JP2002102987A - Heat forging method for billet - Google Patents

Heat forging method for billet

Info

Publication number
JP2002102987A
JP2002102987A JP2000297348A JP2000297348A JP2002102987A JP 2002102987 A JP2002102987 A JP 2002102987A JP 2000297348 A JP2000297348 A JP 2000297348A JP 2000297348 A JP2000297348 A JP 2000297348A JP 2002102987 A JP2002102987 A JP 2002102987A
Authority
JP
Japan
Prior art keywords
forging
round
shot
anvil
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000297348A
Other languages
Japanese (ja)
Other versions
JP3780839B2 (en
Inventor
Junpei Tajima
淳平 田嶋
Kenji Tamura
憲司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000297348A priority Critical patent/JP3780839B2/en
Publication of JP2002102987A publication Critical patent/JP2002102987A/en
Application granted granted Critical
Publication of JP3780839B2 publication Critical patent/JP3780839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat forging method for a billet capable of forging a material, whose cross-sectional shape is polygonal or circular, into a billet small in the depth of recesses and having a polygonal or circular shape. SOLUTION: In the heat forging method for forging the material into the billet whose cross-sectional shape is circular or polygonal by feeding the material, whose cross-sectional shape is polygonal or circular, in the longitudinal axial direction at the opening time of a pair of round-grooved anvils or V- grooved anvils making opening/closing operation, and rotating the material around its axial center, performing the forging for pressing down the material a plurality of times at the closing time of the round-grooved anvils or the V- grooved anvils, the rotation angle around the axial center of the material at each opening time of the anvils is made larger than 45 deg. and not more than 75 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素鋼、合金鋼、
ステンレス鋼または高合金製で、断面形状が多角形また
は円形の素材から、断面形状が円形または多角形の鋼片
に鍛造する鋼片の熱間鍛造方法に関する。
The present invention relates to carbon steel, alloy steel,
The present invention relates to a hot forging method for a steel slab which is made of stainless steel or a high alloy and has a polygonal or circular cross section to forge a steel slab having a circular or polygonal cross section.

【0002】[0002]

【従来の技術】通常、熱間鍛造によって丸鋼片を製造す
るには、次に述べる3通りの方法が用いられる。
2. Description of the Related Art Generally, the following three methods are used to produce round steel slabs by hot forging.

【0003】第1の方法は、平金敷を用いて粗成形する
方法である。すなわち、断面形状が正方形または長方形
の矩形の素材(鋼塊やブルームなど)の対向面を、1対
の平金敷を用いて交互に圧下して寸法の小さい、例え
ば、断面形状がほぼ正四角形の中間素材に成形する。次
いで、上記と同様に、中間素材のコーナ部を1対の平金
敷を用いて交互に圧下して断面形状をほぼ正八角形に成
形する工程を経て、断面形状がほぼ正十六角形またはそ
れ以上の多角形の粗丸材に粗成形する。その後、丸溝が
形成された金敷(以下、丸溝金敷という)1対を用いて
所定の外径を有する断面形状が円形の丸鋼片にスパイラ
ル鍛造により仕上成形する。
[0003] The first method is a method of performing rough molding using a flat metal sheet. That is, the opposite surface of a rectangular material (steel ingot, bloom, etc.) having a square or rectangular cross section is pressed down alternately using a pair of flat anvils to have a small size, for example, a cross section having a substantially square shape. Form into intermediate material. Next, similarly to the above, the cross-sectional shape is substantially regular hexagonal or more through a process of forming the cross-sectional shape into a substantially regular octagon by alternately pressing down the corner portions of the intermediate material using a pair of flat anvils. Is roughly formed into a polygonal coarse round material. Thereafter, using a pair of anvils having round grooves formed thereon (hereinafter referred to as “round groove anvils”), finish round forming is performed by spiral forging into round steel pieces having a predetermined outer diameter and a circular cross section.

【0004】第2の方法は、V溝が形成された金敷(以
下、V溝金敷という)を用いて粗成形する方法である。
具体的には、上記第1の方法において断面形状がほぼ正
四角形または正八角形に成形された中間素材に対して、
1対のV溝金敷を用いて断面形状がほぼ正十六角形また
はそれ以上の多角形の粗丸材に粗成形するスパイラル鍛
造を施した後、上記と同様に、丸溝金敷を用いて所定の
外径を有する断面形状が円形の丸鋼片にスパイラル鍛造
により仕上成形する。
[0004] A second method is a method of performing rough molding using an anvil provided with a V-groove (hereinafter referred to as a V-groove anvil).
Specifically, for the intermediate material whose cross-sectional shape is formed into a substantially square or regular octagon in the first method,
After performing spiral forging for roughly forming a rounded material having a polygonal cross section of approximately a regular hexagon or more using a pair of V-groove anvils, similarly to the above, using a round-groove anvil, A round steel slab having an outer diameter and a circular cross section is finish-formed by spiral forging.

【0005】第3の方法は、連続鋳造で製造された断面
形状が円形の太丸鋳片を素材とし、この素材に1対のV
溝金敷もしくは平金敷を用いて、断面形状がほぼ正十六
角形またはそれ以上の多角形の粗丸材に粗成形するスパ
イラル鍛造を施した後、上記と同様に、丸溝金敷を用い
て所定の外径を有する断面形状が円形の丸鋼片にスパイ
ラル鍛造により仕上成形する。
A third method is to use a large round cast slab having a circular cross section manufactured by continuous casting as a material, and a pair of V
Using a grooved anvil or a flat anvil, after performing a spiral forging to roughly form a cross section of a roughly round hexagonal or larger polygonal round material, in the same manner as described above, using a circular anvil A round steel slab having an outer diameter and a circular cross section is finish-formed by spiral forging.

