JP2002100368A - Solid high polymer molecule type fuel cell - Google Patents

Solid high polymer molecule type fuel cell

Info

Publication number
JP2002100368A
JP2002100368A JP2000289078A JP2000289078A JP2002100368A JP 2002100368 A JP2002100368 A JP 2002100368A JP 2000289078 A JP2000289078 A JP 2000289078A JP 2000289078 A JP2000289078 A JP 2000289078A JP 2002100368 A JP2002100368 A JP 2002100368A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
particles
electrodes
catalyst particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000289078A
Other languages
Japanese (ja)
Other versions
JP3433170B2 (en
Inventor
Kaoru Fukuda
薫 福田
Keisuke Ando
敬祐 安藤
Nobuhiro Saito
信広 齋藤
Masaaki Nanaumi
昌昭 七海
Junji Matsuo
順二 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000289078A priority Critical patent/JP3433170B2/en
Priority to DE10146506A priority patent/DE10146506B4/en
Priority to CA002357590A priority patent/CA2357590C/en
Priority to US09/956,828 priority patent/US7022426B2/en
Publication of JP2002100368A publication Critical patent/JP2002100368A/en
Application granted granted Critical
Publication of JP3433170B2 publication Critical patent/JP3433170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid high polymer molecule type fuel cell, which is, enabled to aim at much more improvement in a power generation performance by reducing a thickness of each electrodes. SOLUTION: The solid high polymer molecule type fuel cell 1 is equipped with an electrolyte film 2, which has a high polymer molecule ion exchange component, and a pair of electrodes 3, 4 which sandwich the electrolyte film 2. Both the electrodes 3, 4 consist only of the high polymer molecule ion exchange component, and two or more catalyst particles made of water-repellent carbon black particles of which the surfaces are made to have catalyst metal, and do not contain a third ingredient.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子型燃料電
池,特に高分子イオン交換成分を有する電解質膜と,そ
の電解質膜を挟む一対の電極とを備えたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to a fuel cell having an electrolyte membrane having a polymer ion exchange component and a pair of electrodes sandwiching the electrolyte membrane.

【0002】[0002]

【従来の技術】従来,前記電極としては,その電極にプ
ロトン伝導性を付与すると共にバインダとして機能する
高分子イオン交換成分と,カーボンブラック粒子の表面
に触媒金属を担持させた複数の触媒粒子と,PTFE
(ポリテトラフルオロエチレン)粒子とより構成された
ものが知られている。このPTFE粒子は撥水性を有
し,電極の保水性を調整する機能を有する。
2. Description of the Related Art Conventionally, the above-mentioned electrode includes a polymer ion-exchange component which imparts proton conductivity to the electrode and functions as a binder, and a plurality of catalyst particles having catalyst metal supported on the surface of carbon black particles. , PTFE
(Polytetrafluoroethylene) particles are known. The PTFE particles have water repellency and have a function of adjusting the water retention of the electrode.

【0003】[0003]

【発明が解決しようとする課題】しかしながら電極の構
成成分としてPTFE粒子を用いる,ということは,発
電性能の一層の向上を図るべく,電極の厚さを減じて,
プロトン伝導性を高めると共に抵抗過電圧を低く抑え
る,といった要件を満たす上で障害となっていた。
However, the use of PTFE particles as a component of the electrode means reducing the thickness of the electrode in order to further improve the power generation performance.
This has been an obstacle in meeting the requirements of increasing the proton conductivity and keeping the resistance overvoltage low.

【0004】[0004]

【課題を解決するための手段】本発明は,各電極の厚さ
を減じて発電性能の一層の向上を図り得るようにした前
記固体高分子型燃料電池を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polymer electrolyte fuel cell in which the thickness of each electrode is reduced so that the power generation performance can be further improved.

【0005】前記目的を達成するため本発明によれば,
高分子イオン交換成分を有する電解質膜と,その電解質
膜を挟む一対の電極とを備え,両電極は,それぞれ,高
分子イオン交換成分と,撥水性カーボンブラック粒子の
表面に触媒金属を担持させた複数の触媒粒子とからなる
固体高分子型燃料電池が提供される。
[0005] To achieve the above object, according to the present invention,
Equipped with an electrolyte membrane having a polymer ion exchange component and a pair of electrodes sandwiching the electrolyte membrane. Both electrodes carry a polymer ion exchange component and a catalyst metal on the surface of water-repellent carbon black particles, respectively. A polymer electrolyte fuel cell comprising a plurality of catalyst particles is provided.

【0006】前記のように構成すると,撥水性カーボン
ブラック粒子に,電極の保水性を調整する機能を持たせ
て,PTFE粒子の使用を止めることが可能である。こ
れにより,電極の厚さを従来のものよりも減じてプロト
ン伝導性を高めると共に抵抗過電圧を低く抑えて,発電
性能の一層の向上を図ることができる。
With the above-described structure, the use of the PTFE particles can be stopped by providing the water-repellent carbon black particles with a function of adjusting the water retention of the electrode. As a result, the thickness of the electrode can be reduced as compared with the conventional one, the proton conductivity can be increased, and the resistance overvoltage can be suppressed low, so that the power generation performance can be further improved.

