JP6588035B2 - Biological condition analyzer and computer program - Google Patents

Biological condition analyzer and computer program Download PDF

Info

Publication number
JP6588035B2
JP6588035B2 JP2016563749A JP2016563749A JP6588035B2 JP 6588035 B2 JP6588035 B2 JP 6588035B2 JP 2016563749 A JP2016563749 A JP 2016563749A JP 2016563749 A JP2016563749 A JP 2016563749A JP 6588035 B2 JP6588035 B2 JP 6588035B2
Authority
JP
Japan
Prior art keywords
frequency
series waveform
state
time series
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016563749A
Other languages
Japanese (ja)
Other versions
JPWO2016093347A1 (en
Inventor
藤田 悦則
悦則 藤田
小倉 由美
由美 小倉
良香 延廣
良香 延廣
可南子 中島
可南子 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Tooling Co Ltd
Original Assignee
Delta Tooling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co Ltd filed Critical Delta Tooling Co Ltd
Publication of JPWO2016093347A1 publication Critical patent/JPWO2016093347A1/en
Application granted granted Critical
Publication of JP6588035B2 publication Critical patent/JP6588035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators

Description

本発明は、生体信号から人の状態を分析する生体状態分析装置及びコンピュータプログラムに関し、特に、睡眠に関連する疾病の可能性、なかでも睡眠時無呼吸症候群の可能性を推定することができる生体状態分析装置及びコンピュータプログラムに関する。  The present invention relates to a biological state analyzing apparatus and a computer program for analyzing a human state from biological signals, and in particular, a biological body capable of estimating the possibility of sleep-related diseases, in particular, the possibility of sleep apnea syndrome. The present invention relates to a state analysis apparatus and a computer program.

睡眠時無呼吸症候群か否かは、通常、医療機関に入院し、ポリグラフを中心として、筋電図、脳波、血中酸素飽和度などを測定し、その上で、医師の判断により判定されている。より簡易な検査方法として、特許文献1では、呼吸に伴ういびき音を収集し、人の呼吸の1サイクルに相当する長さの時間窓で波形を切り出し、各サイクル間のいびき音の波形の相関関数を求め、いびき音に非定常なものが含まれるか否かを求め、非定常なものが含まれる場合に睡眠時無呼吸症候群と判定する技術が開示されている。  Whether or not it is sleep apnea syndrome is usually admitted to a medical institution, measuring electromyogram, electroencephalogram, blood oxygen saturation, etc. mainly on a polygraph, and then being judged by the doctor's judgment Yes. As a simpler inspection method, Patent Document 1 collects snoring sound associated with breathing, cuts out a waveform in a time window corresponding to one cycle of human breathing, and correlates the waveform of snoring sound between each cycle. A technique is disclosed in which a function is obtained, whether or not a snoring sound is included is determined to be non-stationary, and sleep apnea syndrome is determined when an unsteady sound is included.

特許文献2では、複数の感圧素子を有するセンサシートを寝具に付設し、被験者の寝具に加わる荷重変化を捉えた荷重信号から呼吸信号を抽出して睡眠時無呼吸症候群を初めとする呼吸障害を検出する技術が開示されている。  In Patent Document 2, a sensor sheet having a plurality of pressure-sensitive elements is attached to a bedding, a respiratory signal is extracted from a load signal that captures a load change applied to the subject's bedding, and respiratory disorders such as sleep apnea syndrome are started. A technique for detecting the above is disclosed.

特開2005−65904号公報JP 2005-65904 A 特開2007−181613号公報JP 2007-181613 A

特許文献1は、いびき音を収集して睡眠時無呼吸症候群か否かを判定するものであり、それ以前の複数のセンサを体表面に取り付けて行うことと比較すれば、より簡易かつ短時間でいびき音を特定することができる。特許文献2は、寝具にかかる被験者の体重変化を捉えた荷重センサにより情報を得るものである。  Patent document 1 collects snoring sound and determines whether or not it is sleep apnea syndrome. Compared with attaching a plurality of sensors to the body surface before that, it is simpler and shorter in time. A snoring sound can be identified. Patent Document 2 obtains information using a load sensor that captures a change in the weight of a subject on bedding.

しかし、特許文献1及び2の技術は、いずれも被験者を寝かせて測定する必要があり、検査が面倒である。さらに、特許文献1では、疾病症状を概略的に判断し、より正確な判断を医師による判定に委ね、健康診断などでの簡易判定を目的としたスクリーニングに適していることが記載されている。しかしながら、いびき音を収集するためには所定の検査時間が必要であり、睡眠時無呼吸症候群を初めとする睡眠関連の疾病リスクを簡易かつ速やかに判断する手法は確立されていない。  However, the techniques of Patent Documents 1 and 2 both require measurement with the subject lying down, and the inspection is troublesome. Furthermore, Patent Document 1 describes that it is suitable for screening for the purpose of simple determination in a health checkup, etc. by roughly determining disease symptoms and leaving more accurate determination to the determination by a doctor. However, in order to collect snoring sounds, a predetermined examination time is required, and a method for easily and promptly determining a sleep-related disease risk such as sleep apnea syndrome has not been established.

本発明は上記に鑑みなされたものであり、被験者を寝かせることなく、日常活動を行う中で睡眠関連の疾病リスクをスクリーニングでき、特に、上体から非接触で背部体表脈波を収集して、睡眠時無呼吸症候群を初めとする睡眠関連の疾病リスクを推測することができる生体状態分析装置及びコンピュータプログラムを提供することを課題とする。  The present invention has been made in view of the above, and can screen a sleep-related disease risk while performing daily activities without laying the subject, and in particular, collects back body surface pulse waves from the upper body in a non-contact manner. An object of the present invention is to provide a biological state analyzer and a computer program capable of estimating sleep-related disease risks including sleep apnea syndrome.

上記課題を解決するため、本発明者が鋭意研究を行った結果、本出願人によって提案されている生体状態分析手法、すなわち、乗物の運転席のシートバック部に設けた生体信号測定装置から非接触で運転者の背部体表脈波を収集し、この背部体表脈波の時系列波形から判定される生体状態と、睡眠のサーカディアンリズムとを複合して捉えることにより、睡眠関連の疾病リスク、特に睡眠時無呼吸症候群のリスクを判定できることを見出し、本発明を完成するに至った。  In order to solve the above problems, the present inventor has conducted intensive research, and as a result, the biological condition analysis method proposed by the present applicant, i.e., the biological signal measurement device provided in the seat back portion of the driver's seat of the vehicle By collecting the driver's back body surface pulse wave by contact and capturing the biological state determined from the time-series waveform of this back body surface wave wave and the circadian rhythm of sleep, the sleep-related disease risk In particular, the inventors have found that the risk of sleep apnea syndrome can be determined, and have completed the present invention.

すなわち、本発明に係る生体信号分析装置は、生体信号測定装置により収集された生体信号を分析し、生体状態を判定する生体状態分析装置であって、疲労、注意力の低下又は眠気を含む所定の覚醒度低下状態の出現タイミングを判定する覚醒度低下状態判定手段と、前記覚醒度低下状態判定手段により判定される前記覚醒度低下状態の単位時間当たりの出現回数を求め、前記単位時間当たりの出現回数と眠気のサーカディアンリズムとの関係で、睡眠に関連する疾病のリスクを推定する疾病リスク推定手段とを有することを特徴とする。  That is, the biological signal analyzer according to the present invention is a biological state analyzer that analyzes a biological signal collected by the biological signal measuring device and determines a biological state, and includes a predetermined condition including fatigue, reduced attention, or drowsiness. Arousal level reduction state determination means for determining the appearance timing of the low arousal level state, and the number of appearances per unit time of the low arousal level state determined by the awakening level reduction state determination means, It is characterized by having a disease risk estimation means for estimating a risk of a disease related to sleep in relation to the number of appearances and the circadian rhythm of sleepiness.

前記疾病リスク推定手段は、前記眠気のサーカディアンリズムにおいて覚醒度が所定以上高いとされる時間帯における、前記覚醒度低下状態の単位時間当たりの出現回数が所定回数以上の場合に、睡眠時無呼吸症候群のリスクが高いと推定する手段を含むことが好ましい。
前記眠気のサーカディアンリズムにおける前記覚醒度が所定以上高いとされる時間帯は、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含む時間帯であることが好ましい。
前記覚醒度低下状態判定手段は、前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手段を有し、前記周波数傾き時系列波形演算手段から得られる周波数の傾き時系列波形に基づき、前記覚醒度低下状態の出現タイミングを判定することが好ましい。
前記覚醒度低下状態判定手段は、前記周波数傾き時系列波形演算手段から得られる周波数の傾き時系列波形において、所定の基準に対して振幅の収束傾向と拡大傾向が連続する場合に、前記覚醒度低下状態の出現タイミングと判定することが好ましい。
The disease risk estimation means, when the number of appearances per unit time of the state of reduced wakefulness is a predetermined number of times or more in a time zone in which the wakefulness level is higher than a predetermined level in the circadian rhythm of sleepiness, sleep apnea It is preferable to include means for estimating that the risk of the syndrome is high.
The time zone in which the arousal level in the circadian rhythm of drowsiness is higher than a predetermined value is preferably a time zone including a switching point where the drowsiness is lowered and the drowsiness is increased.
The arousal level lowering state determining means obtains a time series waveform of a frequency using a zero cross point or a peak point in the time series waveform of the biological signal, and slides the obtained time series waveform of the obtained frequency to calculate a slope of the frequency. It is preferable to have frequency gradient time-series waveform calculating means for obtaining a time-series waveform, and to determine the appearance timing of the state of reduced arousal level based on the frequency gradient time-series waveform obtained from the frequency gradient time-series waveform calculating means. .
The arousal level lowering state determining unit is configured to determine the arousal level when the frequency convergence time series waveform obtained from the frequency gradient time series waveform calculation unit has a continuous amplitude convergence and expansion tendency with respect to a predetermined reference. It is preferable to determine the appearance timing of the lowered state.

前記覚醒度低下状態判定手段は、前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手段と、前記周波数傾き時系列波形演算手段により得られる周波数傾き時系列波形から、心循環系のゆらぎの特性が切り替わる周波数よりも低い周波数の機能調整信号、前記機能調整信号よりも高い周波数の疲労受容信号、及び前記疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出し、これらの周波数成分のそれぞれの分布率を時系列に求める分布率演算手段とを有し、前記分布率演算手段において、前記機能調整信号、疲労受容信号及び活動調整信号の分布率の変動が所定基準を下回る場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定することが好ましい。
前記生体信号測定装置によって収集される生体信号が、背部体表脈波であることが好ましい。
The arousal level lowering state determining means obtains a time series waveform of a frequency using a zero cross point or a peak point in the time series waveform of the biological signal, and slides the obtained time series waveform of the obtained frequency to calculate a slope of the frequency. Frequency gradient time series waveform calculating means for obtaining a time series waveform, and a function adjustment signal having a frequency lower than the frequency at which the fluctuation characteristics of the cardiovascular system are switched from the frequency gradient time series waveform obtained by the frequency gradient time series waveform calculating means The frequency component belonging to the VLF band is extracted from the ULF band corresponding to the fatigue acceptance signal having a frequency higher than that of the function adjustment signal and the activity adjustment signal having a frequency higher than that of the fatigue acceptance signal, and each of these frequency components is extracted. Distribution rate calculation means for obtaining the distribution rate in time series, wherein the function adjustment signal, fatigue If the variation of the distribution ratio of the signal and activities adjustment signal falls below a predetermined criterion, it is preferable to determine the appearance timing of the awareness decrease condition to cause a disturbance of the biological rhythm.
The biological signal collected by the biological signal measuring device is preferably a back body surface pulse wave.