【0006】なお、上記の方法において、スパイラル鍛
造とは、開閉作動する1対の金敷の開作動時に、素材を
軸長方向に送り込むとともに、その軸心周りに所定の角
度だけ回転させ、前記金敷の閉作動時に前記素材を圧下
する鍛造を複数回行う鍛造方法のことである。以下の説
明において、上述の複数回の鍛造におけるそれぞれの鍛
造をショットという。
In the above-mentioned method, spiral forging means that when a pair of anvils that open and close are opened, the material is fed in the axial direction and is rotated around its axis by a predetermined angle, and Is a forging method in which the forging for rolling down the material is performed a plurality of times during the closing operation of the forging. In the following description, each forging in the above-mentioned multiple forgings is called a shot.

【0007】上記のような工程を経る熱間鍛造方法にあ
っては、第1〜第3の方法のいずれの方法を採る場合に
も、仕上成形には、次に述べるような丸溝金敷が用いら
れる。
[0007] In the hot forging method through the above-described steps, in any of the first to third methods, a round groove anvil described below is used for finish molding. Used.

【0008】図1は、慣用される丸溝金敷の一例を示す
図で、同図(a)は平面図、同図(b)は(a)図のイ
−イ線矢視断面図、同図(c)は(a)図のロ−ロ線矢
視断面図である。
FIG. 1 is a view showing an example of a commonly used round groove anvil, wherein FIG. 1 (a) is a plan view, FIG. 1 (b) is a sectional view taken along the line II--II of FIG. FIG. 4C is a cross-sectional view taken along the line VII-VII of FIG.

【0009】同図に示すように、丸溝金敷1は、溝底中
央での深さがDになるようにオフセット量Gをもって形
成された曲率半径Rg、幅Hの溝底部1aと、この溝底
部1aの両側に曲率半径Rcをもって形成された逃げ部
1bとからなる半円形孔型で、金敷の長手方向の両端部
を除き、深さDが一定の丸溝を有している。また、金敷
の長手方向の両端部には曲率半径Rbの面取り部1c、
幅方向の両側にはパーチ面1fが形成されている。そし
て、得るべき丸鋼片の熱間仕上げ外径は、オフセット量
Gを調整することにより設定される。
As shown in FIG. 1, a round groove anvil 1 has a groove bottom 1 a having a radius of curvature Rg and a width H formed with an offset amount G such that the depth at the center of the groove bottom is D, and It is a semicircular hole type having a relief portion 1b formed with a radius of curvature Rc on both sides of the bottom portion 1a, and has a circular groove having a constant depth D except for both longitudinal ends of the anvil. Also, chamfered portions 1c having a radius of curvature Rb are provided at both ends in the longitudinal direction of the anvil.
Perch surfaces 1f are formed on both sides in the width direction. Then, the hot finished outer diameter of the round slab to be obtained is set by adjusting the offset amount G.

【0010】また、上記の第2および第3の方法におけ
るスパイラル鍛造による粗成形には、次に述べるような
V溝金敷が用いられる。
In the rough forming by the spiral forging in the second and third methods, a V-groove anvil described below is used.

【0011】図2は、慣用されるV溝金敷の一例を示す
図で、同図(a)は平面図、同図(b)は(a)図のイ
−イ線矢視断面図、同図(c)は(a)図のローロ線矢
視断面図である。
2A and 2B show an example of a commonly used V-groove anvil. FIG. 2A is a plan view, FIG. 2B is a sectional view taken along the line II-II of FIG. FIG. 3C is a cross-sectional view taken along the arrowed line of FIG.

【0012】同図に示すように、V溝金敷2は、溝底中
央での深さがDになるようにオフセット量Gをもって形
成された曲率半径Rgの溝底部2aと、この溝底部2a
の両側に形成された頂角αの傾斜部2dと、傾斜部の両
側に形成された曲率半径Rcの逃げ部2bとからなるV
状の孔型で、金敷の長手方向の両端部を除き、深さDが
一定のV溝を有している。また、金敷の長手方向の両端
部には曲率半径Rbの面取り部2c、幅方向の両側には
パーチ面2fが形成されている。そして、得るべき多角
形の粗丸材の対角距離は、オフセット量Gを調整するこ
とにより設定される。
As shown in FIG. 1, a V groove anvil 2 has a groove bottom 2a having a radius of curvature Rg formed with an offset G so that the depth at the center of the groove bottom is D, and a groove bottom 2a.
V formed by an inclined portion 2d having an apex angle α formed on both sides of the inclined portion and a relief portion 2b having a radius of curvature Rc formed on both sides of the inclined portion.
It has a V-shaped groove having a constant depth D except for both ends in the longitudinal direction of the anvil. A chamfer 2c having a radius of curvature Rb is formed at both ends in the longitudinal direction of the anvil, and a perch surface 2f is formed at both sides in the width direction. Then, the diagonal distance of the coarse round material of the polygon to be obtained is set by adjusting the offset amount G.

【0013】図3は、丸溝金敷を用いてスパイラル鍛造
により仕上成形する方法を説明する図で、同図(a)
は、1ショット目の鍛造後の状態を示す断面図、同図
(b)は、2ショット目の鍛造開始前の状態を示す断面
図、同図(c)は、2ショット目の鍛造後の状態を示す
断面図である。
FIG. 3 is a view for explaining a method of finish forming by spiral forging using a round groove anvil, and FIG.
Is a sectional view showing a state after forging of the first shot, FIG. 4B is a sectional view showing a state before starting forging of the second shot, and FIG. It is sectional drawing which shows a state.

