WO2004107978A1 - Sleep stage judgment method and judgment device - Google Patents

Sleep stage judgment method and judgment device Download PDF

Info

Publication number
WO2004107978A1
WO2004107978A1 PCT/JP2003/016745 JP0316745W WO2004107978A1 WO 2004107978 A1 WO2004107978 A1 WO 2004107978A1 JP 0316745 W JP0316745 W JP 0316745W WO 2004107978 A1 WO2004107978 A1 WO 2004107978A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
sleep stage
index
sleep
Prior art date
Application number
PCT/JP2003/016745
Other languages
French (fr)
Japanese (ja)
Inventor
Shin Nemoto
Original Assignee
Cb System Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cb System Co. filed Critical Cb System Co.
Priority to AU2003296122A priority Critical patent/AU2003296122A1/en
Priority to JP2005500580A priority patent/JP4461388B2/en
Publication of WO2004107978A1 publication Critical patent/WO2004107978A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4035Evaluating the autonomic nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms

Definitions

  • the present invention relates to a sleep stage judging method and judging device for judging a sleep stage from a biological signal detected by a biological signal detecting means, and is not affected by a difference in the age of a subject or a change in physical condition.
  • the present invention also relates to a sleep stage determination method and a sleep stage determination method for clearly and clearly determining a sleep stage.
  • Sleep is often used as a criterion when examining an individual's health, and it is well known that sleep and health are closely related. Health and the depth and quality of sleep at night are closely related to the mood and morale of the next day, while the pattern of sleep depth and sleep stage when mental stress or physical condition is poor Changes occur and comfortable sleep cannot be obtained.
  • the non-REM sleep phase and the REM sleep phase appear repeatedly at regular intervals after falling asleep, but the rhythm may be disturbed when the patient is sick or mentally stressed. It has been known. Therefore, by monitoring the sleep stages during sleep at night and their occurrence patterns, it becomes possible to know the mental stress and poor physical condition of the subject.
  • a method using a sleep polysomnograph is generally used.
  • PSG sleep polysomnograph
  • the brain during sleep the activity of the menstrual system can be estimated from EEG, surface EMG, eye movements, etc., and much information about sleep can be obtained. It is difficult to get a natural sleep because the measurement is carried out with the electrodes attached. It costs. Therefore, the physical and physical burden on the subject is very large, and furthermore, this measurement must be performed by a hospital or other specialized facility and an expert in handling. Therefore, the cost required for this is large.
  • an object of the present invention is to provide a sleep stage determination method and a determination device capable of determining a stable sleep stage irrespective of a difference due to a subject's age and a change in physical condition.
  • the present invention has been made in view of the above-mentioned circumstances, and has been created with the object of solving these problems.
  • At least one signal among the parameters derived from is used as an index signal, and a threshold for judging a sleep stage is calculated from data of a predetermined time for each index signal, and the sleep stage is determined using the threshold. This is a characteristic sleep stage determination method.
  • the biological signal detecting means can detect minute vibrations emitted from the living body and determine the sleep stage.
  • At least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detecting means can be used as the index signal.
  • each of the sleep stages includes determining a small number of the index signals. At least it is possible to make a determination by using the logical product of the determination information of two or more index signals, thereby improving the reliability of the determination.
  • the threshold value of the index signal can be calculated using an average value and a variance value of the index signal at a predetermined time, and the statistical value of the latest index signal is used. It is possible to obtain a threshold value corresponding to the state, and it is possible to avoid the effects of differences in age and physical condition.
  • the threshold value of the index signal may be obtained by calculating a signal of a moving average of the index signal and using an average value and a variance value of the signal.
  • the threshold value of the index signal is obtained by obtaining a signal of a difference between a long-time moving average and a short-time moving average of the index signal, and calculating using a mean value and a variance of the difference signal.
  • one of the index signals can be a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by the biological signal detecting means.
  • one of the index signals is an RR interval value of a heartbeat signal.
  • one of the index signals is a peak value interval value of a respiratory signal.
  • one of the index signals is an integrated value (LF value) of a maximum value band appearing in a lower frequency band in the power spectrum density of the heartbeat signal. It can be an integrated value (HF value) signal of the maximum value band.
  • one of the index signals may be a signal having a ratio between an LF value and an HF value in a power spectrum density of a heartbeat signal.
  • one of the index signals is a ratio of a ratio of an LF value signal in a power spectrum density signal obtained from an R-R interval value of a heartbeat signal to a signal of a sum of the LF value signal and the HF value signal. It can be a signal.
  • one of the index signals may be a logarithmic value of a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal.
  • the biological signal detecting means is a non-invasive detecting means.
  • the biological signal detecting means may include a pressure detecting tube, a pressure detecting sensor, and a biological signal extracting means, and may extract a biological signal from a pressure change detected by the pressure detecting sensor.
  • the biological signal detecting means may be a heart rate signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state.
  • the present invention provides a heartbeat signal or a respiratory signal extracted from a signal detected by the biological signal detecting means, and at least one of the parameters derived from these signals as an index signal.
  • a sleep stage determining apparatus comprising: calculating a threshold for determining a sleep stage from data of a predetermined period of time; and determining means for determining a sleep stage using the threshold.
  • At least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detecting means can be used as the index signal.
  • the determination can be made using a logical product of determination information of at least two or more of the index signals.
  • the threshold value of the index signal can be calculated using an average value and a variance of the index signal for a predetermined time.
  • the threshold value of the index signal can be calculated using a moving average signal of the index signal and using an average value and a variance value of the signal.
  • one of the index signals is a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by the biological signal detecting means.
  • one of the index signals is an RR interval value of a heartbeat signal.
  • one of the index signals is a peak value interval value of a respiratory signal.
  • one of the index signals is an integrated value (LF value) of a maximum value band that appears in a lower frequency region in the power spectrum density of the heartbeat signal and a signal that appears in a higher or higher frequency region. It can be an integrated value (HF value) signal of the maximum value band.
  • LF value integrated value
  • HF value integrated value
  • one of the index signals can be a signal having a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal.
  • one of the index signals is an LF value signal in a power spectrum density signal obtained from an R_R interval value of a heartbeat signal, and a signal of a sum of the LF value signal and the HF value signal. It can be a ratio signal.
  • one of the index signals can be a logarithmic value of a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal.
  • the biological signal detecting means is a non-invasive detecting means.
  • the biological signal detecting means comprises a pressure detecting tube, a pressure detecting sensor, and a biological signal extracting means, and can extract a biological signal from a pressure change detected by the pressure detecting sensor.
  • the biological signal detecting means may be a heart rate signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state.
  • FIG. 1 (A) is a block diagram showing a flow for judging a sleep stage in the sleep stage judging method of the present invention
  • FIG. 1 (B) is a sectional view taken along line XX of FIG. 1 (A).
  • FIG. 2 is an explanatory diagram showing the power spectrum density when the sympathetic nerve is dominant.
  • FIG. 3 is an explanatory diagram showing the power spectrum density when the parasympathetic nerve is dominant.
  • FIG. 4 is a flowchart for determining a sleep stage using one index signal.
  • FIG. 5 is a flowchart for determining a sleep stage using two index signals.
  • FIG. 6 is a flowchart showing a processing result of a parameter for determining whether to wake up from a REM sleep stage or a non-REM sleep stage.
  • FIGS. 7 (A) and (B) are output graphs of the index signals used for determining the awakening. REM sleep stage and the non-REM sleep stage.
  • FIG. 8 is a graph showing the determination results of the awake / REM sleep stage and the non-REM sleep stage.
  • FIGS. 9 (A) and 9 (B) are output graphs of the index signals used to determine the awake state and the REM sleep stage.
  • FIG. 10 is a graph showing the determination results of the awake state and the REM sleep stage.
  • FIGS. 11 (A) and (B) are output graphs of the index signals used to determine the light non-REM sleep stage and the deep non-REM sleep stage.
  • FIG. 12 is a graph showing the determination results of a light non-REM sleep stage and a deep non-REM sleep stage.
  • FIGS. 13 (A) and (B) are graphs comparing the results of sleep determination according to the present embodiment with the results of a conventional method using a sleep polynomograph (PSG).
  • PSG sleep polynomograph
  • FIG. 1 (A) is a block diagram showing a flow of judging a sleep stage according to the embodiment of the present invention
  • FIG. 1 (B) is a block diagram of the biological signal detecting means 1 shown in the block diagram. It is the side view seen from the arrow direction shown by a section.
  • the noninvasive sensor 1 shown in FIG. 1 (A) is a biological signal detecting means for detecting a minute biological signal of a sleeping subject, and from this biological signal, a heartbeat signal detecting means 2 and a call P and signal detecting means. At 7, the respiratory signal and the heartbeat signal are extracted via a filter or the like.
  • the noninvasive sensor 1 includes a pressure sensor 1a and a pressure detection tube 1b.
  • the pressure sensor 1a is a sensor that detects minute pressure fluctuations.
  • a low-frequency condenser microphone type is used. Instead, it just needs to have the appropriate performance and dynamic range.
  • the condenser microphone for low frequency used in the present embodiment is replaced by a general microphone microphone for sound, which is not considered for the low frequency region, and is provided with a chamber behind the pressure receiving surface. This is a type in which the characteristics in the frequency domain are greatly improved, and is suitable for detecting minute pressure fluctuations in the pressure detection tube 1b.
  • minute differential pressure It is also excellent for measuring minute differential pressure, has a resolution of 0.2 Pa and a dynamic range of about 50 Pa, and is compared with a micro-differential pressure sensor using ceramic that is usually used. It is suitable for detecting a minute pressure applied to the pressure detection tube 1b when a biological signal passes through the body surface. Or frequency characteristic 0. ⁇ H Z 2 0 H showed almost flat output value between the z, it is suitable for detecting minute biosignal beauty respiratory rate, etc. heartbeat Oyo.
  • the pressure detection tube 1b has an appropriate elasticity so that the internal pressure fluctuates according to the pressure fluctuation range of the biological signal. In addition, it is necessary to appropriately select the volume of the hollow portion of the tube in order to transmit the pressure change to the fine differential pressure sensor 1a at an appropriate response speed. If the pressure detection tube 1b cannot satisfy both the appropriate elasticity and the hollow volume at the same time, load a core wire of appropriate thickness into the hollow portion of the pressure detection tube 1b over the entire length of the tube, and The volume can be appropriately taken.
  • the pressure detection tube 1b is placed on a hard sheet 16 laid on a bed 15 and an elastic cushion sheet 17 is laid thereon, and a subject is placed on the pressure detection tube 1b. Ka yellowish.
  • the pressure detection tube 1 b may be configured to be incorporated in the cushion sheet 17 or the like so that the position of the pressure detection tube 1 b is stabilized.
  • two sets of non-invasive sensors 1 are provided, one of which detects a biological signal of the subject's thoracic region, and the other detects a subject's buttock region, so that the subject goes to sleep. It is configured to detect a biological signal regardless of the posture.
  • the biological signal detected by the non-invasive sensor 1 is a signal in which various vibrations emitted from the human body are mixed, and includes signals such as a heartbeat signal, a respiratory signal, and a turn signal. Therefore, a biological signal such as a heartbeat signal or a respiratory signal is extracted by a biological signal detecting means using a filter or a means such as a gun gauge processing. Needless to turn over Other signals can be detected.
  • the heart rate signal is extracted from the detection signal of the non-invasive sensor 1, but the present invention is not limited to this.
  • the heart rate signal may be obtained by wearing a dedicated heart rate monitor or detecting a pulse. It is possible to obtain information on breathing or turning over by using a microphone or imaging means.
  • the heart rate is detected by the heart rate detection means 3 from the heart rate signal detected by the biological signal detection means 1 and the interval between adjacent peaks of the R wave of the heart rate signal by the R-R interval signal calculation means 4, ie, the R-R interval Detect signal.
  • the RR interval signal described above is a signal that uses the interval of the waveform (R wave) near the peak of the intensity of the heartbeat signal as a variable, and is often used for heart rate variability analysis.
  • the RR interval signal detected by the RR interval signal calculating means 4 is sent to a power spectrum density calculating means 5.
  • FIG. 2 shows the power spectrum density when the sympathetic nerve is dominant
  • FIG. 3 shows the power spectrum density when the parasympathetic nerve is dominant.
  • the power spectrum density varies depending on the state of the autonomic nervous system.
  • a remarkable maximum value appears in a band of about 0.05 to 0.15 Hz and a band of about 0.2 to 0.4 Hz.
  • the integrated signal of the local maximum value band appearing in the lower frequency range of approximately 0.05 to 0.15 Hz is called the LF value signal, and the local maximum signal appears in the higher frequency region of approximately 0.2 to 0.4 Hz.
  • the integrated signal in the value band is called the HF value signal.