本発明のコンピュータプログラムは、生体状態分析装置としてのコンピュータに、生体信号測定装置により収集された生体信号を分析し、生体状態を判定する手順を実行させるコンピュータプログラムであって、疲労、注意力の低下又は眠気を含む所定の覚醒度低下状態の出現タイミングを判定する覚醒度低下状態判定手順と、前記覚醒度低下状態判定手順により判定される前記覚醒度低下状態の単位時間当たりの出現回数を求め、前記単位時間当たりの出現回数と眠気のサーカディアンリズムとの関係で、睡眠に関連する疾病のリスクを推定する疾病リスク推定手順とを実行させることを特徴とする。  A computer program according to the present invention is a computer program that causes a computer as a biological state analyzer to analyze a biological signal collected by a biological signal measuring device and execute a procedure for determining a biological state. The number of appearances per unit time of the arousal level reduced state determination procedure for determining the appearance timing of a predetermined low arousal level state including reduction or drowsiness, and the arousal level reduced state determined by the arousal level reduced state determination procedure A disease risk estimation procedure for estimating a risk of a disease related to sleep based on a relationship between the number of appearances per unit time and a circadian rhythm of sleepiness is performed.

前記疾病リスク推定手順は、前記眠気のサーカディアンリズムにおいて覚醒度が所定以上高いとされる時間帯における、前記覚醒度低下状態の単位時間当たりの出現回数が所定回数以上の場合に、睡眠時無呼吸症候群のリスクが高いと推定する手順を実行させることが好ましい。
前記眠気のサーカディアンリズムにおける前記覚醒度が所定以上高いとされる時間帯は、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含む時間帯であることが好ましい。
前記覚醒度低下状態判定手順は、前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手順を実行させ、前記周波数傾き時系列波形演算手順の実行により得られる周波数の傾き時系列波形に基づき、前記覚醒度低下状態の出現タイミングを判定することが好ましい。
前記覚醒度低下状態判定手順は、前記周波数傾き時系列波形演算手順の実行により得られる周波数の傾き時系列波形において、所定の基準に対して振幅の収束傾向と拡大傾向が連続する場合に、前記覚醒度低下状態の出現タイミングと判定することが好ましい。
前記覚醒度低下状態判定手順は、前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手順と、前記周波数傾き時系列波形演算手順の実行により得られる周波数傾き時系列波形から、心循環系のゆらぎの特性が切り替わる周波数よりも低い周波数の機能調整信号、前記機能調整信号よりも高い周波数の疲労受容信号、及び前記疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出し、これらの周波数成分のそれぞれの分布率を時系列に求める分布率演算手順とを実行させ、前記分布率演算手順の実行により得られる前記機能調整信号、疲労受容信号及び活動調整信号の分布率の変動が所定基準を下回る場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定することが好ましい。
The disease risk estimation procedure includes sleep apnea when the number of appearances per unit time of the state of reduced wakefulness is a predetermined number of times or more in a time zone in which the degree of wakefulness is higher than a predetermined value in the circadian rhythm of sleepiness It is preferred to perform a procedure that estimates that the risk of the syndrome is high.
The time zone in which the arousal level in the circadian rhythm of drowsiness is higher than a predetermined value is preferably a time zone including a switching point where the drowsiness is lowered and the drowsiness is increased.
The wakefulness-decreasing state determination procedure obtains a time-series waveform of a frequency using a zero-cross point or a peak point in the time-series waveform of the biological signal, and slides the obtained time-series waveform of the obtained frequency to calculate the slope of the frequency. A frequency gradient time-series waveform calculation procedure for obtaining a time-series waveform is executed, and the appearance timing of the state of reduced arousal level is determined based on the frequency gradient time-series waveform obtained by executing the frequency gradient time-series waveform calculation procedure. Is preferred.
The arousal level lowering state determination procedure is performed when the frequency inclination time series waveform obtained by executing the frequency inclination time series waveform calculation procedure has an amplitude convergence tendency and an expansion tendency with respect to a predetermined reference. It is preferable to determine the appearance timing of the state of reduced arousal level.
The wakefulness-decreasing state determination procedure obtains a time-series waveform of a frequency using a zero-cross point or a peak point in the time-series waveform of the biological signal, and slides the obtained time-series waveform of the obtained frequency to calculate the slope of the frequency. Frequency slope time series waveform calculation procedure for obtaining a time series waveform, and a function of a frequency lower than the frequency at which the fluctuation characteristics of the cardiovascular system are switched from the frequency slope time series waveform obtained by executing the frequency slope time series waveform calculation procedure. Each frequency component belonging to the VLF band is extracted from the ULF band corresponding to the adjustment signal, the fatigue acceptance signal having a frequency higher than that of the function adjustment signal, and the activity adjustment signal having a frequency higher than that of the fatigue acceptance signal. The distribution rate calculation procedure for obtaining each distribution rate in time series is executed, and the distribution rate calculation procedure is used to obtain the distribution rate calculation procedure. Ability adjustment signal, if there is a change in the distribution ratio of the fatigue-receiving signal and the activity adjusted signal falls below a predetermined criterion, it is preferable to determine the appearance timing of the awareness decrease condition to cause a disturbance of the biological rhythm.

本発明によれば、睡眠関連の疾病リスク、特に睡眠時無呼吸症候群のリスクを判定することができる。また、本発明は、非接触で収集される背部体表脈波を用いて判定できるため、運転者が睡眠時無呼吸症候群のリスクを有する可能性があるか否かを推定でき、安全運転の向上に寄与できる。  According to the present invention, it is possible to determine a sleep-related disease risk, particularly a sleep apnea syndrome risk. In addition, since the present invention can be determined using the back body surface pulse wave collected without contact, it can be estimated whether the driver may have a risk of sleep apnea syndrome, and safe driving It can contribute to improvement.

図1は、本発明の一の実施形態において用いた背部体表脈波を測定する生体信号測定装置である背部体表脈波測定装置の一例を示した斜視図である。FIG. 1 is a perspective view showing an example of a back body surface pulse wave measuring apparatus which is a biological signal measuring apparatus for measuring a back body surface pulse wave used in an embodiment of the present invention. 図2は、本発明の一の実施形態に係る生体状態分析装置の構成を模式的に示した図である。FIG. 2 is a diagram schematically showing the configuration of the biological state analyzer according to the embodiment of the present invention. 図3は、周波数傾き時系列波形における収束と拡大が連続する波形(事故多発判定の波形)の典型例を示した図である。FIG. 3 is a diagram illustrating a typical example of a waveform (waveform of frequent accident determination) in which convergence and expansion continue in a frequency gradient time-series waveform. 図4は、生体リズムの乱れが生じた際に分布率の時系列波形にみられる特徴的な波形(ジェットラグ判定の波形)の典型例を示した図である。FIG. 4 is a diagram showing a typical example of a characteristic waveform (jet lag determination waveform) seen in the time-series waveform of the distribution rate when the biological rhythm is disturbed. 図5は、実験例において運転手1〜4の全データを分析して得られた周波数傾き時系列波形における収束と拡大が連続する波形(事故多発判定の波形)の時間帯別の出現回数と眠気のサーカディアンリズムの関係を示した図である。FIG. 5 shows the number of appearances by time of a waveform (waveform of frequent accident determination) in which convergence and expansion continue in a frequency gradient time-series waveform obtained by analyzing all data of drivers 1 to 4 in an experimental example. It is the figure which showed the relationship of the circadian rhythm of sleepiness. 図6(a)は、運転手4(SAS患者)の10時台の周波数傾き時系列波形の代表例を示した図であり、 図6(b)は、運転手3(健常者)の10時台の周波数傾き時系列波形の代表例を示した図である。FIG. 6A is a diagram showing a representative example of the frequency gradient time series waveform of the driver 4 (SAS patient) in the 10 o'clock range, and FIG. 6B is a diagram of 10 of the driver 3 (healthy person). It is the figure which showed the typical example of the time-sequential frequency inclination time series waveform. 図7(a)は、運転手4(SAS患者)の10時台の分布率の時系列波形の代表例を示した図であり、 図7(b)は、運転手3(健常者)の10時台の分布率の時系列波形の代表例を示した図である。FIG. 7A is a diagram showing a representative example of a time-series waveform of the distribution rate of the 10 o'clock range of the driver 4 (SAS patient), and FIG. 7B is the diagram of the driver 3 (healthy person). It is the figure which showed the representative example of the time-sequential waveform of the distribution rate of 10:00. 図8は、実験例において運転手1〜4の全データを分析して得られた分布率の時系列波形における生体リズムの乱れが生じていると判定される波形(ジェットラグ判定の波形)の時間帯別の出現回数と眠気のサーカディアンリズムの関係を示した図である。FIG. 8 is a waveform (jet lag determination waveform) that is determined to be a disturbance of the biological rhythm in the time-series waveform of the distribution rate obtained by analyzing all the data of the drivers 1 to 4 in the experimental example. It is the figure which showed the relationship between the appearance frequency according to time slot | zone, and the circadian rhythm of sleepiness. 図9は、判定回数変動波形への変換手順を説明するための図である。FIG. 9 is a diagram for explaining a procedure for conversion to a determination frequency fluctuation waveform. 図10は、図5の事故多発判定回数波形を図9の手順で判定回数変動波形に変換した図である。FIG. 10 is a diagram in which the accident occurrence determination frequency waveform of FIG. 5 is converted into a determination frequency fluctuation waveform by the procedure of FIG. 図11は、図8のジェットラグ判定回数波形を図9の手順で判定回数変動波形に変換した図である。FIG. 11 is a diagram obtained by converting the jet lag determination frequency waveform of FIG. 8 into a determination frequency fluctuation waveform by the procedure of FIG. 図12は、実験例において運転手1〜4の全データから求めた1日当たりの平均判定回数を示した図であり、図12(a)が事故多発判定回数に関する図で、図12(b)がジェットラグ判定回数に関する図である。FIG. 12 is a diagram showing the average number of determinations per day obtained from all data of the drivers 1 to 4 in the experimental example, and FIG. 12A is a diagram regarding the number of frequent accident determinations, and FIG. These are figures regarding the number of jet lag determinations. 図13は、実験例において運転手1〜4の全データから求めた1時間当たりの平均判定回数を示した図であり、図13(a)が事故多発判定回数に関する図で、図13(b)がジェットラグ判定回数に関する図である。FIG. 13 is a diagram showing the average number of determinations per hour obtained from all the data of the drivers 1 to 4 in the experimental example, and FIG. 13A is a diagram regarding the number of accident frequent determinations, and FIG. ) Is a diagram relating to the number of jet lag determinations. 図14は、実験例において運転手1〜4の休み明けから次の休みまでの連続勤務日数別の1日当たりの平均判定回数を示した図であり、図14(a)が事故多発判定回数に関する図で、図14(b)がジェットラグ判定回数に関する図である。FIG. 14 is a diagram showing the average number of determinations per day by the number of consecutive working days from the end of the holidays of the drivers 1 to 4 in the experimental example, and FIG. 14A relates to the number of frequent accident determinations. FIG. 14B is a diagram relating to the number of jet lag determinations. 図15は、実験例において運転手1〜4の休み明けから次の休みまでの連続勤務日数別の1時間当たりの平均判定回数を示した図であり、図15(a)が事故多発判定回数に関する図で、図15(b)がジェットラグ判定回数に関する図である。FIG. 15 is a diagram showing the average number of determinations per hour by the number of consecutive working days from the end of the holidays of the drivers 1 to 4 in the experimental example, and FIG. FIG. 15B is a diagram relating to the number of jet lag determinations. 図16は、実験例において運転手1〜4の事故多発判定に関する1運行毎の判定回数を示した図である。FIG. 16 is a diagram illustrating the number of determinations for each operation related to the frequent occurrence determination of drivers 1 to 4 in the experimental example. 図17は、実験例において運転手1〜4のジェットラグ判定に関する1運行毎の判定回数を示した図である。FIG. 17 is a diagram illustrating the number of determinations for each operation related to the jet lag determination of the drivers 1 to 4 in the experimental example.