【0014】同図(a)では、前記図1に示す形状の丸
溝金敷1を用いている。この丸溝金敷1は、図示を省略
したプレスに1対が対向配置され、プレスの駆動により
開閉動作する。断面形状が例えばほぼ正十六角形の素材
3は、この1対の丸溝金敷1の閉動作によりその入側で
1ショット目の鍛造が行われる。この鍛造により、素材
3は丸溝金敷1の溝底部1aに充満されるとともに、そ
の一部が丸溝金敷1の逃げ部1b間に噛み出して、噛み
出し部3aが生じる。
In FIG. 1A, a round groove anvil 1 having the shape shown in FIG. 1 is used. One pair of the round groove anvils 1 is arranged to face a press (not shown) and opens and closes by driving the press. For example, the material 3 having a substantially regular hexagonal cross section is subjected to the first shot forging on the entry side by the closing operation of the pair of round groove anvils 1. By this forging, the material 3 is filled in the groove bottom 1a of the round grooved anvil 1, and a part of the material 3 bites between the escape portions 1b of the round grooved anvil 1, thereby forming a biting portion 3a.

【0015】1ショット目の鍛造が終わり、丸溝金敷1
が開くと、図示を省略した搬送部は、素材3を軸方向に
所定量送るとともに、素材3をその軸心周りに例えば回
転角度θ=40度だけ回転させて、同図(b)に示すよ
うに、素材3の噛み出し部3aを丸溝金敷1の溝底部1
a側まで回転させる。
[0015] Forging of the first shot is completed,
Is opened, the transport unit (not shown) feeds the material 3 in the axial direction by a predetermined amount and rotates the material 3 around its axis by, for example, a rotation angle θ = 40 degrees, as shown in FIG. As described above, the protruding portion 3a of the material 3 is attached to the groove bottom 1 of the round groove anvil 1.
Rotate to a side.

【0016】その後、丸溝金敷1の閉動作により、2シ
ョット目の鍛造が行われる。2ショット目の鍛造では、
1ショット目の鍛造で生じた噛み出し部3aが溝底部1
aにより圧下されるため、噛み出し部3aは溝底部1a
に沿って流動して消滅する。このとき、噛み出し部3a
が形成されていた部分の近傍には、凹み3cが生じると
ともに新たな噛み出し部3bが生じる。この状態を同図
(c)に示す。
After that, the forging of the second shot is performed by the closing operation of the round groove anvil 1. In the second shot forging,
The protruding portion 3a generated by the first shot forging is the groove bottom 1
a, the biting portion 3a becomes the groove bottom 1a.
It flows along and disappears. At this time, the starting portion 3a
In the vicinity of the portion where is formed, a dent 3c is generated and a new biting portion 3b is generated. This state is shown in FIG.

【0017】このように2ショット目の鍛造により生じ
た凹み3cは、その後のスパイラル鍛造の終了まで残存
し、仕上成形された丸鋼片の真円度を悪化させるという
問題がある。特に、前工程である粗成形の時に、平金敷
やV溝金敷の摩耗および摩擦係数の変化などにより、粗
丸材の断面寸法が所定の寸法よりも大きくなった場合
は、1ショット目の鍛造で生じる噛み出し部3aが大き
くなって、2ショット目に生じる凹み3cも大きくな
り、鍛造後の真円度がより悪くなる。
The dents 3c formed by the second shot forging remain until the end of the subsequent spiral forging, thereby deteriorating the roundness of the finished round steel slab. In particular, when the cross-sectional dimension of the coarse round material becomes larger than a predetermined size due to abrasion of the flat anvil or the V-groove anvil and a change in friction coefficient at the time of the rough forming in the previous process, the first shot forging is performed. The resulting protruding portion 3a becomes large, the dent 3c produced in the second shot also becomes large, and the roundness after forging becomes worse.

【0018】上記の大きな噛み出し部3aが発生するの
を避けるために、粗丸材の寸法変動を見越して若干アン
ダーフィル状態、すなわち仕上成形での圧下代を小さく
し、溝底部1aに対して材料が完全に充満しない状態で
鍛造を行った場合は、仕上成形後の丸鋼片には、円周方
向および軸長方向に局所的なフラット面が残り、満足で
きる真円度の丸鋼片が得られないという問題があった。
この問題は、圧下時の幅広がり量が大きいフェライト系
ステンレス鋼や2相ステンレス鋼などを鍛造する場合、
特に顕著になる。また、上記の問題は、断面形状が多角
形または円形の素材を、V溝金敷を用いて断面形状がほ
ぼ正十六角形またはそれ以上の多角形の粗丸材に粗成形
するスパイラル鍛造の際にも生じる。
In order to avoid the occurrence of the large biting portion 3a, a slightly underfill state is set in anticipation of the dimensional variation of the coarse round material, that is, the rolling allowance in the finish molding is reduced, and the material is removed from the groove bottom 1a. When the forging is carried out in a state where is not completely filled, the round steel slab after finish forming has a local flat surface in the circumferential direction and the axial length direction, and a round steel slab with satisfactory roundness is obtained. There was a problem that it could not be obtained.
The problem is that when forging ferritic stainless steel, duplex stainless steel, etc., which have a large width spread during rolling,
It becomes particularly noticeable. In addition, the above problem is caused by a spiral forging in which a material having a polygonal or circular cross section is roughly formed into a roughly round hexagonal or larger polygonal cross section using a V-groove anvil. Also occurs.

【0019】なお、上記の図1に示す丸溝金敷1または
図2に示すV溝金敷を用いたスパイラル鍛造方法以外
に、溝を備える金敷を用いたスパイラル鍛造方法が、特
開平6−71377号公報および特開平11−5792
4号公報に開示されている。
In addition to the spiral forging method using the circular grooved anvil 1 shown in FIG. 1 or the V-groove anvil shown in FIG. 2, a spiral forging method using an anvil provided with grooves is disclosed in Japanese Patent Laid-Open No. 6-71377. Gazette and JP-A-11-5792
No. 4 discloses this.