  • a large LF value and a small HF value indicate that the sympathetic nerve is active and nervous, while a small LF value and a large HF value indicate that the parasympathetic nerve is active. I have.
  • the heart rate decreases, due to a decrease in the sympathetic activity that is active during tension and an increase in the parasympathetic activity that is active during relaxation. That is, the values of HF and LF vary significantly depending on the state of sleep depth.
  • the HFZLF detecting means 6 is a means for detecting the above HF and LF values from the power spectrum density, and includes the HF value and the HF value detected by the HF / LF detecting means 6. LF values fluctuate according to sleep stages. This data is sent to the judgment parameter generating means 13 for judging the sleep stage.
  • the respiratory signal detecting means 7 is a means for extracting a respiratory signal from a signal detected from the biological signal detecting means, detects a respiratory rate by the respiratory rate detecting means 8, and calculates a respiratory interval by the respiratory interval signal calculating means 9. The value is used as a breathing interval value signal.
  • Both respiration and signals are signals that are significantly affected by the autonomic nervous system, the sympathetic nervous system and the parasympathetic nervous system, and are closely correlated with sleep stages.
  • the signal amplification and shaping section 10 sets the characteristics of the amplifier circuit so as to amplify only the main frequency band of the biological signal and reduce the frequency band corresponding to the other noises, and further includes a bandpass filter. Further, the noise may be reduced.
  • the automatic gain control unit 11 is a so-called AGC circuit that automatically performs gain control so that the output of the signal control shaping unit 10 falls within a predetermined signal level range. Output to the strength calculation unit 12. For gain control, for example, set the gain so that the amplitude of the output signal decreases when the peak value of the signal exceeds the upper threshold, and set the gain so that the amplitude increases when the peak value falls below the lower threshold. are doing.
  • the signal strength calculator 12 calculates the signal strength from the gain control coefficient applied to the biological signal in the automatic gain controller 11.
  • the gain value obtained from the AGC circuit described above is set to be small when the signal size is large, and is set to be large when the signal size is small. In order to indicate, it is better to set a function indicating the signal strength so as to be inversely proportional to the value of the gain.
  • the output value of the non-invasive sensor 1 continuously exceeds the upper limit of the automatic gain control within a predetermined time, it can be determined that a body movement such as turning over has occurred.
  • the intensity of the biological signal including the body motion is considered to be closely related to the sleep state, and thus is used as a parameter for determining the sleep stage.
  • the determination parameter generation means 13 calculates and obtains a parameter used for the determination using the heartbeat signal or the HF value signal and the LF value signal.
  • the determination parameters include, for example, a heart rate signal, an HF value signal and an LF value signal, and an HF value signal and an LF A parameter such as a signal of the value of the ratio of the value signal is generated by calculation.
  • the sleep stage determination means 14 uses the parameters generated by the determination parameter generation means 13 to wake up, judge between REM sleep and non-REM sleep, judge between waking and REM sleep, and the deeper sleep stages of non-REM sleep The sleep stage is determined by determining that the sleep stage is light.
  • the non-REM determining means determines whether or not the force is in the non-REM sleep state. That is, when it is confirmed that the subject is not in the non-REM sleep state, it is known that the subject is in the REM sleep state or the awake state. .
  • the REM sleep determination means is means for determining the REM sleep state or the awake state after confirming that the state is not the non-REM state, that is, after confirming that the state is the REM sleep state or the awake state.
  • Non-REM sleep stages are usually categorized into four sleep stages, 1st to 4th, with the first non-REM sleep stage being the shallowest, deeper into j, and the fourth sleep stage being the deepest. It is.
  • the first and second sleep stages are assumed to be light sleep stages
  • the third and fourth sleep stages are assumed to be deep sleep stages.
  • the non-REM sleep deep / shallow determining means determines whether the sleep state is light or deep after the sleep state is confirmed.
  • the R-R interval signal calculation means 4 Based on the heartbeat signal sent from the heartbeat signal detection means 2, the R-R interval signal calculation means 4 detects the R-R interval signal. Fourier expansion is performed on the detected R-R interval signal to determine the power spectral density of the R-R interval signal.
  • the HF / LF detection means 6 detects HF and LF momentarily. Using these HF and LF, it is possible to generate sleep stage determination parameters effective for sleep stage determination.
  • the heart rate signal directly uses the heart rate extracted by the heart rate detecting means 3 and is affected by the sympathetic and parasympathetic changes. Respiratory rate Since the signal is also affected by changes in the sympathetic and parasympathetic nerves, it can be adopted as an index signal for determining the sleep stage.
  • the RN LF signal is a signal that takes in the LF value as it is.
  • RN LFR is the ratio between the LF value and the HF value.
  • RN LOG is the logarithmic value of the value indicated by LF / HF.
  • Fig. 4 is a flowchart for judging the sleep stage using one of the index signals derived from the biological signal.
  • One of the parameters generated by the determination parameter generating means 13 is shown.
  • One is selected as an index function, and the sleep stage determination means 14 performs determination according to this flowchart.
  • the index signal contains many high-frequency components, that is, minute fluctuations
  • a moving average process for a predetermined time is performed to remove the high-frequency components.
  • the difference between the long-term moving average and the short-term moving average is calculated in consideration of the case where the index signal fluctuates for a long time, and a pure fluctuation value of the index signal is obtained. That is, this is to correct the long-term variation of the parameter signal and extract a pure variation.
  • the number of moving average data used for this operation is 50,000 points for the short-term moving average and 100,000 points for the long-term moving average, but is not limited to this. Selected appropriately. Set a threshold for judging the sleep stage for the adopted index signal. At this time, different thresholds are set for different sleep stages.
  • FIG. 5 shows an example of determining a sleep stage using two index signals.
  • the combination to be adopted can be selected according to the sleep stage. For example, in determining which of the sleep stages is awake / REM sleep or non-REM sleep, a good determination result can be obtained by using an LF value signal as one of the index signals.
  • the present invention is not limited to this, and suboptimal results can be obtained using other parameters.
  • Combining the two signals is a means to make the determination accuracy more reliable, and depending on the purpose of use, only one parameter may be used as the index signal.
  • the threshold generation for judging the sleep stage in FIG. 4 and FIG. 5 is performed as follows. Performs moving average processing of the index signal, corrects long-term fluctuations of the index signal, and The average m and the standard deviation s (variance) of the data for a predetermined time are obtained for the signal from which the trend is extracted.
  • the threshold value is, for example, Ask.
  • is the average value
  • s is the standard deviation
  • 3 is the maximum matching rate between the sleep stage judgment of this embodiment and the sleep stage judgment by PSG using the experimental data of many times. It is determined by calculating the optimum value so that ⁇
  • the average plant m is not limited to the arithmetic average value, and a median value or the like may be used.
  • the standard deviation s was used as a parameter indicating the variation, but a value indicating a parameter such as variance can be used as an alternative to this.
  • the constants for ⁇ and in equation (a) differ depending on which sleep stage the parameter used as an index is used for. For example, the values are different depending on whether the wakefulness REM sleep stage and the non-REM sleep stage are used, or the case where it is used for determining light non-REM sleep and deep non-REM sleep.
  • the threshold value according to the state of the subject at the time of the test is used because the average value m and the standard deviation s of the parameters are used to determine the threshold value of the parameter used for the determination. As a result, a judgment can be made that is not affected by individual differences, age differences, or the state of the subject at the time of the test.
  • Figure 6 shows the procedure for determining each sleep stage and determining the sleep stage.
  • the sleep stage is determined by the sleep stage determination unit 14 using the parameters generated by the determination parameter generation unit 13 to wake up.
  • the sleep stage is determined by determining the deep sleep stage and the light sleep stage. That is, by performing the above three types of determinations, the power determination belonging to any sleep stage is performed.
  • the procedure first determines whether or not it is in the non-REM sleep stage. At this time, if it is determined that the subject is in the non-REM sleep, it is determined whether the non-REM sleep is a light non-REM sleep stage or a deep non-REM sleep stage.
  • the subject is in REM sleep or awake. With the above three determination steps, it is possible to determine the power at which the sleep stage at each time point corresponds to any of the four stages of the awake stage, the REM sleep stage, the light non-REM sleep stage, and the deep sleep stage.
  • FIG. 7 shows the measurement results of the RNL F signal and the RN LOG signal as signals for determining whether the subject is in the awake / REM sleep state or in the non-REM sleep state.
  • Fig. 7 (A) shows the short-term and long-term moving averages of the RNLF signal, and then the difference processing data.
  • Fig. 7 (B) shows the short-term and long-term moving averages of the NLOG signal. After that, the signal subjected to the difference processing is shown.
  • the threshold value calculated by the equation (a) is also displayed at the same time, and the threshold value is used to perform the binary threshold.
  • the power judgment of the awakening or REM sleep state or the non-REM sleep state is performed in the awake and REM sleep states if both signals are equal to or more than the respective thresholds. Judge that there is.
  • FIG. 8 shows the results of the force determination of awake / REM sleep or non-REM sleep according to the above procedure, together with the results of a conventional method using a sleep polysomnograph (PSG). If the waveform indicates a high position, it indicates awakening. REM sleep state, and if the waveform indicates a low position, it indicates non-REM sleep.
  • FIG. 9 shows the measurement results of the RN signal signal and a parameter for determining whether the subject is in the awake state or in REM sleep.
  • Fig. 9 (A) shows the moving average processed data of the RNLF signal
  • Fig. 9 (B) shows the moving average processed signal of the RNLFR signal.
  • the threshold value calculated by equation (a) is also displayed at the same time, and is binarized by this threshold value.
  • FIG. 10 shows the results of determining whether the subject is in the awake state or in REM sleep according to the above procedure.
  • Fig. 11 shows the measurement results of the RNLF signal and the RNLF signal, the parameters for determining whether the sleep is light non-REM sleep or strong non-REM sleep.
  • FIG. 11 shows the short-term and long-term moving averages of the RNLOG signal.
  • the data subjected to the difference processing later is shown. Also, it is calculated by the formula (A)
  • the displayed threshold is also displayed at the same time. As described with reference to the flowchart of FIG. 6, after binarization using this threshold value, the logical product of the two signals is taken to determine whether the subject is in the awake state or in REM sleep.
  • FIG. 12 shows the result of a force determination that is a strong non-REM sleep that is a shallow non-REM sleep according to the above procedure.
  • FIG 13 is a graph showing the transition of the sleep stage by integrating the above-described three stages of determination using the sleep stage determination method and the determination device of the present embodiment. At the same time, the results are shown together with the results of the conventional method using sleep polysomnograph (PSG).
  • PSG sleep polysomnograph
  • the sleep stage determination method and the determination device of the present invention are a determination method and a determination device based on the behavior of the autonomic nervous system, and the conventional determination method and the determination device using the conventional sleep polysomnograph (PSG) are mainly used for the electroencephalogram.
  • the electroencephalogram determines the sleep stage by utilizing the characteristic waveform of the neural activity of the cerebral cortex corresponding to various sleep stages according to the degree of synchronization.
  • the sleep stage judging method and the judging device of this method judge the sleep depth from the behavior of the autonomic nervous system, which is the neural activity of the brainstem, and the behavior of the autonomic nervous system has a profound effect on heart rate and respiration.
  • the coincidence rate of the judgment results described below is not the temporal coincidence rate but the coincidence rate of the ratio of each stage of sleep depth per day.
  • Fig. 13 (A) shows the results of a comparison between the three stages of awake state, REM sleep stage, and non-REM sleep stage, and the judgment result was 93.3% consistent with the conventional method using sleep polysomnograph (PSG). Shows the rate.
  • Fig. 13 (B) shows the results of a comparison between four stages: awake state, REM sleep stage, light non-REM sleep stage, and deep non-REM sleep stage. And 90.3% match rate. From this, the sleep stage determination device of the present invention has determination accuracy that is practically acceptable.
  • a method of detecting pressure fluctuation by combining a tube and a pressure sensor is employed as a detecting means capable of detecting a biological signal of a subject noninvasively, but the present invention is not limited to this, and a fine biological signal is detected.
  • the sleep stage judging method and judging device of the present invention detects a heartbeat signal by using an appropriate detecting means, and determines the sleep stage of the subject by arithmetically processing the output of the heartbeat signal.
  • the power spectrum density obtained from the R-R interval signal detected from the heartbeat signal is a good index indicating the state of the autonomic nervous system. Have reliability.
  • the sleep stage determination method and determination device of the present invention can determine the sleep stage as long as a heartbeat signal can be detected, and the cost of using and maintaining the device is low. It is possible to provide a sleep stage judging device suitable for daily use. ,