以下、図面に示した本発明の実施形態に基づき、本発明をさらに詳細に説明する。本発明において採取する生体信号は、例えば、指尖容積脈波、背部体表脈波(APW)等が挙げられるが、好ましくは、背部体表脈波(APW)である。背部体表脈波(APW)は、人の上体背部から検出される心臓と大動脈の運動から生じる音・振動情報であり、心室の収縮期及び拡張期の情報と、血液循環の補助ポンプとなる血管壁の弾性情報及び血圧による弾性情報を含んでいる。そして、心拍変動に伴う信号波形は交感神経系及び副交感神経系の神経活動情報(交感神経の代償作用を含んだ副交感神経系の活動情報)を含み、大動脈の揺動に伴う信号波形には交感神経活動の情報を含んでいる。  Hereinafter, the present invention will be described in more detail based on the embodiments of the present invention shown in the drawings. Examples of the biological signal collected in the present invention include fingertip volume pulse wave, back body surface pulse wave (APW), and the like, and preferably back body surface pulse wave (APW). The back body surface pulse wave (APW) is sound / vibration information generated from the motion of the heart and aorta detected from the upper back of a person. Information on ventricular systole and diastole, blood circulation auxiliary pump, The blood vessel wall elasticity information and the blood pressure elasticity information are included. The signal waveform associated with heart rate variability includes sympathetic and parasympathetic nervous system activity information (parasympathetic activity information including the compensation of sympathetic nerves), and the signal waveform associated with aortic oscillation is sympathetic. Contains information on neural activity.

生体信号を採取するための生体信号測定装置は、指尖容積脈波であれば指尖容積脈波計を用いることができ、背部体表脈波(APW)であれば、例えば、圧力センサを用いることも可能であるが、好ましくは、(株)デルタツーリング製の居眠り運転警告装置(スリープバスター(登録商標))で使用されている導波管型センサを用いることができる。図1はこの導波管型センサからなる背部体表脈波測定装置1の概略構成を示したものである。  A biological signal measuring device for collecting a biological signal can use a fingertip plethysmograph if it is a fingertip plethysmogram, and if it is a back body surface pulse wave (APW), for example, a pressure sensor Although it is possible to use, a waveguide type sensor used in a drowsy driving warning device (Sleep Buster (registered trademark)) manufactured by Delta Touring Co., Ltd. can be preferably used. FIG. 1 shows a schematic configuration of a back body surface pulse wave measuring apparatus 1 comprising this waveguide type sensor.

背部体表脈波測定装置1は、板状のビーズ発泡体からなるコアパッド11と、このコアパッド11において脊柱に対応する部位を挟んで対象に形成された2箇所の貫通孔11aに配置される三次元立体編物12と、三次元立体編物12に付設されたマイクロフォンセンサから構成されるセンサ13と、三次元立体編物12の両側に配置されたフィルム14,15とを有して構成される。また、コアパッド11の表面及び裏面には、ビーズ発泡体からなる板状発泡体16,17が積層されている。背部体表脈波測定装置1は、例えば、乗物用シートのシートバックに取り付けられ、あるいは、ベッドの背部に対応する付近に取り付けられて使用される。背部体表脈波測定装置1は人の背に接すると、生体信号による体表面を通じての音・振動が、一方の板状発泡体16を介してコアパッド11、フィルム14,15に膜振動を生じさせ、三次元立体編物12の連結糸に弦振動を生じさせ、さらに他方の板状発泡体17に膜振動を生じさせて伝播される。背部体表脈波測定装置1はこのような膜振動、弦振動によって微弱な生体信号を実質的に増幅する機能を有し、センサ13により生体信号を確実に検出するものである。  The back body surface pulse wave measuring device 1 includes a core pad 11 made of a plate-like bead foam, and a tertiary placed in two through-holes 11a formed in the core pad 11 with a portion corresponding to the spine interposed therebetween. The original three-dimensional knitted fabric 12, a sensor 13 including a microphone sensor attached to the three-dimensional three-dimensional knitted fabric 12, and films 14 and 15 disposed on both sides of the three-dimensional three-dimensional knitted fabric 12 are configured. Further, plate-like foams 16 and 17 made of bead foam are laminated on the front and back surfaces of the core pad 11. The back body surface pulse wave measuring device 1 is used, for example, attached to a seat back of a vehicle seat or attached in the vicinity corresponding to the back of a bed. When the back body surface pulse wave measuring device 1 comes into contact with the back of a person, sound and vibration through the body surface due to a biological signal cause membrane vibration in the core pad 11 and the films 14 and 15 via one plate-like foam 16. Then, string vibration is generated in the connecting yarn of the three-dimensional solid knitted fabric 12, and film vibration is generated in the other plate-like foam 17 to be propagated. The back body surface pulse wave measuring device 1 has a function of substantially amplifying a weak biological signal by such membrane vibration and string vibration, and the biological signal is reliably detected by the sensor 13.

次に、本実施形態の生体状態分析装置100の構成について図2に基づいて説明する。生体状態分析装置100は、覚醒度低下状態判定手段110、疾病リスク推定手段120等を有して構成され、それらによって背部体表脈波測定装置1のセンサ13から得られる音・振動情報の検出信号に含まれる背部体表脈波(APW)を分析する。生体状態分析装置100は、コンピュータ(マイクロコンピュータ等も含む)から構成され、このコンピュータの記憶部に、覚醒度低下状態判定手段110として機能する覚醒度低下状態判定手順を実行させ、疾病リスク推定手段120として機能する疾病リスク推定手順を実行させるコンピュータプログラムが設定されている。なお、コンピュータプログラムは、記録媒体に記憶させてもよい。この記録媒体を用いれば、例えば上記コンピュータに上記プログラムをインストールすることができる。ここで、上記プログラムを記憶した記録媒体は、非一過性の記録媒体であっても良い。非一過性の記録媒体は特に限定されないが、例えば
フレキシブルディスク、ハードディスク、CD−ROM、MO(光磁気ディスク)、DVD−ROM、メモリカードなどの記録媒体が挙げられる。また、通信回線を通じて上記プログラムを上記コンピュータに伝送してインストールすることも可能である。
Next, the configuration of the biological state analyzer 100 of the present embodiment will be described with reference to FIG. The biological state analysis apparatus 100 is configured to include a wakefulness reduction state determination unit 110, a disease risk estimation unit 120, and the like, and detection of sound / vibration information obtained from the sensor 13 of the back body surface pulse wave measurement device 1 by them. The back body surface wave (APW) included in the signal is analyzed. The biological state analysis apparatus 100 includes a computer (including a microcomputer), and causes a storage unit of the computer to execute a wakefulness reduction state determination procedure that functions as the wakefulness reduction state determination means 110, thereby causing disease risk estimation means. A computer program for executing a disease risk estimation procedure functioning as 120 is set. Note that the computer program may be stored in a recording medium. If this recording medium is used, the program can be installed in the computer, for example. Here, the recording medium storing the program may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, and examples thereof include a recording medium such as a flexible disk, a hard disk, a CD-ROM, an MO (magneto-optical disk), a DVD-ROM, and a memory card. It is also possible to install the program by transmitting it to the computer through a communication line.

覚醒度低下状態判定手段110は、背部体表脈波の分析により得られる指標を用いて、疲労、注意力の低下又は眠気を含む覚醒度の低下に伴って出現する生体の覚醒度低下状態の出現タイミングを検出する。  The arousal level lowering state determination means 110 uses an index obtained by analyzing the back body surface pulse wave to detect a state of reduced arousal level of a living body that appears as a result of a decrease in arousal level including fatigue, reduced attention, or drowsiness. Detect the appearance timing.

この覚醒度低下状態の出現を検出するため、覚醒度低下状態判定手段110は、背部体表脈波の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた周波数の時系列波形をスライド計算して周波数の傾き時系列波形(周波数傾き時系列波形)を求める周波数傾き時系列波形演算手段111を備えている。  In order to detect the appearance of this state of reduced arousal level, the arousal level decreased state determining means 110 obtains a time-series waveform of the frequency using the zero cross point or peak point in the time-series waveform of the back body surface pulse wave, and obtained. A frequency gradient time series waveform calculating unit 111 is provided that calculates a frequency gradient time series waveform (frequency gradient time series waveform) by sliding calculation of the frequency time series waveform.

周波数傾き時系列波形演算手段111は、背部体表脈波(APW)の時系列波形を周波数の時系列波形に変換し、さらに、得られた周波数の時系列波形をスライド計算して周波数傾き時系列波形を求める。なお、演算対象の背部体表脈波は、背部体表脈波測定装置1のセンサ13から得られる音・振動情報得の検出信号を受信する前処理部において所定の処理が施されることにより、該検出信号から抽出される。具体的には、背部体表脈波は、センサ13の検出信号に対して、10〜30Hz前後のバンド幅でのフィルタリング処理、フィルタリング処理した波形の整流、整流処理した波形からの包絡線波形の形成、包絡線波形に対する5Hz以下の低周波帯(例えば、1〜2Hz前後のバンド幅)でのフィルタリング処理を施すなどして、1Hz近傍の時系列波形として抽出される。  The frequency gradient time-series waveform calculating means 111 converts the time-series waveform of the back body surface pulse wave (APW) into a frequency time-series waveform, and further slide-calculates the obtained time-series waveform to obtain a frequency gradient. Find the series waveform. The back body surface pulse wave to be calculated is subjected to predetermined processing in a preprocessing unit that receives a detection signal of sound / vibration information obtained from the sensor 13 of the back body surface pulse wave measuring device 1. , Extracted from the detection signal. Specifically, the back body surface pulse wave is obtained by filtering the detection signal of the sensor 13 with a bandwidth of about 10 to 30 Hz, rectifying the filtered waveform, and the envelope waveform from the rectified waveform. A time-series waveform in the vicinity of 1 Hz is extracted by performing a filtering process in a low frequency band of 5 Hz or less (for example, a bandwidth around 1 to 2 Hz) with respect to the formation and envelope waveform.

周波数傾き時系列波形を求める手法としては、本出願人による特開2011−167362号公報及び特開2012−95779号公報に開示されているように、背部体表脈波(APW)の時系列波形において、正から負に切り替わる点(ゼロクロス点)を用いる手法(ゼロクロス法)と、背部体表脈波(APW)の時系列波形を平滑化微分して極大値(ピーク点)を用いて時系列波形を求める方法(ピーク検出法)の2つの方法がある。  As a method for obtaining a frequency gradient time series waveform, as disclosed in Japanese Patent Application Laid-Open No. 2011-167362 and Japanese Patent Application Laid-Open No. 2012-95779 by the present applicant, a time series waveform of the back body surface pulse wave (APW). , A method using a point (zero cross point) switching from positive to negative (zero cross point) and a time series waveform using a local maximum value (peak point) by smoothing and differentiating the time series waveform of the back body surface pulse wave (APW) There are two methods of obtaining a waveform (peak detection method).

ゼロクロス法では、ゼロクロス点を求めたならば、それを例えば5秒毎に切り分け、その5秒間に含まれる時系列波形のゼロクロス点間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。  In the zero cross method, when the zero cross point is obtained, it is divided every 5 seconds, for example, and the reciprocal of the time interval between the zero cross points of the time series waveform included in the 5 second is obtained as the individual frequency f. The average value of the individual frequency f is adopted as the value of the frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in time series, a time series waveform of frequency fluctuation is obtained.

ピーク検出法では、背部体表脈波(APW)の時系列波形を、例えば、SavitzkyとGolayによる平滑化微分法により極大値を求める。次に、例えば5秒ごとに極大値を切り分け、その5秒間に含まれる時系列波形の極大値間の時間間隔の逆数を個別周波数fとして求め、その5秒間における個別周波数fの平均値を当該5秒間の周波数Fの値として採用する。そして、この5秒毎に得られる周波数Fを時系列にプロットすることにより、周波数の変動の時系列波形を求める。  In the peak detection method, the maximum value is obtained from the time series waveform of the back body surface pulse wave (APW) by, for example, the smoothing differential method using Savitzky and Golay. Next, for example, the local maximum value is divided every 5 seconds, the reciprocal of the time interval between the local maximum values of the time-series waveform included in the 5 seconds is obtained as the individual frequency f, and the average value of the individual frequency f in the 5 seconds is calculated This is adopted as the value of the frequency F for 5 seconds. Then, by plotting the frequency F obtained every 5 seconds in time series, a time series waveform of frequency fluctuation is obtained.