【0020】特開平6−71377号公報に開示された
鍛造方法は、入側から出側に向かって連続的に溝の径が
小さくなるテーパ状の丸溝を有する金敷を用い、回転角
度45度/ショットのスパイラル鍛造により、断面形状
が四角形の素材を断面形状が円形の丸鋼片に直接仕上成
形する鍛造方法である。
The forging method disclosed in Japanese Patent Application Laid-Open No. 6-71377 uses an anvil having a tapered round groove in which the diameter of the groove continuously decreases from the entry side to the exit side, and has a rotation angle of 45 degrees. / This is a forging method in which a material having a square cross section is directly finish-formed into a round steel piece having a circular cross section by spiral forging of shots.

【0021】また、特開平11−57924号公報に開
示された鍛造方法は、入側にV溝で構成される導入部、
出側に丸溝で構成される仕上部、中間にV溝から丸溝に
変化する形状の溝で構成された連結部が形成された金敷
を用い、回転角度45度/ショットのスパイラル鍛造に
より仕上成形する鍛造方法である。
In addition, the forging method disclosed in Japanese Patent Application Laid-Open No. 11-57924 discloses a forging portion having a V-groove on the entry side,
Finished by spiral forging with a rotation angle of 45 degrees / shot, using a metal finish with a connecting part formed by a groove that changes from a V-groove to a round groove in the middle, with a finish made of a round groove on the exit side. This is a forging method for molding.

【0022】しかし、これらいずれの鍛造方法の場合
も、鍛造の際には、金敷にオフセット量G(前記図1
(b)参照)が設定されるため、1対の金敷の間には隙
間が存在し、1ショット目の鍛造により噛み出し部が発
生することは避けられない。また、その後、素材をその
軸心周りに45度回転させた後、2ショット目の鍛造を
行うため、大きな凹みの発生を防ぐことはできない。
However, in any of these forging methods, the offset amount G (see FIG.
(Refer to (b)), there is a gap between the pair of anvils, and it is inevitable that a forging of the first shot causes a biting portion. After that, the material is rotated 45 degrees around its axis, and then the second shot is forged, so that the occurrence of a large dent cannot be prevented.

【0023】[0023]

【発明が解決しようとする課題】本発明の課題は、粗成
形および仕上成形のいずれの場合にも局部的に生じる凹
みの深さを、極力小さくすることのできる鋼片の熱間鍛
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for hot forging a steel slab which can minimize the depth of a locally formed dent in both rough forming and finish forming. To provide.

【0024】[0024]

【課題を解決するための手段】本発明の要旨は、開閉作
動する1対の丸溝金敷またはV溝金敷の開作動時に断面
形状が多角形または円形の素材を軸長方向に送り込むと
ともにその軸心周りに回転させ、前記丸溝金敷またはV
溝金敷の閉作動時に前記素材を圧下する鍛造を複数回行
って、断面形状が円形または多角形の鋼片に鍛造する熱
間鍛造方法において、前記金敷の各開作動時における素
材の軸心周りの回転角度を45度を超え75度以下とす
ることを特徴とする鋼片の熱間鍛造方法である。
SUMMARY OF THE INVENTION The gist of the present invention is that a material having a polygonal or circular cross section is fed in the axial direction at the time of opening a pair of round groove anvils or V-groove anvils that open and close, and the shaft thereof is rotated. Rotate around the center,
In the hot forging method of performing forging to reduce the material a plurality of times during the closing operation of the grooved anvil and forging into a steel slab having a circular or polygonal cross section, the forging of the material at each opening operation of the anvil is performed. A hot forging method for a steel slab, wherein the rotation angle is more than 45 degrees and not more than 75 degrees.

【0025】なお、本発明において、開作動時とは、開
閉作動する金敷が素材と接触していないときをいう。
In the present invention, the time of the opening operation means the time when the anvil opening and closing operation is not in contact with the material.

【0026】本発明者らは、断面形状がほぼ正十六角形
の素材を、丸溝金敷を用いたスパイラル鍛造により、断
面が円形の丸鋼片に仕上成形するする際の、前記金敷の
開作動時における素材の軸周りの回転角度の影響を調査
して次の知見を得た。本発明は、この知見に基づき成さ
れた発明である。
[0026] The present inventors have found that when a material having a substantially hexagonal cross section is formed into a round steel slab having a circular cross section by spiral forging using a round groove anvil, the anvil is opened. The following findings were obtained by investigating the effect of the rotation angle about the axis of the material during operation. The present invention is an invention made based on this finding.

【0027】1)素材をスパイラル鍛造する際、素材が
丸溝金敷の入側で最初に鍛造されるときに生じる噛み出
し部が最も大きく、次の鍛造により噛み出し部が圧下さ
れるときに、この噛み出し部の近傍に局部的な凹みが生
じる。
1) When the material is spirally forged, the largest portion is formed when the material is first forged on the entry side of the round groove anvil. A local dent is formed in the vicinity of the biting portion.

【0028】2)この凹みは、スパイラル鍛造の終了ま
で残存して鍛造された丸鋼片の真円度に大きく影響す
る。
2) This dent has a great influence on the roundness of the forged round steel piece remaining until the completion of the spiral forging.

【0029】3)また、この凹みは、素材の回転角度の
如何に拘わらず発生するが、凹みの深さは、素材の軸心
周りの回転角度によって異なり、回転角度が45度を超
え75度以下の場合は小さい。
3) This dent occurs regardless of the rotation angle of the material, but the depth of the dent depends on the rotation angle around the axis of the material, and the rotation angle is more than 45 degrees and 75 degrees. It is small in the following cases.

【0030】[0030]

【発明の実施の形態】以下、本発明に係わる鋼片の熱間
鍛造方法について、図面に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for hot forging a billet according to the present invention will be described in detail with reference to the drawings.