Abstract

From a biological signal detected by a nondestructive sensor, a breath signal, a heart beat signal, and a biological signal intensity are detected. A signal extracted from these or a parameter calculated from this signal is used as an index value so as to provide a sleep stage judgment method and a judgment device. The method and the device are used for judging the sleep stage of an examinee who is sleeping. The device includes a nondestructive sensor arranged on a bed for detecting a biological signal, detection means for detecting hear beat, breath, a biological intensity signal, and the like from the output of the nondestructive sensor, and index value calculation means for evaluating the autonomic nerve from a power spectrum density obtained by subjecting the R-R interval signal detected from the heart beat signal to the Fourier transform and calculating the index value of the sleep stage. By using a plurality of parameters as index signals and a threshold value according to the sleep stage is calculated from data of a predetermined time for each of the index signals, thereby judging the sleep stage. Similarly, a sleep stage judgment method and judgment device using at least one of the parameters calculated from the nondestructive sensor signal as an index value are also disclosed.

Description

睡眠段階判定方法およぴ判定装置 技術分野  Sleep stage determination method and device
本発明は、 生体信号検出手段から検出した生体信号から睡眠段階を判定する睡 眠段階の判定方法おょぴ判定装置であって、 被験者の年齢の違いや体調の変動な どに影響をうけずに睡眠段階を正明確に判定する睡眠段階判定方法および判定装置 に関する。 技術背景 食  The present invention relates to a sleep stage judging method and judging device for judging a sleep stage from a biological signal detected by a biological signal detecting means, and is not affected by a difference in the age of a subject or a change in physical condition. The present invention also relates to a sleep stage determination method and a sleep stage determination method for clearly and clearly determining a sleep stage. Technology background
個人の健康状態について調べる際に、 睡眠をその判定指標とすることが多く、 睡眠と健康とが密接に関連していることはよく知られているところである。 健康 と夜間の睡眠の深さおよびその質が翌日の気分や気力と密接に関連しており、 一 方精神的なストレスや体調が不良である場合には、 眠りの深さや睡眠段階の推移 パターンに変化が起こり、 快適な睡眠が得られない。  Sleep is often used as a criterion when examining an individual's health, and it is well known that sleep and health are closely related. Health and the depth and quality of sleep at night are closely related to the mood and morale of the next day, while the pattern of sleep depth and sleep stage when mental stress or physical condition is poor Changes occur and comfortable sleep cannot be obtained.
健康な睡眠では、 入眠した後にノンレム睡眠段階とレム睡眠段階とが一定の間 隔で繰り返し現われるが、 体調を崩しているときや、 精神的なストレスがかかつ ているときには、 そのリズムが乱れることが知られている。 したがって夜間の睡 眠中の睡眠段階とその発生パターンを監視することにより、 被験者の精神的なス トレスや体調の不良を知ることが可能になる。  In healthy sleep, the non-REM sleep phase and the REM sleep phase appear repeatedly at regular intervals after falling asleep, but the rhythm may be disturbed when the patient is sick or mentally stressed. It has been known. Therefore, by monitoring the sleep stages during sleep at night and their occurrence patterns, it becomes possible to know the mental stress and poor physical condition of the subject.
特に高齢者は、 眠りが浅い等の睡眠の不調を訴える人が多く、 睡眠の質が問題 となる。 睡眠の質を知るためには睡眠段階の推移を知ることによつて改善する対 処法ゃ措置を見いだすことが可能になる。  In particular, many elderly people complain of poor sleep, such as light sleep, and the quality of sleep is a problem. In order to know the quality of sleep, it is possible to find corrective measures / measures that can be improved by knowing the transition of sleep stages.
従来からある睡眠段階を知る方法としては、 睡眠ポリソムノグラフ (P S G) を用いる方法が一般的である。 P S Gを用いる方法では、 睡眠中の脳.押経系の活 動を脳波、 表面筋電位、 眼球運動等から推定して睡眠に関する多くの情報を得る ことができるが、 被験者の顔や身体に多くの電極を装着して測定を行うために、 自然な睡眠を得ることが困難であり、 また慣れるまでに数日力、ら 1週間の日時を 要する。 したがって被験者に与えられる身体的および肉体的な負担は非常に大き なものであり、 さらに、 この測定は病院等特定の施設と取り扱いに習熟した専門 家が実施する必要がある。 従って、 これに要する費用も多額になる。 As a conventional method of knowing the sleep stage, a method using a sleep polysomnograph (PSG) is generally used. With the method using PSG, the brain during sleep, the activity of the menstrual system can be estimated from EEG, surface EMG, eye movements, etc., and much information about sleep can be obtained. It is difficult to get a natural sleep because the measurement is carried out with the electrodes attached. It costs. Therefore, the physical and physical burden on the subject is very large, and furthermore, this measurement must be performed by a hospital or other specialized facility and an expert in handling. Therefore, the cost required for this is large.
このために、 P S Gは睡眠障害があることが明らかな患者等に使用するのは有 効な治療法に成りえても、 日常の健康管理に使用することは困難である。  For this reason, it is difficult to use PSG for daily health care, even if it can be an effective treatment for patients with obvious sleep disorders.
そこで、 被験者の日常の健康状態を知るために P S Gを用いずに、 簡単に睡眠 段階を知る方法を求める声が高い。 し力 し、 いくつか提案されている睡眠段階を 知る方法は、 年齢による違いや、 自律神経成分の個人差の差異等などによって判 定基準を変える必要あったり、 判定結果が個人差の変動によりばらついたりして、 芷確性に^けるという問題があり、 実用化されていない。  Therefore, there is a high demand for a method of easily knowing the sleep stage without using PSG to know the subject's daily health status. In order to determine the sleep stage, several methods have been proposed to change the judgment criteria depending on age, differences in the autonomic nervous component, etc. There is a problem that the accuracy may vary due to variation and has not been put to practical use.
そこで本発 は、 被験者の年齢による違いや、 体調の変動などに関係なく安定 した睡眠段階の判定が可能な睡眠段階の判定方法おょぴ判定装置を提供すること を目的とする。  Therefore, an object of the present invention is to provide a sleep stage determination method and a determination device capable of determining a stable sleep stage irrespective of a difference due to a subject's age and a change in physical condition.
さらに、 取扱が容易であり、 さらに価格および維持費用の点で日常的に使用可 能で、 かつ身体的おょぴ精神的な負担を被験者にかけることなく被験者の睡眠段 階を判定できる方法おょぴ装置を提供することを目的としている。 発明の開示  In addition, it is easy to handle, can be used on a daily basis in terms of price and maintenance costs, and can be used to determine the subject's sleep stage without placing any physical or mental burden on the subject. The purpose is to provide the equipment. Disclosure of the invention
本発明は、 上記の如き実情に鑑みこれらの課題を解決することを目的として創 作されたものであって、 生体信号検出手段で検出した信号から抽出した心拍信号 あるいは呼吸信号、 並びにこれらの信号から導出したパラメータのうち、 少なく も 1つの信号を指標信号とし、 それぞれの指標信号について所定時間のデータか ら睡眠段階を判定する閾値を算出し、 この閾値を用いて睡眠段階を判定すること を特徴とする睡眠段階判定方法である。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been created with the object of solving these problems. At least one signal among the parameters derived from is used as an index signal, and a threshold for judging a sleep stage is calculated from data of a predetermined time for each index signal, and the sleep stage is determined using the threshold. This is a characteristic sleep stage determination method.
そして、 このようにすることによって、 生体信号検出手段で生体から発する微 小な振動を検出し、 睡眠段階を判定することができる。  By doing so, the biological signal detecting means can detect minute vibrations emitted from the living body and determine the sleep stage.
請求項 1において、 前記生体信号検出手段で検出した信号の信号強度値を加え た中から、 少なくとも 1つの信号を指標信号とすることができる。  In claim 1, at least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detecting means can be used as the index signal.
請求項 2において、 前記睡眠段階の各段階の判定には、 前記指標信号のうち少 なくとも 2つ以上の指標信号の判定情報の論理積を用いて判定することができ、 これにより判定の信頼 1"生を向上させることができる。 3. The method according to claim 2, wherein the determination of each of the sleep stages includes determining a small number of the index signals. At least it is possible to make a determination by using the logical product of the determination information of two or more index signals, thereby improving the reliability of the determination.
請求項 3において、 前記指標信号の閾値は、 前記指標信号の所定時間の平均値 と分散値とを用いて算出するものとすることができ、 直近の指標信号の統計値を 用いるので、 被験者の状態に対応した閾値を得ることが可能となり、 年齢差や体 調の違いによる影響を避けることが可能となる。  In claim 3, the threshold value of the index signal can be calculated using an average value and a variance value of the index signal at a predetermined time, and the statistical value of the latest index signal is used. It is possible to obtain a threshold value corresponding to the state, and it is possible to avoid the effects of differences in age and physical condition.
請求項 3において、 前記指標信号の閾値は、 指標信号の移動平均の信号を求め、 その信号の平均値と分散値を用いて算出するものとすることができる。  In claim 3, the threshold value of the index signal may be obtained by calculating a signal of a moving average of the index signal and using an average value and a variance value of the signal.
請求項 4において、 前記指標信号の閾値は、 指標信号の長時間の移動平均と短 時間移動平均の差の信号を求め、 その差の信号の平均値と分散値とを用いて算出 するものとすることができ、 このように移動平均を求めることで、 指標信号の高 周波成分や長期にわたるレベル変動を除くことができるので、 信号の解析処理の 結果が安定する。  In claim 4, the threshold value of the index signal is obtained by obtaining a signal of a difference between a long-time moving average and a short-time moving average of the index signal, and calculating using a mean value and a variance of the difference signal. By calculating the moving average in this way, high-frequency components of the index signal and long-term level fluctuations can be eliminated, and the result of the signal analysis processing becomes stable.
請求項 3において、 前記指標信号の 1つは、 生体信号検出手段で検出した信号 をゲインコントロールして得られる係数の逆数として得られる信号であることと することができる。  In claim 3, one of the index signals can be a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by the biological signal detecting means.
請求項 3において、 前記指標信号の 1つは、 心拍信号の R— R間隔値である。 請求項 3において、 前記指標信号の 1つは、 呼吸信号のピーク値間隔値である。 請求項 3において、 前記指標信号の 1つは、 心拍信号のパワースペク トル密度 において低い周波数域側に発現する極大値帯域の積分値 (L F値) 信号おょぴ Z または高い周波数域側に発現する極大値帯域の積分値 (H F値) 信号とすること ができる。  In claim 3, one of the index signals is an RR interval value of a heartbeat signal. In claim 3, one of the index signals is a peak value interval value of a respiratory signal. 4. The signal according to claim 3, wherein one of the index signals is an integrated value (LF value) of a maximum value band appearing in a lower frequency band in the power spectrum density of the heartbeat signal. It can be an integrated value (HF value) signal of the maximum value band.
請求項 3において、 前記指標信号の 1つは、 心拍信号のパワースぺク トル密度 における L F値と、 H F値との比の信号とすることができる。  In claim 3, one of the index signals may be a signal having a ratio between an LF value and an HF value in a power spectrum density of a heartbeat signal.
請求項 3において、 前記指標信号の 1つは、 心拍信号の R— R間隔値から求め たパワースぺクトル密度信号における L F値信号と、 L F値信号と H F値信号の 和の信号との比の信号とすることができる。  In claim 3, one of the index signals is a ratio of a ratio of an LF value signal in a power spectrum density signal obtained from an R-R interval value of a heartbeat signal to a signal of a sum of the LF value signal and the HF value signal. It can be a signal.
請求項 3において、 前記指標信号の 1つは、 心拍信号のパワースぺクトル密度 • における L F値と、 H F値との比の対数値とすることができる。 これらの指標信号は、 睡眠段階を判定するのに公的なパラメータであり、 これ らを用いることで睡眠段階の信頼性を高めることができる。 In claim 3, one of the index signals may be a logarithmic value of a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal. These index signals are public parameters for judging the sleep stage, and by using them, the reliability of the sleep stage can be improved.
請求項 2において、 前記生体信号検出手段は、 無侵襲な検出手段である.ことが 望ましい。 ,  In claim 2, it is desirable that the biological signal detecting means is a non-invasive detecting means. ,
請求項 1 4において、 前記生体信号検出手段は、 圧力検出チューブと圧力検出 センサと生体信号抽出手段と力 ら成り、 圧力検出センサで検出した圧力変動から 生体信号を抽出する構成としてもよい。  In claim 14, the biological signal detecting means may include a pressure detecting tube, a pressure detecting sensor, and a biological signal extracting means, and may extract a biological signal from a pressure change detected by the pressure detecting sensor.
請求項 2において、 前記生体信号検出手段は、 心電計、 脈拍計等の心拍信号検 出手段と呼吸数あるいは呼吸状態を検出する呼吸状態検出手段としてもよい。 また、 本発明は、 生体信号検出手段で検出した信号から抽出した心拍信号ある いは呼吸信号、 並びにこれらの信号から導出したパラメータのうち、 少なくも 1 つの信号を指標信号とし、 それぞれの指標信号について所定時間のデータから睡 眠段階を判定する閾値を算出し、 この閾値を用いて睡眠段階を判定する判定手段 を設けたことを特徴とする睡眠段階判定装置である。  In claim 2, the biological signal detecting means may be a heart rate signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state. Further, the present invention provides a heartbeat signal or a respiratory signal extracted from a signal detected by the biological signal detecting means, and at least one of the parameters derived from these signals as an index signal. A sleep stage determining apparatus comprising: calculating a threshold for determining a sleep stage from data of a predetermined period of time; and determining means for determining a sleep stage using the threshold.
請求項 1 7において、 前記生体信号検出手段で検出した信号の信号強度値を加 えた中から、 少なくとも 1つの信号を指標信号とすることができる。  In claim 17, at least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detecting means can be used as the index signal.
請求項 1 8において、 前記睡眠段階の各段階の判定には、 前記指標信号の'うち 少なくとも 2つ以上の指標信号の判定情報の論理積を用いて判定することができ る。  In claim 18, in each of the sleep stages, the determination can be made using a logical product of determination information of at least two or more of the index signals.
請求項 1 9において、 前記指標信号の閾値は、 前記指標信号の所定時間の平均 値と分散値とを用いて算出することができる。  In claim 19, the threshold value of the index signal can be calculated using an average value and a variance of the index signal for a predetermined time.