【0007】[0007]

【発明の実施の形態】図1において,固体高分子型燃料
電池(セル)1は,電解質膜2と,その電解質膜2を挟
んでその両側にそれぞれ密着する一対の電極,つまり空
気極3および燃料極4と,それら両極3,4にそれぞれ
密着する一対の拡散層5,6と,それら両拡散層5,6
に密着する一対のセパレータ7,8とよりなる。この場
合,両極3,4側からそれぞれ加湿が行われる。また電
解質膜−電極集成体9には,電解質膜2,空気極3,燃
料極4および両拡散層5,6が含まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a polymer electrolyte fuel cell (cell) 1 has an electrolyte membrane 2 and a pair of electrodes which are in close contact with both sides of the electrolyte membrane 2, that is, an air electrode 3 and an air electrode 3. A fuel electrode 4, a pair of diffusion layers 5 and 6, which are in close contact with the electrodes 3 and 4, respectively;
And a pair of separators 7 and 8 in close contact with each other. In this case, humidification is performed from both poles 3 and 4 side. The electrolyte membrane-electrode assembly 9 includes an electrolyte membrane 2, an air electrode 3, a fuel electrode 4, and both diffusion layers 5, 6.

【0008】電解質膜2は,プロトン伝導性を有する高
分子イオン交換成分,実施例では芳香族炭化水素系高分
子イオン交換成分より構成されている。空気極3および
燃料極4は,それぞれ,カーボンブラック粒子の表面に
複数の触媒金属としてのPt粒子を担持させた複数の触
媒粒子ならびにプロトン伝導性およびバインダとしての
機能を有し,且つ前記と同一または異なる高分子イオン
交換成分,実施例では芳香族炭化水素系高分子イオン交
換成分からなり,第三の成分であるPTFE粒子を含ま
ない。
The electrolyte membrane 2 is composed of a polymer ion exchange component having proton conductivity, in this embodiment, an aromatic hydrocarbon polymer ion exchange component. The air electrode 3 and the fuel electrode 4 have a plurality of catalyst particles in which a plurality of Pt particles as a catalyst metal are supported on the surface of carbon black particles, and also have a proton conductivity and a function as a binder. Or, it is composed of a different polymer ion exchange component, in this embodiment, an aromatic hydrocarbon polymer ion exchange component, and does not include PTFE particles as the third component.

【0009】各拡散層5,6は多孔質のカーボンペー
パ,カーボンプレート等よりなり,また各セパレータ
7,8は,同一の形態を有するように黒鉛化炭素より構
成され,空気極3側のセパレータ7に存する複数の溝1
0に空気が,また燃料極4側のセパレータ8に在って前
記溝10と交差する関係の複数の溝11に水素がそれぞ
れ供給される。
Each of the diffusion layers 5, 6 is made of porous carbon paper, carbon plate, etc., and each of the separators 7, 8 is made of graphitized carbon so as to have the same form. 7 multiple grooves 1
0 is supplied with air, and hydrogen is supplied to a plurality of grooves 11 which are present in the separator 8 on the side of the fuel electrode 4 and intersect with the grooves 10.

【0010】芳香族炭化水素系高分子イオン交換成分
は,無フッ素であって溶剤に可溶であるといった特性を
有する。この種の高分子イオン交換成分としては,表1
に挙げた各種の,芳香族炭化水素系高分子のスルホン化
物が用いられる。
The aromatic hydrocarbon-based polymer ion exchange component has characteristics such as being non-fluorine and soluble in a solvent. Table 1 shows this type of polymer ion exchange component.
Various sulfonated aromatic hydrocarbon polymers are used.

【0011】[0011]

【表1】 [Table 1]

【0012】溶剤としては,表2に挙げた各種極性溶剤
が用いられる。
As the solvent, various polar solvents listed in Table 2 are used.

【0013】[0013]

【表2】 [Table 2]

【0014】空気極3および燃料極4におけるカーボン
ブラック粒子としては,60℃の飽和水蒸気圧下におけ
る水吸着量AがA≦80cc/gである,といった撥水
性を持つものが用いられている。
As the carbon black particles in the air electrode 3 and the fuel electrode 4, those having water repellency such that the water adsorption amount A under a saturated steam pressure of 60 ° C. is A ≦ 80 cc / g are used.

【0015】カーボンブラック粒子に前記のような撥水
性を保持させると,空気極3および燃料極4において,
加湿水の電解質膜2への流入および両極3,4からの過
剰水の流出がスムーズに行われる。このような効果は,
前記水吸着量AがA>80cc/gでは得られない。何
故ならば,カーボンブラック粒子の撥水性が減退するか
らである。
When the water repellency is maintained by the carbon black particles, the air electrode 3 and the fuel electrode 4
The inflow of the humidified water into the electrolyte membrane 2 and the outflow of the excess water from the electrodes 3 and 4 are smoothly performed. These effects are:
The water adsorption amount A cannot be obtained if A> 80 cc / g. This is because the water repellency of the carbon black particles decreases.