【0031】本発明の熱間鍛造方法は、例えば、前記図
3により説明したように、丸溝金敷を用いたスパイラル
鍛造により仕上成形する方法を前提とする熱間鍛造方法
である。
The hot forging method of the present invention is, for example, a hot forging method on the premise of a method of finish forming by spiral forging using a round groove anvil as described with reference to FIG.

【0032】すなわち、同図(a)に示すように、図示
を省略したプレスに対向配置され、プレスの駆動により
開閉動作する1対の丸溝金敷1により、断面形状がほぼ
正十六角形の素材3の1ショット目の鍛造が行われる。
That is, as shown in FIG. 1A, a pair of round groove anvils 1 which are arranged opposite to a press (not shown) and open / close by driving the press, have a substantially hexagonal cross section. Forging of the first shot of the material 3 is performed.

【0033】1ショット目の鍛造が終わり、丸溝金敷1
が開くと、同図(b)に示すように、図示を省略した搬
送部は、素材3を軸方向に所定量送るとともに、素材3
をその軸心周りに回転角度θだけ回転させ、同図(c)
に示すように、2ショット目の鍛造が行われる。上記の
鍛造を複数回繰り返すことにより、断面形状がほぼ正十
六角形の素材が丸鋼片に仕上成形される。
After the forging of the first shot is completed, the round groove anvil 1
Is opened, as shown in FIG. 2B, the transport unit (not shown) feeds the material 3 in the axial direction by a predetermined amount, and
Is rotated around its axis by a rotation angle θ, and FIG.
As shown in the figure, forging of the second shot is performed. By repeating the above forging a plurality of times, a material having a substantially regular hexagonal cross section is finish-formed into a round steel slab.

【0034】上記の2ショット目の鍛造の際に、凹み3
cが生じるのは前述の通りであるが、その理由を図4お
よび図5に基づいて説明する。
In the forging of the second shot, the dent 3
The reason why c occurs is as described above, and the reason will be described with reference to FIGS.

【0035】図4は、素材の軸心周りの回転角度が40
度の場合の、2ショット目の鍛造により生じる凹みを説
明する上半分断面図で、同図(a)は、2ショット目の
鍛造開始前の状態を示す図、同図(b)は、2ショット
目の鍛造後の状態を示す図である。また、図5は、素材
の軸心周りの回転角度が90度の場合の、2ショット目
の鍛造により生じる凹みを説明する上半分断面図で、同
図(a)は、2ショット目の鍛造開始前の状態を示す
図、同図(b)は、2ショット目の鍛造後の状態を示す
図である。
FIG. 4 shows that the rotation angle around the material axis is 40 degrees.
(A) is a diagram showing a state before the start of forging of the second shot, and (b) of FIG. It is a figure which shows the state after forging of a shot. FIG. 5 is an upper half sectional view for explaining a dent caused by the second shot forging when the rotation angle around the axis of the material is 90 degrees, and FIG. 5A shows the second shot forging. FIG. 4B shows a state before the start, and FIG. 4B shows a state after forging of the second shot.

【0036】図4に示すように、素材3の軸心周りの回
転角度が40度程度と小さい場合は、同図(a)に示す
噛み出し部3aが、2ショット目の鍛造により逃げ部1
b方向へ流動するのに伴って、噛み出し部3aの溝底部
1a側の付け根3dの部分に同図(b)に示すような凹
み3cが生じる。
As shown in FIG. 4, when the rotation angle about the axis of the material 3 is as small as about 40 degrees, the biting portion 3a shown in FIG.
As the fluid flows in the direction b, a recess 3c as shown in FIG. 3B is formed at the base 3d of the protruding portion 3a on the groove bottom 1a side.

【0037】一方、図5に示すように、素材3の軸心周
りの回転角度が90度と大きい場合は、同図(a)に示
す噛み出し部3aが、2ショット目の鍛造により素材3
内に押し込まれて、噛み出し部3aの両側の付け根3
d、3dの部分に同図(b)に示すような凹み3c、3
cが生じる。
On the other hand, as shown in FIG. 5, when the rotation angle of the material 3 around the axis is as large as 90 degrees, the biting portion 3a shown in FIG.
The base 3 on both sides of the protrusion 3a
The recesses 3c, 3d as shown in FIG.
c occurs.

【0038】このように、素材3の軸心周りの回転角度
が40度の場合は、噛み出し部3aの溝底部1a側の付
け根3dに、回転角度が90度の場合は、噛み出し部3
aの両側の付け根3d、3dに凹み3cが生じる。この
凹み3cは、素材の軸心周りの回転角度が、40度を超
え90度未満の場合にも、噛み出し部3aの一方の付け
根3dまたは両側の付け根3d、3dに生じる。
As described above, when the rotation angle about the axis of the material 3 is 40 degrees, the root 3d on the side of the groove bottom 1a of the biting portion 3a is attached to the root 3d when the rotation angle is 90 degrees.
A dent 3c is formed in the roots 3d, 3d on both sides of a. The recess 3c is formed at one of the roots 3d of the protrusion 3a or at both of the roots 3d, 3d even when the rotation angle around the axis of the material is more than 40 degrees and less than 90 degrees.

【0039】図6は、丸溝金型を用いて仕上成形する場
合の、1ショット目と2ショット目の間の素材3の軸心
周りの回転角度と、2ショット目の鍛造終了後の凹みの
深さとの関係を示す図である。同図に示すように、回転
角度が30度から45度では、凹みの深さは最も大き
い。しかし、回転角度が45度を超えると凹みの深さは
急激に小さくなり、回転角度が50度では凹みの深さは
最も小さくなる。回転角度が50度より大きくなると、
凹みの深さは若干大きくなるがほぼ安定し、75度を超
えると凹みの深さは再び大きくなる。
FIG. 6 shows the rotation angle around the axis of the material 3 between the first shot and the second shot when the finish molding is performed using the round groove mold, and the dent after the completion of the forging of the second shot. FIG. 5 is a diagram showing a relationship with the depth of the image. As shown in the figure, when the rotation angle is 30 degrees to 45 degrees, the depth of the dent is largest. However, when the rotation angle exceeds 45 degrees, the depth of the dent sharply decreases, and when the rotation angle is 50 degrees, the depth of the dent becomes minimum. When the rotation angle is larger than 50 degrees,
The depth of the depression is slightly increased but is almost stable, and when it exceeds 75 degrees, the depth of the depression is increased again.