周波数傾き時系列波形演算手段111は、ゼロクロス法又はピーク検出法により求められた周波数の変動の時系列波形から、所定のオーバーラップ時間(例えば18秒)で所定の時間幅(例えば180秒)の時間窓を設定し、時間窓毎に最小二乗法により周波数の傾きを求め、その傾きの時系列波形を出力する。このスライド計算を順次繰り返し、APWの周波数の傾きの時系列変化を周波数傾き時系列波形として出力する。  The frequency gradient time series waveform calculating means 111 has a predetermined overlap time (for example, 18 seconds) and a predetermined time width (for example, 180 seconds) from the time series waveform of the frequency fluctuation obtained by the zero cross method or the peak detection method. A time window is set, a frequency gradient is obtained for each time window by the method of least squares, and a time series waveform of the gradient is output. This slide calculation is sequentially repeated to output the APW frequency gradient time-series change as a frequency gradient time-series waveform.

背部体表脈波(APW)は、中枢系である心臓の制御の様子を主として含む生体信号、すなわち、動脈の交感神経支配の様子、並びに、交感神経系と副交感神経系の出現情報を含む生体信号であり、ゼロクロス法により求めた周波数傾き時系列波形は、心臓の制御の状態により関連し、交感神経の出現状態を反映しているが、ピーク検出法により求めた周波数傾き時系列波形は、心拍変動により関連している。従って、覚醒度低下状態に関する生体現象を検出するには、ゼロクロス法を用いて求めた周波数傾き時系列波形を用いることが好ましい。  The dorsal body surface wave (APW) is a biological signal mainly including the state of control of the heart, which is the central system, that is, the state of sympathetic innervation of the artery, and the appearance information of the sympathetic nervous system and the parasympathetic nervous system. The frequency slope time series waveform obtained by the zero cross method is related to the state of control of the heart and reflects the appearance state of the sympathetic nerve, but the frequency slope time series waveform obtained by the peak detection method is More related to heart rate variability. Therefore, in order to detect a biological phenomenon related to a state of reduced arousal level, it is preferable to use a frequency gradient time series waveform obtained by using the zero cross method.

覚醒度低下状態判定手段110は、周波数傾き時系列波形演算手段111から得られる周波数傾き時系列波形において、所定の基準に対して振幅の収束傾向と拡大傾向が連続する場合に、覚醒度低下状態の出現タイミングであると判定する設定とすることが好ましい。  The arousal level lowering state determination means 110 is a state of reduced arousal level when the frequency convergence time series waveform obtained from the frequency slope time series waveform calculation means 111 has an amplitude convergence tendency and an expansion tendency continuous with respect to a predetermined reference. It is preferable to set to determine that it is the appearance timing.

ここでいう覚醒度低下状態とは、覚醒度が著しく低下して切迫睡眠現象や入眠予兆現象が出現するタイミングだけでなく、切迫睡眠現象や入眠予兆現象に至る前の状態と推定される、疲労度の上昇期あるいは同一生体状態の継続期等と判定される場合も含む。これら覚醒度低下状態と判定されるタイミングにおけるゼロクロス検出法を用いた周波数傾き時系列波形においては、振幅が収束して短周期化する傾向を示し、その後、より長周期で振幅が拡大する傾向を示す波形成分が見られることが特徴である。入眠予兆現象として、周波数傾き時系列波形において振幅の拡大が生じることが知られていると共に、その後、振幅が収束する傾向を示すと交感神経活動が低下したことを示し、さらに振幅が拡大する傾向を示すことで、最も収束した時点を切迫睡眠現象と判定できることが知られている(本出願人による特開2014−117425号公報参照)。典型的には、図3に示したような波形である。また、このような振幅の収束傾向と拡大傾向が連続する波形成分は、入眠予兆現象や切迫睡眠現象ほど明確ではないが、慢然状態や覚低状態でも出現する場合がある。そして、このような波形成分が、運転中、事故を起こしたり、起こしそうになった時間帯に多く発生していることも本出願人の分析により既に確認されている。本出願人の分析事例では、このようは波形成分の出現時に実際の事故事例が6件あり、事故に至っていないがヒヤリハットがあった事例が17件であった。  The state of reduced arousal level here means not only the timing at which the arousal level is significantly reduced and the appearance of the urgent sleep phenomenon or the onset of sleep phenomenon, but also the fatigue that is presumed to be the state before the onset of the urgent sleep or onset of sleep phenomenon The case where it is determined as the rising period of the degree or the continuation period of the same biological state is included. The frequency gradient time-series waveform using the zero-cross detection method at the timing determined to be a state of reduced wakefulness shows a tendency that the amplitude converges and becomes a short period, and thereafter, the amplitude tends to increase in a longer period. It is characteristic that the waveform components shown are seen. As a sign of sleep onset, it is known that the amplitude increases in the time-series waveform of the frequency gradient, and if the amplitude converges after that, it indicates that the sympathetic nerve activity has decreased, and the amplitude further increases It is known that the most converged time point can be determined as an imminent sleep phenomenon by referring to Japanese Patent Application Laid-Open No. 2014-117425 by the present applicant. Typically, the waveform is as shown in FIG. In addition, such a waveform component in which the amplitude tends to converge and expand is not as clear as the sleep onset phenomenon or the impending sleep phenomenon, but may appear even in a humble state or a conscious state. And it has already been confirmed by the applicant's analysis that many of such waveform components occur during the driving and cause an accident or are likely to occur. In the analysis example of the present applicant, there were 6 actual accident cases at the time of the appearance of the waveform component, and there were 17 incidents where there was a near-miss but no accident.

なお、振幅値の収束及び拡大は、例えば、判定時間帯の振幅において、その前の所定の時間帯の振幅との関係を示す比の値が、所定の範囲内になっているか否かにより収束傾向と判定でき、逆に、判定時間帯の振幅が、その前の所定の時間帯の振幅との関係で、所定倍以上になっているか否かにより拡大傾向と判定できる。  Note that the convergence and expansion of the amplitude value depends on whether the ratio value indicating the relationship with the amplitude of the previous predetermined time zone is within a predetermined range in the amplitude of the determination time zone, for example. It can be determined as a tendency, and conversely, it can be determined as an expansion tendency depending on whether or not the amplitude of the determination time zone is a predetermined multiple or more in relation to the amplitude of the previous predetermined time zone.

覚醒度低下状態判定手段110としては、周波数傾き時系列波形演算手段111によって覚醒度低下状態の出現タイミングを判定する手法に代え、分布率演算手段112を用いて覚醒度低下状態の出現タイミングを判定することができる。周波数傾き時系列波形演算手段111と分布率演算手段112を併用することもできる。両手段による覚醒度低下状態の判定は、基本的には一致しているが、両者を併用し、いずれか一方において覚醒度低下状態の出現タイミングと判定されたならば、他方において覚醒度低下状態の出現タイミングと判定されるか否かに拘わらず、覚醒度低下状態と判定する構成とすることで、判定漏れを抑制できる。  As the arousal level reduction state determination unit 110, instead of using the method of determining the appearance timing of the arousal level reduction state by the frequency gradient time series waveform calculation unit 111, the distribution rate calculation unit 112 is used to determine the appearance level of the arousal level reduction state. can do. The frequency gradient time series waveform calculation means 111 and the distribution rate calculation means 112 can be used in combination. The determination of the state of reduced arousal level by both means is basically the same, but if both are used in combination and it is determined that the appearance level of the reduced state of arousal level is detected in either one, the reduced level of arousal level in the other side Regardless of whether or not it is determined as the appearance timing, the configuration in which it is determined that the state of arousal level is reduced can suppress omission of determination.

分布率演算手段112は、本出願人により、特開2011−167362号公報、特開2012−179202号公報において提案されており、次のような知見に基づいたものである。すなわち、人の恒常性はゆらぎで維持され、その周波数帯域はULF帯域とVLF帯域にあるとされている。一方、心疾患の一つである心房細動において、心循環系のゆらぎの特性が切り替わる周波数は、0.0033Hzと言われており、0.0033Hz近傍のゆらぎの変化を捉えることで、恒常性維持に関する情報が得られる。また、0.0033Hz近傍以下と0.0053Hz近傍の周波数帯は、主に体温調節に関連するもので、0.01〜0.04Hzの周波数帯は自律神経の制御に関連するものと言われている。そして、実際に、生体信号に内在するこれら低周波のゆらぎを算出する周波数傾き時系列波形を求め、それを周波数解析したところ、0.0033Hzよりも低周波の0.0017Hz、0.0033Hz近傍の0.0035Hzを中心とする周波数帯のゆらぎと、さらにこれらこの2つ以外に、0.0053Hzを中心とする周波数帯のゆらぎがあることが確認できた。  The distribution rate calculating means 112 has been proposed by the present applicant in Japanese Patent Application Laid-Open Nos. 2011-167362 and 2012-179202, and is based on the following knowledge. That is, human constancy is maintained with fluctuations, and the frequency bands are in the ULF band and the VLF band. On the other hand, in atrial fibrillation, which is one of heart diseases, the frequency at which the characteristics of fluctuations in the cardiovascular system are switched is said to be 0.0033 Hz. By detecting fluctuations in the vicinity of 0.0033 Hz, homeostasis is obtained. Information on maintenance can be obtained. In addition, the frequency band near 0.0033 Hz or less and the band near 0.0053 Hz are mainly related to body temperature regulation, and the frequency band of 0.01 to 0.04 Hz is said to be related to autonomic nerve control. Yes. Then, a frequency-gradient time series waveform for calculating these low-frequency fluctuations inherent in the biological signal is actually obtained and subjected to frequency analysis. As a result, the frequencies near 0.0017 Hz and 0.0033 Hz are lower than 0.0033 Hz. It was confirmed that there were fluctuations in the frequency band centered on 0.0035 Hz and, in addition to these two, fluctuations in the frequency band centered on 0.0053 Hz.

分布率演算手段112は、まず、周波数傾き時系列波形演算手段111から得られる周波数傾き時系列波形をそれぞれ周波数分析して、心循環系のゆらぎの特性が切り替わる周波数である上記の0.0033Hzよりも低い周波数の機能調整信号、機能調整信号よりも高い周波数の疲労受容信号、及び疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出す。次に、これらの周波数成分のそれぞれの分布率を時系列に求める。すなわち、3つの周波数成分のパワースペクトルの値の合計を1とした際の各周波数成分の割合を分布率として時系列に求める。  The distribution rate calculating means 112 first analyzes the frequency inclination time series waveforms obtained from the frequency inclination time series waveform calculating means 111, respectively, and from the above 0.0033 Hz, which is the frequency at which the fluctuation characteristics of the cardiovascular system are switched. Each frequency component belonging to the VLF band is extracted from the ULF band corresponding to the lower frequency function adjustment signal, the fatigue acceptance signal having a higher frequency than the function adjustment signal, and the activity adjustment signal having a higher frequency than the fatigue acceptance signal. Next, the distribution ratios of these frequency components are obtained in time series. That is, the ratio of each frequency component when the sum of the power spectrum values of the three frequency components is 1 is obtained as a distribution rate in time series.