【0016】空気極3および燃料極4において,高分子
イオン交換成分の配合重量をWpとし,またカーボンブ
ラック粒子の配合重量をWcとしたとき,両配合重量W
p,Wcの比Wp/Wcは,0.4≦Wp/Wc≦1.
25に設定される。
In the air electrode 3 and the fuel electrode 4, when the compounding weight of the polymer ion-exchange component is Wp and the compounding weight of the carbon black particles is Wc,
The ratio Wp / Wc of p and Wc is 0.4 ≦ Wp / Wc ≦ 1.
It is set to 25.

【0017】両配合重量Wp,Wcの比Wp/Wcを前
記のように設定すると,空気極3および燃料極4の厚さ
を減少させてプロトン伝導性を高めると共に抵抗過電圧
の上昇を抑制して発電性能を向上させることが可能であ
る。ただし,比Wp/WcがWp/Wc<0.4では空
気極3および燃料極4の厚さは減少するが触媒粒子の被
覆率が悪化して発電性能が低下する。一方,Wp/Wc
>1.25では高分子イオン交換成分の分散度Dが悪化
するため空気極3および燃料極4の厚さが増加する。
When the ratio Wp / Wc of the blending weights Wp and Wc is set as described above, the thickness of the air electrode 3 and the fuel electrode 4 is reduced to increase the proton conductivity and to suppress the increase in the resistance overvoltage. It is possible to improve the power generation performance. However, when the ratio Wp / Wc is less than 0.4, the thickness of the air electrode 3 and the fuel electrode 4 is reduced, but the coverage of the catalyst particles is deteriorated and the power generation performance is reduced. On the other hand, Wp / Wc
In the case of> 1.25, the degree of dispersion D of the polymer ion exchange component is deteriorated, so that the thicknesses of the air electrode 3 and the fuel electrode 4 are increased.

【0018】以下,具体例について説明する。 I.電極の製造 60℃の飽和水蒸気圧下における水吸着量AがA=72
cc/gである撥水性カーボンブラック粒子(商品名:
Vulcan XC−72)にPt粒子を担持させて触
媒粒子を調製した。触媒粒子におけるPt粒子の含有量
は50wt%である。 〔例−I〕芳香族炭化水素系高分子イオン交換成分とし
て,表1に例1として挙げたPEEKスルホン化物を用
意し,このPEEKスルホン化物を表2のNMPに還流
溶解した。この溶液におけるPEEKスルホン化物の含
有量は6wt%である。このPEEKスルホン化物含有
溶液に,PEEKスルホン化物の配合重量Wpとカーボ
ンブラック粒子の配合重量Wcとの比Wp/WcがWp
/Wc=0.2となるように触媒粒子を混合し,次いで
ボールミルを用いて触媒粒子の分散を図り,電極用スラ
リを調製した。このスラリを,Pt量が0.5mg/cm2
となるように複数の多孔質カーボンペーパの一面にそれ
ぞれ塗布し,乾燥して,複数の,拡散層を持つ電極を得
た。これらの電極を例(1)とする。 〔例−II〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=0.4に設定した,という点を除き,例−I
と同様の方法を実施して複数の,拡散層を持つ電極を得
た。これらの電極を例(2)とする。 〔例−III 〕PEEKスルホン化物の配合重量Wpとカ
ーボンブラック粒子の配合重量Wcとの比Wp/Wcを
Wp/Wc=0.6に設定した,という点を除き,例−
Iと同様の方法を実施して複数の,拡散層を持つ電極を
得た。これらの電極を例(3)とする。 〔例−IV〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=0.8に設定した,という点を除き,例−I
と同様の方法を実施して複数の,拡散層を持つ電極を得
た。これらの電極を例(4)とする。 〔例−V〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=1.25に設定した,という点を除き,例−
Iと同様の方法を実施して複数の,拡散層を持つ電極を
得た。これらの電極を例(5)とする。 〔例−VI〕PEEKスルホン化物の配合重量Wpとカー
ボンブラック粒子の配合重量Wcとの比Wp/WcをW
p/Wc=1.75に設定した,という点を除き,例−
Iと同様の方法を実施して複数の,拡散層を持つ電極を
得た。これらの電極を例(6)とする。 II.電極に関する各種考察 表3は,電極の例(1)〜(6)に関するPEEKスル
ホン化物の配合重量Wpおよびカーボンブラック粒子の
配合重量Wcの比Wp/Wcと,電極の保水性との関係
を示す。この保水性は,ガス吸着装置による60℃飽和
水蒸気圧下の水吸着量から算出した。
Hereinafter, a specific example will be described. I. Manufacture of electrode The amount of water adsorption A at 60 ° C. under a saturated steam pressure is A = 72.
cc / g of water-repellent carbon black particles (trade name:
Vulcan XC-72) supported Pt particles to prepare catalyst particles. The content of Pt particles in the catalyst particles is 50% by weight. [Example-I] As the aromatic hydrocarbon polymer ion exchange component, the PEEK sulfonate listed in Example 1 in Table 1 was prepared, and this PEEK sulfonate was dissolved under reflux in NMP in Table 2. The content of the PEEK sulfonate in this solution is 6% by weight. In this PEEK sulfonate-containing solution, the ratio Wp / Wc of the blend weight Wp of the PEEK sulfonate to the blend weight Wc of the carbon black particles is Wp.
The catalyst particles were mixed so that /Wc=0.2, and then dispersed using a ball mill to prepare a slurry for an electrode. This slurry was prepared with a Pt amount of 0.5 mg / cm 2
Were applied to one surface of a plurality of porous carbon papers and dried to obtain electrodes having a plurality of diffusion layers. Let these electrodes be examples (1). [Example-II] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 0.4 was set.
By performing the same method as described above, an electrode having a plurality of diffusion layers was obtained. These electrodes are taken as example (2). [Example-III] Except that the ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated compound to the blending weight Wc of the carbon black particles was set to Wp / Wc = 0.6.
An electrode having a plurality of diffusion layers was obtained in the same manner as in I. Let these electrodes be Example (3). [Example-IV] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-I except that p / Wc = 0.8 was set.
By performing the same method as described above, an electrode having a plurality of diffusion layers was obtained. Let these electrodes be Example (4). [Example-V] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-except that p / Wc was set to 1.25
An electrode having a plurality of diffusion layers was obtained in the same manner as in I. These electrodes are referred to as an example (5). [Example-VI] The ratio Wp / Wc of the blending weight Wp of the PEEK sulfonated product to the blending weight Wc of the carbon black particles is represented by W
Example-Except that p / Wc = 1.75 was set.
An electrode having a plurality of diffusion layers was obtained in the same manner as in I. Let these electrodes be Example (6). II. Various Considerations on Electrode Table 3 shows the relationship between the ratio Wp / Wc of the blended weight Wp of the PEEK sulfonated compound and the blended weight Wc of the carbon black particles for the electrode examples (1) to (6) and the water retention of the electrode. . This water retention was calculated from the amount of water adsorbed by the gas adsorber at a saturated steam pressure of 60 ° C.