【0040】このように、凹みの深さは、素材3の軸心
周りの回転角度に影響され、素材の回転角度を45度を
超え75度以下とすれば、凹みの深さを小さくすること
ができる。したがって、本発明の鍛造方法では、素材3
の軸心周りの回転角度を45度を超え、75度以下とす
る必要がある。なお、前記の凹みの深さをより小さくす
るためには、回転角度の下限を47度とするのが望まし
く、50度とするのがより望ましい。
As described above, the depth of the dent is affected by the rotation angle about the axis of the material 3. If the rotation angle of the material is more than 45 degrees and not more than 75 degrees, the depth of the dent can be reduced. Can be. Therefore, in the forging method of the present invention, the material 3
Must be greater than 45 degrees and less than or equal to 75 degrees. In order to further reduce the depth of the recess, the lower limit of the rotation angle is desirably set to 47 degrees, and more desirably 50 degrees.

【0041】2ショット目の鍛造により、1ショット目
の鍛造で生じた噛み出し部が消滅した素材3には、前記
図3(c)に示す小さな凹み3cと、2ショット目の鍛
造による噛み出し部3bが生じる。この素材3を前記と
同様に軸方向に所定量送るとともにその軸心周りに45
度を超え、75度以下回転させた後、3ショット目の鍛
造を行う。2ショット目の鍛造により生じた噛み出し部
3bは、1ショット目の鍛造で生じた噛み出し部3aに
比べ小さい。したがって、3ショット目の鍛造により生
じる凹みの深さも小さい。
The material 3 in which the extruded portion generated by the forging of the first shot has disappeared by the forging of the second shot has a small dent 3c shown in FIG. The part 3b is generated. This material 3 is sent in a predetermined amount in the axial direction in the same manner as described above, and 45
After rotating over 75 degrees and below 75 degrees, forging of the third shot is performed. The biting portion 3b generated by the second shot forging is smaller than the biting portion 3a generated by the first shot forging. Therefore, the depth of the dent caused by the third shot forging is also small.

【0042】このようにして、素材3は連続してスパイ
ラル鍛造され、断面形状がほぼ真円の丸鋼片に仕上成形
される。
In this way, the raw material 3 is continuously forged by spiral forging and finish-formed into a round steel piece having a substantially perfect cross section.

【0043】なお、上記の説明では、丸溝金敷を用い、
断面形状が正十六角形の素材を丸鋼片に仕上成形する場
合について説明したが、金敷としてV溝金敷を用いても
よく、素材の断面形状が、正十六角形以外の多角形であ
ってもよい。また、本発明の鍛造方法は、V溝金敷を用
い、断面形状が多角形または円形の素材を、断面寸法が
前記素材より小さい断面形状が多角形の粗丸材に粗成形
する場合にも適用することができる。
In the above description, a round groove anvil is used.
Although a case where a material having a cross-sectional shape of a regular hexagon is finish-formed into a round steel piece has been described, a V-groove anvil may be used as the metal anvil, and the material has a polygonal shape other than a regular hexagon. You may. Further, the forging method of the present invention is also applied to a case where a material having a polygonal or circular cross-section is roughly formed into a coarse round material having a polygonal cross-section smaller than the material by using a V-groove anvil. be able to.

【0044】[0044]

【実施例】SUS316製で、長さ約2000mm、一
辺の平均寸法が490mmの断面形状が矩形の鋼塊40
本を素材とし、この素材を1290℃に加熱して1ヒー
トで外径178mmの丸鋼片に鍛造するに当たり、平金
敷を用いて対辺寸法が184mmの断面形状が正十六角
形の粗丸材に粗成形し、丸溝金敷を用いて丸鋼片に仕上
成形した。
EXAMPLE A rectangular ingot 40 made of SUS316 and having a length of about 2000 mm and an average side length of 490 mm and a rectangular cross section.
Using the book as a material, this material was heated to 1290 ° C and forged into a round steel piece with an outer diameter of 178 mm in one heat. It was roughly formed and finish-formed into a round steel slab using a round groove anvil.

【0045】丸溝金敷は、熱間仕上げ径172〜184
mm共用の図1に示す形状で、G=11mm、D=81
mm、Rg=92mm、H=159.3mm、Rc=7
0mm、Rb=40mm、全長が300mmのものを用
い、圧下時のパーチ面1f間距離を19.5mmにセッ
トした。仕上成形は、送り込み量23mm/ショットの
条件によるスパイラル鍛造とし、熱間仕上げ外径18
1.5mm、長さ15000mmの丸鋼片に仕上成形し
た。
The round groove anvil has a hot finished diameter of 172 to 184.
1 mm, G = 11 mm, D = 81
mm, Rg = 92 mm, H = 159.3 mm, Rc = 7
0 mm, Rb = 40 mm, and a total length of 300 mm were used, and the distance between the perch surfaces 1f at the time of reduction was set to 19.5 mm. The finish forming is a spiral forging with a feed amount of 23 mm / shot and a hot finish outer diameter of 18
A 1.5 mm round steel slab having a length of 15000 mm was finish-formed.