本実施形態では、機能調整信号として0.0017Hzの周波数成分を用い、疲労受容信号として0.0035Hzの周波数成分を用い、活動調整信号として0.0053Hzの周波数成分を用いている。これらの周波数成分を用いることが適切であることは上記のとおりでが、各信号の周波数成分は個人差等により調整することも可能であり、機能調整信号は0.0033Hz未満の範囲で好ましくは0.001〜0.0027Hzの範囲で、疲労受容信号は0.002〜0.0052Hzの範囲で、活動調整信号は0.004〜0.007Hzの範囲で調整して用いることができる。  In the present embodiment, a frequency component of 0.0017 Hz is used as the function adjustment signal, a frequency component of 0.0035 Hz is used as the fatigue acceptance signal, and a frequency component of 0.0053 Hz is used as the activity adjustment signal. As described above, it is appropriate to use these frequency components, but the frequency components of each signal can be adjusted according to individual differences, and the function adjustment signal is preferably within a range of less than 0.0033 Hz. In the range of 0.001 to 0.0027 Hz, the fatigue acceptance signal can be adjusted and used in the range of 0.002 to 0.0052 Hz, and the activity adjustment signal can be adjusted in the range of 0.004 to 0.007 Hz.

覚醒度低下状態判定手段110は、分布率演算手段112により得られる機能調整信号、疲労受容信号及び活動調整信号の分布率の変動が所定基準を下回る場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定する。生体リズムが正常であれば、機能調整信号、疲労受容信号及び活動調整信号の分布率の時系列波形は所定のゆらぎをもって変動するが、本出願人が特願2013−253713号において提案しているように、生体リズムが乱れると分布率の変動が長周期となり、変化が小さくなる傾向にある。その傾向は特に、長周期の周波数成分(機能調整信号)に顕著に現れる。そこで、覚醒度低下状態判定手段110は、分布率の変動が所定基準を下回る場合、具体的には、図4に示した分布率の時系列波形のように、機能調整信号(0.0017Hz)の分布率が、疲労受容信号(0.0035Hz)及び活動調整信号(0.0053Hz)の分布率よりも高い時間帯が所定時間以上継続すると判定された場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定することが好ましい。覚醒度低下状態判定手段110は、機能調整信号の分布率の高い時間帯であって、機能調整信号、疲労受容信号及び活動調整信号の分布率の高さの順序が同じ時間帯が所定時間以上継続する場合に、前記生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定することがより好ましい。出願人による特願2013−253713号によれば、この手法を用いることにより、海外出張より帰国した健常な被験者1名について、各周波数成分の分布率の変化が少ない時間帯が6分前後続くと、生体リズムの乱れ(この場合、ジェットラグが原因)による注意力の低下、眠気の発現、覚低状態といった覚醒度低下状態に陥ることが示されている。  The arousal level lowering state determination means 110 is awakening caused by disturbance of the biological rhythm when fluctuations in the distribution ratios of the function adjustment signal, fatigue acceptance signal and activity adjustment signal obtained by the distribution ratio calculation means 112 are below a predetermined standard. It is determined as the appearance timing of the low degree state. If the biological rhythm is normal, the time series waveforms of the distribution ratios of the function adjustment signal, the fatigue acceptance signal, and the activity adjustment signal fluctuate with a predetermined fluctuation, but the present applicant has proposed in Japanese Patent Application No. 2013-253713. Thus, when the biological rhythm is disturbed, the fluctuation of the distribution rate becomes a long period and the change tends to be small. This tendency is particularly prominent in long-cycle frequency components (function adjustment signals). Therefore, when the fluctuation of the distribution rate falls below a predetermined reference, the arousal level lowering state determination unit 110, specifically, the function adjustment signal (0.0017 Hz) as in the time series waveform of the distribution rate shown in FIG. If it is determined that a time period in which the distribution rate of the signal is higher than the distribution rate of the fatigue acceptance signal (0.0035 Hz) and the activity adjustment signal (0.0053 Hz) continues for a predetermined time or more, the disturbance of the biological rhythm is a factor. It is preferable to determine the appearance timing of the state of reduced arousal level. The arousal level lowering state determination means 110 is a time zone in which the distribution ratio of the function adjustment signal is high, and a time slot in which the order of the distribution ratio of the function adjustment signal, the fatigue acceptance signal, and the activity adjustment signal is the same is a predetermined time or more. When continuing, it is more preferable to determine with the appearance timing of the state of reduced alertness caused by the disturbance of the biological rhythm. According to Japanese Patent Application No. 2013-253713 by the applicant, when a healthy subject who returned home from an overseas business trip uses this technique, a time zone in which the distribution ratio of each frequency component is small continues for about 6 minutes. It has been shown that the state of wakefulness falls, such as a reduction in attention due to disturbance of biological rhythm (in this case, due to jet lag), the appearance of drowsiness, and a hypoxia state.

疾病リスク推定手段120は、覚醒度低下状態判定手段110により判定される覚醒度低下状態の所定の単位時間当たりの出現回数をまず求め、次に、単位時間当たりの覚醒度低下状態の出現回数を眠気のサーカディアンリズムと比較して、睡眠に関連する疾病のリスクを推定する手段である。眠気のサーカディアンリズムとしては、図5において点線で示した波形が知られており、生体状態分析装置1を構成するコンピュータの記憶部にこのサーカディアンリズムのデータが記憶されている。サーカディアンリズムには個人差もあるが、10時台を中心として前後1〜2時間ほどの時間帯中に、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含むことが一般的である。つまり、この切替点は、眠気が最も低下して覚醒度が高いポイントであり、切替点付近の時間帯では、覚醒度低下状態の出現は一般的には、他の時間帯と比較して発生しにくいものと考えられる。換言すれば、切替点付近の時間帯で覚醒度低下状態の出現が頻出傾向である場合には、睡眠に関連する何らかの疾病リスクが予想される。睡眠に関連する疾病には種々のものが含まれるが、後述の実験例では、睡眠時無呼吸症候群と診断されている被験者について、サーカディアンリズムの上記切替点付近の時間帯で、覚醒度低下状態の出現回数との相関が見られた。  The disease risk estimation means 120 first obtains the number of appearances per unit time of the arousal level reduction state determined by the arousal level reduction state determination means 110, and then calculates the number of appearances of the arousal level reduction state per unit time. Compared with the circadian rhythm of sleepiness, it is a means for estimating the risk of sleep-related diseases. As the circadian rhythm of drowsiness, a waveform indicated by a dotted line in FIG. 5 is known, and the circadian rhythm data is stored in the storage unit of the computer constituting the biological state analyzer 1. Circadian rhythms may vary from person to person, but it may include a switching point where sleepiness tends to increase from sleepiness to sleepiness during a time period of 1 to 2 hours around 10:00. It is common. In other words, this switching point is the point where sleepiness is the lowest and the arousal level is high, and in the time zone near the switching point, the appearance of a low arousal level generally occurs compared to other time zones. It is considered difficult to do. In other words, if the appearance of a state of reduced arousal level tends to occur frequently in the time zone near the switching point, some disease risk related to sleep is expected. Although various diseases related to sleep are included, in the experimental examples described below, in subjects who have been diagnosed with sleep apnea syndrome, the state of reduced arousal level is observed in the time zone near the switching point of the circadian rhythm. There was a correlation with the number of occurrences.

(実験例)
(実験方法)
4名のトラック運転手を被験者として実験を行った。このうち1名は、医師により睡眠時無呼吸症候群(SAS)と診断された者(SAS患者)であり、他の3名は、SAS患者でなく、かつ、他の顕著の疾患もない者(健常者)である。トラックの運転席の背もたれに、図1で示した背部体表脈波測定装置1((株)デルタツーリング製)を装着し、運転業務中の各被験者の検出信号に上記の所定の処理を施して解析対象である背部体表脈波(APW)の時系列波形を得た。各被験者の運行日数と運行時間は次のとおりであり、運転手4がSAS患者である。
(Experimental example)
(experimental method)
The experiment was conducted with four truck drivers as subjects. Of these, one is a person diagnosed with sleep apnea syndrome (SAS) by a doctor (SAS patient), and the other three are those who are not SAS patients and have no other significant disease ( Healthy person). The back body surface pulse wave measuring device 1 (manufactured by Delta Touring Co., Ltd.) shown in FIG. 1 is attached to the back of the driver's seat of the truck, and the above-mentioned predetermined processing is applied to the detection signal of each subject during the driving operation. Thus, a time series waveform of the back body surface pulse wave (APW) to be analyzed was obtained. The operating days and operating hours of each subject are as follows, and the driver 4 is a SAS patient.

・運転手1:運行日数 70日、運行時間 431.9時間
・運転手2:運行日数 66日、運行時間 334.6時間
・運転手3:運行日数 73日、運行時間 510.1時間
・運転手4:運行日数 76日、運行時間 479.5時間
・ Driver 1: 70 days of operation, 431.9 hours of operation ・ Driver 2: 66 days of operation, 334.6 hours of operation ・ Driver 3: 73 days of operation, 510.1 hours of operation Hand 4: Operating days 76 days, operating hours 479.5 hours

(実験結果・考察)
本実施形態の生体状態分析装置1は、運転手1〜4の解析対象の全データについて、周波数傾き時系列波形演算手段111により周波数傾き時系列波形を求め、覚醒度低下状態判定手段110が、得られた周波数傾き時系列波形の中で、図3に示した振幅の収束傾向と拡大傾向が連続する波形成分を、覚醒度低下状態の出現タイミングとして判定し、疾病リスク推定手段120により、覚醒度低下状態判定手段110により判定した覚醒度低下状態の所定の単位時間当たりの出現回数を求めた。疾病リスク推定手段120が、各運行日数の単位時間毎(この例では、時間帯別)の出現回数の平均値をさらに求め、記憶部から読み込んだ眠気のサーカディアンリズムのデータと重ねて一つのグラフとして出力したのが図5である。
(Experimental results and discussion)
The biological state analysis apparatus 1 of the present embodiment obtains a frequency gradient time-series waveform by the frequency gradient time-series waveform calculation unit 111 for all data to be analyzed by the drivers 1 to 4, and the arousal level reduced state determination unit 110 Among the obtained frequency gradient time-series waveforms, the waveform component in which the convergence tendency and the expansion tendency of the amplitude shown in FIG. 3 continue is determined as the appearance timing of the state of reduced arousal level. The frequency | count of appearance per predetermined unit time of the arousal level fall state determined by the degree fall state determination means 110 was calculated | required. The disease risk estimation means 120 further obtains an average value of the number of appearances per unit time (in this example, for each time zone) of each operation day, and superimposes it with the circadian rhythm data of sleepiness read from the storage unit, thereby forming one graph. FIG. 5 shows the output.

図5から、運転手4は、眠気のサーカディアンリズムのうち、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点である10時台における覚醒度低下状態の出現回数が、他の運転手1〜3のデータと比較して突出していると共に、運転手4の他の時間帯のデータと比較しても最も多くなっている。このことから、SAS患者である運転手4は、本来、眠気が最も低下して覚醒度の高いサーカディアンリズムの切替点付近の時間帯で、覚醒度低下状態が頻出している。よって、疾病リスク推定手段120は、眠気のサーカディアンリズムにおいて覚醒度が所定以上高いとされる時間帯、好ましくは、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含む時間帯において、覚醒度低下状態の単位時間当たりの出現回数が所定回数以上と判定した場合に、睡眠時無呼吸症候群のリスクが高いと推定する手段とすることが好ましい。  From FIG. 5, the driver 4 indicates that the number of appearances of the state of reduced arousal level at 10 o'clock, which is a switching point where the drowsiness falls from the tendency to decrease drowsiness to the tendency to increase drowsiness, among other circadian rhythms of sleepiness. And the data of other time zones of the driver 4 are the largest. From this, the driver 4 who is a SAS patient has a low arousal state frequently in a time zone near the switching point of the circadian rhythm where drowsiness is the lowest and the arousal level is high. Therefore, the disease risk estimation means 120 is a time zone in which the degree of arousal is higher than a predetermined level in the circadian rhythm of sleepiness, preferably a time including a switching point at which the tendency to increase sleepiness from the tendency to decrease sleepiness is switched. In the band, when it is determined that the number of appearances per unit time of the state of reduced arousal level is greater than or equal to a predetermined number, it is preferable to use means for estimating that the risk of sleep apnea syndrome is high.

