JP2002102187A - Living body detection device - Google Patents

Living body detection device

Info

Publication number
JP2002102187A
JP2002102187A JP2000300043A JP2000300043A JP2002102187A JP 2002102187 A JP2002102187 A JP 2002102187A JP 2000300043 A JP2000300043 A JP 2000300043A JP 2000300043 A JP2000300043 A JP 2000300043A JP 2002102187 A JP2002102187 A JP 2002102187A
Authority
JP
Japan
Prior art keywords
output
living body
frequency
waveform
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000300043A
Other languages
Japanese (ja)
Inventor
Yoshiaki Watanabe
義明 渡邉
Hiroyuki Ogino
弘之 荻野
Yumiko Hara
由美子 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000300043A priority Critical patent/JP2002102187A/en
Publication of JP2002102187A publication Critical patent/JP2002102187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Invalid Beds And Related Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably detect a living body even when output from a vibration sensor is low. SOLUTION: Time series data is converted into frequency series data with a frequency analyzing means 5 in order to evaluate the periodicity of the output from the vibration sensor 2 provided under a mattress 1, and featured values are extracted with a featured value extraction means 6 to detect the presence/ absence of a living body on the mattress 1 based on the amount of the featured value. By doing this, even when the mattress is placed on a hard tatami floor 10 and the vibration sensor 2 vibrates so hardly that the output is low, the presence/absence of the living body can be reliably detected by using the featured values periodically generated from breathing or heart beat activity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、座席やベッド等の
生体の在/不在を検出する生体検出装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body detecting device for detecting the presence / absence of a living body such as a seat and a bed.

【0002】[0002]

【従来の技術】従来この種の生体検出装置は、例えば特
開平06−317676号公報に開示されるようなもの
であった。図8に従来の生体検出装置のブロック図を示
す。すなわち、20は座席18の表布19に配設された
可とう性のある圧電素子、21は圧電素子20の出力信
号を増幅する増幅手段、22は増幅手段21の出力のあ
る特定の周波数成分をろ波するフィルター、23はフィ
ルター22の出力信号の一定時間の最大変位量を検出し
出力する最大変位量検出手段、24は最大変位量検出手
段23の出力から座席に座った生体である人体の存在の
有無を判定する判定手段である。
2. Description of the Related Art Conventionally, this kind of living body detecting apparatus has been disclosed, for example, in Japanese Patent Application Laid-Open No. 06-317676. FIG. 8 shows a block diagram of a conventional living body detection device. That is, reference numeral 20 denotes a flexible piezoelectric element disposed on the surface cloth 19 of the seat 18, reference numeral 21 denotes an amplifying means for amplifying an output signal of the piezoelectric element 20, and reference numeral 22 denotes a specific frequency component output from the amplifying means 21. 23 is a maximum displacement detecting means for detecting and outputting the maximum displacement of the output signal of the filter 22 for a certain period of time, and 24 is a human body which is a living body sitting on a seat from the output of the maximum displacement detecting means 23. It is a determination means for determining the presence or absence of.

【0003】図9に従来の生体検出装置の最大変位量検
出手段23の出力図を示す。ここで、人体が座席18に
着座すると座席18の表布19に配設された圧電素子2
0が変形を受け、圧電効果により電圧が発生する。この
発生信号には、図9のAのように人の着座時には着座の
衝撃により一時的に大きな信号が現われるが、人体が安
静にしていると、Bで示すように、人体の心拍や呼吸に
よる細かな体動信号が現われる。人体が存在しなければ
Cで示すように出力信号は小さくなりゼロに近づく。座
席10に物が置かれた場合は、置かれた瞬間には、Dに
示すように、一時的に大きな信号が現われるが、物には
人体のような心拍や呼吸による細かな体動はないのでE
に示すように出力信号は再びゼロに近づく。このような
圧電素子20からの出力信号を、増幅手段21が増幅
し、フィルター22が必要とする周波数成分に濾波し、
最大変位量検出手段23がフィルター22の出力の最大
変位量を検出して、この値を用いて判定手段24が人の
在、不在を判定する。
FIG. 9 shows an output diagram of the maximum displacement detecting means 23 of the conventional living body detecting device. Here, when the human body is seated on the seat 18, the piezoelectric element 2 disposed on the surface cloth 19 of the seat 18.
0 is deformed, and a voltage is generated by the piezoelectric effect. In this generated signal, a large signal appears temporarily due to the impact of the sitting when the person is seated as shown in FIG. 9A, but when the human body is at rest, as shown by B, the heartbeat or respiration of the human body causes A fine body motion signal appears. If no human body is present, the output signal will be small and approach zero, as indicated by C. When an object is placed on the seat 10, a large signal appears temporarily as shown at D at the moment when the object is placed, but the object does not have minute movement due to heartbeat or breathing like a human body. So E
The output signal approaches zero again as shown in FIG. The output signal from the piezoelectric element 20 is amplified by the amplifying means 21 and filtered to a frequency component required by the filter 22,
The maximum displacement detecting means 23 detects the maximum displacement of the output of the filter 22, and using this value, the determining means 24 determines the presence or absence of a person.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の生体検出装置では、圧電素子を敷設する場所が板間
や畳などの硬い床材の上に直接配置された場合などは振
動センサの振動が妨げられるため、生体が生体信号検出
手段の上にあってもセンサーの出力が小さくなり生体信
号を検出し難くなるという課題があった。特に、寝床に
敷設して寝ている人の有無を検出しようとする場合で
は、衛生面や日常の上げ下げの面でわずらわしくなるた
めに寝床の人体側には敷設し難く、寝床の下に人体信号
検出手段を敷くことの可能なシステムが求められてい
た。
However, in the above-mentioned conventional living body detecting device, when the place where the piezoelectric element is laid is directly placed on a hard flooring such as a board or a tatami mat, the vibration of the vibration sensor is reduced. Because of the hindrance, there is a problem that even if the living body is on the biological signal detecting means, the output of the sensor becomes small and it becomes difficult to detect the biological signal. In particular, when trying to detect the presence or absence of a sleeping person laying on a bed, it is difficult to lay it on the human side of the bed because it is troublesome in terms of hygiene and daily raising and lowering. There has been a need for a system that can be provided with detection means.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、生体信号検出手段が検出する生体信号のう
ち周期的に発生する信号成分の大きさを評価する周期性
評価手段を持ち、周期性評価手段の出力と生体信号検出
手段の出力とのうち少なくとも一方の出力を用いて支持
手段上の生体の在/不在を判定する。
In order to solve the above-mentioned problems, the present invention has periodicity evaluation means for evaluating the magnitude of a periodically generated signal component of the biological signal detected by the biological signal detection means. The presence / absence of a living body on the supporting means is determined using at least one of the output of the periodicity evaluating means and the output of the biological signal detecting means.

【0006】上記発明によれば、生体の心拍や呼吸など
周期的に発生する生体信号の周期性を用いて生体の在/
不在を判定するので、単に生体信号の大きさのみを用い
る場合に比べて、生体信号検出手段の出力信号が小さい
場合でも正確な判定ができる。
According to the above invention, the presence / absence of a living body is determined by using the periodicity of a biological signal that periodically occurs such as the heartbeat and respiration of the living body.
Since the absence is determined, accurate determination can be performed even when the output signal of the biological signal detection unit is small as compared with the case where only the magnitude of the biological signal is used.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に係る生体検出
装置は、生体を支持する支持手段と、前記支持手段上の
生体の呼吸や心拍活動による生体信号を検出する生体信
号検出手段と、前記生体信号検出手段が検出した生体信
号のうち周期的に発生する信号の大きさを評価する周期
性評価手段と、前記周期性評価手段の出力と生体信号検
出手段の出力とのうち少なくとも一方の出力を用いて前
記支持手段上の生体の在/不在を判定する判定手段とを
持つ。そして、生体信号出力手段の大きさだけでなく生
体の心拍や呼吸など周期的に発生する生体信号の周期性
を用いて生体の在/不在を判定するので、単に生体信号
の大きさのみを用いる場合に比べて、生体信号検出手段
の出力信号が小さい場合でも正確な判定ができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A living body detecting apparatus according to a first aspect of the present invention comprises a supporting means for supporting a living body, and a biological signal detecting means for detecting a biological signal on the supporting means due to respiration or heartbeat activity of the living body. A periodicity evaluation unit for evaluating the magnitude of a periodically generated signal among the biological signals detected by the biological signal detection unit, and at least one of an output of the periodicity evaluation unit and an output of the biological signal detection unit And determination means for determining the presence / absence of a living body on the support means using the output of Since the presence / absence of the living body is determined by using not only the size of the living body signal output means but also the periodicity of the living body signal which periodically occurs such as the heartbeat and respiration of the living body, only the size of the living body signal is used. As compared to the case, accurate determination can be made even when the output signal of the biological signal detecting means is small.

【0008】また、本発明の請求項2に係る生体検出装
置は、周期性評価手段が生体信号検出手段の検出した生
体信号を周波数分析する周波数分析手段と、前記周波数
分析手段の出力から特徴を抽出する特徴抽出手段とを持
ち、判定手段は前記特徴抽出手段の手段の出力を支持手
段上の生体の在/不在の判定に用いる。そして、周波数
分析手段の出力の特徴量を抽出して生体信号検出手段の
周期性を検出するので、確実に生体信号の周期性を評価
できる。
Further, the biological detecting apparatus according to a second aspect of the present invention is characterized in that the periodicity evaluating means analyzes the frequency of the biological signal detected by the biological signal detecting means, and the output of the frequency analyzing means. A determination means for determining the presence / absence of a living body on the support means; Then, since the periodicity of the biological signal detecting means is detected by extracting the characteristic amount of the output of the frequency analyzing means, it is possible to reliably evaluate the periodicity of the biological signal.

【0009】また、本発明の請求項3に係る生体検出装
置は、特徴抽出手段は、周波数分析手段の出力のピーク
の先鋭度を算出する先鋭度算出手段を持つ。そして、生
体信号が強い周期性を示すことから周波数軸上に現れる
鋭いピークの先鋭度を用いるので、生体信号の特徴を容
易に抽出することが可能で、正確な生体検出ができる。
In the living body detecting apparatus according to a third aspect of the present invention, the feature extracting means has a sharpness calculating means for calculating the sharpness of the peak of the output of the frequency analyzing means. Since the biological signal exhibits strong periodicity, the sharpness of a sharp peak appearing on the frequency axis is used. Therefore, the characteristics of the biological signal can be easily extracted, and accurate biological detection can be performed.

【0010】また、本発明の請求項4に係る生体検出装
置は、特徴抽出手段が、周波数分析手段の出力の周波数
軸上における周期性を評価して抽出する。そして、周波
数軸上の周期性を用いて生体信号の周期性を評価するの
で、生体信号の周期性をより強調して抽出することがで
きる。
In the living body detecting apparatus according to a fourth aspect of the present invention, the characteristic extracting means evaluates and extracts the periodicity of the output of the frequency analyzing means on the frequency axis. Since the periodicity of the biological signal is evaluated using the periodicity on the frequency axis, the periodicity of the biological signal can be more emphasized and extracted.

【0011】また、本発明の請求項5に係る生体検出装
置は、特徴抽出手段が、周波数分析手段の出力の複数の
ピークを抽出するピーク抽出手段と、複数のピーク間の
周波数差を算出する周波数差算出手段とを持ち、判定手
段は前記ピーク抽出手段または周波数差算出手段の出力
を支持手段上の生体の在/不在の判定に用いる。そし
て、複数のピーク間の周波数差を用いるので、基本周波
数成分の正数倍となる周波数に現れるいくつかの高調波
成分から基本周波数成分を抽出することが可能で、基本
周波数成分の出力が小さい場合でも確実に生体を検出で
きる。また、呼吸や心拍活動による基本周波数成分の波
形が大きなピークを持たない場合でもその高調波成分の
ピークが複数あれば検出が可能であり、様々に変化する
生体信号に適応できる。さらに、呼吸など周波数の極め
て低い信号を用いる必要がないために短時間に処理可能
にできたり、大きなコンデンサを用いる必要がなくなる
など回路の構成を簡単なものにできるといった効果があ
る。
In the living body detecting apparatus according to a fifth aspect of the present invention, the characteristic extracting means calculates a frequency difference between the plurality of peaks and a peak extracting means for extracting a plurality of peaks of the output of the frequency analyzing means. A frequency difference calculating means, wherein the determining means uses the output of the peak extracting means or the frequency difference calculating means for determining the presence / absence of a living body on the supporting means. Since the frequency difference between a plurality of peaks is used, it is possible to extract the fundamental frequency component from several harmonic components appearing at a frequency that is a positive multiple of the fundamental frequency component, and the output of the fundamental frequency component is small. Even in such a case, the living body can be reliably detected. Further, even when the waveform of the fundamental frequency component due to respiration or heartbeat activity does not have a large peak, detection is possible if there are a plurality of peaks of the harmonic component, and it can be applied to variously changing biological signals. Further, there is no need to use an extremely low frequency signal such as breathing, so that processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified such that a large capacitor is not required.