【0019】[0019]

【表3】 [Table 3]

【0020】図2は,表3に基づいて両配合重量の比W
p/Wcと電極の保水性との関係をグラフ化したもので
ある。図2より,比Wp/Wcの増加に伴い電極の保水
性が増すことが判る。
FIG. 2 is a graph showing the ratio W of both compounding weights based on Table 3.
7 is a graph showing the relationship between p / Wc and the water retention of the electrode. FIG. 2 shows that the water retention of the electrode increases as the ratio Wp / Wc increases.

【0021】表4は,電極の例(1)〜(6)に関する
両配合重量の比Wp/Wcと,電極の厚さとの関係を示
す。
Table 4 shows the relationship between the ratio Wp / Wc of both compounding weights and the thickness of the electrode for the electrode examples (1) to (6).

【0022】[0022]

【表4】 [Table 4]

【0023】図3は,表4に基づいて両配合重量の比W
p/Wcと電極の厚さとの関係をグラフ化したものであ
る。図3より,比Wp/Wcの増加に伴い電極の厚さが
増すことが判る。
FIG. 3 is a graph showing the ratio W of both compounding weights based on Table 4.
7 is a graph showing the relationship between p / Wc and electrode thickness. FIG. 3 shows that the thickness of the electrode increases as the ratio Wp / Wc increases.

【0024】表5は,電極の例(1)〜(6)に関する
両配合重量の比Wp/Wcと触媒粒子の被覆率Ccとの
関係を示す。
Table 5 shows the relationship between the ratio Wp / Wc of the two compounding weights and the coverage Cc of the catalyst particles for the electrode examples (1) to (6).

【0025】[0025]

【表5】 [Table 5]

【0026】触媒粒子の被覆率Ccは,電極の平面の面
積をAeとし,また電極の平面に露出している複数の触
媒粒子の面積の和をAcとしたとき,Cc={(Ae−
Ac)/Ae}×100(%)として求められた。
The coverage Cc of the catalyst particles is represented by Cc = {(Ae−Ae) where Ae is the area of the plane of the electrode and Ac is the sum of the areas of a plurality of catalyst particles exposed on the plane of the electrode.
Ac) / Ae} × 100 (%).

【0027】図4は,表5に基づいて両配合重量の比W
p/Wcと触媒粒子の被覆率Ccとの関係をグラフ化し
たものである。図4より,比Wp/Wcの増加に伴い触
媒粒子の被覆率Ccが増すことが判る。
FIG. 4 is a graph showing the ratio W of both compounding weights based on Table 5.
7 is a graph showing the relationship between p / Wc and the coverage Cc of catalyst particles. FIG. 4 shows that the coverage Cc of the catalyst particles increases as the ratio Wp / Wc increases.