請求項 1 9において、 前記指標信号の閾値は、 指標信号の移動平均の信号を求 め、 その信号の平均値と分散値を用いて算出することができる。  In claim 19, the threshold value of the index signal can be calculated using a moving average signal of the index signal and using an average value and a variance value of the signal.
請求項 2 0において、 前記指標信号の閾値は、 指標信号の長時間の移動平均と 短時間移動平均の差の信号を求め、 その差の信号の平均値と分散値とを用いて算 出することができる。  20. The threshold value of the index signal according to claim 20, wherein a signal of a difference between a long-term moving average and a short-time moving average of the index signal is obtained, and the threshold value is calculated using an average value and a variance value of the difference signal. be able to.
請求項 1 9において、 前記指標信号の 1つは、 生体信号検出手段で検出した信 号をゲインコントロールして得られる係数の逆数として得られる信号である。 請求項 1 9において、 前記指標信号の 1つは、 心拍信号の R— R間隔値である。 請求項 1 9において、 前記指標信号の 1つは、 呼吸信号のピーク値間隔値であ る。 In claim 19, one of the index signals is a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by the biological signal detecting means. In claim 19, one of the index signals is an RR interval value of a heartbeat signal. In claim 19, one of the index signals is a peak value interval value of a respiratory signal.
請求項 1 9において、 前記指標信号の 1つは、 心拍信号のパワースペク トル密 度において低い周波数域側に発現する極大値帯域の積分値 (L F値) 信号および ノまたは高い周波数域側に発現する極大値帯域の積分値 (H F値) 信号とするこ とができる。  20. The method according to claim 19, wherein one of the index signals is an integrated value (LF value) of a maximum value band that appears in a lower frequency region in the power spectrum density of the heartbeat signal and a signal that appears in a higher or higher frequency region. It can be an integrated value (HF value) signal of the maximum value band.
請求項 1 9において、 前記指標信号の 1つは、 心拍信号のパワースペク トル密 度における L F値と、 H F値との比の信号とすることができる。  In claim 19, one of the index signals can be a signal having a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal.
請求項 1 9において、 前記指標信号の 1つは、 心拍信号の R _ R間隔値から求 めたパワースぺクトル密度信号における L F値信号と、 L F値信号と H F値信号 の和の信号との比の信号とすることができる。  In claim 19, one of the index signals is an LF value signal in a power spectrum density signal obtained from an R_R interval value of a heartbeat signal, and a signal of a sum of the LF value signal and the HF value signal. It can be a ratio signal.
請求項 1 9において、 前記指標信号の 1つは、 心拍信号のパワースぺクトル密 度における L F値と、 H F値との比の対数値とすることができる。  In claim 19, one of the index signals can be a logarithmic value of a ratio between an LF value and an HF value in the power spectrum density of the heartbeat signal.
請求項 1 8において、 前記生体信号検出手段は、 無侵襲な検出手段であること が望ましい。  In claim 18, it is desirable that the biological signal detecting means is a non-invasive detecting means.
請求項 3 0において、 前記生体信号検出手段は、 圧力検出チューブと圧力検出 センサと生体信号抽出手段とカゝら成り、 圧力検出センサで検出した圧力変動から 生体信号を抽出することができる。  In claim 30, the biological signal detecting means comprises a pressure detecting tube, a pressure detecting sensor, and a biological signal extracting means, and can extract a biological signal from a pressure change detected by the pressure detecting sensor.
請求項 1 8において、 前記生体信号検出手段は、 心電計、 脈拍計等の心拍信号 検出手段と呼吸数あるいは呼吸状態を検出する呼吸状態検出手段であるものとす ることができる。 図面の簡単な説明  In claim 18, the biological signal detecting means may be a heart rate signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (A) は本発明の睡眠段階判定方法における睡眠段階を判定する流れを 示すプ ック図であり、 (B) は図 1 (A) の X— X断面図である。  FIG. 1 (A) is a block diagram showing a flow for judging a sleep stage in the sleep stage judging method of the present invention, and FIG. 1 (B) is a sectional view taken along line XX of FIG. 1 (A).
第 2図は、 交感神経が優位な場合のパワースぺクトル密度を示す説明図である。 第 3図は、 副交感神経が優位な場合のパワースぺクトル密度を示す説明図であ る。  FIG. 2 is an explanatory diagram showing the power spectrum density when the sympathetic nerve is dominant. FIG. 3 is an explanatory diagram showing the power spectrum density when the parasympathetic nerve is dominant.
第 4図は、 1つの指標信号を用いて睡眠段階を判定するフロー図である。 第 5図は、 2つの指標信号を用いて睡眠段階を判定するフロー図である。 第 6図は、 覚醒'レム睡眠段階とノンレム睡眠段階とを判定する判定用のパラ メータの処理結果を示すフロー図である。 FIG. 4 is a flowchart for determining a sleep stage using one index signal. FIG. 5 is a flowchart for determining a sleep stage using two index signals. FIG. 6 is a flowchart showing a processing result of a parameter for determining whether to wake up from a REM sleep stage or a non-REM sleep stage.
第 7図 (A) 、 (B) は覚醒. レム睡眠段階とノンレム睡眠段階との判定に使 用した指標信号の出力グラフである。  FIGS. 7 (A) and (B) are output graphs of the index signals used for determining the awakening. REM sleep stage and the non-REM sleep stage.
第 8図は、 覚醒 · レム睡眠段階とノンレム睡眠段階との判定結果を示すグラフ である。  FIG. 8 is a graph showing the determination results of the awake / REM sleep stage and the non-REM sleep stage.
第 9図 (A) 、. (B) は覚醒状態とレム睡眠段階との判定に使用した指標信号 の出力グラフである。  FIGS. 9 (A) and 9 (B) are output graphs of the index signals used to determine the awake state and the REM sleep stage.
第 1 0図は、 覚醒状態とレム睡眠段階との判定結果を示すグラフである。 第 1 1図 (A) 、 (B ) は浅いノンレム睡眠段階と深いノンレム睡眠段階との 判定に使用した指標信号の出力グラフである。  FIG. 10 is a graph showing the determination results of the awake state and the REM sleep stage. FIGS. 11 (A) and (B) are output graphs of the index signals used to determine the light non-REM sleep stage and the deep non-REM sleep stage.
第 1 2図は、 浅いノンレム睡眠段階と深いノンレム睡眠段階との判定結果を示 すグラフである。  FIG. 12 is a graph showing the determination results of a light non-REM sleep stage and a deep non-REM sleep stage.
第 1 3図 (A) 、 (B ) は、 本実施の形態の睡眠判定結果と従来の睡眠ポリソ ムノグラフ (P S G) を用いた方法の結果とを比較したグラフである。 発明を実施するための最良の形態  FIGS. 13 (A) and (B) are graphs comparing the results of sleep determination according to the present embodiment with the results of a conventional method using a sleep polynomograph (PSG). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態について図をもって詳細に説明する。  Embodiments of the present invention will be described in detail with reference to the drawings.
第 1図 (A) は本発明の実施の形態にかかる睡眠段階を判定する流れを示すプ ロック図であり、 第 1図 (B) はプロック図に示された生体信号検出手段 1を一 部断面で示す矢印方向からみた側面図である。  FIG. 1 (A) is a block diagram showing a flow of judging a sleep stage according to the embodiment of the present invention, and FIG. 1 (B) is a block diagram of the biological signal detecting means 1 shown in the block diagram. It is the side view seen from the arrow direction shown by a section.
第 1図 (A) に示す無侵襲センサ 1は、 睡眠中の被験者の微細な生体信号を検 出する生体信号検出手段であり、 この生体信号から心拍信号検出手段 2および呼 P及信号検出手段 7においてフィルタ等を介して呼吸信号および心拍信号を抽出す る。  The noninvasive sensor 1 shown in FIG. 1 (A) is a biological signal detecting means for detecting a minute biological signal of a sleeping subject, and from this biological signal, a heartbeat signal detecting means 2 and a call P and signal detecting means. At 7, the respiratory signal and the heartbeat signal are extracted via a filter or the like.
無侵襲センサ 1は圧力センサ 1 aと圧力検出チューブ 1 bとから構成されてい る。 圧力センサ 1 aは、 微小な圧力の変動を検出するセンサであり、 本実施の形 態では、 低周波用のコンデンサマイクロホンタイプを使用するが、 これに限るも のではなく、 適切な^?能とダイナミックレンジを有するものであればよい。 本実施の形態で使用した低周波用のコンデンサマイタロフォンは、 一般の音響 用マイク口フォンが低周波領域に対して配慮されていないのに引き替え、 受圧面 の後方にチヤンバーを設けることによって低周波領域の特性を大幅に向上させた ものであり、 圧力検出チューブ 1 b内の微小圧力変動を検出するのに好適なもの である。 また、 微小な差圧を計測するのに優れており、 0 . 2 P aの分解能と約 5 0 P aのダイナミックレンジを有し、 通常使用されるセラミックを利用した微 差圧センサと比較して数倍の性能を持つものであり、 生体信号が体表面に通して 圧力検出チューブ 1 bに加えた微小な圧力を検出するのに好適なものである。 ま た周波数特性は 0 . ί H Z 2 0 H zの間でほぼ平坦な出力値を示し、 心拍およ び呼吸数等の微少な生体信号を検出するのに適している。 The noninvasive sensor 1 includes a pressure sensor 1a and a pressure detection tube 1b. The pressure sensor 1a is a sensor that detects minute pressure fluctuations. In the present embodiment, a low-frequency condenser microphone type is used. Instead, it just needs to have the appropriate performance and dynamic range. The condenser microphone for low frequency used in the present embodiment is replaced by a general microphone microphone for sound, which is not considered for the low frequency region, and is provided with a chamber behind the pressure receiving surface. This is a type in which the characteristics in the frequency domain are greatly improved, and is suitable for detecting minute pressure fluctuations in the pressure detection tube 1b. It is also excellent for measuring minute differential pressure, has a resolution of 0.2 Pa and a dynamic range of about 50 Pa, and is compared with a micro-differential pressure sensor using ceramic that is usually used. It is suitable for detecting a minute pressure applied to the pressure detection tube 1b when a biological signal passes through the body surface. Or frequency characteristic 0. Ί H Z 2 0 H showed almost flat output value between the z, it is suitable for detecting minute biosignal beauty respiratory rate, etc. heartbeat Oyo.
圧力検出チューブ 1 bは、 生体信号の圧力変動範囲に対応して内部の圧力が変 動するように適度の弾力を有するものを使用する。 また圧力変化を適切な応答速 度で微差圧センサ 1 aに伝達するためにチューブの中空部の容積を適切に選ぶ必 要がある。 圧力検出チューブ 1 bが適度な弾性と中空部容積を同時に満足できな い場合には、 圧力検出チューブ 1 bの中空部に適切な太さの芯線をチューブ長さ 全体にわたって装填し、 中空部の容積を適切にとることができる。  The pressure detection tube 1b has an appropriate elasticity so that the internal pressure fluctuates according to the pressure fluctuation range of the biological signal. In addition, it is necessary to appropriately select the volume of the hollow portion of the tube in order to transmit the pressure change to the fine differential pressure sensor 1a at an appropriate response speed. If the pressure detection tube 1b cannot satisfy both the appropriate elasticity and the hollow volume at the same time, load a core wire of appropriate thickness into the hollow portion of the pressure detection tube 1b over the entire length of the tube, and The volume can be appropriately taken.
圧力検出チューブ 1 bは寝台 1 5上に敷かれた硬質シート 1 6の上に配置さ 、 その上に弾性を有するクッションシート 1 7が敷かれており、 圧力検出チューブ 1 bの上には被験者カ 黄臥する。 なお、 圧力検出チューブ l bは、 クッションシ ート 1 7などに組み込んだ構成にすることにより、 圧力検出チューブ 1 bの位置 を安定させる構造としてもよい。  The pressure detection tube 1b is placed on a hard sheet 16 laid on a bed 15 and an elastic cushion sheet 17 is laid thereon, and a subject is placed on the pressure detection tube 1b. Ka yellowish. In addition, the pressure detection tube 1 b may be configured to be incorporated in the cushion sheet 17 or the like so that the position of the pressure detection tube 1 b is stabilized.
本実施の形態では、 2組の無侵襲センサ 1が設けられており、 一方が被験者の 胸部の部位の生体信号を検出し、 他方が被験者の臀部の部位を検出することで、 被験者の就寝の姿勢に関わらず生体信号を検出するように構成されている。  In the present embodiment, two sets of non-invasive sensors 1 are provided, one of which detects a biological signal of the subject's thoracic region, and the other detects a subject's buttock region, so that the subject goes to sleep. It is configured to detect a biological signal regardless of the posture.
無侵襲センサ 1によって検出された生体信号は、 人の体から発する様々振動が 混ざりあった信号でありその中に心拍信号を始めとして呼吸信号や寝返り等の信 号が含まれている。 そこで、 生体信号検出手段によりフィルタや銃計処理等の手 段を用いて心拍信号や呼吸信号などの生体信号を抽出する。 言うまでもなく寝返 りの信号も検出することが可能である。 The biological signal detected by the non-invasive sensor 1 is a signal in which various vibrations emitted from the human body are mixed, and includes signals such as a heartbeat signal, a respiratory signal, and a turn signal. Therefore, a biological signal such as a heartbeat signal or a respiratory signal is extracted by a biological signal detecting means using a filter or a means such as a gun gauge processing. Needless to turn over Other signals can be detected.
本実施の形態では、 心拍信号を無侵襲センサ 1の検出信号から抽出したが、 こ れに限るものではなく、 例えば、 専用の心拍計を装着することや、 脈拍を検出す ることでも心拍信号を得ることが可能であり、 マイクや撮像手段を用いることに より呼吸あるいは寝返りの情報を得ることが可能である。  In the present embodiment, the heart rate signal is extracted from the detection signal of the non-invasive sensor 1, but the present invention is not limited to this. For example, the heart rate signal may be obtained by wearing a dedicated heart rate monitor or detecting a pulse. It is possible to obtain information on breathing or turning over by using a microphone or imaging means.
生体信号検出手段 1により検出した心拍信号から心拍数検出手段 3により心拍 数を検出するとともに R— R間隔信号演算手段 4により、 心拍信号の R波の隣り 合うピークの間隔、 すなわち R— R間隔信号を検出する。  The heart rate is detected by the heart rate detection means 3 from the heart rate signal detected by the biological signal detection means 1 and the interval between adjacent peaks of the R wave of the heart rate signal by the R-R interval signal calculation means 4, ie, the R-R interval Detect signal.
上述の R— R間隔信号は、 心拍信号の強さがピークとなる付近の波形 (R波) の間隔を変数とする信号であり、 心拍変動解析によく僥用される。 R— R間隔信 号演算手段 4において検出された R— R間隔信号はパワースぺクトル密度演算手 段 5に送られる。  The RR interval signal described above is a signal that uses the interval of the waveform (R wave) near the peak of the intensity of the heartbeat signal as a variable, and is often used for heart rate variability analysis. The RR interval signal detected by the RR interval signal calculating means 4 is sent to a power spectrum density calculating means 5.
ここで R— R間隔信号のパワースぺクトル密度について説明する。  Here, the power spectrum density of the RR interval signal will be described.
第 2図は、 交感神経が優位な場合のパワースぺクトル密度を示し、 第 3図は副 交感神経が優位な場合のパワースぺクトル密度を示している。 これから分かるよ うにパワースペクトル密度は、 自律神経系の状態により、 異なる様相を示すこと が分かる。  FIG. 2 shows the power spectrum density when the sympathetic nerve is dominant, and FIG. 3 shows the power spectrum density when the parasympathetic nerve is dominant. As can be seen, the power spectrum density varies depending on the state of the autonomic nervous system.