図6(a)は、周波数傾き時系列波形演算手段111による得られるSAS患者である運転手4の10時台の周波数傾き時系列波形であり、図6(b)は、健常者の代表データとして運転手3の10時台の周波数傾き時系列波形である。運転手4は、図6(a)の(A)、(B)及び(C)の3箇所において、振幅が急激に減衰し、拡大した変動を示している。これらは、図3に示した周波数傾き時系列波形の収束傾向と拡大傾向が連続した波形成分に相当し、運転手4は、交感神経活動が低下して、慢然状態あるいは覚低状態になっているものと推測できる。一方、運転手3の場合には、図6(b)の(D)の範囲で振幅の急減、急増傾向が見られるが、そのほかはある程度の振幅を保ちながら一定の周期で変動しており、覚醒度が高く安定した状態であることがわかる。  FIG. 6A is a frequency gradient time-series waveform at the 10 o'clock level of the driver 4 who is a SAS patient obtained by the frequency gradient time-series waveform calculating means 111, and FIG. 6B is representative data of a healthy person. The frequency gradient time series waveform of the driver 3 at 10 o'clock. The driver 4 shows a fluctuation in which the amplitude abruptly attenuates and expands at three positions (A), (B), and (C) in FIG. These correspond to the waveform components in which the convergence tendency and the expansion tendency of the frequency gradient time series waveform shown in FIG. 3 are continuous, and the driver 4 becomes sympathetic or hypoactive due to a decrease in sympathetic nerve activity. I can guess that. On the other hand, in the case of the driver 3, the tendency of sudden decrease and increase of the amplitude is seen in the range of (D) in FIG. 6B, but other than that, it fluctuates at a constant cycle while maintaining a certain amplitude. It can be seen that the degree of arousal is high and stable.

図7(a)は、周波数傾き時系列波形演算手段111により求めた周波数傾き時系列波形を分布率演算手段112により処理して得られるSAS患者である運転手4の10時台の分布率の時系列波形であり、図7(b)は、健常者の代表データとして運転手3の10時台の分布率の時系列波形である。  FIG. 7A shows the distribution rate at the 10 o'clock level of the driver 4 who is a SAS patient obtained by processing the frequency gradient time-series waveform obtained by the frequency gradient time-series waveform calculating unit 111 by the distribution rate calculating unit 112. FIG. 7B is a time series waveform of the distribution ratio of the driver 3 at the 10 o'clock level as representative data of a healthy person.

運転手3は、0.0017Hz、0.0035Hz、0.0053Hzの変動の順序が時々刻々と変化しているのに対し、運転手4は、10時台前半は運転手3と同様に各種は数成分の順序が変動しているものの、10時台後半では、図7(a)中の(E)で示すように、各周波数成分の変動の順序の変化が少なくなり、特に、10時35分から10時45分にかけての約10分間は、0.0017Hzの分布率が最も高く、次いで、0.0053Hz、0.0035Hzと、分布率の高さの順序に変化のない時間帯が継続している。すなわち、分布率の変動が長周期となって変化が小さくなっていることから、運転手4が10時台、特に、10時台後半において生体リズムが崩れ、自律神経が機能低下を起こしていることが推定される。従って、SAS患者は、自律神経機能が正常に機能せず、生体リズムが崩れやすいため、眠気の少ない時間帯に慢然、覚低状態といった覚醒度低下状態に陥りやすいと言え、覚醒度低下状態判定手段110が、分布率演算手段112によって得られる分布率の時系列波形により覚醒度低下状態の出現タイミングを判定することが妥当である。  The driver 3 changes the order of fluctuations of 0.0017 Hz, 0.0035 Hz, and 0.0053 Hz from moment to moment, while the driver 4 has various types in the first half of the 10 o'clock range as the driver 3 does. Although the order of several components fluctuates, in the latter half of the 10 o'clock range, as shown by (E) in FIG. For about 10 minutes from 10 minutes to 10:45 minutes, the distribution rate of 0.0017 Hz is the highest, followed by 0.0053 Hz and 0.0035 Hz, a time zone in which the order of the distribution rate is unchanged. Yes. That is, since the fluctuation of the distribution rate is long and the change is small, the driver 4 has a biological rhythm collapsed in the 10 o'clock range, particularly in the late 10 o'clock range, and the autonomic nerve is deteriorating. It is estimated. Therefore, it can be said that a SAS patient is prone to fall into a state of reduced arousal level such as a hypoxia state because the autonomic nerve function does not function normally and the biological rhythm is likely to collapse. It is appropriate that the determination unit 110 determines the appearance timing of the state of reduced arousal level based on the time series waveform of the distribution rate obtained by the distribution rate calculation unit 112.

図8は、運転手1〜4の解析対象の全データについて、周波数傾き時系列波形演算手段111により周波数傾き時系列波形を求め、さらにこの周波数傾き時系列波形を用いて分布率演算手段112によって分布率の時系列波形を求め、覚醒度低下状態判定手段110が、分布率の時系列波形により覚醒度低下状態の出現タイミングを判定し、これを所定の単位時間当たりで(この例では、時間帯別に)まとめたグラフである。この実験では、覚醒度低下状態判定手段110は、0.0017Hz、0.0035Hz、0.0053Hzの変動の順序に変化のない時間帯が6分間継続した場合に、覚醒度低下状態の出現タイミングと判定した。そして、疾病リスク推定手段120により、図5に示した周波数傾き時系列波形による判定結果を用いた場合と同様に、覚醒度低下状態判定手段110により判定した覚醒度低下状態の所定の単位時間当たりの出現回数、各運行日数の単位時間毎の出現回数の平均値をさらに求め、記憶部から読み込んだ眠気のサーカディアンリズムのデータと重ねて一つのグラフとして出力したものである。  FIG. 8 shows the frequency gradient time series waveform calculating means 111 for all data to be analyzed by the drivers 1 to 4, and the frequency gradient time series waveform is obtained by the distribution rate calculating means 112 using the frequency gradient time series waveform. The time series waveform of the distribution rate is obtained, and the arousal level lowering state determining means 110 determines the appearance timing of the state of reduced arousal level from the time series waveform of the distribution rate, and this is determined per predetermined unit time (in this example, time It is a graph compiled by obi. In this experiment, the arousal level reduced state determination means 110 determines the appearance timing of the arousal level decreased state when the time period in which the order of fluctuations of 0.0017 Hz, 0.0035 Hz, and 0.0053 Hz does not change continues for 6 minutes. Judged. Then, in the same manner as when the determination result by the frequency gradient time series waveform shown in FIG. 5 is used by the disease risk estimation means 120, the wakefulness reduction state determined by the wakefulness reduction state determination means 110 per predetermined unit time. The average value of the number of appearances and the number of appearances per unit time for each operation day is further obtained and output as a graph superimposed on the circadian rhythm data of sleepiness read from the storage unit.

図8から明らかなように、運転手4は、やはり10時台における出現回数が、運転者1〜3及び運転手4の他の時間帯のいずれと比較しても突出しており、分布率の変動を用いて覚醒度低下状態を判定しても、SAS患者特有の傾向を検出することができる。  As apparent from FIG. 8, the driver 4 also has a prominent number of appearances at 10 o'clock in comparison with any of the other time zones of the drivers 1 to 3 and the driver 4, and the distribution rate Even if the state of reduced arousal level is determined using fluctuations, a tendency specific to a SAS patient can be detected.

従って、図5や図8に示したように、運転手4は、サーカディアンリズムにおける眠気の少ない時間帯において、事故多発のタイミングと相関のある周波数傾き時系列波形の特有の波形成分(図3に示した事故多発判定時に出現する波形)、又は、生体リズムの乱れと相関のある分布率の変化が所定基準以下の状態の波形成分(図4に示したジェットラグ判定時に出現する波形)が所定の閾値回数以上みられることから、その時間帯において恒常性維持機能に乱れが生じており、このことから、睡眠時無呼吸症候群あるいはそれに類する睡眠に関連した疾病リスクが高いと推測することができる。  Accordingly, as shown in FIG. 5 and FIG. 8, the driver 4 has a unique waveform component of the frequency-gradient time-series waveform that correlates with the timing of frequent accidents (see FIG. 3). The waveform component that appears when the frequent accidents are shown) or the waveform component (the waveform that appears when the jet lag is shown in FIG. 4) whose distribution rate change correlates with the disturbance of the biological rhythm is equal to or less than a predetermined reference is predetermined. As a result, the homeostasis function is disturbed during the time period, and from this, it can be inferred that sleep apnea syndrome or similar sleep related disease risk is high. .

また、事故多発判定の出現回数及びジェットラグ判定の出現回数の最も多いのは、運転手4が10時台であることは上記したとおりであるが、次いで多いのは16時台であり、これは他の運転手1〜3の頻出時間帯とは若干ずれていた。また、運転手4は、8時から12時台の長時間に亘り、事故多発判定とジェットラグ判定が比較的多く出現する状態が続いていることも特有であった。なお、全ての運転手は、業務終了間際の時間帯で事故多発判定とジェットラグ判定の回数が増加する傾向にあったが、これは、疲労の蓄積や業務の終了間際であることで緊張が弛むことに関連していると予測される。次表は、事故多発判定及びジェットラグ判定の出現が頻出する時間帯をまとめたものである。  In addition, as described above, the number of appearances of frequent accident determinations and the number of appearances of jet lag determinations is as described above that the driver 4 is at 10 o'clock, but the next most frequent is at 16:00. Was slightly different from the frequent times of other drivers 1-3. In addition, the driver 4 was also unique in that a relatively large number of accident determinations and jet lag determinations continued for a long time from 8:00 to 12:00. All drivers tended to increase the number of accident and jet lag determinations during the time just before the end of work, but this was due to the accumulation of fatigue and the close of work. Predicted to be related to sagging. The following table summarizes the time periods in which frequent occurrences of accident determination and jet lag determination occur frequently.

次に、事故多発判定とジェットラグ判定の時間帯別の判定回数の周期特性を明らかにするために、以下の手順により、図5及び図8に示した波形の変換を行った。図9に図5の運転手1の事故多発判定回数波形を例にとりその変換手順を示す。まず、事故多発判定回数波形の近似曲線を算出する。次に、事故多発判定回数波形と近似曲線の差を算出してプロットする。さらに、算出した近似曲線と判定回数の差の波形の隣り合う2点の中点を算出して平滑化したものを判定回数変動波形とする。  Next, in order to clarify the periodic characteristics of the number of determinations for each time zone of the accident frequent occurrence determination and the jet lag determination, the waveforms shown in FIGS. 5 and 8 were converted by the following procedure. FIG. 9 shows an example of the conversion procedure for the frequent occurrence determination waveform of the driver 1 shown in FIG. First, an approximate curve of the frequent occurrence determination frequency waveform is calculated. Next, the difference between the frequent occurrence determination frequency waveform and the approximate curve is calculated and plotted. Further, the smoothed waveform obtained by calculating and smoothing the midpoint between two adjacent points between the calculated approximate curve and the waveform of the difference in the number of determinations is defined as the determination number variation waveform.

図10及び図11は、図5の事故多発判定回数波形と図8のジェットラグ判定回数波形を上記手順で変換して求めた判定回数変動波形を示したものである。なお、眠気のサーカディアンリズムの波形も同様の手順で変換している。図10及び図11から、運転手4は、事故多発、ジェットラグ判定共に、眠気のサーカディアンリズムの切替点である9〜10時台をピークとした7時間周期の変動リズムを示していることがわかる。また、運転手4の事故多発とジェットラグの判定回数変動波形は、8時〜13時台にかけ、眠気のサーカディアンリズムと逆位相を示しており、生体リズムが崩れていることが読み取れる。  FIGS. 10 and 11 show the determination frequency fluctuation waveform obtained by converting the accident frequent determination frequency waveform of FIG. 5 and the jet lag determination frequency waveform of FIG. 8 according to the above procedure. The circadian rhythm waveform of sleepiness is converted in the same procedure. From FIG. 10 and FIG. 11, the driver 4 shows a fluctuation rhythm of a 7-hour cycle that peaks at 9-10 o'clock, which is the switching point of the sleepy circadian rhythm, for both frequent accidents and jet lag determination. Recognize. Moreover, the number of accidents of the driver 4 and the jet lag determination frequency fluctuation waveform are in the range from 8:00 to 13:00, showing a phase opposite to the circadian rhythm of drowsiness, and it can be read that the biological rhythm is broken.