【0012】また、本発明の請求項6に係る生体検出装
置は、特徴抽出手段は、周波数分析手段の出力の周波数
系列データに対し時系列データを周波数分析を行う場合
と同じ手法で周波数軸上における周期性を評価する。そ
して、基本周波数成分とその正数倍に現れる高調波成分
による周波数系列データを時系列データから周波数成分
に分解する手法と同様に処理することにより、生体信号
の周期性をより強調して抽出することが可能で、正確な
生体検出を実現できる。また、呼吸や心拍活動による基
本周波数成分の波形が大きなピークを持たない場合でも
その高調波成分のピークが複数あれば検出が可能であ
り、様々に変化する生体信号に適応できる。さらに、呼
吸など周波数の極めて低い信号を用いる必要がないため
に短時間に処理可能にできたり、大きなコンデンサを用
いる必要がなくなるなど回路の構成を簡単なものにでき
るといった効果がある。
According to a sixth aspect of the present invention, in the living body detecting apparatus, the feature extracting means may be configured to perform the frequency analysis on the time series data with respect to the frequency series data output from the frequency analyzing means in the same manner as in the case of performing the frequency analysis. Is evaluated for periodicity. Then, by processing the frequency sequence data based on the fundamental frequency component and the harmonic component appearing at a positive multiple thereof in the same manner as the method of decomposing the time-series data into frequency components, the periodicity of the biological signal is more emphasized and extracted. It is possible to realize accurate living body detection. Further, even when the waveform of the fundamental frequency component due to respiration or heartbeat activity does not have a large peak, detection is possible if there are a plurality of peaks of the harmonic component, and it can be applied to variously changing biological signals. Further, there is no need to use an extremely low frequency signal such as breathing, so that processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified such that a large capacitor is not required.

【0013】また、本発明の請求項7に係る生体検出装
置は、特徴抽出手段の出力から支持手段上の生体の心拍
数または心拍間隔と呼吸数または呼吸間隔とのうち少な
くとも一つを算出する生体情報算出手段を持つ。そし
て、生体信号の周期性を評価することにより生体の在/
不在を検出すると同時に周期性から生体の心拍数または
心拍間隔や呼吸数または呼吸間隔を正確に測定すること
ができる。
Further, the living body detection device according to claim 7 of the present invention calculates at least one of a heart rate or a heartbeat interval and a respiration rate or a breathing interval of the living body on the supporting means from the output of the feature extracting means. It has biological information calculation means. Then, by evaluating the periodicity of the biological signal,
At the same time as detecting the absence, it is possible to accurately measure the heart rate or heart rate interval or respiration rate or respiration interval of the living body from the periodicity.

【0014】また、本発明の請求項8に係る生体検出装
置は、生体信号検出手段の出力があらかじめ決められた
大きさを超えたことを検出する大出力検出手段を持ち、
大出力検出手段が生体検出手段の出力があらかじめ決め
られた大きさを超えたことを検出した場合、判定手段は
周期性評価手段の出力を支持手段上の生体の在/不在の
判定に用いない。そして、体動などにより周期性のある
生体信号が取り難い場合に周期性を生体の検出に用いな
いので、生体信号検出手段の出力の周期性が乱れ周期性
が検出できない場合でも確実に生体の在/不在を検出で
きる。
Further, the living body detecting device according to claim 8 of the present invention has a large output detecting means for detecting that the output of the biological signal detecting means has exceeded a predetermined magnitude,
When the large output detecting means detects that the output of the living body detecting means has exceeded a predetermined magnitude, the determining means does not use the output of the periodicity evaluating means for determining the presence / absence of the living body on the supporting means. . Since the periodicity is not used for detecting a living body when it is difficult to obtain a biological signal having periodicity due to body motion, even if the periodicity of the output of the biological signal detecting means is disturbed and the periodicity cannot be detected, the living body can be reliably detected. Presence / absence can be detected.

【0015】また、本発明の請求項9に係る生体検出装
置は、生体信号検出手段の出力があらかじめ決められた
大きさを超えたことを検出する大出力検出手段を持ち、
前記大出力検出手段が生体検出手段の出力があらかじめ
決められた大きさを超えたことを検出した場合、生体情
報算出手段は心拍数または心拍間隔と呼吸数または呼吸
間隔の算出を行わない。そして、体動などにより周期性
のある生体信号が取り難い場合に心拍数や呼吸数といっ
た生体情報を測定しないので、生体信号検出手段の出力
の周期性が乱れ測定が難しい場合の不確かな値を出力す
ることがない。
Further, the living body detecting device according to claim 9 of the present invention has a large output detecting means for detecting that the output of the biological signal detecting means has exceeded a predetermined magnitude,
When the large output detecting means detects that the output of the living body detecting means has exceeded a predetermined magnitude, the biological information calculating means does not calculate the heart rate or the heart rate interval and the respiration rate or the breathing interval. In addition, when it is difficult to obtain a periodic biological signal due to body motion, the biological information such as heart rate and respiratory rate is not measured, so that the periodicity of the output of the biological signal detecting means is disturbed. No output.

【0016】また、本発明の請求項10に係る生体検出
装置は、特徴抽出手段は、周波数分析手段の出力のうち
あらかじめ決められた周波数範囲の波形を切り出す波形
切り出し手段を持ち、前記波形切り出し手段の出力の周
期性を評価する。そして、周波数分析手段の出力のうち
特に特徴の強く現れる周波数範囲を切り出して特徴を抽
出するので、周波数分析手段の出力波形の特徴を簡単に
抽出できる。
According to a tenth aspect of the present invention, in the living body detection apparatus, the characteristic extracting means has a waveform extracting means for extracting a waveform in a predetermined frequency range from the output of the frequency analyzing means, Evaluate the periodicity of the output. Then, since the frequency range in which the characteristic is particularly strong is cut out from the output of the frequency analysis unit and the characteristic is extracted, the characteristic of the output waveform of the frequency analysis unit can be easily extracted.

【0017】また、本発明の請求項11に係る生体検出
装置は、波形切り出し手段は少なくとも0.1Hzから1
Hzまで、より望ましくは、0.05Hzから2Hzまでの周
波数範囲を含む波形を切り出す。そして、周波数分析手
段の出力波形のうち呼吸による周期成分が大きく現れる
波形から呼吸間隔または呼吸周波数を算出するので正確
かつ簡単に呼吸間隔または呼吸周波数を算出できる。
[0017] In the living body detecting apparatus according to the eleventh aspect of the present invention, the waveform cutout means may be at least 0.1 Hz to 1 Hz.
Hz, more desirably, a waveform including a frequency range from 0.05 Hz to 2 Hz is cut out. The respiratory interval or respiratory frequency is calculated from the waveform of the output waveform of the frequency analysis means in which the periodic component due to respiration appears largely, so that the respiratory interval or respiratory frequency can be calculated accurately and easily.

【0018】また、本発明の請求項12に係る生体検出
装置は、波形切り出し手段は少なくとも0.7Hzから3
Hzまで、より望ましくは、0.5Hzから8Hzまでの周波
数範囲を含む波形を切り出す。そして、周波数分析手段
の出力波形のうち心拍活動による周期成分が大きく現れ
る波形から心拍間隔または心拍数を算出するので正確か
つ簡単に心拍間隔または心拍数を算出できる。そして、
心拍活動によるピークが多く現れる周波数帯を抽出しか
つ窓関数でその中心周波数を大きく取り出すので心拍活
動による周期成分の大きな出力が得られる。
According to a twelfth aspect of the present invention, in the living body detecting apparatus, the waveform cutout means may be at least 0.7 Hz to 3 Hz.
Hz, and more desirably, a waveform including a frequency range from 0.5 Hz to 8 Hz. Since the heartbeat interval or heart rate is calculated from the waveform of the output waveform of the frequency analysis means in which the periodic component due to the heartbeat activity appears largely, the heartbeat interval or heart rate can be calculated accurately and easily. And
Since a frequency band in which many peaks due to the heartbeat activity appear is extracted and its center frequency is largely extracted by a window function, a large output of the periodic component due to the heartbeat activity can be obtained.

【0019】また、本発明の請求項13に係る生体検出
装置は、特徴抽出手段は、波形切り出し手段が切り出し
た波形に窓関数を掛ける窓関数演算手段を持ち、窓関数
演算手段の出力の周期性を評価し呼吸数または心拍数を
算出する。そして、波形切り出し手段の出力のうち呼吸
または心拍活動の特徴が強く現れる部分を強調した上で
特徴を抽出するので、簡単に呼吸間隔または呼吸数、心
拍間隔または心拍数を算出できる。
In the living body detecting apparatus according to a thirteenth aspect of the present invention, the feature extracting means includes a window function calculating means for multiplying a waveform cut out by the waveform cutting means by a window function, and a cycle of an output of the window function calculating means. Assess gender and calculate respiratory rate or heart rate. Then, since the feature is extracted after emphasizing the portion where the feature of the respiratory or heartbeat activity appears strongly in the output of the waveform extracting means, the respiratory interval or respiratory rate, heartbeat interval or heart rate can be easily calculated.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】(実施例1)図1は本発明の実施例1にお
ける生体検出装置のブロック図である。本実施例では生
体を支持する支持手段として敷布団の場合を示す。図中
1は生体の支持手段である敷布団、2は敷布団1の下側
に配置された生体信号検出手段である振動センサー、3
は振動センサの出力信号を増幅するとともに不要な周波
数成分を除去する信号処理手段、4は信号処理手段3の
出力の振り幅を算出する振り幅算出手段、5は信号処理
手段3の出力信号をデジタル値に変換し周期性の評価を
高速フーリエ変換により行う周期性評価手段であるFF
T手段、6はFFT手段5の特徴を抽出する特徴抽出手
段で、7は振り幅算出手段4の出力と特徴抽出手段6の
出力とから座席上での生体の在/不在を判定する判定手
段、8は特徴抽出手段の出力から生体の呼吸数や心拍数
を算出する生体情報算出手段、9は判定手段7の判定結
果と生体情報算出手段8が算出した呼吸数と心拍数を表
示する表示手段である。
(Embodiment 1) FIG. 1 is a block diagram of a living body detecting apparatus according to Embodiment 1 of the present invention. In this embodiment, a case of a mattress is shown as a support means for supporting a living body. In the figure, reference numeral 1 denotes a mattress, which is a means for supporting a living body, 2 denotes a vibration sensor, which is a biological signal detecting means disposed below the mattress 1, 3
Is a signal processing means for amplifying the output signal of the vibration sensor and removing unnecessary frequency components, 4 is a amplitude calculating means for calculating the amplitude of the output of the signal processing means 3, and 5 is an output signal of the signal processing means 3. FF which is a periodicity evaluation means for converting into a digital value and evaluating the periodicity by fast Fourier transform
T means and 6 are feature extracting means for extracting the features of the FFT means 5, and 7 is a judging means for judging the presence / absence of a living body on the seat from the output of the swing width calculating means 4 and the output of the feature extracting means 6. , 8 is a biological information calculating means for calculating the respiratory rate and heart rate of the living body from the output of the feature extracting means, 9 is a display for displaying the determination result of the determining means 7 and the respiratory rate and heart rate calculated by the biological information calculating means 8. Means.

【0022】ここで振動センサ2は敷布団1の下側に配
置されており、振動センサ2の下は畳10となってい
る。また、信号処理手段3は生体信号検出手段2の出力
を増幅する増幅手段3aと不要な周波数信号を除去する
フィルター3bとからなり、特徴抽出手段6による特徴
抽出は、周波数系列データから先鋭度を用いて急峻なピ
ークを検出するとともにピークの先鋭度を算出する先鋭
度検出手段6aと、周波数系列の複数のピークの間隔か
ら隣り合うピーク間の周波数差を算出する周波数差算出
手段6bからなっている。
Here, the vibration sensor 2 is arranged below the mattress 1, and a tatami 10 is provided below the vibration sensor 2. The signal processing means 3 includes an amplifying means 3a for amplifying the output of the biological signal detecting means 2 and a filter 3b for removing unnecessary frequency signals. A sharpness detection means 6a for detecting a steep peak and calculating the sharpness of the peak by using the same, and a frequency difference calculation means 6b for calculating a frequency difference between adjacent peaks from an interval between a plurality of peaks in the frequency series. I have.