すなわち、 略 0. 05〜0. 15Hzの帯域と、 略 0. 2〜0. 4Hzの帯域 に顕著な極大値が現れる。 ここで、 略 0. 05〜0. 15Hzの低い周波数域側 に発現する極大値帯域の積分値信号を LF値信号と呼び、 略 0. 2〜0. 4Hz の高い周波数域側に発現する極大値帯域の積分値信号を HF値信号と呼ぶことに する。 LF値が大きく、 HF値が小さい場合には、 交感神経が活発で緊張時であ ることを示し、 LF値が小さく HF値が大きい場合には、 副交感神経が活発であ ることを示している。  That is, a remarkable maximum value appears in a band of about 0.05 to 0.15 Hz and a band of about 0.2 to 0.4 Hz. Here, the integrated signal of the local maximum value band appearing in the lower frequency range of approximately 0.05 to 0.15 Hz is called the LF value signal, and the local maximum signal appears in the higher frequency region of approximately 0.2 to 0.4 Hz. The integrated signal in the value band is called the HF value signal. A large LF value and a small HF value indicate that the sympathetic nerve is active and nervous, while a small LF value and a large HF value indicate that the parasympathetic nerve is active. I have.
睡眠中は心拍数が減少するが、 これは緊張時に活発となる交感神経活動が低下 し、 弛緩時に活発となる副交感神経活動が増加することによるものである。 即ち 睡眠の深さの状態により HFおよび LFの値は顕著に変動する。  During sleep, the heart rate decreases, due to a decrease in the sympathetic activity that is active during tension and an increase in the parasympathetic activity that is active during relaxation. That is, the values of HF and LF vary significantly depending on the state of sleep depth.
HFZLF検出手段 6は、 上記の HFおよび LFの値をパワースぺクトル密度 から検出する手段であり、 HF/LF検出手段 6により検出された HF値および L F値は、 睡眠段階に応じて変動する。 このデータが睡眠段階を判定するための 判定パラメータ生成手段 1 3に送られる。 The HFZLF detecting means 6 is a means for detecting the above HF and LF values from the power spectrum density, and includes the HF value and the HF value detected by the HF / LF detecting means 6. LF values fluctuate according to sleep stages. This data is sent to the judgment parameter generating means 13 for judging the sleep stage.
呼吸信号検出手段 7は、 生体信号検出手段から検出した信号から呼吸信号を抽 出する手段であり、 呼吸数検出手段 8で呼吸数を検出し、 呼吸間隔信号演算手段 9で呼吸間隔を演算してその値を呼吸間隔値信号とする。  The respiratory signal detecting means 7 is a means for extracting a respiratory signal from a signal detected from the biological signal detecting means, detects a respiratory rate by the respiratory rate detecting means 8, and calculates a respiratory interval by the respiratory interval signal calculating means 9. The value is used as a breathing interval value signal.
呼吸も信号も自律神経系である交感神経系および副交感神経系の影響を顕著に うける信号であり、 睡眠段階と密接な相関がある。  Both respiration and signals are signals that are significantly affected by the autonomic nervous system, the sympathetic nervous system and the parasympathetic nervous system, and are closely correlated with sleep stages.
次に生体信号の信号強度の処理について説明する。  Next, the processing of the signal strength of the biological signal will be described.
信号増幅整形部 1 0は、 生体信号の主要な周波数帯のみ増幅し、 それ以外のノ ィズに当たる周波数帯を低減させるように増幅回路の特性を設定してあり、 さら にパンドパスフィルタ備えてさらにノィズ分を低減させる構成としてもよい。 自動利得制御部 1 1は、 信号制御整形部 1 0の出力を所定の信号レベルの範囲 に入るように自動的にゲイン制御を行ういわゆる AG C回路であり、 この際のゲ インの値を信号強度演算部 1 2に出力する。 ゲイン制御は、 例えば信号のピーク 値が上限閾値を超えた場合に出力信号の振幅が小さくなるようにゲインを設定し、 ピーク値が下限閾値を下回った場合に振幅が大きくなるようにゲインを設定して いる。  The signal amplification and shaping section 10 sets the characteristics of the amplifier circuit so as to amplify only the main frequency band of the biological signal and reduce the frequency band corresponding to the other noises, and further includes a bandpass filter. Further, the noise may be reduced. The automatic gain control unit 11 is a so-called AGC circuit that automatically performs gain control so that the output of the signal control shaping unit 10 falls within a predetermined signal level range. Output to the strength calculation unit 12. For gain control, for example, set the gain so that the amplitude of the output signal decreases when the peak value of the signal exceeds the upper threshold, and set the gain so that the amplitude increases when the peak value falls below the lower threshold. are doing.
信号強度演算部 1 2は、 自動利得制御部 1 1において生体信号に対して; ^した ゲイン制御の係数から信号の強度を演算する。 上述の AG C回路から得られるゲ ィンの値は信号の大きさが大なるときには小さく、 また信号の大きさが小なると きは大きく設定されるために、 ゲインの値を用いて信号強度を示すには、 ゲイン の値と反比例するように信号強度を示す関数を設定するようにするのがよい。 一方、 無侵襲センサ 1の出力値が自動利得制御の上限を超えることが所定時間 内に継続して起こる場合には、 寝返りなどの体動があつたと判断できる。  The signal strength calculator 12 calculates the signal strength from the gain control coefficient applied to the biological signal in the automatic gain controller 11. The gain value obtained from the AGC circuit described above is set to be small when the signal size is large, and is set to be large when the signal size is small. In order to indicate, it is better to set a function indicating the signal strength so as to be inversely proportional to the value of the gain. On the other hand, when the output value of the non-invasive sensor 1 continuously exceeds the upper limit of the automatic gain control within a predetermined time, it can be determined that a body movement such as turning over has occurred.
このように体動などを含めた生体信号の強度は、 睡眠状態と密接な関係がある と考えられるので、 睡眠段階を判定するためのパラメータとして用いている。 判定パラメータ生成手段 1 3においては、 心拍信号あるいは H F値信号おょぴ L F値信号を用いて判定に用いるパラメータを演算して求める。 判定パラメータ としては、 例えば心拍数信号、 H F値信号および L F値信号、 H F値信号と L F 値信号の比の値の信号などのパラメータを演算により生成する。 As described above, the intensity of the biological signal including the body motion is considered to be closely related to the sleep state, and thus is used as a parameter for determining the sleep stage. The determination parameter generation means 13 calculates and obtains a parameter used for the determination using the heartbeat signal or the HF value signal and the LF value signal. The determination parameters include, for example, a heart rate signal, an HF value signal and an LF value signal, and an HF value signal and an LF A parameter such as a signal of the value of the ratio of the value signal is generated by calculation.
睡眠段階判定手段 1 4において、 判定パラメータ生成手段 1 3で生成したパラ メータを用いて覚醒' レム睡眠とノンレム睡眠との判定、 覚醒とレム睡眠との判 定及ぴノンレム睡眠のうち深い睡眠段階と浅い睡眠段階との判定を行うことで睡 眠段階を判定する。  The sleep stage determination means 14 uses the parameters generated by the determination parameter generation means 13 to wake up, judge between REM sleep and non-REM sleep, judge between waking and REM sleep, and the deeper sleep stages of non-REM sleep The sleep stage is determined by determining that the sleep stage is light.
ノンレム判定手段においては、 ノンレム睡眠状態である力否かを判定する。 す なわち、 ノンレム睡眠状態でないことが確認されると、 レム睡眠状態かあるいは 覚醒状態のいずれかであることが分かる。 .  The non-REM determining means determines whether or not the force is in the non-REM sleep state. That is, when it is confirmed that the subject is not in the non-REM sleep state, it is known that the subject is in the REM sleep state or the awake state. .
レム睡眠判定手段は、 ノンレム状態でないことを確認した後に、 即ちレム睡眠 状態か又は覚醒状態であることを確認した後に、 レム睡眠状態か覚醒状態を判定 する手段である。  The REM sleep determination means is means for determining the REM sleep state or the awake state after confirming that the state is not the non-REM state, that is, after confirming that the state is the REM sleep state or the awake state.
ノンレム睡眠段階は通常第 1から第 4までの 4段階の睡眠段階に分類されてお り、 第 1のノンレム睡眠段階が最も浅く、 j噴に深くなり、 第 4の睡眠段階が最も 深い睡眠段階である。 ここでは第 1およぴ第 2の睡眠段階を浅い睡眠段階とし、 第 3およぴ第 4を深い睡眠段階とする。 ノンレム睡眠深浅判定手段は、 ノンレム 睡眠状態であることが確認された後に、 浅い睡眠段階かそれとも深い睡眠段階か 判定する。  Non-REM sleep stages are usually categorized into four sleep stages, 1st to 4th, with the first non-REM sleep stage being the shallowest, deeper into j, and the fourth sleep stage being the deepest. It is. Here, the first and second sleep stages are assumed to be light sleep stages, and the third and fourth sleep stages are assumed to be deep sleep stages. The non-REM sleep deep / shallow determining means determines whether the sleep state is light or deep after the sleep state is confirmed.
以上の 3段階の判定により、 覚醒状態、 レム睡眠状態、 浅いノンレム睡眠状態、 深いノンレム睡眠段階の 4段階の睡眠段階を判定することができる。  By the above three determinations, it is possible to determine four sleep stages: awake state, REM sleep state, light non-REM sleep state, and deep non-REM sleep state.
次に指標信号の生成の例として H F値信号および L F値信号ついて説明する。 心拍信号検出手段 2から送られた心拍信号により、 R— R間隔信号演算手段 4 において R— R間隔信号を検出する。 検出された R— R間隔信号をフーリェ展開 し、 R— R間隔信号のパワースペクトル密度を求める。  Next, an HF value signal and an LF value signal will be described as examples of the generation of the index signal. Based on the heartbeat signal sent from the heartbeat signal detection means 2, the R-R interval signal calculation means 4 detects the R-R interval signal. Fourier expansion is performed on the detected R-R interval signal to determine the power spectral density of the R-R interval signal.
R - 間隔信号のパワースぺク トル密度信号から H F/ L F検出手段 6によつ て時々刻々 H Fおよび L Fを検出する。 この H Fおよび L Fを用いて睡眠段階判 定に有効な睡眠段階判定用パラメータを生成することができる。  From the power spectrum density signal of the R-interval signal, the HF / LF detection means 6 detects HF and LF momentarily. Using these HF and LF, it is possible to generate sleep stage determination parameters effective for sleep stage determination.
指標信号として使用できるその他のパラメータについて次に説明する。  Other parameters that can be used as the index signal will be described below.
心拍数信号は心拍数検出手段 3により抽出した心拍数をそのまま採用するもの であり、 交感神経および副交感神経の変ィヒの影響を受けるものである。 呼吸数信 号についてもまた同様に交感神経および副交感神経の変化の影響を受けるので、 睡眠段階を判定する指標信号として採用することが可能である。 また、 RN L F 信号は L F値の値をそのまま取り込んだものである。 また、 RN L F Rは L F値 と H F値との比である。 さらに、 RN L O Gは L F/H Fで示される値の対数値 である。 The heart rate signal directly uses the heart rate extracted by the heart rate detecting means 3 and is affected by the sympathetic and parasympathetic changes. Respiratory rate Since the signal is also affected by changes in the sympathetic and parasympathetic nerves, it can be adopted as an index signal for determining the sleep stage. In addition, the RN LF signal is a signal that takes in the LF value as it is. RN LFR is the ratio between the LF value and the HF value. Further, RN LOG is the logarithmic value of the value indicated by LF / HF.
次に実際の睡眠段階の判定手順について説明する。  Next, the procedure for determining the actual sleep stage will be described.
第 4図は生体信号から導出された指標信号のうち、 1つの指標信号を用いて睡 眠段階を判'走 "るフロー図である。 判定パラメータ生成手段 1 3で生成されたパ ラメータの一つを指標関数として選択し、 睡眠段階判定手段 1 4ではこのフロー 図にしたがって判定を行う。  Fig. 4 is a flowchart for judging the sleep stage using one of the index signals derived from the biological signal. One of the parameters generated by the determination parameter generating means 13 is shown. One is selected as an index function, and the sleep stage determination means 14 performs determination according to this flowchart.
指標信号には、 多くの高周波成分すなわち、 微細な変動を含むので、 所定時間 の移動平均処理を施して高周波成分を取り除く。 この指標信号が長時間に亙る変 動がある場合を考慮して長期の移動平均と短期の移動平均の差をとり、 指標信号 の純粋な変動値を求める。 すなわちこれは、 パラメータ信号の長期の変動を補正 して純粋な変動分を取り出すためである。 この操作に使用する移動平均のデータ 数を短期移動平均で 5 0 0点、 長期移動平均で 1 0 0 0点としているがこれに限 るものではなく、 多数回の実験結果から、 パラメータに応じて適切に選択される。. 採用した指標信号について睡眠段階を判定する閾値を設定する。 このとき、 異 なる睡眠段階に対しては異なる閾値を設定することになる。  Since the index signal contains many high-frequency components, that is, minute fluctuations, a moving average process for a predetermined time is performed to remove the high-frequency components. The difference between the long-term moving average and the short-term moving average is calculated in consideration of the case where the index signal fluctuates for a long time, and a pure fluctuation value of the index signal is obtained. That is, this is to correct the long-term variation of the parameter signal and extract a pure variation. The number of moving average data used for this operation is 50,000 points for the short-term moving average and 100,000 points for the long-term moving average, but is not limited to this. Selected appropriately. Set a threshold for judging the sleep stage for the adopted index signal. At this time, different thresholds are set for different sleep stages.
第 5図は 2つの指標信号を用いて睡眠段階を判定する例を示している。 採用す る組み合わせについては、 睡眠段階に応じて選択することができる。 例えば、 覚 醒 · レム睡眠段階とノンレム睡眠とのいずれの睡眠段階かの判定では、 指標信号 の一つとして L F値信号を採用すると良好な判定結果が得られる。 しかし、 これ に限るものではなく、 他のパラメータを用いても次善の結果を得ることができる。  FIG. 5 shows an example of determining a sleep stage using two index signals. The combination to be adopted can be selected according to the sleep stage. For example, in determining which of the sleep stages is awake / REM sleep or non-REM sleep, a good determination result can be obtained by using an LF value signal as one of the index signals. However, the present invention is not limited to this, and suboptimal results can be obtained using other parameters.
2つの信号を組み合わせるのは、 判定精度をより信頼性の高いものにするため の手段であり、 使用目的によっては 1つのパラメータのみを指標信号としても差 じ支えない。  Combining the two signals is a means to make the determination accuracy more reliable, and depending on the purpose of use, only one parameter may be used as the index signal.
第 4図おょぴ第 5図における睡眠段階を判定するための閾値生成は次のように して行う。 指標信号の移動平均処理を行い、 指標信号の長期の変動を補正して純 粋な変動分を取り出した信号について所定時間のデータの平均 mと標準偏差 s (分散) を求める。 The threshold generation for judging the sleep stage in FIG. 4 and FIG. 5 is performed as follows. Performs moving average processing of the index signal, corrects long-term fluctuations of the index signal, and The average m and the standard deviation s (variance) of the data for a predetermined time are obtained for the signal from which the trend is extracted.
ついでこの値を用いて、 覚醒. レム睡眠状態とノンレム睡眠状態とを判定する :ために指標信号の差信号を 2値ィ匕を行うが、 閾値は例えば、 次にしめす (ィ) 式 で、 求める。 Then, using this value, awakening. To determine the REM sleep state and the non-REM sleep state : In order to determine the difference signal between the index signals, a binary signal is used. The threshold value is, for example, Ask.
a ' m+ β · s (ィ)  a 'm + β