【0046】前記の仕上成形において、スパイラル鍛造
における回転角度を、本発明例として50度/ショット
および75度/ショットに設定し、比較例では、45度
/ショットおよび80度/ショットに設定して、各10
本の丸鋼片に仕上成形した。これらの丸鋼片を室温まで
大気放冷した後、丸鋼片の長手方向の中央部と端部から
4000mm離間した位置において、周方向に30度ピ
ッチで外径を測定し、各位置における真円度を測定し
た。また、各丸鋼片の全長を目視観察し、凹みの最も著
しい部分の凹み量を測定した。なお、真円度は、長手方
向各位置における最大外径と最小外径の差とした。
In the finish forming described above, the rotation angle in the spiral forging is set to 50 ° / shot and 75 ° / shot as an example of the present invention, and is set to 45 ° / shot and 80 ° / shot in the comparative example. , Each 10
Finished into round steel slabs. After allowing these round slabs to cool to room temperature in the atmosphere, the outer diameter was measured at a pitch of 30 degrees in the circumferential direction at a position 4000 mm away from the center and the end in the longitudinal direction of the round slab, and the true diameter at each position was measured. The circularity was measured. Further, the entire length of each round steel slab was visually observed, and the dent amount of the most significant dent portion was measured. The roundness was defined as the difference between the maximum outer diameter and the minimum outer diameter at each position in the longitudinal direction.

【0047】その結果、回転角度が50度/ショットの
本発明例では、真円度2.0〜0.6mm、凹みの深さ
1.0〜0.3mm、回転角度が75度/ショットの本
発明例では、真円度2.6〜1.0mm、凹みの深さ
1.3〜0.5mmであった。これに対し、回転角度が
45度/ショットの比較例では、真円度4.1〜3.0
mm、凹みの深さ2.1〜1.5mm、回転角度が80
度/ショットの比較例では、真円度3.6〜2.8m
m、凹みの深さ1.8〜1.4mmであった。以上のよ
うに本発明例では、比較例に比べて真円度に優れ、また
凹みの深さも小さい。
As a result, in the example of the present invention in which the rotation angle is 50 degrees / shot, the roundness is 2.0 to 0.6 mm, the depth of the recess is 1.0 to 0.3 mm, and the rotation angle is 75 degrees / shot. In the example of the present invention, the roundness was 2.6 to 1.0 mm and the depth of the dent was 1.3 to 0.5 mm. On the other hand, in the comparative example in which the rotation angle is 45 degrees / shot, the roundness is 4.1 to 3.0.
mm, recess depth 2.1 to 1.5 mm, rotation angle 80
In the comparative example of the degree / shot, the roundness is 3.6 to 2.8 m.
m, the depth of the dent was 1.8 to 1.4 mm. As described above, in the example of the present invention, the roundness is superior and the depth of the recess is smaller than that of the comparative example.

【0048】[0048]

【発明の効果】本発明の熱間鍛造方法によれば、凹みの
深さの小さい鋼片を製造することができるので、丸鋼片
の粗成形や仕上成形に採用すれば真円度に優れた丸鋼片
を製造することができる。
According to the hot forging method of the present invention, a steel slab having a small depth of a dent can be manufactured. Round steel slabs can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】慣用される丸溝金敷の一例を示す図で、同図
(a)は平面図、同図(b)は(a)図のイ−イ線矢視
断面図、同図(c)は(a)図のロ−ロ線矢視断面図で
ある。
FIG. 1 is a view showing an example of a commonly used round groove anvil, in which FIG. 1 (a) is a plan view, FIG. 1 (b) is a sectional view taken along the line II in FIG. 1 (a), and FIG. (A) is a cross-sectional view taken along the roll line in (a).

【図2】慣用されるV溝金敷の一例を示す図で、同図
(a)は平面図、同図(b)は(a)図のイ−イ線矢視
断面図、同図(c)は(a)図のロ−ロ線矢視断面図で
ある。
2 (a) is a plan view, FIG. 2 (b) is a sectional view taken along the line II in FIG. 2 (a), and FIG. 2 (c). (A) is a cross-sectional view taken along the roll line in (a).

【図3】丸溝金敷を用いてスパイラル鍛造により仕上成
形する方法を説明する図で、同図(a)は、1ショット
目の鍛造後の状態を示す断面図、同図(b)は、2ショ
ット目の鍛造開始前の状態を示す断面図、同図(c)
は、2ショット目の鍛造後の状態を示す断面図である。
FIG. 3 is a view for explaining a method of finish forming by spiral forging using a round groove anvil, and FIG. 3 (a) is a cross-sectional view showing a state after forging of a first shot, and FIG. Sectional view showing the state before the start of forging of the second shot, FIG.
FIG. 4 is a sectional view showing a state after forging of a second shot.

【図4】素材の軸心周りの回転角度が40度の場合の、
2ショット目の鍛造により生じる凹みを説明する上半分
断面図で、同図(a)は、2ショット目の鍛造開始前の
状態を示す図、同図(b)は、2ショット目の鍛造後の
状態を示す図である。
FIG. 4 shows a case where the rotation angle around the material axis is 40 degrees.
5A is a top half cross-sectional view for explaining a dent caused by forging of a second shot; FIG. 5A shows a state before starting forging of a second shot; FIG. It is a figure showing the state of.

【図5】素材の軸心周りの回転角度が90度の場合の、
2ショット目の鍛造により生じる凹みを説明する上半分
断面図で、同図(a)は、2ショット目の鍛造開始前の
状態を示す図、同図(b)は、2ショット目の鍛造後の
状態を示す図である。
FIG. 5 shows a case where the rotation angle around the axis of the material is 90 degrees.
5A is a top half cross-sectional view for explaining a dent caused by forging of a second shot; FIG. 5A shows a state before starting forging of a second shot; FIG. It is a figure showing the state of.