【0023】なお、本実施例では先鋭度算出手段6aは
FFT手段の出力の複数のピークを抽出するピーク抽出
手段の役割も持っており、FFT手段5の出力波形全体
の先鋭度を求め先鋭度の高い部分を取り出すことにより
複数のピークを抽出している。
In this embodiment, the sharpness calculating means 6a also has a role of a peak extracting means for extracting a plurality of peaks of the output of the FFT means, and calculates the sharpness of the entire output waveform of the FFT means 5 to obtain the sharpness. A plurality of peaks are extracted by extracting a portion having a high peak.

【0024】上記構成の作用について説明する。図2に
振り幅算出手段の出力図、図3にFFT手段の出力図を
示す。生体である人体が敷布団1に着床し横になったり
座ったりすると敷布団1の下側に配設された振動センサ
2が振動して振動の大きさに応じた電圧を発生させる。
この発生信号には、図2に示すように、着床時には着床
時の衝撃により一時的に大きな信号が現われる(A)
が、人体が安静にしていると人体の心拍や呼吸による細
かな体動信号が現われる(B)。人体がいなければ出力
信号は小さくなりゼロに近づく(C)。
The operation of the above configuration will be described. FIG. 2 shows an output diagram of the swing width calculating means, and FIG. 3 shows an output diagram of the FFT means. When a human body, which is a living body, lands on the mattress 1 and lays down or sits down, the vibration sensor 2 disposed below the mattress 1 vibrates to generate a voltage according to the magnitude of the vibration.
As shown in FIG. 2, a large signal appears temporarily in the generated signal due to the impact at the time of landing (A).
However, when the human body is at rest, a fine body motion signal due to the heartbeat and respiration of the human body appears (B). If there is no human body, the output signal becomes small and approaches zero (C).

【0025】一方、敷布団1に物が置かれた場合は、物
が置かれた瞬間には一時的に大きな信号が現われる
(D)が、物には人体のような心拍や呼吸による細かな
体動はないので出力信号は再びゼロに近づく(E)。
On the other hand, when an object is placed on the mattress 1, a large signal appears temporarily at the moment when the object is placed (D). Since there is no motion, the output signal approaches zero again (E).

【0026】また、人が敷布団上を歩いて通過したよう
な場合も物を置いた場合と同様になる。このような振動
センサ2からの出力信号は、信号処理手段3の増幅手段
3aにより増幅され、フィルター3bにより不要な周波
数成分が除去されて振り幅算出手段4とFFT手段5に
出力される。振り幅算出手段4では信号処理手段の出力
信号の振り幅が算出されて判定手段7に出力される。
When a person walks on a mattress, it is the same as when an object is placed. The output signal from the vibration sensor 2 is amplified by the amplifying unit 3a of the signal processing unit 3, the unnecessary frequency components are removed by the filter 3b, and output to the amplitude calculating unit 4 and the FFT unit 5. The amplitude calculating means 4 calculates the amplitude of the output signal of the signal processing means and outputs it to the determining means 7.

【0027】一方、FFT手段5では信号処理手段3の
出力が一定時間毎に高速フーリエ変換されて時系列デー
タが周波数成分のスペクトルを示す周波数系列データに
変換され、特徴抽出手段6がこの周波数系列データの特
徴を抽出する。特徴抽出手段6による特徴抽出は、周波
数系列データから先鋭度を用いて急峻なピークを検出す
るとともにピークの先鋭度を算出する先鋭度検出手段6
aと、周波数系列の複数のピークの間隔を検出するピー
ク間隔検出手段6bからなっている。
On the other hand, in the FFT means 5, the output of the signal processing means 3 is subjected to fast Fourier transform at fixed time intervals to convert the time series data into frequency series data indicating the spectrum of the frequency component. Extract data features. The feature extraction by the feature extraction unit 6 includes a sharpness detection unit 6 that detects a steep peak from the frequency series data using the sharpness and calculates the sharpness of the peak.
a, and a peak interval detecting means 6b for detecting intervals between a plurality of peaks in the frequency sequence.

【0028】図3(a)に敷布団1に人体が存在する場
合のFFT手段の出力を示す。図中横軸は周波数(H
z)、縦軸は振巾スペクトルである。人体の呼吸や心拍
による活動は定期的に繰り返し発生するので、振動セン
サー2の出力信号は、他に振動のない状態で人体が安静
にしておれば心拍や呼吸の振動のみが卓越し、この信号
を高速フーリエ変換した処理結果でも心拍周期や呼吸周
期に相当する周波数のピークが他の周波数に比べて極め
て鋭いピークを形成する。図3(a)でA1は呼吸によ
るピーク、B1に心拍活動によるピークを示す。
FIG. 3 (a) shows the output of the FFT means when a human body is present in the mattress 1. The horizontal axis in the figure is frequency (H
z), the vertical axis is the amplitude spectrum. Since the activity of the human body due to respiration and heartbeat occurs periodically and repeatedly, the output signal of the vibration sensor 2 indicates that if the human body is at rest without any vibration, only the heartbeat and the vibration of the breathing will be prominent. Even in the processing result obtained by performing the fast Fourier transform, the peak of the frequency corresponding to the cardiac cycle or the respiratory cycle forms a sharper peak than other frequencies. In FIG. 3A, A1 indicates a peak due to respiration, and B1 indicates a peak due to heartbeat activity.

【0029】また、これら基本周波数のピークとともに
その整数倍となる高調波によるピークもA2、A3、B
2、B3・・で示すように同様に鋭いピークを形成する
が、これら基本周波数とその高調波からなる複数のピー
クは周波数軸上では呼吸や心拍活動の基本周波数の整数
倍の位置に等間隔に出現する。
In addition to the peaks of these fundamental frequencies, peaks due to harmonics that are integral multiples of the peaks are also represented by A2, A3, and B.
2, a sharp peak is formed similarly as shown by B3, but a plurality of peaks composed of these fundamental frequencies and their harmonics are equally spaced on the frequency axis at integer multiples of the fundamental frequency of breathing or heart activity. Appears in

【0030】一方、図3(b)に敷布団1上に人体がな
い場合のFFT手段の出力波形を示すが、(b)では出
力が小さいだけでなく(a)で存在する等間隔の鋭いピ
ークもまったく存在せず、大きさと波形の面で両者は大
きく異なっている。もし、生体信号検出手段の出力が小
さい場合でも、波形の特徴は残るため、このような周波
数系列データの特徴を調べ数値化することにより確実に
生体の在/不在を検出することが可能となる。
On the other hand, FIG. 3B shows the output waveform of the FFT means when there is no human body on the mattress 1. In FIG. 3B, not only the output is small, but also the sharp peaks at equal intervals present in FIG. They do not exist at all, and they differ greatly in size and waveform. Even if the output of the biological signal detecting means is small, the characteristics of the waveform remain, so that the presence / absence of a living body can be reliably detected by examining the characteristics of such frequency sequence data and digitizing it. .

【0031】本実施例の判定手段7における生体検出ア
ルゴリズムを図4に示す。装置の電源(図示せず)がO
Nとなり装置が動作を開始する(ST1)とまず「仮に
人が存在」する状態(ST2)と認識され、真に不在の
状態であるかを判定する不在判定ルーチンに入る。ここ
では、まず振り幅算出手段4の出力を用いる不在判定を
行う(ST5)。振り幅算出手段4の出力をあらかじめ
統計的に決定された閾値V1と比較し、振り幅算出手段
4の出力がV1以下となる状態があらかじめ決められた
時間T1以上連続した場合にのみ特徴抽出手段の出力を
用いる不在判定に移行する。特徴抽出手段6の出力を用
いる不在判定では、まず、先鋭度検出手段がFFT手段
の出力の周波数系列から(式1)で求められる各周波数
データの先鋭度を求ている(ST7)。
FIG. 4 shows a living body detection algorithm in the judgment means 7 of this embodiment. The power supply (not shown) of the device is O
When it becomes N and the apparatus starts operating (ST1), it is first recognized that the state is "tentatively present" (ST2), and the apparatus enters an absence determination routine for determining whether the apparatus is truly absent. Here, first, the absence determination using the output of the swing width calculating means 4 is performed (ST5). The output of the amplitude calculating means 4 is compared with a threshold V1 which is statistically determined in advance, and the feature extracting means is used only when the state in which the output of the amplitude calculating means 4 is equal to or less than V1 continues for a predetermined time T1 or more. The processing shifts to absence determination using the output of (1). In the absence determination using the output of the feature extracting means 6, first, the sharpness detecting means obtains the sharpness of each frequency data obtained by (Equation 1) from the frequency series of the output of the FFT means (ST7).

【0032】 Pn=(fn―fn-a)×|fn―fn+a2/(fn―fn+a)・・・(式1) (式1)でPnは周波数nにおける先鋭度、fnはFFT
手段により出力された周波数nにおける振り幅である。
aは先鋭度を求める基準となる周波数の幅であるが、本
実施例では0.2Hzとした。(式1)ではfnが上に凸
であるときのみ正の値となり、ピークのすそ野となる周
波数成分の振り幅との差が大きいほど大きな値となるの
で先鋭度が求まる。先鋭度が高い場合は呼吸または心拍
活動による定期的な振動が加えられていると考えられ、
振り幅が小さくても人体が存在する可能性が高い。この
先鋭度の最大値があらかじめ決められた閾値P1と比較
しP1より低い場合にこの判定による人体存在の可能性
がないと判断し、ピーク間隔検出手段の出力による不在
判定(ST9)に移行する。この判定では、先鋭度検出
手段が求めた先鋭度を用い先鋭度の高い順に3つのピー
クを抽出し、これらのピークのうち隣り合うピーク間の
周波数の差df1、df2を算出して、周波数差が一定
周波数またはその整数倍になっているかを調べている。
P n = (f n −f na ) × | f n −f n + a | 2 / (f n −f n + a ) (Equation 1) In Equation 1, P n is the frequency n , F n is FFT
The amplitude at the frequency n output by the means.
a is the width of the frequency serving as a reference for obtaining the sharpness, and in this embodiment, it is set to 0.2 Hz. In (Equation 1), the value becomes positive only when f n is convex upward, and the greater the difference from the amplitude of the frequency component that becomes the base of the peak, the larger the value. If the sharpness is high, it is likely that periodic vibration due to breathing or heart rate activity is being applied,
There is a high possibility that the human body exists even if the swing width is small. The maximum value of the sharpness is compared with a predetermined threshold value P1. If the maximum value is lower than P1, it is determined that there is no possibility of the presence of a human body by this determination, and the process proceeds to the absence determination (ST9) based on the output of the peak interval detecting means. . In this determination, three peaks are extracted in ascending order of sharpness using the sharpness determined by the sharpness detecting means, and the differences df1 and df2 between the adjacent peaks among these peaks are calculated to calculate the frequency difference. Is being checked for a constant frequency or an integer multiple thereof.

【0033】具体的には式2で求められる指標qを算出
し、この値があらかじめ決められた閾値Q1と比較して
大きい場合に生体が存在している可能性がないと判断
し、この判定が行われた場合に始めて不在が確定する
(ST10)。なお、「仮に存在」の状態から不在が確
定した場合(ST11)には、仮の存在判定を破棄し、
「仮に存在」になった時点に溯って不在判定に変更して
いる(ST12)。
Specifically, an index q obtained by the equation 2 is calculated, and when this value is larger than a predetermined threshold value Q1, it is determined that there is no possibility that a living body exists, and this determination is made. The absence is determined only when is performed (ST10). If the absence is determined from the “temporary existence” state (ST11), the provisional existence determination is discarded, and
The state is changed to absent determination retroactively to the point of time when "temporarily exists" (ST12).

【0034】 q=df1/df2−int(df1/df2)・・・(式2) ピーク間隔検出手段を用いた判定は、呼吸や心拍活動に
よる基本周波数成分の波形が大きなピークを持たない場
合でもその高調波成分のピークが複数あれば検出が可能
であり、様々に変化する生体信号に広く適応できる。ま
た、呼吸など周波数の極めて低い信号を用いる必要がな
いために短時間に処理可能にできる他、大きなコンデン
サを用いる必要がなくなるなど回路の構成を簡単、小型
化できるといった効果もある。
Q = df1 / df2-int (df1 / df2) (Equation 2) The determination using the peak interval detecting means is performed even when the waveform of the fundamental frequency component due to respiration or heart activity does not have a large peak. If there are a plurality of peaks of the harmonic component, the detection is possible, and it can be widely applied to variously changing biological signals. Further, since it is not necessary to use an extremely low frequency signal such as breathing, processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified and miniaturized such that a large capacitor is not required.