【0028】表6は,電極の例(1)〜(6)に関する
両配合重量の比Wp/Wcと触媒粒子の分散度Dとの関
係を示す。
Table 6 shows the relationship between the ratio Wp / Wc of both compounding weights and the degree of dispersion D of the catalyst particles for the electrode examples (1) to (6).

【0029】[0029]

【表6】 [Table 6]

【0030】触媒粒子の分散度Dは次のような方法によ
って求められた。先ず,電極の製造時における触媒粒子
およびPEEKスルホン化物の配合量から,触媒粒子中
の理論触媒金属濃度としての理論Pt濃度TpおよびP
EEKスルホン化物中の理論S(イオウ)濃度Tsを算
出し,次いで,それら理論値から理論値比Ts/Tpを
求めた。また電極の表面をEPMAにて観察し,触媒粒
子中の実測触媒金属濃度としての実測Pt濃度Apおよ
びPEEKスルホン化物中の実測S濃度Asを面分析に
より求め,次いで,それら実測値から実測値比As/A
pを求めた。その後,分散度Dを, D=[{(Ts/Tp)−(As/Ap)}/(Ts/
Tp)]×100(%) の式に則って求めた。
The degree of dispersion D of the catalyst particles was determined by the following method. First, the theoretical Pt concentration Tp and the theoretical Pt concentration as the theoretical catalyst metal concentration in the catalyst particles are determined from the blending amounts of the catalyst particles and the PEEK sulfonate during the production of the electrode.
The theoretical S (sulfur) concentration Ts in the EEK sulfonate was calculated, and then the theoretical value ratio Ts / Tp was calculated from the theoretical values. Also, the surface of the electrode was observed by EPMA, and the measured Pt concentration Ap and the measured S concentration As in the PEEK sulfonated product as the measured catalyst metal concentrations in the catalyst particles were determined by surface analysis, and then the measured values were compared with the measured values. As / A
p was determined. Then, the degree of dispersion D is calculated as follows: D = [{(Ts / Tp) − (As / Ap)} / (Ts /
Tp)] × 100 (%).

【0031】図5は,表6に基づいて両配合重量の比W
p/Wcと,触媒粒子の分散度Dとの関係をグラフ化し
たものである。図5より,比Wp/Wcの増加に伴い触
媒粒子の分散度Dが増すことが判る。
FIG. 5 is a graph showing the ratio W of both compounding weights based on Table 6.
7 is a graph showing the relationship between p / Wc and the degree of dispersion D of catalyst particles. FIG. 5 shows that the degree of dispersion D of the catalyst particles increases as the ratio Wp / Wc increases.

【0032】表7は,電極の例(1)〜(6)に関する
触媒粒子の分散度Dと触媒粒子の被覆率Ccとの関係を
示す。
Table 7 shows the relationship between the degree of dispersion D of the catalyst particles and the coverage Cc of the catalyst particles for the electrode examples (1) to (6).

【0033】[0033]

【表7】 [Table 7]

【0034】図6は表7に基づいて触媒粒子の分散度D
と触媒粒子の被覆率Ccとの関係をグラフ化したもので
ある。図6より,触媒粒子の分散度Dの増加に伴い触媒
粒子の被覆率Ccが増すことが判る。
FIG. 6 shows the dispersion degree D of the catalyst particles based on Table 7.
FIG. 4 is a graph showing the relationship between the ratio and the coverage Cc of the catalyst particles. FIG. 6 shows that the coverage Cc of the catalyst particles increases as the degree of dispersion D of the catalyst particles increases.

【0035】表8は,電極の例(1)〜(6)に関する
触媒粒子の分散度Dと電極の厚さとの関係を示す。
Table 8 shows the relationship between the degree of dispersion D of the catalyst particles and the electrode thickness for the electrode examples (1) to (6).

【0036】[0036]

【表8】 [Table 8]