ここで mは平均値、 sは標準偏差であり、 および ]3は多数回の実験データを 用いて、 本実施の形態の睡眠段階の判定と P S Gによる睡眠段階の判定との一致 率が最大になるように最適値計算して定められる。 ·  Here, m is the average value, s is the standard deviation, and] 3 is the maximum matching rate between the sleep stage judgment of this embodiment and the sleep stage judgment by PSG using the experimental data of many times. It is determined by calculating the optimum value so that ·
また、 平均植 mは算術平均値に限るものではなく、 中央値などを用いてもよい。 一方ばらつきを示すパラメータとして標準偏差 sを用いたが、 これに代わるもの として分散などのパラつきを示す値を用いることができる。  Further, the average plant m is not limited to the arithmetic average value, and a median value or the like may be used. On the other hand, the standard deviation s was used as a parameter indicating the variation, but a value indicating a parameter such as variance can be used as an alternative to this.
(ィ) 式の αおよび の定数は、 指標として用いるパラメータがどの睡眠段階 に用いるかによつて異なる。 例えば、 覚醒' レム睡眠段階とノンレム睡眠段階と の判定に用レヽる場合と、 浅いノンレム睡眠と深いノンレム睡眠との判定に用いる 場合とで ½異なる値となる。 ' 本発明の睡眠段階判定方法および判定装置では、 判定に使用するパラメータの 閾値を定めるのにパラメータの平均値 mおよび標準偏差 sを用いるために、 被験 者の被験時の状態に応じた閾値を採用することになり、 個人差や年齢差あるいは、 被験者の被験時の状態に影響されない判定を行うことができる。  The constants for α and in equation (a) differ depending on which sleep stage the parameter used as an index is used for. For example, the values are different depending on whether the wakefulness REM sleep stage and the non-REM sleep stage are used, or the case where it is used for determining light non-REM sleep and deep non-REM sleep. '' In the sleep stage determination method and the determination apparatus of the present invention, the threshold value according to the state of the subject at the time of the test is used because the average value m and the standard deviation s of the parameters are used to determine the threshold value of the parameter used for the determination. As a result, a judgment can be made that is not affected by individual differences, age differences, or the state of the subject at the time of the test.
図 6に各睡眠段階の判定を行い、 睡眠段階を確定する手順を示す。 睡眠段階の 判定は、 睡眠段階判定手段 1 4において、 判定パラメータ生成手段 1 3で生成し たパラメータを用いて覚醒. レム睡眠とノンレム睡眠との判定、 覚醒とレム睡眠 との判定及ぴノンレム睡眠のうち深い睡眠段階と浅い睡眠段階との判定を行うこ とで睡眠段階を判定する。 すなわち上記の 3種類の判定を行うことでいずれの睡 眠段階に属する力判定を行う。 その手順は、 まずノンレム睡眠段階であるか否か の判定を行う。 このときノンレム睡眠であるとの判定が出た場合は、 ノンレム睡 眠のうち浅いノンレム睡眠段階か深いノンレム睡眠段階かの判定を行う。 ノンレ ム睡眠でないと判定された場合には、 レム睡眠段階か覚醒状態かの判定を行う。 以上の 3つの判定ステップにより、 各時点での睡眠段階が覚醒段階、 レム睡眠段 階、 浅いノンレム睡眠段階、 深い睡眠段階の 4つの段階のいずれに当たる力判定 することができる。 Figure 6 shows the procedure for determining each sleep stage and determining the sleep stage. The sleep stage is determined by the sleep stage determination unit 14 using the parameters generated by the determination parameter generation unit 13 to wake up. The determination between REM sleep and non-REM sleep, the determination between awakening and REM sleep, and the non-REM sleep The sleep stage is determined by determining the deep sleep stage and the light sleep stage. That is, by performing the above three types of determinations, the power determination belonging to any sleep stage is performed. The procedure first determines whether or not it is in the non-REM sleep stage. At this time, if it is determined that the subject is in the non-REM sleep, it is determined whether the non-REM sleep is a light non-REM sleep stage or a deep non-REM sleep stage. If it is determined that the patient is not in non-REM sleep, it is determined whether the subject is in REM sleep or awake. With the above three determination steps, it is possible to determine the power at which the sleep stage at each time point corresponds to any of the four stages of the awake stage, the REM sleep stage, the light non-REM sleep stage, and the deep sleep stage.
第 7図に覚醒 ·レム睡眠状態であるかノンレム睡眠である力判定するための信 号として、 RNL F信号おょぴ RN LOG信号の測定結果を示す。 第 7図 (A) には RNLF信号の短期および長期の移動平均をとつた後に差分処理したデータ が示され、 第 7図 (B) には; NLOG信号の短期および長期の移動平均をとつ た後に差分処理した信号が示されている。 また (ィ) 式により算出した閾値も同 時に表示されており、 この閾値で 2値ィ匕される。 第 6図のフロー図でもって説明 したように覚醒' レム睡眠状態であるかノンレム睡眠である力判定は、 2つの信 号ともにそれぞれの閾値以上である場合であれば、 覚醒 ·レム睡眠状態であると 判定する。  FIG. 7 shows the measurement results of the RNL F signal and the RN LOG signal as signals for determining whether the subject is in the awake / REM sleep state or in the non-REM sleep state. Fig. 7 (A) shows the short-term and long-term moving averages of the RNLF signal, and then the difference processing data. Fig. 7 (B) shows the short-term and long-term moving averages of the NLOG signal. After that, the signal subjected to the difference processing is shown. In addition, the threshold value calculated by the equation (a) is also displayed at the same time, and the threshold value is used to perform the binary threshold. As described with reference to the flow chart of FIG. 6, the power judgment of the awakening or REM sleep state or the non-REM sleep state is performed in the awake and REM sleep states if both signals are equal to or more than the respective thresholds. Judge that there is.
第 8図は、 上記の手順にしたがって覚醒 ·レム睡眠状態であるかノンレム睡眠 である力判定した結果を、 従来の睡眠ポリソムノグラフ (PSG) を用いる方法 の結果と一緒に示す。 波形が高い位置を示していれば、 覚醒.レム睡眠状態であ り、 波形が低い位置を示していれば、 ノンレム睡眠であることを示している。 第 9図に覚醒状態であるかレム睡眠であるか判定するためのパラメータ、 RN 信号ぉょぴ1 11^ 尺信号の測定結果を示す。 第 9図 (A) には RNLF信 号の移動平均処理済みのデータが示され、 第 9図 (B) には RNLFR信号の移 動平均処理済みの信号が示されている。 また (ィ) 式により算出した閾値も同時 に表示されており、 この閾値で 2値化される。 第 4図の流れ図でもって説明した よう.にこの閾値を用いて 2値化した後に 2つの信号の論理積をとり、 覚醒状態で あるかレム睡眠であるか判定する。 第 10図に上記の手順にしたがって覚醒状態 であるかレム睡眠であるか判定し 結果を示す。  FIG. 8 shows the results of the force determination of awake / REM sleep or non-REM sleep according to the above procedure, together with the results of a conventional method using a sleep polysomnograph (PSG). If the waveform indicates a high position, it indicates awakening. REM sleep state, and if the waveform indicates a low position, it indicates non-REM sleep. FIG. 9 shows the measurement results of the RN signal signal and a parameter for determining whether the subject is in the awake state or in REM sleep. Fig. 9 (A) shows the moving average processed data of the RNLF signal, and Fig. 9 (B) shows the moving average processed signal of the RNLFR signal. In addition, the threshold value calculated by equation (a) is also displayed at the same time, and is binarized by this threshold value. As described with reference to the flowchart of FIG. 4, after binarization using this threshold value, the logical product of the two signals is taken to determine whether the subject is in the awake state or in REM sleep. FIG. 10 shows the results of determining whether the subject is in the awake state or in REM sleep according to the above procedure.
第 11図に浅いノンレム睡眠である力深いノンレム睡眠であるか判定するため のパラメータ、 RNLF信号および RNLOG信号の測定結果を示す。 第 11図 Fig. 11 shows the measurement results of the RNLF signal and the RNLF signal, the parameters for determining whether the sleep is light non-REM sleep or strong non-REM sleep. Fig. 11
(A) には RNL F信号の短期および長期の移動平均をとった後に差分処理した データが示され、 第 11図 (B) には RNLOG信号の短期おょぴ長期の移動平 均をとつた後に差分処理したデータが示されている。 また (ィ) 式により算出し— た閾値も同時に表示されており、 この閾値で 2値ィ匕される。 第 6図のフロー図で もつて説明したようにこの閾値を用いて 2値化した後に 2つの信号の論理積をと り、 覚醒状態であるかレム睡眠であるか判定する。 第 1 2図に上記の手順にした がって浅いノンレム睡眠である力深いノンレム睡眠である力判定した結果を示す。 第 1 3図は、 本実施の形態の睡眠段階判定方法および判定装置を用いて判定し た上記の 3段階の判定を総合し睡眠段階の推移を示すグラフである。 同時に従来 の睡眠ポリソムノグラフ (P S G) を用いる方法の結果と一緒に示す。 (A) shows the short-term and long-term moving averages of the RNL F signal and the difference processing, and Fig. 11 (B) shows the short-term and long-term moving averages of the RNLOG signal. The data subjected to the difference processing later is shown. Also, it is calculated by the formula (A) The displayed threshold is also displayed at the same time. As described with reference to the flowchart of FIG. 6, after binarization using this threshold value, the logical product of the two signals is taken to determine whether the subject is in the awake state or in REM sleep. FIG. 12 shows the result of a force determination that is a strong non-REM sleep that is a shallow non-REM sleep according to the above procedure. FIG. 13 is a graph showing the transition of the sleep stage by integrating the above-described three stages of determination using the sleep stage determination method and the determination device of the present embodiment. At the same time, the results are shown together with the results of the conventional method using sleep polysomnograph (PSG).
ところで、 本発明の睡眠段階判定方法および判定装置は自律神経系の挙動から みた判定方法おょぴ判定装置であり、 従来の睡眠ポリソムノグラフ (P S G) を 用いた従来判定方法および判定装置は主として脳波の挙動を用いた判定方法およ ぴ判定装置である。 脳波は大脳皮質の神経活動でその同調の度合いで各種の睡眠 段階に応じて特徴ある波形が出ることを利用して睡眠段階を判定してレヽる。 一方、 本方式の睡眠段階判定方法およぴ判定装置は脳幹の神経活動である自律神経系の 挙動から見た睡眠深さの判定であり、 自律神経系の挙動は心拍や呼吸に深い影響 を与えている。 この結果従来の主として脳波を利用した睡眠判定と自律神経系か らの睡眠判定は時間的に若干のずれが生ずる。 このことから次に説明する判定結 果の一致率は、 時間的一致率ではなく、 1 日の睡眠深さ各段階の比率の一致率で あることに注意する必要がある。  By the way, the sleep stage determination method and the determination device of the present invention are a determination method and a determination device based on the behavior of the autonomic nervous system, and the conventional determination method and the determination device using the conventional sleep polysomnograph (PSG) are mainly used for the electroencephalogram. A judgment method and a judgment device using behavior. The electroencephalogram determines the sleep stage by utilizing the characteristic waveform of the neural activity of the cerebral cortex corresponding to various sleep stages according to the degree of synchronization. On the other hand, the sleep stage judging method and the judging device of this method judge the sleep depth from the behavior of the autonomic nervous system, which is the neural activity of the brainstem, and the behavior of the autonomic nervous system has a profound effect on heart rate and respiration. Have given. As a result, there is a slight difference in time between the conventional sleep determination mainly using brain waves and the sleep determination from the autonomic nervous system. Therefore, it should be noted that the coincidence rate of the judgment results described below is not the temporal coincidence rate but the coincidence rate of the ratio of each stage of sleep depth per day.
第 1 3図 (A) は覚醒状態、 レム睡眠段階、 ノンレム睡眠段階の 3段階で比較 した結果であり、 判定結果は従来の睡眠ポリソムノグラフ (P S G) を用いる方 法と 9 3 . 3 %の一致率を示している。 また、 第 1 3図 (B) は覚醒状態、 レム 睡眠段階、 浅いノンレム睡眠段階、 深いノンレム睡眠段階の 4段階で比較した結 果であり、 判定結果は従来の睡眠ポリソムノグラフ (P S G) を用いる方法と 9 0 . 3 %の一致率を示している。 このことから、 本発明の睡眠段階判定装置は、 実用上問題ない判定精度を有する。  Fig. 13 (A) shows the results of a comparison between the three stages of awake state, REM sleep stage, and non-REM sleep stage, and the judgment result was 93.3% consistent with the conventional method using sleep polysomnograph (PSG). Shows the rate. Fig. 13 (B) shows the results of a comparison between four stages: awake state, REM sleep stage, light non-REM sleep stage, and deep non-REM sleep stage. And 90.3% match rate. From this, the sleep stage determination device of the present invention has determination accuracy that is practically acceptable.
本実施の形態では被験者の生体信号を無侵襲で検出できる検出手段としてチュ ープと圧力センサを組合せて圧力変動を検出する方法と採ったがこれに限るもの ではなく、 微細な生体信号を検出できる検出手段であればよレ、。 たとえば、 心電 計、 脈拍計等などの身体の一部に装着する検出手段であっても、 睡眠を妨げるも のでなければ使用することは可能である。 産業上の利用可能性 In the present embodiment, a method of detecting pressure fluctuation by combining a tube and a pressure sensor is employed as a detecting means capable of detecting a biological signal of a subject noninvasively, but the present invention is not limited to this, and a fine biological signal is detected. Any detection means that can be used. For example, even if the detection means is attached to a part of the body such as an electrocardiograph or a pulse rate monitor, If not, it is possible to use. Industrial applicability
睡眠の状態やその質を知ることにより被験者の日常の健康状態を知るために有 効であることはよく知られているが、 個人の健康管理の目的に簡単に利用できる 睡眠段階の判定方法およぴ判定装置が見当たらないのが現状である。  It is well known that knowing the state and quality of sleep is useful for knowing the daily health of a subject, but it is easy to use a sleep stage determination method and method that can be easily used for personal health management purposes. At present, no judging device is found.
本発明の睡眠段階判定方法おょぴ判定装置は、 適切な検出手段を用いて心拍信 号を検出し、 この心拍信号の出力を演算処理することにより被験者の睡眠段階を 判定するものであり、 特に心拍信号から検出した R— R間隔信号から求めたパヮ 一スぺクトル密度は、 自律神経の状態を示す良好な指標であるので、 睡眠時の睡 眠段階の指標に公的であり、 高い信頼性を備えている。  The sleep stage judging method and judging device of the present invention detects a heartbeat signal by using an appropriate detecting means, and determines the sleep stage of the subject by arithmetically processing the output of the heartbeat signal. In particular, the power spectrum density obtained from the R-R interval signal detected from the heartbeat signal is a good index indicating the state of the autonomic nervous system. Have reliability.
また、 本発明の睡眠段階判定方法おょぴ判定装置は、 心拍信号さえ検出できれ ば睡眠段階を判定することが可能であり、 使用'にかかる費用おょぴ維持に要する 費用は低廉であり、 日常的に使用するのに好適な睡眠段階判定装置を提供するこ とができる。 ,  In addition, the sleep stage determination method and determination device of the present invention can determine the sleep stage as long as a heartbeat signal can be detected, and the cost of using and maintaining the device is low. It is possible to provide a sleep stage judging device suitable for daily use. ,