【0035】さて、判定が不在となると次ぎは在判定ル
ーチンに移行する。この判定はまず人が着床すると大き
な振動が加えられることから、これを検出するためにあ
らかじめ閾値V2を設定し、振り幅算出手段の出力がV
2を超えた場合(ST13)に「仮に人体が存在」する
状態となり、既に述べた「不在判定ルーチン」に再び移
行する。ただし、この場合、一定時間内にST10まで
進み不在が確定すれば、ST13で検出された大きな振
動は人体以外の振動と認識して、仮に存在とした時点に
さかのぼって不在とする(ST12)。
When the determination is absent, the process proceeds to the presence determination routine. In this determination, since a large vibration is applied when a person gets on the floor, a threshold value V2 is set in advance to detect this, and the output of the swing width calculation means is set to V
If the number exceeds 2 (ST13), the state is "temporarily a human body is present", and the process returns to the "absence determination routine" described above. However, in this case, if the process proceeds to ST10 within a certain period of time and the absence is determined, the large vibration detected in ST13 is recognized as a vibration other than a human body, and the presence of the large vibration is traced back to the provisional presence (ST12).

【0036】一方、一定時間経過後も不在とならない場
合は在判定を確定し(ST14)人が敷布団上に生体が
存在していることを認識する。一旦「人が存在」する判
定になると、振り幅算出手段の出力による判定を実施し
(ST17)、振り幅検出手段の出力がST4で用いた
閾値のV1以下になった場合に「仮に不在」の状態とし
て(ST18)はじめに行った不在判定ルーチンに移行
する。ここで「不在確定」(ST10)まで進むと不在
判定に変わり、「在確定」(ST14)に戻ってくる
と、「仮に不在」の状態を破棄し(ST15)、「仮に
不在」となった時点に溯って在判定に戻している(ST
16)。
On the other hand, if the absence does not occur after a certain period of time, the presence determination is determined (ST14), and the person recognizes that the living body is present on the mattress. Once it is determined that "there is a person", a determination is made based on the output of the swing width calculating means (ST17), and when the output of the swing width detecting means falls below the threshold value V1 used in ST4, "temporarily absent". (ST18), the process proceeds to the first absence determination routine. Here, when the process proceeds to “absence determination” (ST10), the state changes to the absence determination. When the process returns to “absence determination” (ST14), the state of “temporarily absent” is discarded (ST15), and the status becomes “temporarily absent”. It returns to the presence determination retroactively to the time (ST
16).

【0037】以上のようなアルゴリズムを用いることに
より、生体信号が小さい場合でも敷布団の上に生体がい
ることを確実に検出できる。これは、敷布団が固い畳の
上にあり振動センサが固い畳と敷布団に挟まれてしまう
と生体の活動による振動が振動センサにあまり伝達され
ず、振動センサーの出力も小さくなってしまい振り幅の
みでは十分な判定が困難な場合があった。しかし、本実
施例の場合では、振り幅が小さくても生体の特徴が得ら
れるので特に有効である。このような判定手段7の判定
結果は表示手段9に出力され、視覚的に表示される。
By using the above algorithm, it is possible to reliably detect the presence of a living body on the mattress even when the biological signal is small. This is because if the mattress is on a hard tatami mat and the vibration sensor is sandwiched between the hard tatami mat and the mattress, the vibration due to the activity of living organisms will not be transmitted much to the vibration sensor, the output of the vibration sensor will also be small, and only the swing width will be In some cases, it was difficult to make a sufficient judgment. However, in the case of the present embodiment, the characteristics of the living body can be obtained even if the swing width is small, which is particularly effective. Such a determination result of the determination means 7 is output to the display means 9 and is visually displayed.

【0038】また、本実施例の生体検出装置では、敷布
団1上に生体が存在する場合に生体情報算出手段8によ
り周波数差算出手段6bの出力を用いて敷布団1上の生
体の呼吸数と心拍数の生体情報を算出している。既に述
べたように、FFT手段5の出力波形は呼吸と心拍活動
による基本周波数とその高調波による複数のピークが存
在し、隣り合うピークの周波数差は呼吸数または心拍数
の逆数に相当する。したがって、周波数差算出手段6b
の出力を用いることにより簡単に呼吸数や心拍数を算出
することが可能である。このように算出された呼吸数と
心拍数は表示手段9に出力され、視覚的に表示される。
Further, in the living body detection device of this embodiment, when a living body is present on the mattress 1, the living body information calculating means 8 uses the output of the frequency difference calculating means 6b to calculate the respiration rate and heart rate of the living body on the mattress 1. The number of biological information is calculated. As described above, the output waveform of the FFT means 5 has a fundamental frequency due to respiration and heart rate activity and a plurality of peaks due to harmonics thereof, and the frequency difference between adjacent peaks corresponds to the reciprocal of the respiration rate or heart rate. Therefore, the frequency difference calculating means 6b
It is possible to easily calculate the respiratory rate and the heart rate by using the output of. The respiratory rate and heart rate calculated in this way are output to the display means 9 and visually displayed.

【0039】なお、判定手段7は振り幅算出手段4の出
力があらかじめ決められた大出力以上になった場合を検
出する大出力検出手段11を持ち、大出力検出手段11
が大出力を検出すると、周期性の評価による不在判定や
生体情報算出手段8による呼吸数や心拍数の算出を中止
している。これは、FFT手段5による生体信号検出手
段2の出力信号の周期性は支持手段上の生体が安静にし
ている場合にのみ明確に出現するものであるため、生体
が支持手段上で動いたりした場合には生体信号検出手段
の出力の周期性が乱れるため正しい不在判定や生体情報
算出ができない。したがって、このような場合には不在
判定を行わず従来の在または不在の判定を維持するとと
もに、生体情報算出を行わず呼吸数や心拍数を出力する
変わりに大出力のため算出できないことを示す信号を出
力している。これにより大きな出力があり生体信号の周
期性が現れない場合でも間違った判定や不確かな生体情
報を出力しない生体検出装置を実現している。
The judging means 7 has a large output detecting means 11 for detecting a case where the output of the swing width calculating means 4 exceeds a predetermined large output.
When detecting a large output, the absence determination by the evaluation of the periodicity and the calculation of the respiratory rate and the heart rate by the biological information calculating means 8 are stopped. This is because the periodicity of the output signal of the biological signal detecting means 2 by the FFT means 5 clearly appears only when the living body on the supporting means is at rest, and the living body has moved on the supporting means. In this case, the periodicity of the output of the biological signal detecting means is disturbed, so that correct absence determination and biological information calculation cannot be performed. Therefore, in such a case, the absence of presence determination is not performed and the conventional presence or absence determination is maintained, and the calculation is not performed due to the large output instead of outputting the respiratory rate and heart rate without performing the biological information calculation. Signal is being output. This realizes a living body detection device that does not output erroneous determinations or uncertain biological information even when there is a large output and the periodicity of the biological signal does not appear.

【0040】以上のように、本実施例の生体検出装置
は、生体の呼吸や心臓の活動による周期的に発生する生
体信号の周期性を利用して敷布団など支持手段上の生体
の在/不在を判定するので、生体信号検出手段の出力信
号が小さい場合でも確実に生体の在/不在を検出でき
る。
As described above, the living body detection device of this embodiment utilizes the periodicity of the biological signal periodically generated by the breathing of the living body and the activity of the heart, and the presence / absence of the living body on a supporting means such as a mattress. Is determined, the presence / absence of a living body can be reliably detected even when the output signal of the biological signal detecting means is small.

【0041】また、先鋭度検出手段により生体信号の周
期性を周波数分析手段の出力波形のピークの先鋭度を用
いて数値化して評価するので、生体信号検出手段の出力
から生体の在/不在を確実に判定できる。また、呼吸や
心拍活動による基本周波数成分の波形が大きなピークを
持たない場合でもその高調波成分のピークが複数あれば
検出が可能であり、様々に変化する生体信号に適応でき
る。さらに、呼吸など周波数の極めて低い信号を用いる
必要がないために短時間に処理可能にできたり、大きな
コンデンサを用いる必要がなくなるなど回路の構成を簡
単なものにできるといった効果がある。
Also, the periodicity of the biological signal is evaluated by the sharpness detection means by quantifying the periodicity of the peak of the output waveform of the frequency analysis means, and the presence / absence of the living body is determined from the output of the biological signal detection means. It can be determined reliably. Further, even when the waveform of the fundamental frequency component due to respiration or heartbeat activity does not have a large peak, detection is possible if there are a plurality of peaks of the harmonic component, and it can be applied to variously changing biological signals. Further, there is no need to use an extremely low frequency signal such as breathing, so that processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified such that a large capacitor is not required.

【0042】また、周波数差算出手段により先鋭度の高
い複数のピーク間の周波数差を用いて生体信号の周期性
を数値化して評価するので、生体信号出力手段の出力か
ら生体の在不在を確実に判定できる。
Further, the periodicity of the biological signal is quantified and evaluated by using the frequency difference between a plurality of peaks having high sharpness by the frequency difference calculating means, so that the presence or absence of the living body can be reliably determined from the output of the biological signal output means. Can be determined.

【0043】また、周波数差算出手段により先鋭度の高
い複数のピーク間の周波数差を用いて呼吸数や心拍数を
算出するので支持手段上の生体の在/不在の判定を行う
と同時に生体情報を算出できる。
Further, the respiratory rate and the heart rate are calculated by the frequency difference calculating means using the frequency difference between a plurality of peaks having high sharpness. Can be calculated.

【0044】さらに、大出力検出手段により生体信号検
出手段の出力から周期性を評価できない場合を検出でき
るので、不確かな在/不在判定を行ったり、不正確な呼
吸数心拍数の算出を行うことがない。
Further, since the case where periodicity cannot be evaluated from the output of the biological signal detecting means can be detected by the large output detecting means, it is possible to make an uncertain presence / absence judgment or to calculate an inaccurate respiration rate / heart rate. There is no.

【0045】なお、本実施例では、周期性の評価にFF
T手段による周波数分析手段を用いて行っているが、自
己相関分析法など周波数系列への変換を行わない方法を
用いて評価することも可能である。この場合も先鋭度算
出やピーク間の間隔を用いて周期性を数値化して評価で
き、呼吸数や心拍数の算出も可能である。ただし、この
場合、ピーク差は時間で求められる。
In this embodiment, FF is used to evaluate the periodicity.
Although the evaluation is performed using the frequency analysis means by the T means, the evaluation can be performed using a method that does not perform conversion into a frequency sequence, such as an autocorrelation analysis method. Also in this case, the periodicity can be quantified and evaluated using the sharpness calculation and the interval between the peaks, and the respiration rate and the heart rate can be calculated. However, in this case, the peak difference is obtained in time.

【0046】また、本実施例では、周波数分析手段とし
てFFT手段を用いたが、DFT(離散的フーリエ変
換)を用いてもよいし、複数の帯域フィルタを用いるア
ナログ的な方法を用いて周波数分析を行ってもよい。
In this embodiment, the FFT means is used as the frequency analysis means. However, a DFT (Discrete Fourier Transform) may be used, or the frequency analysis may be performed using an analog method using a plurality of band filters. May be performed.

【0047】また、本実施例では先鋭度算出手段は、F
FT手段の出力波形全体適用して全周波数における先鋭
度を求めているが、先に振り幅の大きなピークを抽出
し、抽出したピークの先鋭度を算出するようなアルゴリ
ズムを用いてもよい。また、先鋭度の算出式は(式1)
に示す式に限定するものではなく、波形の鋭さが数値化
できるものであればいかなる物でもよい。
Further, in this embodiment, the sharpness calculating means is F
Although the sharpness at all frequencies is obtained by applying the entire output waveform of the FT means, an algorithm that extracts a peak having a large swing width first and calculates the sharpness of the extracted peak may be used. The calculation formula of the sharpness is (Equation 1)
The formula is not limited to the above formula, and any formula can be used as long as the sharpness of the waveform can be quantified.

【0048】また、本実施例では周波数差算出手段は隣
り合うピークの周波数差を算出しているが、必ずしも隣
り合うピークでなくてもよい。ただし、この場合は算出
される周波数差の値がすべて基本周波数に一致しない場
合もあるので、基本周波数周波数差を求めるピークの数
を3つより増やすほうが望ましい。
In this embodiment, the frequency difference calculating means calculates the frequency difference between adjacent peaks, but the frequency difference is not necessarily required to be adjacent peaks. However, in this case, all of the calculated frequency difference values may not coincide with the fundamental frequency. Therefore, it is desirable to increase the number of peaks for obtaining the fundamental frequency difference from three.