【0037】図7は,表8に基づいて触媒粒子の分散度
Dと電極の厚さとの関係をグラフ化したものである。図
7より,触媒粒子の分散度Dの増加に伴い電極の厚さが
増すことが判る。 III .燃料電池の発電性能 電極の製造で用いられたPEEKスルホン化物と同様の
ものを使用して厚さ50μmの電解質膜2を成形した。
また二組の電極の例(1)〜(6)を用意し,一方の組
を空気極3の例(1)〜(6)とし,他方の組を燃料極
4の例(1)〜(6)とした。そして,空気極3の各例
(1)〜(6)が燃料極4の例(1)〜(6)と総当り
となるような組合せを行う,つまり,例(1)について
言えば,例(1)と例(1),例(1)と例(2)……
例(1)と例(5),例(1)と例(6),といった組
合せを行って36組の電極対を得た。各電極対,したが
って一組の空気極3および燃料極4により電解質膜2を
挟み,140℃,1.5MPa,1分間の条件でホット
プレスを行って,電解質膜−電極集成体9を得た。各電
解質膜−電極集成体9を用いて固体高分子型燃料電池1
を組立て,空気極3側および燃料極4側からそれぞれ加
湿する,という条件下で発電を行って電流密度と端子電
圧との関係を測定した。この場合,水の拡散による端子
電圧への影響が大であることから,各電池の端子電圧の
比較値として高電流密度側である0.8A/cm2 におけ
る端子電圧を用いた。
FIG. 7 is a graph showing the relationship between the degree of dispersion D of the catalyst particles and the thickness of the electrode based on Table 8. FIG. 7 shows that the thickness of the electrode increases as the degree of dispersion D of the catalyst particles increases. III. Power generation performance of fuel cell A 50 μm-thick electrolyte membrane 2 was formed using the same PEEK sulfonate used in the production of the electrode.
Also, two sets of examples (1) to (6) of electrodes are prepared, one set is set to examples (1) to (6) of the air electrode 3 and the other set is set to examples (1) to (6) of the fuel electrode 4. 6). Then, each example (1) to (6) of the air electrode 3 is combined with the examples (1) to (6) of the fuel electrode 4 so as to make a round robin. In other words, for example (1), (1) and example (1), example (1) and example (2) ...
By combining Examples (1) and (5) and Examples (1) and (6), 36 electrode pairs were obtained. The electrolyte membrane 2 was sandwiched between each pair of electrodes, that is, a pair of the air electrode 3 and the fuel electrode 4, and hot pressed at 140 ° C., 1.5 MPa, and 1 minute to obtain an electrolyte membrane-electrode assembly 9. . Polymer electrolyte fuel cell 1 using each electrolyte membrane-electrode assembly 9
Was assembled, and power was generated under the condition that the air electrode 3 and the fuel electrode 4 were humidified respectively, and the relationship between the current density and the terminal voltage was measured. In this case, the terminal voltage at 0.8 A / cm 2, which is on the high current density side, was used as a comparison value of the terminal voltage of each battery because the diffusion of water greatly affected the terminal voltage.

【0038】表9は,空気極および燃料極の例(1)〜
(6)における両配合重量の比Wp/Wcと,各電池に
おける空気極および燃料極の組合せと,0.8A/cm2
における端子電圧とを示す。
Table 9 shows examples (1) to (4) of the air electrode and the fuel electrode.
The ratio Wp / Wc of the blending weights in (6), the combination of the air electrode and the fuel electrode in each battery, and 0.8 A / cm 2
At the terminal voltage.

【0039】[0039]

【表9】 [Table 9]

【0040】図8は,表9に基づいて空気極3および燃
料極4の組合せと,端子電圧との関係をグラフ化したも
のである。表9,図8から明らかなように,空気極の例
(2)〜(5)および燃料極の例(2)〜(5)間にお
いて組合せを行うと,固体高分子型燃料電池1の発電性
能を向上させることができる。
FIG. 8 is a graph showing the relationship between the combination of the air electrode 3 and the fuel electrode 4 and the terminal voltage based on Table 9. As is clear from Table 9 and FIG. 8, when combinations are made between the examples (2) to (5) of the air electrode and the examples (2) to (5) of the fuel electrode, the power generation of the polymer electrolyte fuel cell 1 is achieved. Performance can be improved.

【0041】比較のため,前記例−III の電極用スラリ
に,平均粒径10μmのPTFE粒子を20重量%含有
させたスラリを調製し,このスラリを,Pt量が0.5
mg/cm2 となるように2つ多孔質カーボンペーパの一面
にそれぞれ塗布し,乾燥して,両配合重量の比Wp/W
cがWp/Wc=0.6である2つの,拡散層を持つ電
極の例(7)を得た。この例(7)の電極の厚さtはt
=15μmであって,表4に示した電極の例(3)のt
=6μmに比べて9μm厚くなっていた。
For comparison, a slurry was prepared by adding 20% by weight of PTFE particles having an average particle diameter of 10 μm to the electrode slurry of Example-III.
mg / cm 2 , applied to one surface of each of the two porous carbon papers and dried, and the ratio Wp / W of the blending weights of the two.
An example (7) of an electrode having two diffusion layers where c is Wp / Wc = 0.6 was obtained. The electrode thickness t in this example (7) is t
= 15 μm, and t of the electrode example (3) shown in Table 4
= 9 μm thicker than 6 μm.

【0042】2つの例(7)を空気極3および燃料極4
として用い,前記同様の方法で電解質膜−電極集成体9
を製作した。この電解質膜−電極集成体9を用いて固体
高分子型燃料電池1を組立て,空気極および燃料極の加
湿下で発電を行って電流密度と端子電圧との関係を測定
したところ,電流密度0.8A/cm2 における端子電圧
は0.643Vであることが判明した。この端子電圧
は,表8に示した例(3)と例(3)とを組合せた場合
の端子電圧0.687Vに比べて約6%低いことが明ら
かである。
The two examples (7) are as follows: the air electrode 3 and the fuel electrode 4
And an electrolyte membrane-electrode assembly 9 in the same manner as described above.
Was made. A polymer electrolyte fuel cell 1 was assembled using the electrolyte membrane-electrode assembly 9 and power generation was performed under humidification of the air electrode and the fuel electrode to measure the relationship between the current density and the terminal voltage. The terminal voltage at 0.8 A / cm 2 was found to be 0.643V. It is clear that this terminal voltage is about 6% lower than the terminal voltage of 0.687 V when the example (3) and the example (3) shown in Table 8 are combined.