Claims

請求の範囲 The scope of the claims
生体信号検出手段で検出した信号から抽出した心拍信号あるいは呼吸信号、 並びにこれらの信号から導出したパラメータのうち、 少なくも 1つの信号 を指標信号とし、 それぞれの指標信号について所定時間のデータから睡眠 段階を判定する閾値を算出し、 この閾値を用いて睡眠段階を判定すること を特徴とする睡眠段階判定方法。  Of the heartbeat signal or respiratory signal extracted from the signal detected by the biological signal detection means, and at least one of the parameters derived from these signals, an at least one signal is used as an index signal. And calculating a sleep stage using the threshold value.
前記生体信号検出手段で検出した信号の信号強度値を加えた中から、 少なく とも 1つの信号を指標信号とすることを特徴とする請求項 1記載の睡眠段 階判定方法。  2. The sleep stage determination method according to claim 1, wherein at least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detection unit is used as an index signal.
前記睡眠段階の各段階の判定には、 前記指標信号のうち少なくとも 2つ以上 の指標信号の判定情報の論理積を用いて判定することを特徴とする請求項 2記載の睡眠段階判定方法。  The sleep stage determination method according to claim 2, wherein the determination of each stage of the sleep stage is performed using a logical product of determination information of at least two or more of the index signals.
前記指標信号の閾値は、 前記指標信号の所定時間の平均値と分散値とを用い て算出することを特徴とする請求項 3記載の睡眠段階判定方法。  4. The sleep stage judging method according to claim 3, wherein the threshold value of the index signal is calculated using an average value and a variance value of the index signal for a predetermined time.
前記指標信号の閾値は、 指標信号の移動平均の信号を求め、 その信号の平均 値と分散値を用いて算出することを特徴とする請求項 3記載の睡眠段階判 定方法。  4. The sleep stage determination method according to claim 3, wherein the threshold value of the index signal is obtained by obtaining a signal of a moving average of the index signal and using an average value and a variance value of the signal.
前記指標信号の閾値は、 指標信号の長時間の移動平均と短時間移動平均の差 の信号を求め、 その差の信号の平均値と分散値とを用いて算出することを The threshold value of the index signal is obtained by obtaining a signal of a difference between a long-term moving average and a short-time moving average of the index signal, and calculating using a mean value and a variance of the difference signal.
' 特徴とする請求項 4記載の睡眠段階判定方法。5. The method for determining a sleep stage according to claim 4, wherein:
. 前記指標信号の 1つは、 生体信号検出手段で検出した信号をゲインコント口 ールして得られる係数の逆数として得られる信号であることを特徴とする 請求項 3記載の睡眠段階判定方法。4. The sleep stage determination method according to claim 3, wherein one of the index signals is a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by a biological signal detection unit. .
. 前記指標信号の 1つは、 心拍信号の R— R間隔値であることを特徴とする請 求項 3記載の睡眠段階判定方法。4. The sleep stage judging method according to claim 3, wherein one of the index signals is an R-R interval value of a heartbeat signal.
. 前記指標信号の 1つは、 呼吸信号のピーク値間隔値であることを特徴とする 請求項 3項記載の睡眠段階判定方法。 4. The sleep stage determination method according to claim 3, wherein one of the index signals is a peak value interval value of a respiratory signal.
0 . 前記指標信号の 1つは、 心拍信号のパワースぺク トノレ密度において低い周 波数域側に発現する極大値帯域の積分値 (L F値) 信号および Zまたは高 い周波数域側に発現する極大値帯域の積分値 (H F値) 信号であることを 特徴とする請求項 3記載の睡眠段階判定方法。0. One of the index signals is an integral value (LF value) signal of the maximum value band that appears on the lower frequency side in the power spectrum density of the heartbeat signal and Z or high. 4. The sleep stage judging method according to claim 3, wherein the signal is an integrated value (HF value) signal of a maximum value band that appears in a frequency range that is not high.
. 前記指標信号の 1つは、 心拍信号のパワースペクトル密度における L F値 と、 H F値との比の信号であることを特徴とする請求項 3記載の睡眠段階 判定方法。4. The method for determining a sleep stage according to claim 3, wherein one of the index signals is a signal having a ratio between an LF value and an HF value in a power spectrum density of a heartbeat signal.
. 前記指標信号の 1つは、 心拍信号の R— R間隔値から求めたパワースぺク トル密度信号における L F値信号と、 L F値信号と H F値信号の和の信号 との比の信号であることを特徴とする請求項 3記載の睡眠段階判定方法。. 前記指標信号の 1つは、 心拍信号のパワースペクトル密度における L F値 と、 H F値との比の対数値であることを特徴とする請求項 3記載の睡眠段 階判定方法。 ·One of the index signals is a signal having a ratio of an LF value signal in the power spectrum density signal obtained from the R-R interval value of the heartbeat signal and a signal of the sum of the LF value signal and the HF value signal. 4. The method for determining a sleep stage according to claim 3, wherein: 4. The sleep stage determination method according to claim 3, wherein one of the index signals is a logarithmic value of a ratio between an LF value and an HF value in a power spectrum density of a heartbeat signal. ·
. 前記生体信号検出手段は、 無侵襲な検出手段であることを特徴とする請求 項 2に記載の睡眠段階判定方法。The sleep stage judging method according to claim 2, wherein the biological signal detecting means is a non-invasive detecting means.
. 前記生体信号検出手段は、 圧力検出チューブと圧力検出センサと生体信号 抽出手段とから成り、 圧力検出センサで検出した圧力変動から生体信号を 抽出することを特徴とする請求項 1 4記載の睡眠段階判定方法。The sleep according to claim 14, wherein the biological signal detecting means includes a pressure detecting tube, a pressure detecting sensor, and a biological signal extracting means, and extracts a biological signal from a pressure fluctuation detected by the pressure detecting sensor. Stage determination method.
. 前記生体信号検出手段は、 心電計、 脈拍計等の心拍信号検出手段と呼吸数 あるいは呼吸状態を検出する呼吸状態検出手段であることを特徴とする請 求項 2記載の睡眠段階判定方法。The sleep stage judging method according to claim 2, wherein said biological signal detecting means is a heartbeat signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state. .
. 生体信号検出手段で検出した信号から抽出した心拍信号あるいは呼吸信号、 並びにこれらの信号から導出したパラメータのうち、 少なくも 1つの信号 を指標信号とし、 それぞれの指標信号について所定時間のデータから睡眠 段階を判定する閾値を算出し、 この閾値を用いて睡眠段階を判定する判定 手段を設けたことを特徴とする睡眠段階判定装置。At least one of the heartbeat signal or respiratory signal extracted from the signals detected by the biological signal detection means and the parameters derived from these signals is used as an index signal, and each index signal is taken from data for a predetermined time to sleep. A sleep stage determination device, comprising: calculating a threshold for determining a stage; and determining means for determining a sleep stage using the threshold.
. 前記生体信号検出手段で検出した信号の信号強度値を加えた中から、 少な くとも 1つの信号を指標信号とすることを特徴とする請求項 1 7記載の睡 眠段階判定装置。 18. The sleep stage judging device according to claim 17, wherein at least one of the signals obtained by adding the signal strength values of the signals detected by the biological signal detecting means is used as an index signal.
. 前記睡眠段階の各段階の判定には、 前記指標信号のうち少なくとも 2っ以 上の指標信号の判定情報の論理積を用いて判定することを特徴とする請求 項 18記載の睡眠段階判定装置。 The determination of each of the sleep stages is performed by using a logical product of determination information of at least two or more index signals among the index signals. Item 18. The sleep stage judging device according to Item 18 .
20. 前記指標信号の閾値は、 前記指標信号の所定時間の平均値と分散値とを用 いて算出することを特徴とする請求項 19記載の睡眠段階判定装置。 20. The sleep stage judging device according to claim 19, wherein the threshold value of the index signal is calculated using an average value and a variance value of the index signal for a predetermined time.
21. 前記指標信号の閾値は、 指標信号の移動平均の信号を求め、 その信号の平 均値と分散値を用いて算出することを特徴とする請求項 19記載の睡眠段 階判定装置。 21. The sleep stage judging device according to claim 19, wherein the threshold value of the index signal is obtained by calculating a signal of a moving average of the index signal and using an average value and a variance value of the signal.
22. 前記指標信号の閾値は、 指標信号の長時間の移動平均と短時間移動平均の 差の信号を求め、 その差の信号の平均値と分散値とを用いて算出すること を特徴とする請求項 20記載の睡眠段階判定装置。  22. The threshold value of the index signal is obtained by obtaining a signal of a difference between a long-time moving average and a short-time moving average of the index signal, and calculating using a mean value and a variance value of the difference signal. 21. The sleep stage determination device according to claim 20.
23. 前記指標信号の 1つは、 生体信号検出手段で検出した信号を'ゲインコント 口ールして得られる係数の逆数として得られる信号であることを特徴とす る請求項 19記載の睡眠段階判定装置。 23. The sleep according to claim 19, wherein one of the index signals is a signal obtained as a reciprocal of a coefficient obtained by performing gain control on a signal detected by a biological signal detection unit. Stage determination device.
24. 前記指標信号の 1つは、 心拍信号の R— R間隔値であることを特徴とする 請求項 19記載の睡眠段階判定装置。 24. The sleep stage judging device according to claim 19, wherein one of the index signals is an R-R interval value of a heartbeat signal.
25. 前記指標信号の 1つは、 呼吸信号のピーク値間隔値であることを特徴とす る請求項 19記載の睡眠段階判定装置。 25. The sleep stage judging device according to claim 19, wherein one of the index signals is a peak value interval value of a respiratory signal.
26. 前記指標信号の 1つは、 心拍信号のパワースペク トル密度の略 0. 05〜26. One of the index signals is the approximate power spectral density of the heartbeat signal
0. 15H zの帯域における極大値 (LF値) 信号と、 略 0. 2〜0. 4Maximum value in the band of 0. 15H z and (LF value) signal, substantially from 0.2 to 0.4
Hzの帯域における極大値 (HF値) 信号であることを特徴とする請求項A maximum value (HF value) signal in a frequency band of Hz.
19記載の睡眠段階判定装置。 19. The sleep stage determination device according to 19.
27. 前記指標信号の 1つは、 心拍信号のパワースぺクトル密度における LF値 と、 HF値との比の信号であることを特徴とする請求項 19記載の睡眠段 階判定装置。 27. The sleep stage judging device according to claim 19, wherein one of the index signals is a signal of a ratio between an LF value and an HF value in a power spectrum density of a heartbeat signal.
28. 前記指標信号の 1つは、 心拍信号の R— R間隔値から求めたパワースぺク トル密度信号における L F値信号と、 L F値信号と H F値信号の和の信号 との比の信号であることを特徴とする請求項 19記載の睡眠段階判定装置。 28. One of the index signals is a signal having a ratio of an LF value signal in a power spectrum density signal obtained from an R-R interval value of a heartbeat signal and a signal of a sum of the LF value signal and the HF value signal. 20. The sleep stage judging device according to claim 19, wherein there is a sleep stage judging device.
29. 前記指標信号の 1つは、 心拍信号のパワースペク トル密度における LF値 と、 HF値との比の対数値であることを特徴とする請求項 19記載の睡眠 段階判定装置。 29. The sleep stage judging device according to claim 19, wherein one of the index signals is a logarithmic value of a ratio between an LF value and a HF value in a power spectrum density of a heartbeat signal.
. 前記生体信号検出手段は、 無侵襲な検出手段であることを特徴とする請求 項 1 8記載の睡眠段階判定装置。19. The sleep stage judging device according to claim 18, wherein the biological signal detecting means is a non-invasive detecting means.
. 前記生体信号検出手段は、 圧 検出チューブと圧力検出センサと生体信号 抽出手段とカ ら成り、 圧力検出センサで検出した圧力変動から生体信号を 抽出することを特徴とする請求項 3 0記載の睡眠段階判定装置。The biological signal detection means according to claim 30, wherein said biological signal detection means comprises a pressure detection tube, a pressure detection sensor, and a biological signal extraction means, and extracts a biological signal from a pressure fluctuation detected by the pressure detection sensor. Sleep stage determination device.
. 前記生体信号検出手段は、 心電計、 脈拍計等の心拍信号検出手段と呼吸数 あるいは呼吸状態を検出する呼吸状態検出手段であることを特徴とする請 求項 1 8記載の睡眠段階判定装置。 The sleep stage determination according to claim 18, wherein said biological signal detecting means is a heart rate signal detecting means such as an electrocardiograph or a pulse meter and a respiratory state detecting means for detecting a respiratory rate or a respiratory state. apparatus.
PCT/JP2003/016745 2003-06-03 2003-12-25 Sleep stage judgment method and judgment device WO2004107978A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003296122A AU2003296122A1 (en) 2003-06-03 2003-12-25 Sleep stage judgment method and judgment device
JP2005500580A JP4461388B2 (en) 2003-06-03 2003-12-25 Sleep stage determination method and determination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-192433 2003-06-03
JP2003192433 2003-06-03

Publications (1)

Publication Number Publication Date
WO2004107978A1 true WO2004107978A1 (en) 2004-12-16

Family

ID=33509175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016745 WO2004107978A1 (en) 2003-06-03 2003-12-25 Sleep stage judgment method and judgment device

Country Status (3)

Country Link
JP (1) JP4461388B2 (en)
AU (1) AU2003296122A1 (en)
WO (1) WO2004107978A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192152A (en) * 2005-01-14 2006-07-27 Toshiba Corp Sleep state determination device, method and program
JP2006280686A (en) * 2005-04-01 2006-10-19 Tanita Corp Sleep stage determination apparatus
JP2006296940A (en) * 2005-04-25 2006-11-02 Denso Corp Biosensor, pulse wave sensor, sleep information processing method, sleep information processing device, program and recording medium
JP2008104528A (en) * 2006-10-23 2008-05-08 Rokko Bussan:Kk Sleep evaluating method, sleep evaluating apparatus, and sleep evaluating system
WO2009150744A1 (en) * 2008-06-13 2009-12-17 ハートメトリクス株式会社 Sleeping state monitoring device, monitoring system, and computer program
WO2010024329A1 (en) * 2008-09-01 2010-03-04 トヨタ自動車株式会社 Sleep determination device and sleep determination method
JP2010162282A (en) * 2009-01-19 2010-07-29 Denso Corp Apparatus for evaluating biological condition, system for evaluating biological condition, program, and recording medium
JP2011115188A (en) * 2008-06-13 2011-06-16 Heart Metrics Kk Sleeping condition monitoring apparatus, monitoring system, and computer program
JP2011517982A (en) * 2008-04-16 2011-06-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sleep / wake state evaluation method and system
JP2014504917A (en) * 2010-12-17 2014-02-27 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Navigation standard deviation detection method and system
JP2014171574A (en) * 2013-03-07 2014-09-22 Sharp Corp Device, system and method each for monitoring respiration
JP2015506189A (en) * 2011-12-23 2015-03-02 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for monitoring and controlling pressure assist devices
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
CN106999055A (en) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 For the system and method on the spectrum border for determining to classify for sleep stage
JP2017213421A (en) * 2017-08-10 2017-12-07 パラマウントベッド株式会社 Sleep evaluation device and program
JP2019136527A (en) * 2019-04-19 2019-08-22 パラマウントベッド株式会社 Sleep evaluation device and sleep evaluation program
JP2020073108A (en) * 2016-03-18 2020-05-14 国立大学法人電気通信大学 Sleep stage determination method, sleep stage determination device and sleep stage determination program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043536A1 (en) * 1997-03-31 1998-10-08 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
JP2817358B2 (en) * 1990-05-25 1998-10-30 松下電器産業株式会社 Sleep detection device
JP2000000215A (en) * 1998-06-15 2000-01-07 Arata Nemoto Sleep depth judgement and judgement device
JP2001061820A (en) * 1999-08-26 2001-03-13 Matsushita Electric Works Ltd Sleeping state judging method and sleeping state judging device
JP2003126052A (en) * 2001-10-25 2003-05-07 Cb System Kaihatsu:Kk Sleep stage judgment method
JP5056902B2 (en) * 2010-05-20 2012-10-24 アイシン・エィ・ダブリュ株式会社 Route guidance system and route guidance method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817358B2 (en) * 1990-05-25 1998-10-30 松下電器産業株式会社 Sleep detection device
WO1998043536A1 (en) * 1997-03-31 1998-10-08 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
JP2000000215A (en) * 1998-06-15 2000-01-07 Arata Nemoto Sleep depth judgement and judgement device
JP2001061820A (en) * 1999-08-26 2001-03-13 Matsushita Electric Works Ltd Sleeping state judging method and sleeping state judging device
JP2003126052A (en) * 2001-10-25 2003-05-07 Cb System Kaihatsu:Kk Sleep stage judgment method
JP5056902B2 (en) * 2010-05-20 2012-10-24 アイシン・エィ・ダブリュ株式会社 Route guidance system and route guidance method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192152A (en) * 2005-01-14 2006-07-27 Toshiba Corp Sleep state determination device, method and program
JP2006280686A (en) * 2005-04-01 2006-10-19 Tanita Corp Sleep stage determination apparatus
JP4582642B2 (en) * 2005-04-01 2010-11-17 株式会社タニタ Sleep stage determination device
JP4595651B2 (en) * 2005-04-25 2010-12-08 株式会社デンソー Biological sensor, sleep information processing method, and sleep information processing apparatus
JP2006296940A (en) * 2005-04-25 2006-11-02 Denso Corp Biosensor, pulse wave sensor, sleep information processing method, sleep information processing device, program and recording medium
US7998079B2 (en) 2005-04-25 2011-08-16 Denso Corporation Biosensor, sleep information processing method and apparatus, computer program thereof and computer readable storage medium thereof
JP2008104528A (en) * 2006-10-23 2008-05-08 Rokko Bussan:Kk Sleep evaluating method, sleep evaluating apparatus, and sleep evaluating system
US10945632B2 (en) 2006-12-29 2021-03-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US9585586B2 (en) 2006-12-29 2017-03-07 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
JP2011517982A (en) * 2008-04-16 2011-06-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Sleep / wake state evaluation method and system
WO2009150744A1 (en) * 2008-06-13 2009-12-17 ハートメトリクス株式会社 Sleeping state monitoring device, monitoring system, and computer program
WO2009150765A1 (en) * 2008-06-13 2009-12-17 ハートメトリクス株式会社 Sleeping condition monitoring apparatus, monitoring system, and computer program
JP2011115188A (en) * 2008-06-13 2011-06-16 Heart Metrics Kk Sleeping condition monitoring apparatus, monitoring system, and computer program
WO2010024329A1 (en) * 2008-09-01 2010-03-04 トヨタ自動車株式会社 Sleep determination device and sleep determination method
US8594774B2 (en) 2008-09-01 2013-11-26 Toyota Jidosha Kabushiki Kaisha Sleep determination device and sleep determination method
JP2010162282A (en) * 2009-01-19 2010-07-29 Denso Corp Apparatus for evaluating biological condition, system for evaluating biological condition, program, and recording medium
JP2014504917A (en) * 2010-12-17 2014-02-27 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド Navigation standard deviation detection method and system
JP2015506189A (en) * 2011-12-23 2015-03-02 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for monitoring and controlling pressure assist devices
JP2014171574A (en) * 2013-03-07 2014-09-22 Sharp Corp Device, system and method each for monitoring respiration
CN106999055A (en) * 2014-12-11 2017-08-01 皇家飞利浦有限公司 For the system and method on the spectrum border for determining to classify for sleep stage
JP2017537710A (en) * 2014-12-11 2017-12-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for determining spectral boundaries of sleep stage classification
US10702207B2 (en) 2014-12-11 2020-07-07 Koninklijke Philips N.V. System and method for determining spectral boundaries for sleep stage classification
JP2020073108A (en) * 2016-03-18 2020-05-14 国立大学法人電気通信大学 Sleep stage determination method, sleep stage determination device and sleep stage determination program
JP2017213421A (en) * 2017-08-10 2017-12-07 パラマウントベッド株式会社 Sleep evaluation device and program
JP2019136527A (en) * 2019-04-19 2019-08-22 パラマウントベッド株式会社 Sleep evaluation device and sleep evaluation program

Also Published As

Publication number Publication date
JP4461388B2 (en) 2010-05-12
JPWO2004107978A1 (en) 2006-07-20
AU2003296122A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
JP4483862B2 (en) Sleep stage determination device
JP6767059B2 (en) Biological information acquisition device and signal processing method
JP5632986B2 (en) Sleep stage determination device and sleep stage determination method
JP2004049838A (en) Sleep stage discriminating method and sleep stage discriminating device
US7909771B2 (en) Diagnosis of sleep apnea
JP6757532B2 (en) Sleep stage determination device, sleep stage determination method, sleep stage determination program
JP4461388B2 (en) Sleep stage determination method and determination apparatus
JP2009297474A (en) Sleep stage determining device
US20100249628A1 (en) Extraction of heart inter beat interval from multichannel measurements
WO2009150765A1 (en) Sleeping condition monitoring apparatus, monitoring system, and computer program
JP5352814B2 (en) Autonomic nerve component index estimating apparatus and autonomic nerve component index estimating method
JP2007125337A (en) Method and apparatus for measuring mental healthiness
JP2011115188A (en) Sleeping condition monitoring apparatus, monitoring system, and computer program
WO2008132736A2 (en) Method and device for characterizing sleep
JP2000325315A (en) Sleep stage determinig method and sleep stage determining device
JP2001258855A (en) Health judgment method and judgment device therefor
JP6586557B2 (en) Sleep stage determination device and sleep stage determination method
JP2008080071A (en) Evaluation device for quality of sleep
JP6413073B2 (en) Sleep stage determination device and sleep stage determination method
WO2018042566A1 (en) Sleep stage determination device and sleep stage determination method
JP3831918B2 (en) Salivary stage determination device
JP6588035B2 (en) Biological condition analyzer and computer program
Tsuboi et al. Relationship between heart rate variability using Lorenz plot and sleep level
KR101771835B1 (en) Method for inter-sleep analysis based on biomedical signal
JP2008073478A (en) Grasping method and grasping device for sympathetic nerve activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500580

Country of ref document: JP

122 Ep: pct application non-entry in european phase