【0049】また、本実施例では生体の支持手段として
敷布団を用いているが、ベッドや座席に使用するもので
もよい。特に、木製の固いベッドや座席に用いる場合は
有効である。
In this embodiment, a mattress is used as a means for supporting a living body, but it may be used for a bed or a seat. It is particularly effective when used for hard wooden beds and seats.

【0050】また、本実施例では信号処理手段は増幅手
段とフィルターとからなっているが、増幅手段は生体信
号検出手段の感度がよく出力が十分取れる場合は必ずし
も必要ではなく、フィルターも不要な信号成分の大きさ
が生体信号より十分小さい場合は不要にできる。
In this embodiment, the signal processing means comprises an amplifying means and a filter. However, the amplifying means is not always necessary when the sensitivity of the biological signal detecting means is good and sufficient output can be obtained, and a filter is not necessary. If the magnitude of the signal component is sufficiently smaller than the biological signal, it can be made unnecessary.

【0051】さらに、本実施例では、生体情報算出手段
が支持手段上の生体の呼吸数と心拍数の両方を算出して
いるが、どちらか片方の値のみ算出する構成でもよい。
Further, in this embodiment, the biological information calculating means calculates both the respiratory rate and the heart rate of the living body on the supporting means, but it is also possible to calculate only one of the values.

【0052】なお、本実施例では、判定手段においてV
1、T1などあらかじめ決められた閾値を複数用いて在
/不在を判定しているが、これらの閾値は実際に多数の
人で出力を確認しこれらのデータから統計的に求めた最
適値を使用している。
In this embodiment, V is determined by the determination means.
Although presence / absence is determined using a plurality of predetermined thresholds such as 1, T1, etc., these thresholds are actually checked by a large number of people, and the optimal values statistically obtained from these data are used. are doing.

【0053】(実施例2)本発明の実施例2について図
面を用いて説明する。
(Embodiment 2) Embodiment 2 of the present invention will be described with reference to the drawings.

【0054】なお、本実施例の実施例1と異なる点は、
信号処理手段の出力信号を高速フーリエ変換する第1の
FFT手段12の出力波形の特徴を抽出するために、第
1のFFT手段の出力波形から呼吸による特徴の大きな
概ね0〜1.5Hzの波形と心拍による特徴の大きな概ね
0〜8Hzの波形を切り出す波形切り出し手段13と、波
形切り出し手段13が切り出した呼吸成分の波形に窓関
数をかけて演算する第1の窓関数演算手段14、第1の
窓関数演算手段14の出力にFFT処理を行う第2のF
FT手段16、波形切り出し手段13が切り出した心拍
成分の波形に窓関数をかけて演算する第2の窓関数演算
手段15、第2の窓関数演算手段15の出力にFFT処
理を行う第3のFFT手段17を持ち、判定手段7は振
り幅演算手段4と第2のFFT手段16と第3のFFT
手段17の出力を用いて敷布団1上の人体の存在を判定
し、生体情報算出手段は第2のFFT手段16の出力か
ら呼吸間隔を、第3のFFT手段17から心拍間隔をそ
れぞれ算出する点にある。なお、第2のFFT手段と第
3のFFT手段は周波数系列のデータをFFTと同じア
ルゴリズムで演算するもので得られるデータは時間の次
元の系列となる。
The difference between this embodiment and the first embodiment is that
In order to extract the characteristics of the output waveform of the first FFT means 12 for fast Fourier transforming the output signal of the signal processing means, a waveform of approximately 0 to 1.5 Hz having a large characteristic due to respiration from the output waveform of the first FFT means Waveform extracting means 13 for extracting a waveform of approximately 0 to 8 Hz having a large characteristic due to the heartbeat, a first window function calculating means 14 for calculating a waveform of the respiratory component cut by the waveform extracting means 13 by applying a window function, To perform an FFT process on the output of the window function calculating means 14 of the second F
FT means 16, second window function calculating means 15 for applying a window function to the waveform of the heartbeat component cut out by waveform cutting means 13, and third processing for performing an FFT process on the output of second window function calculating means 15. The FFT means 17 is provided, and the judging means 7 comprises a swing width calculating means 4, a second FFT means 16 and a third FFT means.
The presence of a human body on the mattress 1 is determined using the output of the means 17, and the biological information calculation means calculates the respiratory interval from the output of the second FFT means 16 and the heartbeat interval from the third FFT means 17. It is in. The second FFT means and the third FFT means calculate the data of the frequency series by the same algorithm as the FFT, and the data obtained is a time-dimensional series.

【0055】実施例1で述べたように、生体信号検出手
段2の出力信号を第1のFFT手段12により周波数分
析を行うと、呼吸や心拍活動の基本周波数のピークとそ
の整数倍の周波数に出現する高調波成分のピークが現れ
る。この基本周波数と高調波成分の周波数系列波形は規
則的に等間隔でピークが出現するので、この周波数系列
データをさらに高速フーリエ変換と同じ計算方法で変換
すると横軸は時間の次元を持つ新たな系列に変換され呼
吸や心拍の発生間隔に相当する位置に極めて大きなピー
クを持つ波形が求められる。
As described in the first embodiment, when the output signal of the biological signal detecting means 2 is subjected to frequency analysis by the first FFT means 12, the peak of the fundamental frequency of respiratory or heartbeat activity and a frequency that is an integral multiple of the peak are obtained. The peak of the appearing harmonic component appears. Since peaks appear regularly at regular intervals in the frequency sequence waveforms of the fundamental frequency and harmonic components, when this frequency sequence data is further transformed by the same calculation method as the fast Fourier transform, the horizontal axis has a new time dimension. A waveform which is converted into a series and has an extremely large peak at a position corresponding to the interval of occurrence of respiration or heartbeat is obtained.

【0056】図6(a)、(b)、(c)にこれらの変
換結果を示す。図6(a)は信号処理手段3の出力の時
系列データであり、呼吸間隔は平均で3.1s、心拍間
隔は平均で0.8sであった。図6(b)は図6(a)
の波形を第1のFFT手段12により高速フーリエ変換
した結果の絶対値を算出した周波数系列データ、図6
(c)は図6(b)をFFTアルゴリズムを用いてさら
に高速フーリエ変換した結果の絶対値を算出した結果で
横軸は時間の次元をもつ系列データである。図6(b)
では呼吸の基本周波数0.32Hzとその高調波は明確に
現れているが、心拍活動の基本周波数1.25Hzはあま
り明確ではなく、その第2高調波の2.5Hzのピークが
大きく現れている。これは、3〜6Hz付近に人体の固有
振動数が存在し、この周波数範囲に近い振動成分が伝達
されやすくなっていることなどが原因と考えられ、この
ような状況は敷布団1上の人体が横向きに寝ていた場合
など呼吸や心拍活動の振動が振動センサ2に直接伝わり
にくなったりして生体信号検出手段2の出力が小さい場
合に多く発生する。
FIGS. 6A, 6B and 6C show the results of these conversions. FIG. 6A shows the time-series data of the output of the signal processing means 3, wherein the respiratory interval was 3.1 s on average and the heartbeat interval was 0.8 s on average. FIG. 6B shows FIG.
FIG. 6 shows frequency series data in which the absolute value of the result of fast Fourier transform of the waveform of FIG.
FIG. 6C shows the result of calculating the absolute value of the result of further fast Fourier transform of FIG. 6B using the FFT algorithm, and the horizontal axis is series data having a time dimension. FIG. 6 (b)
Although the fundamental frequency of respiration 0.32 Hz and its harmonics are clearly shown, the fundamental frequency of heart rate activity 1.25 Hz is not so clear, and the peak of the second harmonic of 2.5 Hz is large. . This is considered to be due to the fact that the natural frequency of the human body exists in the vicinity of 3 to 6 Hz, and a vibration component close to this frequency range is easily transmitted. This often occurs when the output of the biological signal detecting means 2 is small due to the difficulty in directly transmitting the vibration of the breathing or heartbeat activity to the vibration sensor 2 such as when lying down sideways.

【0057】しかしながら、この周波数系列データをさ
らに高速フーリエ変換した結果の図6(c)を見ると、
心拍間隔である0.8s付近にもっとも大きなピークが
存在し、さらに呼吸間隔に近い3.1s付近にも比較的
大きなピークが存在することがわかる。これは、図6
(b)において基本周波数と高調波成分による基本周波
数と等しい周波数間隔でピークが並ぶ様子をあたかも基
本周波数を周期とする正弦波に近い波形として認識でき
ることを示す。
However, FIG. 6 (c) showing the result of further fast Fourier transform of this frequency series data shows that
It can be seen that the largest peak exists near the heartbeat interval of 0.8 s, and a relatively large peak also exists near 3.1 s, which is close to the respiration interval. This is shown in FIG.
FIG. 6B shows that peaks are arranged at the same frequency interval as the fundamental frequency and the fundamental frequency due to the harmonic component as a waveform close to a sine wave whose cycle is the fundamental frequency.

【0058】この変換を用いる有利な点は、基本周波数
のピークが小さい場合や一部のピークが小さい場合でも
周波数系列上の周期性が全体的に数値化でき、しかも、
得られる波形の最大のピークが呼吸や心拍の間隔に相当
する時間軸上の位置に出現しやすいことである。また、
あらかじめピークを抽出しておく必要もないので、高速
フーリエ変換後の周波数系列波形のピークがあまり明確
でない場合でも基本周波数による特徴を正確に抽出する
ことができる。
The advantage of using this conversion is that even when the peak of the fundamental frequency is small or a part of the peaks are small, the periodicity on the frequency series can be numerically expressed as a whole.
The maximum peak of the obtained waveform is likely to appear at a position on the time axis corresponding to the interval between breathing and heartbeat. Also,
Since there is no need to extract peaks in advance, even when the peaks of the frequency sequence waveform after the fast Fourier transform are not so clear, it is possible to accurately extract the feature based on the fundamental frequency.

【0059】このように生体信号検出手段の出力波形か
ら呼吸や心拍による生体固有の特徴を正確に求めること
ができるので、支持手段上の生体を確実に検出できる。
As described above, since the characteristic inherent to the living body due to respiration or heartbeat can be accurately obtained from the output waveform of the biological signal detecting means, the living body on the supporting means can be reliably detected.

【0060】さらに、呼吸や心拍の発生間隔に相当する
時間軸上の位置にもっとも大きなピークが出現しやすい
ので、出力波形から容易に呼吸間隔や心拍間隔の生体情
報を算出することができる。
Further, since the largest peak tends to appear at a position on the time axis corresponding to the interval between the occurrence of respiration and heartbeat, biological information of the interval between respiration and heartbeat can be easily calculated from the output waveform.

【0061】なお、本実施例では第1のFFT手段の出
力に直接FFTアルゴリズムを適用する前に、波形切り
出し手段で呼吸の特徴が現れる概ね0〜1.5Hzの周波
数範囲と心拍の特徴が強く現れる概ね0.5〜8Hzの周
波数範囲のみの2つの波形を切り出し、それぞれに第1
の窓関数演算手段と第2の窓関数演算手段によりハニン
グ窓による窓関数を掛け合せた上で、第2のFFT手段
と第3のFFT手段によりFFTアルゴリズムを適用し
て周波数系列データを時間系列データに変換している。
In this embodiment, before the FFT algorithm is directly applied to the output of the first FFT means, the frequency range of approximately 0 to 1.5 Hz and the characteristic of the heartbeat in which the characteristic of respiration appears in the waveform extracting means is strong. The two waveforms that appear only in the frequency range of approximately 0.5 to 8 Hz are cut out, and the first is
After multiplying the window function by the Hanning window by the window function calculating means and the second window function calculating means, the FFT algorithm is applied by the second FFT means and the third FFT means to convert the frequency sequence data into the time series data. Has been converted to.

【0062】これは、心拍と呼吸とでは基本周波数が異
なっており、高調波成分が出現する周波数領域も異なっ
ているため、心拍と呼吸とで高調波成分が出現しやすい
周波数領域を設け、FFT手段の出力をそれぞれの周波
数領域の系列に切り取った後に窓関数を適用した後にフ
ーリエ変換を行うと、呼吸間隔と心拍間隔をそれぞれ個
別に求めやすくできるためである。図7(a)に第1の
FFT手段の出力を示す。図7(b)は図7(a)の周
波数系列データから呼吸の基本周波数とその高調波成分
が多く存在する概ね0〜1.5Hzの信号を切り取った波
形、図7(c)は図7(a)の周波数系列データから心
拍活動の基本周波数とその高調波成分が多く存在する概
ね0.5〜8Hzの信号を切り取った波形、図7(d)は
図7(b)にハニング窓を適用した波形、図7(e)は
図7(c)にハニング窓を適用した波形、図7(f)は
図7(d)を高速フーリエ変換した波形、図7(g)は
図7(e)を高速フーリエ変換した波形である。ハニン
グ窓のような窓関数では、領域の中心付近の周波数を大
きく、それ以外は相対的に小さくなるように変換するの
で、特に図7(e)では呼吸に相当する0.32Hzのピ
ークはほとんどなくなっている。その結果図7(f)と
図7(g)とでピークとなる周波数が変化し、図7
(f)では呼吸間隔に相当する3.1s、図7(e)で
は心拍間隔に相当する0.8sにもっとも大きなピーク
が存在しており、容易に呼吸数と心拍数を算出すること
ができる。
This is because the fundamental frequency is different between the heartbeat and the respiration, and the frequency region where the harmonic component appears is also different. Therefore, a frequency region where the harmonic component is likely to appear between the heartbeat and the respiration is provided. This is because, when the output of the means is cut into a series in each frequency domain and then the Fourier transform is performed after applying the window function, it is easy to obtain the respiratory interval and the heartbeat interval individually. FIG. 7A shows the output of the first FFT means. FIG. 7B is a waveform obtained by cutting out a signal of approximately 0 to 1.5 Hz in which the fundamental frequency of respiration and its harmonic components are abundant from the frequency sequence data of FIG. 7A, and FIG. FIG. 7D shows a waveform obtained by cutting out a signal of about 0.5 to 8 Hz in which the fundamental frequency of the heartbeat activity and its harmonic components are abundant from the frequency series data of FIG. 7A, and FIG. 7 (e) is a waveform obtained by applying a Hanning window to FIG. 7 (c), FIG. 7 (f) is a waveform obtained by performing a fast Fourier transform on FIG. 7 (d), and FIG. This is a waveform obtained by performing fast Fourier transform on e). In a window function such as a Hanning window, the frequency near the center of the region is converted so as to be large, and the others are relatively small. Therefore, in FIG. Is gone. As a result, the peak frequency changes between FIG. 7 (f) and FIG. 7 (g).
In FIG. 7F, the largest peak exists at 3.1 s corresponding to the respiration interval, and in FIG. 7E, the largest peak exists at 0.8 s corresponding to the heartbeat interval, so that the respiration rate and the heart rate can be easily calculated. .

【0063】上記の構成により、呼吸および心拍による
ピークが多く現れる周波数帯をそれぞれ抽出しかつ窓関
数でその中心周波数を大きく取り出すので呼吸および心
拍による周期成分の大きな出力が得られ、これを用い
て、生体の特徴を明確にすることが可能であり、さら
に、呼吸間隔と心拍間隔を簡単に求めることが可能とな
る。
According to the above configuration, a frequency band in which many peaks due to respiration and heartbeat appear is extracted, and the center frequency thereof is largely extracted by a window function. Therefore, a large output of a periodic component due to respiration and heartbeat is obtained. In addition, it is possible to clarify the characteristics of the living body, and it is also possible to easily obtain the respiratory interval and the heartbeat interval.

【0064】なお、上記実施例では呼吸間隔および心拍
間隔を求めているが、どちらか一方でもよい。また、呼
吸間隔および心拍間隔の逆数である呼吸数、心拍数を求
めるものでもよい。
In the above embodiment, the respiration interval and the heartbeat interval are obtained, but either one may be used. Further, the respiration rate and the heart rate, which are the reciprocals of the respiration interval and the heart rate interval, may be obtained.

【0065】また、第1のFFT手段と第2のFFT手
段はDFTを用いてもよいし、複数の帯域フィルターを
用いるアナログ的な方法でもよい。ただし、第2のFF
T手段を実現する前に第1のFFT手段の出力を周波数
系列の連続データにする必要があり、第2のFFT手段
をアナログ的に行うのは現実的ではない。
Further, the first FFT means and the second FFT means may use a DFT or an analog method using a plurality of band filters. However, the second FF
Before realizing the T means, the output of the first FFT means needs to be continuous data of a frequency sequence, and it is not realistic to perform the second FFT means in an analog manner.

【0066】また、本実施例では波形切り出し手段が呼
吸用と心拍用の2種の波形を切り出し、それぞれ個別に
窓関数演算とFFT処理を行う構成であるが、呼吸又は
心拍のどちらか一方のみの処理でもよいし、同じ構成で
呼吸の処理と心拍の処理を時間を分けて行う構成でもよ
い。
In this embodiment, the waveform extracting means is configured to extract two types of waveforms, one for respiration and the other for heartbeat, and to individually perform window function calculation and FFT processing. Or the configuration may be such that the processing of the respiration and the processing of the heartbeat are performed at different times with the same configuration.

【0067】また、第2、第3のFFT手段は、逆フー
リエ変換でも変換結果の値の大きさが異なるだけでほぼ
同じ結果が得られる。(式3)にDFTの定義を、(式
4)に逆DFTの定義を示す。x(n)は時系列、X
[k]は周波数系列であり、(式3)のx(n)とX
[k]を入れ替えるとこれら2つの式の違いはexpの
括弧内の符号と全体にかかる1/Nだけであり、exp
の括弧内の符号は実部では無視できる。FFTはDFT
の演算を高速化した計算法であり基本的には同じ結果が
得られる計算法であるから、FFTを行っても、逆FF
Tを行ってもどちらでもよい。
The second and third FFT means can obtain substantially the same result even in the inverse Fourier transform except that the magnitude of the transform result is different. (Equation 3) shows the definition of DFT, and (Equation 4) shows the definition of inverse DFT. x (n) is a time series, X
[K] is a frequency sequence, and x (n) and X in (Equation 3)
When [k] is replaced, the only difference between these two expressions is the sign in parentheses of exp and 1 / N over the whole, and exp
The sign in parentheses can be ignored in the real part. FFT is DFT
Is a calculation method that speeds up the operation of, and is basically a calculation method that can obtain the same result.
Either T may be performed.

【0068】[0068]

【数1】 (Equation 1)

【0069】[0069]

【数2】 (Equation 2)

【0070】さらに、上記実施例では周波数領域のデー
タを切り取る際に呼吸の場合は0〜1.5Hz、心拍の場
合は0.5〜8Hzとしたが、この周波数範囲のみに限定
するものではない。呼吸の場合は基本周波数は0.1〜
1Hz程度になるため、少なくともこの範囲であれば基本
周波数は含まれるので、呼吸による周期性を取り出すこ
とは可のである。
Further, in the above embodiment, when cutting out the data in the frequency domain, the frequency is set to 0 to 1.5 Hz in the case of breathing and 0.5 to 8 Hz in the case of heartbeat, but it is not limited to this frequency range. . For breathing, the fundamental frequency is 0.1 ~
Since it is about 1 Hz, the fundamental frequency is included in at least this range, so that it is possible to extract the periodicity due to respiration.

【0071】ただし、より正確な値の算出のためには、
第2高調波まで含めてとるほうが有利であるし、睡眠中
などでは更に呼吸数が低下することもあるので呼吸のた
めに切り出す周波数範囲は0.05〜2Hzを含むほうが
より望ましいといえる。
However, in order to calculate a more accurate value,
It is more advantageous to include the second harmonic, and the respiratory rate may be further reduced during sleep or the like. Therefore, it can be said that it is more preferable that the frequency range cut out for respiration includes 0.05 to 2 Hz.

【0072】また心拍数でも基本的周波数は0.7〜3
Hzに入るので、最低限この範囲が含まれるならば心拍数
の検出は可能であるが、人体の固有振動数である4〜6
Hzを含めるほうが計算上有利になり、睡眠中の心拍数の
低下を考えると0.5〜6Hzを含むほうがより望ましい
といえる。また、切り取る周波数範囲を状況に合わせて
変化させる構成でもよい。
The basic frequency of the heart rate is 0.7 to 3
Hz, the heart rate can be detected if this range is included at least, but the natural frequency of the human body is 4-6.
It is more computationally advantageous to include Hz, and it is more preferable to include 0.5 to 6 Hz in consideration of a decrease in heart rate during sleep. Further, a configuration may be employed in which the frequency range to be cut is changed according to the situation.

【0073】また、上記実施例では第1第2の窓関数演
算手段では、いづれもハニング窓を用いて算出している
が、ハミング窓やブラックマン窓などFFT変換を行う
波形の不連続性を修正しFFT変換の誤差を少なくする
窓関数であれば他の窓関数を用いてもよい。
Further, in the above embodiment, the first and second window function calculating means each calculate using the Hanning window. However, the discontinuity of the waveform to be subjected to the FFT conversion such as the Hamming window or the Blackman window is eliminated. Another window function may be used as long as it is a window function that corrects and reduces the error of the FFT transform.

【0074】また、上記2つの実施例では生体信号検出
手段として敷布団の下に敷き人体の振動を直接受ける振
動センサーを用いたが、たとえばレーザー変異計などに
より非接触で呼吸や心拍活動に起因する人体の腹部の上
下動を検出して人体検出を行うものや、ccdカメラな
どを用い非接触で布団上の人体の呼吸や心拍活動に起因
する微妙な変化を検出して生体を検出するものに適用し
ても同じ効果が得られる。
Further, in the above two embodiments, a vibration sensor, which is laid under the mattress and directly receives the vibration of the human body, is used as the biological signal detecting means. One that detects the human body by detecting the vertical movement of the abdomen of the human body, and one that detects the living body by detecting subtle changes caused by the human body's breathing and heartbeat activity on the futon in a non-contact manner using a ccd camera etc. The same effect can be obtained by applying.

【0075】上記2つの実施例に述べたように、本発明
の生体検出装置は生体信号検出手段の出力が小さくなる
場合でも座席やベット、布団上での生体検出が確実に行
える。これを用いて、生体の在/不在で温熱制御や音響
制御を自動で行ったり、乗り物や映画館などの空席検索
などに利用できる。さらに、在席時間や在床時間のチェ
ックが可能で、特にベッドや布団上における人体の在/
不在を判定すれば睡眠などの生活状況を記録することも
できる。さらに、このように検出した人体の生活状況を
用い通常より在床時間が長いなど日常の生活と異なる生
活状況であると認識した場合に親戚などの第3者にその
状況を伝え注意を促すシステムにも応用できる。
As described in the above two embodiments, the living body detecting device of the present invention can surely detect a living body on a seat, a bed or a futon even when the output of the biological signal detecting means is small. By using this, it is possible to automatically perform thermal control or acoustic control in the presence / absence of a living body, or to search for a vacant seat in a vehicle or a movie theater. In addition, it is possible to check the presence time and occupancy time, especially the presence of the human body on a bed or futon.
If absent is determined, living conditions such as sleep can also be recorded. Furthermore, a system that uses the detected living conditions of the human body to notify a third person, such as a relative, of the situation when it recognizes that the living condition is different from daily life, such as a longer bedtime than usual, and warns the user to pay attention. It can also be applied to

【0076】[0076]

【発明の効果】以上2つの実施例で説明したように本発
明の請求項1から13に示す生体検出装置は以下のよう
な効果がある。
As explained in the above two embodiments, the living body detecting apparatus according to the first to thirteenth aspects of the present invention has the following effects.

【0077】本発明の請求項1に係る生体検出装置は、
生体信号出力手段の大きさだけでなく生体の心拍や呼吸
など周期的に発生する生体信号の周期性を用いて生体の
在/不在を判定するので、単に生体信号の大きさのみを
用いる場合に比べて、生体信号検出手段の出力信号が小
さい場合でも正確な判定ができる。
The living body detecting device according to the first aspect of the present invention comprises:
Since the presence / absence of a living body is determined using not only the size of the biological signal output means but also the periodicity of a biological signal that periodically occurs, such as the heartbeat and respiration of the living body, the case where only the size of the biological signal is used In comparison, accurate determination can be made even when the output signal of the biological signal detecting means is small.

【0078】また、本発明の請求項2に係る生体検出装
置は、周波数分析手段の出力の特徴量を抽出して生体信
号検出手段の周期性を検出するので、確実に生体信号の
周期性を評価できる。
Further, the biological detection device according to claim 2 of the present invention extracts the characteristic amount of the output of the frequency analysis means and detects the periodicity of the biological signal detection means. Can be evaluated.

【0079】また、本発明の請求項3に係る生体検出装
置は、生体信号が強い周期性を示すことから周波数軸上
に現れる鋭いピークの先鋭度を用いるので、生体信号の
特徴を容易に抽出することが可能で、正確な生体検出が
できる。
Further, the biological detection device according to claim 3 of the present invention uses the sharpness of a sharp peak appearing on the frequency axis because the biological signal exhibits strong periodicity, so that the characteristics of the biological signal can be easily extracted. And accurate living body detection can be performed.

【0080】また、本発明の請求項4に係る生体検出装
置は、周波数軸上の周期性を用いて生体信号の周期性を
評価するので、生体信号の周期性をより強調して抽出す
ることができる。
Further, the biological detection device according to claim 4 of the present invention evaluates the periodicity of the biological signal using the periodicity on the frequency axis. Can be.

【0081】また、本発明の請求項5に係る生体検出装
置は、複数のピーク間の周波数差を用いるので、基本周
波数成分の正数倍となる周波数に現れるいくつかの高調
波成分から基本周波数成分を抽出することが可能で、基
本周波数成分の出力が小さい場合でも確実に生体を検出
できる。また、呼吸や心拍活動による基本周波数成分の
波形が大きなピークを持たない場合でもその高調波成分
のピークが複数あれば検出が可能であり、様々に変化す
る生体信号に適応できる。さらに、呼吸など周波数の極
めて低い信号を用いる必要がないために短時間に処理可
能にできたり、大きなコンデンサを用いる必要がなくな
るなど回路の構成を簡単なものにできるといった効果が
ある。
Further, the living body detecting apparatus according to claim 5 of the present invention uses a frequency difference between a plurality of peaks. The component can be extracted, and the living body can be reliably detected even when the output of the fundamental frequency component is small. Further, even when the waveform of the fundamental frequency component due to respiration or heartbeat activity does not have a large peak, detection is possible if there are a plurality of peaks of the harmonic component, and it can be applied to variously changing biological signals. Further, there is no need to use an extremely low frequency signal such as breathing, so that processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified such that a large capacitor is not required.

【0082】また、本発明の請求項6に係る生体検出装
置は、基本周波数成分とその正数倍に現れる高調波成分
による周波数系列データを時系列データから周波数成分
に分解する手法と同様に処理することにより、生体信号
の周期性をより強調して抽出することが可能で、正確な
生体検出を実現できる。また、呼吸や心拍活動による基
本周波数成分の波形が大きなピークを持たない場合でも
その高調波成分のピークが複数あれば検出が可能であ
り、様々に変化する生体信号に適応できる。さらに、呼
吸など周波数の極めて低い信号を用いる必要がないため
に短時間に処理可能にできたり、大きなコンデンサを用
いる必要がなくなるなど回路の構成を簡単なものにでき
るといった効果がある。
Further, the living body detecting apparatus according to claim 6 of the present invention performs processing in the same manner as a method of decomposing frequency series data based on a fundamental frequency component and a harmonic component appearing as a positive multiple thereof from time series data into frequency components. By doing so, the periodicity of the biological signal can be more emphasized and extracted, and accurate biological detection can be realized. Further, even when the waveform of the fundamental frequency component due to respiration or heartbeat activity does not have a large peak, detection is possible if there are a plurality of peaks of the harmonic component, and it can be applied to variously changing biological signals. Further, there is no need to use an extremely low frequency signal such as breathing, so that processing can be performed in a short time, and there is an effect that a circuit configuration can be simplified such that a large capacitor is not required.

【0083】また、本発明の請求項7に係る生体検出装
置は、生体信号の周期性を評価することにより生体の在
/不在を検出すると同時に周期性から生体の心拍数また
は心拍間隔と呼吸数または呼吸間隔を正確に測定するこ
とができる。
Further, the living body detecting apparatus according to claim 7 of the present invention detects the presence / absence of a living body by evaluating the periodicity of the living body signal, and at the same time, detects the heart rate or heartbeat interval of the living body and the respiratory rate from the periodicity. Alternatively, the breathing interval can be accurately measured.

【0084】また、本発明の請求項8に係る生体検出装
置は、体動などにより周期性のある生体信号が取り難い
場合に周期性を生体の検出に用いないので、周期性が検
出できない場合でも確実に生体の在/不在を検出でき
る。
Further, the living body detecting device according to the eighth aspect of the present invention does not use the periodicity for detecting a living body when it is difficult to obtain a periodic biological signal due to body movement or the like. However, the presence / absence of a living body can be reliably detected.

【0085】また、本発明の請求項9に係る生体検出装
置は、体動などにより周期性のある生体信号が取り難い
場合に心拍数または心拍数、呼吸数または呼吸数を測定
しないので、測定が難しい場合の不確かな値を出力する
ことがない。
Further, the living body detecting apparatus according to the ninth aspect of the present invention does not measure the heart rate or the heart rate, the respiratory rate or the respiratory rate when it is difficult to obtain a periodic biological signal due to body movement or the like. It does not output uncertain values when it is difficult.

【0086】また、本発明の請求項10に係る生体検出
装置は、周波数分析手段の出力のうち特に特徴の強く現
れる周波数範囲を切り出して特徴を抽出するので、周波
数分析手段の出力波形の特徴を簡単に抽出できる。
In the living body detecting apparatus according to the tenth aspect of the present invention, a frequency range where a characteristic is particularly strong is extracted from the output of the frequency analyzing means to extract the characteristic. Easy to extract.

【0087】また、本発明の請求項11に係る生体検出
装置は、呼周波数分析手段の出力波形のうち呼吸による
周期成分が大きく現れる波形から呼吸間隔または呼吸周
波数を算出するので正確かつ簡単に呼吸間隔または呼吸
周波数を算出できる。
In the living body detecting apparatus according to the eleventh aspect of the present invention, the respiratory interval or the respiratory frequency is calculated from the waveform of the output frequency of the call frequency analyzing means, in which the periodic component due to respiration appears largely. The interval or respiratory frequency can be calculated.

【0088】また、本発明の請求項12に係る生体検出
装置は、周波数分析手段の出力波形のうち心拍活動によ
る周期成分が大きく現れる波形から心拍間隔または心拍
数を算出するので正確かつ簡単に心拍間隔または心拍数
を算出できる。
In the living body detecting apparatus according to the twelfth aspect of the present invention, the heartbeat interval or the heart rate is calculated from the waveform of the output waveform of the frequency analysis means, in which the periodic component due to the heartbeat activity appears largely. Interval or heart rate can be calculated.

【0089】また、本発明の請求項13に係る生体検出
装置は、波形切り出し手段の出力のうち呼吸または心拍
活動の特徴が強く現れる部分を強調した上で特徴を抽出
するので、簡単に呼吸間隔または呼吸数、心拍間隔また
は心拍数を算出できる。
In the living body detecting apparatus according to the thirteenth aspect of the present invention, since the features of the output of the waveform extracting means are emphasized at the portions where the characteristics of the respiratory or cardiac activity appear strongly, the respiratory interval can be easily determined. Alternatively, the respiration rate, heart rate interval or heart rate can be calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における生体検出装置のブロ
ック図
FIG. 1 is a block diagram of a living body detection device according to a first embodiment of the present invention.

【図2】同装置の振り幅算出手段の出力特性図FIG. 2 is an output characteristic diagram of a swing width calculating unit of the apparatus.

【図3】(a)同装置のFFT手段の生体が存在する場
合の出力特性図 (b)同装置のFFT手段の生体が存在しない場合の出
力特性図
FIG. 3A is an output characteristic diagram when the living body of the FFT unit of the apparatus is present; FIG.

【図4】同装置の判定手段のフロ−チャートFIG. 4 is a flowchart of a judgment means of the apparatus.

【図5】本発明の実施例2における生体検出装置のブロ
ック図
FIG. 5 is a block diagram of a living body detection device according to a second embodiment of the present invention.

【図6】(a)同装置の信号処理手段の出力特性図 (b)同装置の第1のFFT手段の出力特性図 (c)同装置の第2のFFT手段の出力特性図6A is an output characteristic diagram of a signal processing unit of the device. FIG. 6B is an output characteristic diagram of a first FFT unit of the device. FIG. 6C is an output characteristic diagram of a second FFT unit of the device.

【図7】(a)同装置の第1のFFT手段の出力特性図 (b)同装置の波形切り出し手段の呼吸検出用に切り出
した出力特性図 (c)同装置の波形切り出し手段の心拍検出用に切り出
した出力特性図 (d)同装置の第1の窓関数演算手段の出力特性図 (e)同装置の第2の窓関数演算手段の出力特性図 (f)同装置の吸数算出用に切り取った第2のFFT手
段の出力特性図 (g)同装置の心拍数算出用に切り取った第2のFFT
手段の出力特性図
FIG. 7A is an output characteristic diagram of a first FFT unit of the device. FIG. 7B is an output characteristic diagram of a waveform extracting unit of the device for detecting respiration. FIG. 7C is a heartbeat detection of a waveform extracting unit of the device. (D) Output characteristic diagram of the first window function calculating means of the device (e) Output characteristic diagram of the second window function calculating means of the device (f) Calculation of the suction number of the device (F) Output characteristic diagram of second FFT means cut out for calculation (g) Second FFT cut out for heart rate calculation of the same device
Output characteristic diagram of means

【図8】従来の生体検出装置のブロック図FIG. 8 is a block diagram of a conventional living body detection device.

【図9】同装置の信号処理手段の出力図FIG. 9 is an output diagram of a signal processing unit of the apparatus.

【符号の説明】[Explanation of symbols]

1 敷布団(支持手段) 2 振動センサ(生体信号検出手段) 5 FFT手段(周期性評価手段) 6 特徴抽出手段 6a 先鋭度算出手段(ピーク抽出手段) 6b 周波数差算出手段 7 判定手段 8 生体情報算出手段 11 大出力検出手段 12 第1のFFT手段(周期性評価手段) 13 波形切り出し手段 14 第1の窓関数演算手段 15 第2の窓関数演算手段 16 第2のFFT手段(特徴抽出手段) 17 第3のFFT手段(特徴抽出手段) REFERENCE SIGNS LIST 1 mattress (supporting means) 2 vibration sensor (biological signal detecting means) 5 FFT means (periodicity evaluating means) 6 feature extracting means 6a sharpness calculating means (peak extracting means) 6b frequency difference calculating means 7 determining means 8 biological information calculation Means 11 Large output detection means 12 First FFT means (periodicity evaluation means) 13 Waveform extraction means 14 First window function calculation means 15 Second window function calculation means 16 Second FFT means (feature extraction means) 17 Third FFT means (feature extraction means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 由美子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4C017 AA10 AA14 AB10 AC03 BC16 BD06 FF05 4C038 VA16 VB31 4C040 AA17 AA30 GG20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yumiko Hara 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 4C017 AA10 AA14 AB10 AC03 BC16 BD06 FF05 4C038 VA16 VB31 4C040 AA17 AA30 GG20

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 生体を支持する支持手段と、前記支持手
段上の生体の呼吸や心拍活動による生体信号を検出する
生体信号検出手段と、前記生体信号検出手段が検出した
生体信号のうち周期的に発生する信号の大きさを評価す
る周期性評価手段と、前記周期性評価手段の出力と生体
信号検出手段の出力とのうち少なくとも一方の出力を用
いて前記支持手段上の生体の在/不在を判定する判定手
段とを備えた生体検出装置。
1. A supporting means for supporting a living body, a biological signal detecting means for detecting a biological signal due to a respiration or a heartbeat activity of the living body on the supporting means, and a periodic signal among the biological signals detected by the biological signal detecting means. A periodicity evaluating means for evaluating the magnitude of a signal generated in the living body, and presence / absence of a living body on the supporting means using at least one of an output of the periodicity evaluating means and an output of the biological signal detecting means. A living body detection device comprising: a determination unit that determines
【請求項2】 周期性評価手段は、生体信号検出手段が
検出した生体信号を周波数分析する周波数分析手段と、
前記周波数分析手段の出力から特徴を抽出する特徴抽出
手段とを持ち、判定手段は前記特徴抽出手段の出力を支
持手段上の生体の在/不在の判定に用いる請求項1に記
載の生体検出装置。
2. The periodicity evaluation means comprises: frequency analysis means for frequency-analyzing the biological signal detected by the biological signal detection means;
2. The living body detection device according to claim 1, further comprising a feature extraction unit configured to extract a feature from an output of the frequency analysis unit, wherein the determination unit uses an output of the feature extraction unit to determine presence / absence of a living body on a support unit. .
【請求項3】 特徴抽出手段は、周波数分析手段の出力
のピークの先鋭度を算出する先鋭度算出手段を有する請
求項2に記載の生体検出装置。
3. The living body detection device according to claim 2, wherein the feature extracting means includes a sharpness calculating means for calculating the sharpness of the peak of the output of the frequency analyzing means.
【請求項4】 特徴抽出手段は、周波数分析手段の出力
の周波数軸上における周期性を評価して抽出する請求項
2に記載の生体検出装置。
4. The living body detection device according to claim 2, wherein the feature extraction unit evaluates and extracts periodicity of the output of the frequency analysis unit on a frequency axis.
【請求項5】 特徴抽出手段は、周波数分析手段の出力
の複数のピークを抽出するピーク抽出手段と、複数のピ
ーク間の周波数差を算出する周波数差算出手段とを有
し、判定手段は前記ピーク抽出手段または前記周波数差
算出手段の出力を支持手段上の生体の在/不在の判定に
用いる請求項4に記載の生体検出装置。
5. The feature extracting means includes a peak extracting means for extracting a plurality of peaks of an output of the frequency analyzing means, and a frequency difference calculating means for calculating a frequency difference between the plurality of peaks. The living body detection device according to claim 4, wherein an output of the peak extracting means or the frequency difference calculating means is used for determining the presence / absence of a living body on the support means.
【請求項6】 特徴抽出手段は、周波数分析手段の出力
の周波数系列データに対し時系列データの周波数分析を
行う場合と同じ手法で周波数軸上における周期性を評価
する請求項4に記載の生体検出装置。
6. The living body according to claim 4, wherein the characteristic extracting means evaluates the periodicity on the frequency axis in the same manner as in the case where the frequency analysis of the time series data is performed on the frequency series data output from the frequency analyzing means. Detection device.
【請求項7】 特徴抽出手段の出力から支持手段上の生
体の心拍数または心拍間隔および呼吸数または呼吸間隔
のうち少なくと一つを算出する生体情報算出手段を有す
る請求項2〜6のいずれか1項に記載の生体検出装置。
7. A biological information calculating means for calculating at least one of a heart rate or a heartbeat interval and a respiratory rate or a respiratory interval of the living body on the supporting means from an output of the feature extracting means. 2. The living body detection device according to claim 1.
【請求項8】 生体信号検出手段の出力があらかじめ決
められた大きさを超えたことを検出する大出力検出手段
を有し、前記大出力検出手段が生体検出手段の出力があ
らかじめ決められた大きさを超えたことを検出した場
合、判定手段は周期性評価手段の出力を支持手段上の生
体の在/不在の判定に用いない請求項1〜7のいずれか
1項に記載の生体検出装置。
8. A high-power detection means for detecting that an output of the biological signal detection means has exceeded a predetermined magnitude, wherein the large-output detection means has an output of the biological detection means having a predetermined magnitude. The living body detection device according to any one of claims 1 to 7, wherein when it is detected that the difference has exceeded the threshold value, the determination unit does not use the output of the periodicity evaluation unit to determine the presence / absence of a living body on the support unit. .
【請求項9】 生体信号検出手段の出力があらかじめ決
められた大きさを超えたことを検出する大出力検出手段
を有し、前記大出力検出手段が生体検出手段の出力があ
らかじめ決められた大きさを超えたことを検出した場
合、生体情報算出手段は心拍数や呼吸数などの算出を行
わない請求項7に記載の生体検出装置。
9. A high output detection means for detecting that an output of the biological signal detection means has exceeded a predetermined magnitude, wherein the high output detection means has an output of the biological detection means having a predetermined magnitude. The living body detection device according to claim 7, wherein the living body information calculation unit does not calculate the heart rate, the respiratory rate, and the like when detecting that the threshold value has been exceeded.
【請求項10】 特徴抽出手段は、周波数分析手段の出
力のうちあらかじめ決められた周波数範囲の波形を切り
出す波形切り出し手段を有し、前記波形切り出し手段の
出力の周期性を評価する請求項4、5又は6に記載の生
体検出装置。
10. The feature extracting means has a waveform extracting means for extracting a waveform in a predetermined frequency range from the output of the frequency analyzing means, and evaluates the periodicity of the output of the waveform extracting means. 7. The living body detection device according to 5 or 6.
【請求項11】 波形切り出し手段は少なくとも0.1
Hzから1Hzまで、より望ましくは、0.05Hzから2Hz
までの周波数範囲を含む波形を切り出す請求項10に記
載の生体検出装置。
11. The waveform cutting means may have at least 0.1
Hz to 1Hz, more preferably 0.05Hz to 2Hz
The biological detection device according to claim 10, wherein a waveform including a frequency range up to is cut out.
【請求項12】 波形切り出し手段は少なくとも0.7
Hzから4Hzまで、より望ましくは、0.5Hzから8Hzま
での周波数範囲を含む波形を切り出す請求項10に記載
の生体検出装置。
12. The method according to claim 12, wherein the waveform cutting means is at least 0.7.
The living body detection device according to claim 10, wherein a waveform including a frequency range from Hz to 4Hz, more preferably from 0.5Hz to 8Hz is cut out.
【請求項13】 特徴抽出手段は、波形切り出し手段が
切り出した波形に窓関数を掛ける窓関数演算手段を持
ち、窓関数演算手段の出力の特徴を抽出して呼吸数また
は呼吸間隔と心拍数または心拍間隔とのうち少なくとも
一つを算出する請求項10、11又は12に記載の生体
検出装置。
13. The feature extracting means has a window function calculating means for multiplying a waveform cut out by the waveform cutting means by a window function, and extracts a feature of an output of the window function calculating means to extract a respiratory rate or a respiratory interval and a heart rate or heart rate. 13. The living body detection device according to claim 10, wherein at least one of a heartbeat interval is calculated.
JP2000300043A 2000-09-29 2000-09-29 Living body detection device Pending JP2002102187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000300043A JP2002102187A (en) 2000-09-29 2000-09-29 Living body detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000300043A JP2002102187A (en) 2000-09-29 2000-09-29 Living body detection device

Publications (1)

Publication Number Publication Date
JP2002102187A true JP2002102187A (en) 2002-04-09

Family

ID=18781774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000300043A Pending JP2002102187A (en) 2000-09-29 2000-09-29 Living body detection device

Country Status (1)

Country Link
JP (1) JP2002102187A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047304A (en) * 2004-07-05 2006-02-16 Chube Univ Frequency-measuring device
JP2008008815A (en) * 2006-06-30 2008-01-17 Central Res Inst Of Electric Power Ind Signal detecting device, signal detecting method, and signal detecting program
JP2008049023A (en) * 2006-08-28 2008-03-06 Japan Radio Co Ltd Nursing care support system
JP2012061243A (en) * 2010-09-17 2012-03-29 Daikin Industries Ltd Heart rate detector
JP2014044650A (en) * 2012-08-28 2014-03-13 Ift Inc Living body presence detection device
JP2017148401A (en) * 2016-02-26 2017-08-31 国立大学法人静岡大学 Frequency measuring instrument, frequency measuring method, and frequency measuring program
JP2018201663A (en) * 2017-05-31 2018-12-27 株式会社リコー Presence detection system, presence detection device, and presence detection method, and program
WO2020067505A1 (en) * 2018-09-28 2020-04-02 帝人ファーマ株式会社 Respiration rate measurement device
JP2020130879A (en) * 2019-02-25 2020-08-31 株式会社Z−Works Body position change determination system, body position change determination method, and body position change determination program
CN113100721A (en) * 2021-03-04 2021-07-13 浙江慧养科技有限公司 Intelligent home decoration floor capable of collecting human heart rate and respiration signals
JP2021112633A (en) * 2016-12-15 2021-08-05 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated System and method for monitoring and determining patient parameters from sensed venous waveform
JP7166687B1 (en) 2022-02-07 2022-11-08 トミタテクノロジー・ジャパン株式会社 biological signal processor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047304A (en) * 2004-07-05 2006-02-16 Chube Univ Frequency-measuring device
JP2008008815A (en) * 2006-06-30 2008-01-17 Central Res Inst Of Electric Power Ind Signal detecting device, signal detecting method, and signal detecting program
JP2008049023A (en) * 2006-08-28 2008-03-06 Japan Radio Co Ltd Nursing care support system
JP2012061243A (en) * 2010-09-17 2012-03-29 Daikin Industries Ltd Heart rate detector
JP2014044650A (en) * 2012-08-28 2014-03-13 Ift Inc Living body presence detection device
JP2017148401A (en) * 2016-02-26 2017-08-31 国立大学法人静岡大学 Frequency measuring instrument, frequency measuring method, and frequency measuring program
US11950890B2 (en) 2016-12-15 2024-04-09 Baxter International Inc. System and method for monitoring and determining patient parameters from sensed venous waveform
JP2021112633A (en) * 2016-12-15 2021-08-05 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated System and method for monitoring and determining patient parameters from sensed venous waveform
JP2018201663A (en) * 2017-05-31 2018-12-27 株式会社リコー Presence detection system, presence detection device, and presence detection method, and program
JPWO2020067505A1 (en) * 2018-09-28 2021-05-20 帝人ファーマ株式会社 Respiratory rate measuring device
CN112739403A (en) * 2018-09-28 2021-04-30 帝人制药株式会社 Respiratory frequency measuring device
JP7055217B2 (en) 2018-09-28 2022-04-15 帝人ファーマ株式会社 Respiratory rate measuring device
WO2020067505A1 (en) * 2018-09-28 2020-04-02 帝人ファーマ株式会社 Respiration rate measurement device
CN112739403B (en) * 2018-09-28 2024-04-30 帝人制药株式会社 Respiratory number measuring device
JP2020130879A (en) * 2019-02-25 2020-08-31 株式会社Z−Works Body position change determination system, body position change determination method, and body position change determination program
JP7254337B2 (en) 2019-02-25 2023-04-10 株式会社Z-Works POSTURE CHANGE DETERMINATION SYSTEM, POSTURE CHANGE DETERMINATION METHOD, AND POSTURE CHANGE DETERMINATION PROGRAM
CN113100721A (en) * 2021-03-04 2021-07-13 浙江慧养科技有限公司 Intelligent home decoration floor capable of collecting human heart rate and respiration signals
CN113100721B (en) * 2021-03-04 2022-10-04 浙江慧养科技有限公司 Intelligent home decoration floor capable of collecting human heart rate and respiration signals
JP7166687B1 (en) 2022-02-07 2022-11-08 トミタテクノロジー・ジャパン株式会社 biological signal processor
JP2023114575A (en) * 2022-02-07 2023-08-18 トミタテクノロジー・ジャパン株式会社 Biological signal processing device

Similar Documents

Publication Publication Date Title
US8262582B2 (en) Extraction of heart inter beat interval from multichannel measurements
Brink et al. Contact-free measurement of heart rate, respiration rate, and body movements during sleep
CN108289638B (en) Biological state determination device and biological state determination method
Heise et al. Monitoring pulse and respiration with a non-invasive hydraulic bed sensor
JP5210872B2 (en) Method and system for extracting quasi-periodic signals with high resolution
JP5857609B2 (en) Sleep state discrimination device
US10390735B2 (en) Body state detecting apparatus, body state detecting method and bed system
JP5776939B2 (en) Sleep state determination device and sleep state determination method
JP2001037742A (en) Monitor device for respiratory disease
JP2013541371A (en) Method and apparatus for monitoring a subject's respiratory activity
JP2002102187A (en) Living body detection device
EP3785610A1 (en) Method of processing a signal representing a physiological rhythm
JP7297190B2 (en) alarm system
US20190150844A1 (en) Biological information monitoring system
JP2020075136A (en) Biological vibration signal detection device
JP2000325315A (en) Sleep stage determinig method and sleep stage determining device
EP3459454A1 (en) Biological information monitoring system
JP4502712B2 (en) Psychosomatic state judgment system
CN109475323B (en) Respiratory waveform drawing system and respiratory waveform drawing method
WO2015178439A2 (en) Device and method for supporting diagnosis of central/obstructive sleep apnea, and computer-readable medium having stored thereon program for supporting diagnosis of central/obstructive sleep apnea
EP3459450B1 (en) Respiration waveform drawing system
JP6268219B2 (en) Respiratory waveform drawing system and biological information monitoring system
JP2007151979A (en) Subject's health condition monitoring device
Heise et al. Unobtrusively detecting apnea and hypopnea events via a hydraulic bed sensor
JP6588035B2 (en) Biological condition analyzer and computer program