【図6】丸溝金型を用いて仕上成形する場合の、1ショ
ット目と2ショット目の間の素材の軸心周りの回転角度
と、2ショット目の鍛造終了後の凹みの深さとの関係を
示す図である。
FIG. 6 shows the relationship between the rotation angle around the axis of the material between the first shot and the second shot and the depth of the dent after the completion of the forging in the second shot in the case of finish molding using a round groove mold. It is a figure showing a relation.

【符号の説明】[Explanation of symbols]

1 :丸溝金敷、 1a:溝底部、 1b:逃げ部、 1c:面取り部、 1f:パーチ面、 2 :V溝金敷、 2a:溝底部、 2b:逃げ部、 2c:面取り部、 2d:傾斜部、 2f:パーチ面、 3 :素材、 3a:噛み出し部、 3b:噛み出し部、 3c:凹み、 3d:付け根。 1: round groove anvil, 1a: groove bottom, 1b: relief, 1c: chamfer, 1f: perch surface, 2: V groove anvil, 2a: groove bottom, 2b: relief, 2c: chamfer, 2d: slope Part, 2f: perch surface, 3: material, 3a: biting part, 3b: biting part, 3c: dent, 3d: base.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開閉作動する1対の丸溝金敷またはV溝金
敷の開作動時に断面形状が多角形または円形の素材を軸
長方向に送り込むとともにその軸心周りに回転させ、前
記丸溝金敷またはV溝金敷の閉作動時に前記素材を圧下
する鍛造を複数回行って、断面形状が円形または多角形
の鋼片に鍛造する熱間鍛造方法において、前記金敷の各
開作動時における素材の軸心周りの回転角度を45度を
超え75度以下とすることを特徴とする鋼片の熱間鍛造
方法。
When a pair of round groove anvils or V-groove anvils that open and close are opened, a material having a polygonal or circular cross-section is fed in the axial direction and rotated about its axis to rotate. Alternatively, in a hot forging method in which forging is performed a plurality of times to reduce the material at the time of closing operation of the V-groove anvil and forging into a steel slab having a circular or polygonal cross section, the shaft of the material at each opening operation of the anvil is provided. A hot forging method for a steel slab, wherein a rotation angle around a center is more than 45 degrees and 75 degrees or less.
JP2000297348A 2000-09-28 2000-09-28 Hot forging method for billets Expired - Fee Related JP3780839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000297348A JP3780839B2 (en) 2000-09-28 2000-09-28 Hot forging method for billets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000297348A JP3780839B2 (en) 2000-09-28 2000-09-28 Hot forging method for billets

Publications (2)

Publication Number Publication Date
JP2002102987A true JP2002102987A (en) 2002-04-09
JP3780839B2 JP3780839B2 (en) 2006-05-31

Family

ID=18779479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000297348A Expired - Fee Related JP3780839B2 (en) 2000-09-28 2000-09-28 Hot forging method for billets

Country Status (1)

Country Link
JP (1) JP3780839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196026A (en) * 2015-04-06 2016-11-24 日立金属株式会社 Hot forging mold and hot forging method
CN106424512A (en) * 2016-12-26 2017-02-22 攀钢集团江油长城特殊钢有限公司 Concave anvil used for forging and forging device
CN112916776A (en) * 2020-12-29 2021-06-08 天津重型装备工程研究有限公司 Full-coverage forging attachment and forging method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196026A (en) * 2015-04-06 2016-11-24 日立金属株式会社 Hot forging mold and hot forging method
CN106424512A (en) * 2016-12-26 2017-02-22 攀钢集团江油长城特殊钢有限公司 Concave anvil used for forging and forging device
CN106424512B (en) * 2016-12-26 2018-06-01 攀钢集团江油长城特殊钢有限公司 A kind of forging concave surface anvil and forging apparatus
CN112916776A (en) * 2020-12-29 2021-06-08 天津重型装备工程研究有限公司 Full-coverage forging attachment and forging method
CN112916776B (en) * 2020-12-29 2022-08-16 天津重型装备工程研究有限公司 Full-coverage forging attachment and forging method

Also Published As

Publication number Publication date
JP3780839B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US8381384B2 (en) Shaped direct chill aluminum ingot
WO2017158853A1 (en) Rolling flat die for screw component and rolling working method
JP2002102987A (en) Heat forging method for billet
US7278286B2 (en) Rolling die and a method of making a rod with a ball portion
JP4875588B2 (en) Round bar material forging method
SE446248B (en) VIEW THE SHAPING OF A BALK CREW
JP3480257B2 (en) Round groove anvil and hot forging method of round steel slab using this anvil
LU84440A1 (en) BLANK PROFILES, THEIR PROCESSES FOR OBTAINING AND IMPROVING THE UNIVERSAL ROLLING OF RAILS
US4211104A (en) Cold drawing die for drawing polygonal shapes
CA2096481C (en) Mould for continuously casting metal and a method of manufacturing the mould
JPH07164003A (en) Manufacture of rough shape slab
JPH0994623A (en) Manufacture of metallic tube with spiral fin
JP2512240B2 (en) Rough rolling method for Z-shaped steel sheet pile
JP2005238290A (en) Method for producing metal slab
JP2005152904A (en) Stepped anvil for forging and method for manufacturing stepped shaft-shaped good using the same
JP3266053B2 (en) Anvil for free forging
JP2003010939A (en) Rolling tool
JP2503484B2 (en) Forging method
EP4342598A1 (en) Method of rolling balls
JPS5819373B2 (en) Forging method for metal materials
PL228587B1 (en) Tools and the method for skew rolling ball forgings
RU2288803C1 (en) Method for forging ingots in forging apparatus with four strikers
JPH0360802A (en) Manufacture of angle steel
JP4389639B2 (en) Ingot rolling method
JPH0426921B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Ref document number: 3780839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees