for sintered metal, corrosion resistant magnet and magnetic attracting device
JP2011205022A (en) * 2010-03-26 2011-10-13 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotating machine
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304713A (en) * 1988-06-02 1989-12-08 Shin Etsu Chem Co Ltd Manufacture of corrosion-resistant rare earth magnet
JPH04287302A (en) * 1991-03-15 1992-10-12 Tdk Corp Permanent magnet and its manufacture
JPH05299281A (en) * 1992-04-23 1993-11-12 Shin Etsu Chem Co Ltd Manufacture of corrosion-resistant rare earth permanent magnet
JPH10294209A (en) * 1998-01-19 1998-11-04 Sumitomo Special Metals Co Ltd Resin-molded magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304713A (en) * 1988-06-02 1989-12-08 Shin Etsu Chem Co Ltd Manufacture of corrosion-resistant rare earth magnet
JPH04287302A (en) * 1991-03-15 1992-10-12 Tdk Corp Permanent magnet and its manufacture
JPH05299281A (en) * 1992-04-23 1993-11-12 Shin Etsu Chem Co Ltd Manufacture of corrosion-resistant rare earth permanent magnet
JPH10294209A (en) * 1998-01-19 1998-11-04 Sumitomo Special Metals Co Ltd Resin-molded magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001855A1 (en) * 2003-06-27 2005-01-06 Tdk Corporation R-t-b based permanent magnet
EP2518742A1 (en) * 2003-06-27 2012-10-31 TDK Corporation R-T-B system permanent magnet
US7462403B2 (en) 2003-06-27 2008-12-09 Tdk Corporation R-T-B system permanent magnet
JP4650275B2 (en) * 2004-08-10 2011-03-16 日立金属株式会社 Rare earth permanent magnet with copper plating film on the surface
WO2006016570A1 (en) * 2004-08-10 2006-02-16 Neomax Co., Ltd. Method for producing rare earth element based permanent magnet having copper plating film on surface thereof
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof
US7785460B2 (en) 2004-08-10 2010-08-31 Hitachi Metals, Ltd. Method for producing rare earth metal-based permanent magnet having copper plating film on the surface thereof
JP2008251648A (en) * 2007-03-29 2008-10-16 Hitachi Metals Ltd MANUFACTURING METHOD OF R-Fe-B-BASED PERMANENT MAGNET
JP2008274358A (en) * 2007-04-27 2008-11-13 Tokyo Electric Power Co Inc:The Corrosion prevention method for sintered metal, corrosion resistant magnet and magnetic attracting device
JP2011205022A (en) * 2010-03-26 2011-10-13 Tdk Corp Rare-earth sintered magnet, method of manufacturing the same, and rotating machine
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
JP5013031B2 (en) * 2010-09-30 2012-08-29 日立金属株式会社 Method for forming electrolytic copper plating film on surface of rare earth permanent magnet
CN103125005A (en) * 2010-09-30 2013-05-29 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
US10770224B2 (en) 2010-09-30 2020-09-08 Hitachi Metals, Ltd. Method for forming electrolytic copper plating film on surface of rare earth metal-based permanent magnet

Also Published As

Publication number Publication date
JP4696347B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP2001073198A (en) Device for electroplating and electroplating method using this device
WO2002004714A1 (en) Electrolytic copper-plated r-t-b magnet and plating method thereof
JP4696347B2 (en) R-Fe-B permanent magnet electroplating method
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP2002158105A (en) Magnet and its manufacturing method
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
US7135103B2 (en) Preparation of soft magnetic thin film
JP4572468B2 (en) Method of using rare earth permanent magnets in water containing Cu ions and chlorine ions
EP2624266A1 (en) Method for forming electric copper plating film on surface of rare earth permanent magnet
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2001176709A (en) High anticorrosion magnet superior in magnetic characteristics and manufacturing method therefor
JP4423377B2 (en) Method for producing soft magnetic thin film and soft magnetic thin film
JP2968605B2 (en) Manufacturing method of permanent magnet
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
JPH07230928A (en) Method of surface treatment for fe-b-r magnet material
JP3724739B2 (en) Rare earth magnet manufacturing method
JP4228392B2 (en) Plating method and electronic component manufacturing method
JPH04288804A (en) Permanent magnet and manufacture thereof
JP3868380B2 (en) Plating bath, plating film manufacturing method, and rare earth magnet manufacturing method
JP2001210504A (en) R-t-b permanent magnet
JP4591729B2 (en) Surface treatment method for RTB permanent magnet
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JP2002329627A (en) Rare-earth permanent magnet and its manufacturing method
JP3650141B2 (en) permanent magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4696347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150