図5、図8、図10及び図11は、事故多発判定回数とジェットラグ判定回数の時間帯別の特性を求めたものであるが、次に、全データから求めた1日当たりの平均判定回数(図12)、全データから求めた1時間当たりの平均判定回数(図13)、休み明けから次の休みまでの連続勤務日数別の1日当たりの平均判定回数(図14)、休み明けから次の休みまでの連続勤務日数別の1時間当たりの平均判定回数(図15)、1運行毎の判定回数(図16及び図17)を求めて比較した。  5, 8, 10, and 11 show the characteristics of the number of accidents frequently determined and the number of jet lag determinations according to time zones. Next, the average number of determinations per day obtained from all data is shown. (Figure 12), average number of judgments per hour determined from all data (Figure 13), average number of judgments per day by consecutive working days from the end of the rest to the next rest (Figure 14), next after the rest The average number of determinations per hour for each consecutive working day (Fig. 15) and the number of determinations for each operation (Figs. 16 and 17) were obtained and compared.

図12(a),(b)から、1日当たりの平均において、運転手2は他の運転手よりも事故多発及びジェットラグの判定回数がいずれも少ない傾向にあることがわかる。一方、運転手4は他の運転手と比べて図12(b)のジェットラグの判定回数が多いことがわかる。  12 (a) and 12 (b), it can be seen that, on an average per day, the driver 2 tends to have a higher number of accidents and a smaller number of jet lag determinations than the other drivers. On the other hand, it can be seen that the driver 4 has more jet lag determination times in FIG. 12B than the other drivers.

図13(a)から、1時間当たりに換算すると事故多発波形の判定回数は平均化し、運転手間での差がみられなくなったが、図13(b)のジェットラグ判定回数は、運転手2と運転手4との間で有意な差が認められ、運転手2は他の運転手と比べて判定回数が少なく、運転手4は他の運転手に比べて有意に判定回数が多い傾向にあった。  From FIG. 13 (a), when converted per hour, the number of accidents frequently determined is averaged, and there is no difference between the drivers. However, the number of jet lag determinations in FIG. There is a significant difference between the driver 4 and the driver 4, the driver 2 has a smaller number of determinations than the other drivers, and the driver 4 tends to have a significantly higher number of determinations than the other drivers. there were.

図14(a),(b)に示した連続勤務日数別の1日あたりの事故多発、ジェットラグ判定回数では、特に、図14(b)のジェットラグ判定回数において、運転手2が他の運転手と比べて勤務日数に関係なく少ない傾向にあった。  14 (a) and 14 (b), the number of accidents per day by the number of consecutive working days and the number of jet lag determinations are particularly different in the number of jet lag determinations shown in FIG. 14 (b). Compared to the driver, there was a tendency to be less regardless of the number of working days.

図15(a)から、連続勤務日数別の1時間あたりの事故多発判定回数は、運転手3は勤務日6日目に他の運転手に比べ事故多発判定回数が少なくなった。図15(b)に示すように、運転手4は休み明け(1日目)と休み前(5日目、6日目)にジェットラグ判定回数が多くなる傾向を示した。特に5日目と6日目は他の運転手との比較で約1.5〜2.5倍の判定回数を示した。  From FIG. 15 (a), the number of accidents frequently determined per hour by the number of consecutive working days was less for the driver 3 than the other drivers on the sixth day of the working day. As shown in FIG. 15 (b), the driver 4 tended to increase the number of jet lag determinations at the end of the holiday (1st day) and before the holiday (5th and 6th days). In particular, on the 5th and 6th days, the number of determinations was about 1.5 to 2.5 times that of other drivers.

図16及び図17の1運行毎のグラフで比較すると、運転手4は運行時間の長短に拘わらず、事故多発判定回数及びジェットラグ判定回数共に多い傾向にある。また、図16から、運転手2,3,4は、運行時間が200分を超えると急激に事故多発判定回数が増加していた。運転手2は、運転時間100分以内では他の運転手よりも事故多発判定回数が少ないが、100分を超えると所々で判定回数が増え、200分を超えると急激に判定回数が増加する傾向にあった。また、図17から、運転手1,3,4は、運転時間が200分を超えると急激にジェットラグ判定回数が増加していた。  Comparing the graphs for each operation in FIGS. 16 and 17, the driver 4 tends to have a large number of accident frequent determinations and jet lag determinations regardless of the length of the operation time. In addition, from FIG. 16, the number of accidents frequently determined for the drivers 2, 3, 4 suddenly increased when the operation time exceeded 200 minutes. Driver 2 has less frequent accident determinations than other drivers within 100 minutes of driving time, but the number of determinations increases in more than 100 minutes, and the number of determinations tends to increase rapidly after 200 minutes. It was in. Also, from FIG. 17, the number of jet lag determinations for drivers 1, 3 and 4 increased rapidly when the driving time exceeded 200 minutes.

以上のことから、本発明の手法によれば、図5及び図8に示した時間帯別のグラフで示される特有の出現傾向で運転手4がSAS患者であることを特定可能であるだけでなく、運転手4が事故多発波形、ジェットラグ判定における種々の分析においても他の運転手にみられない特有の出現傾向を示すことがわかる。従って、運転手4の各判定の特有の出現傾向、例えば、図12(b)の1日平均のジェットラグ判定回数、図13(b)の1時間平均のジェットラグ判定回数における出現傾向を加味して判定することで、より高い精度でSAS患者の特定が可能となる。  From the above, according to the method of the present invention, it is only possible to specify that the driver 4 is a SAS patient with the unique appearance tendency shown in the graphs according to time zones shown in FIG. 5 and FIG. Thus, it can be seen that the driver 4 shows a unique appearance tendency not seen by other drivers in various analyzes in the accident frequent occurrence waveform and jet lag determination. Therefore, the appearance tendency peculiar to each determination of the driver 4, for example, the appearance tendency in the daily average jet lag determination number in FIG. 12B and the average hourly jet lag determination number in FIG. Thus, the SAS patient can be identified with higher accuracy.

また、これらの結果から、事故多発波形又はジェットラグの判定回数に基づいて、SAS患者の特定以外に応用できることがわかる。例えば、運転手1のように、長時間運転すると、ジェットラグの判定回数が増加する傾向にある場合には、長時間の運転によって生体リズムが崩れやすい性質を有していると推定できる。運転者2のように、ジェットラグの判定回数が少なくても、長時間運転によって事故多発判定回数が増加する傾向にある場合には、長時間運転によって眠気や注意力の低下を招きやすい傾向であることが推定できる。運転者3のように、長時間運転すると、事故多発判定回数とジェットラグ判定回数の双方が増加する傾向にある場合には、長時間運転により生体リズムの乱れやすく、かつ、眠気や注意力の低下を引き起こしやすい傾向にあることが推定できる。  Moreover, from these results, it can be seen that the present invention can be applied to applications other than specifying a SAS patient based on the number of accident occurrence waveforms or the number of jet lag determinations. For example, if the number of jet lag determinations tends to increase when driving for a long time like the driver 1, it can be estimated that the biological rhythm is likely to collapse due to long-time driving. Even if the number of jet lag determinations is small, such as the driver 2, if the number of frequent accident determinations tends to increase due to long-time driving, it tends to cause drowsiness and reduced attention due to long-time driving. It can be estimated that there is. When driving for a long time like the driver 3, both the number of accident frequent determinations and the number of jet lag determinations tend to increase, the biological rhythm is likely to be disturbed by long-time driving, and sleepiness and attention It can be estimated that it tends to cause a decrease.

1 背部体表脈波測定装置
13 センサ
100 生体状態分析装置
111 周波数傾き時系列波形演算手段
112 分布率演算手段
120 疾病リスク推定手段
DESCRIPTION OF SYMBOLS 1 Back body surface pulse wave measuring apparatus 13 Sensor 100 Living body condition analyzer 111 Frequency inclination time series waveform calculating means 112 Distribution rate calculating means 120 Disease risk estimating means

Claims (13)

生体信号測定装置により収集された生体信号を分析し、生体状態を判定する生体状態分析装置であって、
疲労、注意力の低下又は眠気を含む所定の覚醒度低下状態の出現タイミングを判定する覚醒度低下状態判定手段と、
前記覚醒度低下状態判定手段により判定される前記覚醒度低下状態の単位時間当たりの出現回数を求め、前記単位時間当たりの出現回数と眠気のサーカディアンリズムとの関係で、睡眠に関連する疾病のリスクを推定する疾病リスク推定手段と
を有することを特徴とする生体状態分析装置。
A biological state analyzer that analyzes biological signals collected by the biological signal measuring device and determines a biological state,
Arousal level reduction state determination means for determining the appearance timing of a predetermined low level of arousal level including fatigue, reduced attention, or drowsiness; and
The number of appearances per unit time of the state of reduced arousal level determined by the reduced state of arousal level determination means is determined, and the risk of diseases related to sleep in relation to the number of appearances per unit time and the circadian rhythm of sleepiness And a disease risk estimation means for estimating the biological condition analysis apparatus.
前記疾病リスク推定手段は、前記眠気のサーカディアンリズムにおいて覚醒度が所定以上高いとされる時間帯における、前記覚醒度低下状態の単位時間当たりの出現回数が所定回数以上の場合に、睡眠時無呼吸症候群のリスクが高いと推定する手段を含む請求項1記載の生体状態分析装置。  The disease risk estimation means, when the number of appearances per unit time of the state of reduced wakefulness is a predetermined number of times or more in a time zone in which the wakefulness level is higher than a predetermined level in the circadian rhythm of sleepiness, sleep apnea The biological state analyzer according to claim 1, comprising means for estimating that the risk of the syndrome is high. 前記眠気のサーカディアンリズムにおける前記覚醒度が所定以上高いとされる時間帯は、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含む時間帯である請求項2記載の生体状態分析装置。  The living body according to claim 2, wherein the time zone in which the degree of arousal in the circadian rhythm of sleepiness is higher than a predetermined level is a time zone including a switching point at which the sleepiness tends to increase from the tendency to decrease sleepiness. Condition analysis device. 前記覚醒度低下状態判定手段は、
前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手段を有し、
前記周波数傾き時系列波形演算手段から得られる周波数の傾き時系列波形に基づき、前記覚醒度低下状態の出現タイミングを判定する請求項1〜3のいずれか1に記載の生体状態分析装置。
The arousal level lowering state determining means includes
Frequency slope time series for obtaining a time series waveform of a frequency using a zero-cross point or a peak point in the time series waveform of the biological signal, and obtaining a slope time series waveform of the frequency by sliding calculation of the obtained time series waveform of the frequency Having waveform calculation means,
The biological state analysis apparatus according to claim 1, wherein the appearance timing of the state of reduced arousal level is determined based on a frequency gradient time-series waveform obtained from the frequency gradient time-series waveform calculating means.
前記覚醒度低下状態判定手段は、
前記周波数傾き時系列波形演算手段から得られる周波数の傾き時系列波形において、所定の基準に対して振幅の収束傾向と拡大傾向が連続する場合に、前記覚醒度低下状態の出現タイミングと判定する請求項4記載の生体状態分析装置。
The arousal level lowering state determining means includes
The frequency gradient time-series waveform obtained from the frequency gradient time-series waveform calculating means is determined to be the appearance timing of the arousal level lowering state when an amplitude convergence tendency and an expansion tendency continue with respect to a predetermined reference. Item 5. The biological state analyzer according to Item 4.
前記覚醒度低下状態判定手段は、
前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手段と、
前記周波数傾き時系列波形演算手段により得られる周波数傾き時系列波形から、心循環系のゆらぎの特性が切り替わる周波数よりも低い周波数の機能調整信号、前記機能調整信号よりも高い周波数の疲労受容信号、及び前記疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出し、これらの周波数成分のそれぞれの分布率を時系列に求める分布率演算手段と
を有し、
前記分布率演算手段において、前記機能調整信号、疲労受容信号及び活動調整信号の分布率の変動が所定基準を下回る場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定する請求項1〜3のいずれか1に記載の生体状態分析装置。
The arousal level lowering state determining means includes
Frequency slope time series for obtaining a time series waveform of a frequency using a zero-cross point or a peak point in the time series waveform of the biological signal, and obtaining a slope time series waveform of the frequency by sliding calculation of the obtained time series waveform of the frequency Waveform calculation means;
From the frequency gradient time series waveform obtained by the frequency gradient time series waveform calculation means, a function adjustment signal having a frequency lower than the frequency at which the fluctuation characteristics of the cardiovascular system are switched, a fatigue acceptance signal having a frequency higher than the function adjustment signal, And a distribution rate calculation means for extracting each frequency component belonging to the VLF band from the ULF band corresponding to the activity adjustment signal having a frequency higher than that of the fatigue acceptance signal, and obtaining each distribution rate of these frequency components in time series. And
In the distribution rate calculation means, when fluctuations in the distribution rates of the function adjustment signal, fatigue acceptance signal, and activity adjustment signal are below a predetermined reference, it is determined that the appearance timing of a state of reduced arousal level caused by disturbance of biological rhythm is a factor. The biological state analyzer of any one of Claims 1-3.
前記生体信号測定装置によって収集される生体信号が、背部体表脈波である請求項1〜5のいずれか1に記載の生体状態分析装置。  The biological state analyzer according to claim 1, wherein the biological signal collected by the biological signal measuring device is a back body surface pulse wave. 生体状態分析装置としてのコンピュータに、
生体信号測定装置により収集された生体信号を分析し、生体状態を判定する手順を実行させるコンピュータプログラムであって、
疲労、注意力の低下又は眠気を含む所定の覚醒度低下状態の出現タイミングを判定する覚醒度低下状態判定手順と、
前記覚醒度低下状態判定手順により判定される前記覚醒度低下状態の単位時間当たりの出現回数を求め、前記単位時間当たりの出現回数と眠気のサーカディアンリズムとの関係で、睡眠に関連する疾病のリスクを推定する疾病リスク推定手順と
を実行させることを特徴とするコンピュータプログラム。
In a computer as a biological state analyzer,
A computer program for analyzing a biological signal collected by a biological signal measuring device and executing a procedure for determining a biological state,
A wakefulness reduction state determination procedure for determining the appearance timing of a predetermined wakefulness reduction state including fatigue, reduced attention or sleepiness; and
The number of appearances per unit time of the state of reduced wakefulness determined by the procedure for determining the state of reduced wakefulness is determined, and the risk of sleep-related diseases in relation to the number of appearances per unit time and the circadian rhythm of sleepiness A computer program for executing a disease risk estimation procedure for estimating a disease risk.
前記疾病リスク推定手順は、前記眠気のサーカディアンリズムにおいて覚醒度が所定以上高いとされる時間帯における、前記覚醒度低下状態の単位時間当たりの出現回数が所定回数以上の場合に、睡眠時無呼吸症候群のリスクが高いと推定する手順を実行させる請求項8記載のコンピュータプログラム。  The disease risk estimation procedure includes sleep apnea when the number of appearances per unit time of the state of reduced wakefulness is a predetermined number of times or more in a time zone in which the degree of wakefulness is higher than a predetermined value in the circadian rhythm of sleepiness The computer program according to claim 8, wherein a procedure for estimating a risk of a syndrome is high. 前記眠気のサーカディアンリズムにおける前記覚醒度が所定以上高いとされる時間帯は、眠気が低下していく傾向から眠気が増していく傾向に切り替わる切替点を含む時間帯である請求項9記載のコンピュータプログラム。  The computer according to claim 9, wherein the time zone in which the arousal level in the circadian rhythm of drowsiness is higher than a predetermined level is a time zone including a switching point at which the drowsiness decreases and the drowsiness increases. program. 前記覚醒度低下状態判定手順は、
前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手順を実行させ、
前記周波数傾き時系列波形演算手順の実行により得られる周波数の傾き時系列波形に基づき、前記覚醒度低下状態の出現タイミングを判定する請求項8〜11のいずれか1に記載のコンピュータプログラム。
The arousal level lowering state determination procedure includes:
Frequency slope time series for obtaining a time series waveform of a frequency using a zero-cross point or a peak point in the time series waveform of the biological signal, and obtaining a slope time series waveform of the frequency by sliding calculation of the obtained time series waveform of the frequency Run the waveform calculation procedure,
The computer program according to any one of claims 8 to 11, wherein the appearance timing of the state of reduced arousal level is determined based on a frequency gradient time-series waveform obtained by executing the frequency gradient time-series waveform calculation procedure.
前記覚醒度低下状態判定手順は、
前記周波数傾き時系列波形演算手順の実行により得られる周波数の傾き時系列波形において、所定の基準に対して振幅の収束傾向と拡大傾向が連続する場合に、前記覚醒度低下状態の出現タイミングと判定する請求項11記載のコンピュータプログラム。
The arousal level lowering state determination procedure includes:
In the frequency gradient time-series waveform obtained by executing the frequency gradient time-series waveform calculation procedure, when the convergence tendency and the expansion tendency of the amplitude are continuous with respect to a predetermined reference, it is determined as the appearance timing of the state of reduced arousal level The computer program according to claim 11.
前記覚醒度低下状態判定手順は、
前記生体信号の時系列波形におけるゼロクロス点又はピーク点を用いて周波数の時系列波形を求め、得られた前記周波数の時系列波形をスライド計算して周波数の傾き時系列波形を求める周波数傾き時系列波形演算手順と、
前記周波数傾き時系列波形演算手順の実行により得られる周波数傾き時系列波形から、心循環系のゆらぎの特性が切り替わる周波数よりも低い周波数の機能調整信号、前記機能調整信号よりも高い周波数の疲労受容信号、及び前記疲労受容信号よりも高い周波数の活動調整信号に相当するULF帯域からVLF帯域に属する各周波数成分を抜き出し、これらの周波数成分のそれぞれの分布率を時系列に求める分布率演算手順と
を実行させ、
前記分布率演算手順の実行により得られる前記機能調整信号、疲労受容信号及び活動調整信号の分布率の変動が所定基準を下回る場合に、生体リズムの乱れを要因とする覚醒度低下状態の出現タイミングと判定する請求項8〜10のいずれか1に記載のコンピュータプログラム。
The arousal level lowering state determination procedure includes:
Frequency slope time series for obtaining a time series waveform of a frequency using a zero-cross point or a peak point in the time series waveform of the biological signal, and obtaining a slope time series waveform of the frequency by sliding calculation of the obtained time series waveform of the frequency Waveform calculation procedure,
A function adjustment signal having a frequency lower than the frequency at which the fluctuation characteristics of the cardiovascular system are switched from the frequency inclination time series waveform obtained by executing the frequency inclination time series waveform calculation procedure, and fatigue acceptance having a frequency higher than that of the function adjustment signal. A distribution ratio calculation procedure for extracting each frequency component belonging to the VLF band from the ULF band corresponding to an activity adjustment signal having a frequency higher than that of the signal and the fatigue acceptance signal, and obtaining each distribution ratio of these frequency components in time series; And execute
Appearance timing of a state of reduced alertness caused by disturbance of biological rhythm when fluctuations in the distribution ratio of the function adjustment signal, fatigue acceptance signal and activity adjustment signal obtained by executing the distribution ratio calculation procedure are below a predetermined reference The computer program according to any one of claims 8 to 10, which is determined as follows.
JP2016563749A 2014-12-12 2015-12-11 Biological condition analyzer and computer program Active JP6588035B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014252525 2014-12-12
JP2014252525 2014-12-12
PCT/JP2015/084810 WO2016093347A1 (en) 2014-12-12 2015-12-11 Device and computer program for analyzing biological state

Publications (2)

Publication Number Publication Date
JPWO2016093347A1 JPWO2016093347A1 (en) 2017-10-05
JP6588035B2 true JP6588035B2 (en) 2019-10-09

Family

ID=56107524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016563749A Active JP6588035B2 (en) 2014-12-12 2015-12-11 Biological condition analyzer and computer program

Country Status (2)

Country Link
JP (1) JP6588035B2 (en)
WO (1) WO2016093347A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109863A1 (en) * 2016-12-14 2018-06-21 三菱電機株式会社 State estimation device
US20230397880A1 (en) * 2020-12-15 2023-12-14 ResMed Pty Ltd Systems and methods for determining untreated health-related issues

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160650A (en) * 2003-12-01 2005-06-23 Terumo Corp Apnea syndrome determining instrument
JP5553303B2 (en) * 2010-02-18 2014-07-16 株式会社デルタツーリング Biological state estimation device and computer program
JP5733499B2 (en) * 2010-10-29 2015-06-10 株式会社デルタツーリング Biological state estimation device and computer program
WO2014020465A1 (en) * 2012-08-01 2014-02-06 Koninklijke Philips N.V. Estimation of remaining safe driving time or distance
JP6118097B2 (en) * 2012-12-14 2017-04-19 株式会社デルタツーリング Biological state determination device during operation and computer program
JP2015112117A (en) * 2013-12-07 2015-06-22 株式会社デルタツーリング Biological state determination apparatus and computer program

Also Published As

Publication number Publication date
WO2016093347A1 (en) 2016-06-16
JPWO2016093347A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6767059B2 (en) Biological information acquisition device and signal processing method
EP3334337B1 (en) Monitoring of sleep phenomena
JP6757532B2 (en) Sleep stage determination device, sleep stage determination method, sleep stage determination program
JP5209545B2 (en) Biopsy device, program, and recording medium
JP5632986B2 (en) Sleep stage determination device and sleep stage determination method
Yoon et al. Slow-wave sleep estimation for healthy subjects and OSA patients using R–R intervals
JP5929020B2 (en) Consciousness state estimation device and program
JP6602657B2 (en) Biological information acquisition apparatus, biological information acquisition program, and biological information acquisition method
JP2004049838A (en) Sleep stage discriminating method and sleep stage discriminating device
JP2018161432A (en) Evaluation of Sleep State
WO2009150765A1 (en) Sleeping condition monitoring apparatus, monitoring system, and computer program
WO2013187243A1 (en) Physiological state-analyzing device and computer program
JP2011115188A (en) Sleeping condition monitoring apparatus, monitoring system, and computer program
JP2004344612A (en) Living body evaluation system, computer program and recording medium
JP7018621B2 (en) Biosignal analysis device, biosignal analysis method and biosignal analysis system
WO2004107978A1 (en) Sleep stage judgment method and judgment device
JP2000325315A (en) Sleep stage determinig method and sleep stage determining device
JP6588035B2 (en) Biological condition analyzer and computer program
JP6666705B2 (en) Biological condition estimation device, biological condition estimation method, and computer program
WO2017099257A1 (en) Biological state estimation device, biological state estimation method, computer program, and recording medium
JP6209395B2 (en) Biological state estimation device and computer program
JP7320807B2 (en) Physical condition determination device and computer program
JP6586557B2 (en) Sleep stage determination device and sleep stage determination method
JP2021535817A (en) Providing time information of the target person
JP2016047305A (en) Consciousness state estimation device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190911

R150 Certificate of patent or registration of utility model

Ref document number: 6588035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250