【0043】これらの事実から,カーボンブラック粒子
は,60℃の飽和水蒸気圧下における水吸着量AがA≦
80cc/gである,といった撥水性を持ち,また両配
合重量Wp,Wcの比Wp/Wcが0.4≦Wp/Wc
≦1.25であることの必要性が明らかである。
From these facts, the carbon black particles have a water adsorption amount A at a saturated steam pressure of 60 ° C. of A ≦ A.
80 cc / g, and the ratio Wp / Wc of both blending weights Wp and Wc is 0.4 ≦ Wp / Wc.
The need for ≦ 1.25 is apparent.

【0044】両配合重量の比Wp/Wcを前記のように
設定すると,表4より電極の厚さtは5μm≦t≦8μ
mとなり,また,表5より触媒粒子の被覆率Ccは91
%≦Cc≦98%となり,さらに,表6より触媒粒子の
分散度Dは3%≦D≦8%となる。
When the ratio Wp / Wc of the two compounding weights is set as described above, from Table 4, the electrode thickness t is 5 μm ≦ t ≦ 8 μm.
m, and from Table 5, the coverage Cc of the catalyst particles is 91%.
% ≦ Cc ≦ 98%, and from Table 6, the degree of dispersion D of the catalyst particles is 3% ≦ D ≦ 8%.

【0045】[0045]

【発明の効果】本発明によれば前記のように構成するこ
とによって,各電極の厚さを減じて発電性能の一層の向
上を図られた固体高分子型燃料電池を提供することがで
きる。
According to the present invention, a solid polymer electrolyte fuel cell having the above-described structure, in which the thickness of each electrode is reduced and the power generation performance is further improved, can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子型燃料電池の概略側面図である。FIG. 1 is a schematic side view of a polymer electrolyte fuel cell.

【図2】両配合重量の比Wp/Wcと,電極の保水性と
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and water retention of an electrode.

【図3】両配合重量の比Wp/Wcと,電極の厚さとの
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and an electrode thickness.

【図4】両配合重量の比Wp/Wcと,触媒粒子の被覆
率Ccとの関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and a coverage Cc of catalyst particles.

【図5】両配合重量の比Wp/Wcと,触媒粒子の分散
度Dとの関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a ratio Wp / Wc of both compounding weights and a degree of dispersion D of catalyst particles.

【図6】触媒粒子の分散度Dと,触媒粒子の被覆率Cc
との関係を示すグラフである。
FIG. 6 shows the degree of dispersion D of catalyst particles and the coverage Cc of catalyst particles.
6 is a graph showing a relationship with the graph.

【図7】触媒粒子の分散度Dと,電極の厚さとの関係を
示すグラフである。
FIG. 7 is a graph showing the relationship between the degree of dispersion D of catalyst particles and the thickness of an electrode.

【図8】空気極および燃料極の組合せと,端子電圧との
関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a combination of an air electrode and a fuel electrode and a terminal voltage.

【符号の説明】[Explanation of symbols]

1 固体高分子型燃料電池 2 電解質膜 3 空気極(電極) 4 燃料極(電極) 1 polymer electrolyte fuel cell 2 electrolyte membrane 3 air electrode (electrode) 4 fuel electrode (electrode)

フロントページの続き (72)発明者 齋藤 信広 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 七海 昌昭 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 松尾 順二 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H018 AA06 AS02 AS03 EE03 EE08 EE17 HH00 HH05 HH08 5H026 AA06 EE02 EE05 EE18 HH00 HH05 HH08 Continued on the front page (72) Inventor Nobuhiro Saito 1-4-1, Chuo, Wako-shi, Saitama Pref. Inside of Honda R & D Co., Ltd. (72) Inventor Masaaki Nanami 1-4-1, Chuo, Wako-shi, Saitama Pref. Within Honda R & D Co., Ltd. (72) Inventor Junji Matsuo 1-4-1 Chuo, Wako-shi, Saitama F-term within Honda R & D Co., Ltd. (reference) 5H018 AA06 AS02 AS03 EE03 EE08 EE17 HH00 HH05 HH08 5H026 AA06 EE02 EE05 EE18 HH00 HH05 HH08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子イオン交換成分を有する電解質膜
(2)と,その電解質膜(2)を挟む一対の電極(3,
4)とを備え,両電極(3,4)は,それぞれ,高分子
イオン交換成分と,撥水性カーボンブラック粒子の表面
に触媒金属を担持させた複数の触媒粒子とからなること
を特徴とする固体高分子型燃料電池。
1. An electrolyte membrane (2) having a polymer ion exchange component and a pair of electrodes (3, 3) sandwiching the electrolyte membrane (2).
4), wherein each of the electrodes (3, 4) comprises a polymer ion-exchange component and a plurality of catalyst particles having a catalyst metal supported on the surface of water-repellent carbon black particles. Solid polymer fuel cell.
【請求項2】 前記カーボンブラック粒子は,60℃の
飽和水蒸気圧下における水吸着量AがA≦80cc/g
である,といった撥水性を持ち,前記高分子イオン交換
成分の配合重量をWpとし,また前記カーボンブラック
粒子の配合重量をWcとしたとき,両配合重量Wp,W
cの比Wp/Wcが0.4≦Wp/Wc≦1.25であ
る,請求項1記載の固体高分子型燃料電池。
2. The carbon black particles have a water adsorption amount A at 60 ° C. under a saturated steam pressure of A ≦ 80 cc / g.
When the compounding weight of the polymer ion exchange component is Wp and the compounding weight of the carbon black particles is Wc, both compounding weights Wp and W
2. The polymer electrolyte fuel cell according to claim 1, wherein the ratio c of W is 0.4 ≦ Wp / Wc ≦ 1.25.
【請求項3】 両電極(3,4)における前記高分子イ
オン交換成分は芳香族炭化水素系高分子のスルホン化物
であり,また前記触媒粒子の分散度Dは2%<D<9%
であって,その分散度Dは, D=[{(Ts/Tp)−(As/Ap)}/(Ts/
Tp)]×100(%) の式に則って求められ,式中,Tpは触媒粒子中の理論
触媒金属濃度,Tsは前記スルホン化物中の理論S濃
度,Apは触媒粒子中の実測触媒金属濃度およびAsは
前記スルホン化物中の実測S濃度である,請求項1また
は2記載の固体高分子型燃料電池。
3. The polymer ion exchange component in both electrodes (3, 4) is a sulfonated aromatic hydrocarbon polymer, and the degree of dispersion D of the catalyst particles is 2% <D <9%.
And the degree of dispersion D is D = [{(Ts / Tp)-(As / Ap)} / (Ts /
Tp)] × 100 (%), where Tp is the theoretical catalyst metal concentration in the catalyst particles, Ts is the theoretical S concentration in the sulfonate, and Ap is the measured catalyst metal in the catalyst particles. 3. The polymer electrolyte fuel cell according to claim 1, wherein the concentration and As are measured S concentrations in the sulfonated product.
JP2000289078A 2000-09-22 2000-09-22 Polymer electrolyte fuel cell Expired - Fee Related JP3433170B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000289078A JP3433170B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell
DE10146506A DE10146506B4 (en) 2000-09-22 2001-09-21 Solid polymer fuel cell
CA002357590A CA2357590C (en) 2000-09-22 2001-09-21 Solid polymer fuel cell
US09/956,828 US7022426B2 (en) 2000-09-22 2001-09-21 Solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289078A JP3433170B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002100368A true JP2002100368A (en) 2002-04-05
JP3433170B2 JP3433170B2 (en) 2003-08-04

Family

ID=18772544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289078A Expired - Fee Related JP3433170B2 (en) 2000-09-22 2000-09-22 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3433170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109643A (en) * 2001-09-28 2003-04-11 Nippon Steel Corp Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109643A (en) * 2001-09-28 2003-04-11 Nippon Steel Corp Fuel cell

Also Published As

Publication number Publication date
JP3433170B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
Liu et al. Development of novel self-humidifying composite membranes for fuel cells
EP1045467B1 (en) Layered carbon electrode for electrochemical cells
JP5924530B2 (en) Gas diffusion layer for fuel cells
WO2011074327A1 (en) Gas diffusion layer for fuel cell, and membrane electrode assembly using said gas diffusion layer for fuel cell
JP2008520078A (en) Gas diffusion media with microporous bilayer
JP3113499B2 (en) Electrode for imparting ionic conductivity and electrode-electrolyte assembly and cell using such electrode
JP7363956B2 (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP2023126365A (en) Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JP3433169B2 (en) Polymer electrolyte fuel cell
JP3433172B2 (en) Polymer electrolyte fuel cell
US20050147868A1 (en) Fuel cell
JP2001307749A (en) Solid polymer fuel battery and stack of the same
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP4180556B2 (en) Polymer electrolyte fuel cell
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
JP3433171B2 (en) Polymer electrolyte fuel cell
JP2016081624A (en) Manufacturing method of electrode catalyst layer for fuel cell, and electrode catalyst layer for fuel cell
JP3433170B2 (en) Polymer electrolyte fuel cell
JP2002216777A (en) Polymer electrolyte fuel cell
US7022426B2 (en) Solid polymer fuel cell
JP3608564B2 (en) Fuel cell and manufacturing method thereof
WO2022124407A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
WO2023106392A1 (en) Catalyst composition and catalyst layer for fuel cells using catalyst composition
JP4161259B2 (en) Oxygen electrode catalyst for fuel cell and method for producing electrode catalyst for fuel cell
US20220173412A1 (en) Electrode forming composition, electrode, method for manufacturing the electrode, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees