JP2002098158A - Rotational support device for turbocharger - Google Patents

Rotational support device for turbocharger

Info

Publication number
JP2002098158A
JP2002098158A JP2000287855A JP2000287855A JP2002098158A JP 2002098158 A JP2002098158 A JP 2002098158A JP 2000287855 A JP2000287855 A JP 2000287855A JP 2000287855 A JP2000287855 A JP 2000287855A JP 2002098158 A JP2002098158 A JP 2002098158A
Authority
JP
Japan
Prior art keywords
ball
ball bearing
raceway
lubricating oil
turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000287855A
Other languages
Japanese (ja)
Other versions
JP2002098158A5 (en
Inventor
Yutaka Kondo
豊 近藤
Kenji Yakura
健二 矢倉
Norifumi Ikeda
憲文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000287855A priority Critical patent/JP2002098158A/en
Publication of JP2002098158A publication Critical patent/JP2002098158A/en
Publication of JP2002098158A5 publication Critical patent/JP2002098158A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Abstract

PROBLEM TO BE SOLVED: To realize a rotational support device for turbocharger in which a rotational resistance (running torque) is low, and which has a low-level of vibration and noises. SOLUTION: In a ball bearing 25 which composes the rotational support device for the turbocharger, a radius of curvature r9a of a cross-section of an outer ring raceway 9a is set at 52 to 54% of a diameter d13 of each ball 13. Further, a radius of curvature r11a of a cross-section of an inner ring raceway 11a is set at 53 to 55% of the diameter α13 of the ball 13. Furthermore, a contact angle α of each ball is set at 8 to 20 deg.. As a result, a contact area of a contact part between a rolling contact surface of each ball 13 and the outer ring raceway 9a or the inner ring raceway 11a is reduced, and a slip to be generated at the contact part also becomes small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明のターボチャージャ用
回転支持装置は、例えば自動車用エンジンの出力を向上
させる為のターボチャージャに組み込み、タービンとイ
ンペラとを接続する回転軸をハウジングに対し、回転自
在に支持する為に利用する。特に本発明は、互いに嵌合
する構成部材の内周面と外周面との間の隙間空間に潤滑
油を送り込み、この送り込まれた潤滑油により上記回転
軸の振動を減衰させる(伝わりにくくする)、所謂オイ
ルフィルムダンパを設けたターボチャージャ用回転支持
装置の、回転抵抗(回転トルク)の低減を図るものであ
る。
BACKGROUND OF THE INVENTION A rotary support device for a turbocharger according to the present invention is incorporated in a turbocharger for improving the output of an automobile engine, for example, and a rotary shaft connecting a turbine and an impeller is rotatable with respect to a housing. Use to support. In particular, according to the present invention, lubricating oil is fed into a clearance space between the inner peripheral surface and the outer peripheral surface of the component members that are fitted to each other, and the vibration of the rotary shaft is attenuated (made difficult to transmit) by the supplied lubricating oil. This is intended to reduce rotation resistance (rotation torque) of a rotation support device for a turbocharger provided with a so-called oil film damper.

【0002】[0002]

【従来の技術】エンジンの出力を排気量を変えずに増大
させる為、エンジンに送り込む空気を排気のエネルギに
より圧縮するターボチャージャが、広く使用されてい
る。このターボチャージャは、排気のエネルギを、排気
通路の途中に設けたタービンにより回収し、このタービ
ンをその端部に固定した回転軸により、給気通路の途中
に設けたコンプレッサのインペラを回転させる。このイ
ンペラは、エンジンの運転に伴って数万乃至は十数万mi
n-1 (r.p.m.)の速度で回転し、上記給気通路を通じて
エンジンに送り込まれる空気を圧縮する。
2. Description of the Related Art In order to increase the output of an engine without changing the displacement, a turbocharger for compressing air sent to the engine by the energy of the exhaust is widely used. This turbocharger collects the energy of exhaust gas by a turbine provided in the middle of the exhaust passage, and rotates an impeller of a compressor provided in the middle of the air supply passage by a rotating shaft fixed to an end of the turbine. This impeller can be tens of thousands or hundreds of thousands of mi with the operation of the engine.
It rotates at a speed of n -1 (rpm) and compresses the air sent to the engine through the air supply passage.

【0003】図2〜3は、この様なターボチャージャの
1例を示している。このターボチャージャは、排気流路
1を流通する排気により、回転軸2の一端(図2の左
端)に固定したタービン3を回転させる。この回転軸2
の回転は、この回転軸2の他端(図2の右端)に固定し
たインペラ4に伝わり、このインペラ4が給気流路5内
で回転する。この結果、この給気流路5の上流端開口か
ら吸引された空気が圧縮されて、ガソリン、軽油等の燃
料と共にエンジンのシリンダ室内に送り込まれる。この
様なターボチャージャの回転軸2は、数万〜十数万min
-1 (r.p.m.)もの高速で回転し、しかも、エンジンの
運転状況に応じてその回転速度が頻繁に変化する。従っ
て、上記回転軸2は、軸受ハウジング6に対し、小さな
回転抵抗で支持する必要がある。
FIGS. 2 and 3 show an example of such a turbocharger. The turbocharger rotates the turbine 3 fixed to one end (the left end in FIG. 2) of the rotating shaft 2 by exhaust gas flowing through the exhaust flow path 1. This rotating shaft 2
Is transmitted to the impeller 4 fixed to the other end (the right end in FIG. 2) of the rotating shaft 2, and the impeller 4 rotates in the air supply passage 5. As a result, the air sucked from the upstream end opening of the air supply passage 5 is compressed and sent into the cylinder chamber of the engine together with fuel such as gasoline or light oil. The rotation axis 2 of such a turbocharger is tens of thousands to several hundred thousand minutes.
It rotates at a speed as high as -1 (rpm), and its rotation speed changes frequently depending on the operating condition of the engine. Therefore, the rotating shaft 2 needs to be supported by the bearing housing 6 with a small rotation resistance.

【0004】この為に従来から、上記軸受ハウジング6
の内側に上記回転軸2を第一、第二の玉軸受7、8によ
り、回転自在に支持している。これら第一、第二の玉軸
受7、8は、図4に示す様なアンギュラ型玉軸受であ
る。これら第一、第二の玉軸受7、8の構成は、基本的
には同じである。但し、これら両玉軸受7、8のうち、
高温の排気が流通する排気流路1に近く、温度上昇が著
しい第一の玉軸受7の潤滑条件は、低温の空気が流通す
る給気流路5に近く、温度上昇がそれ程著しくはない、
第二の玉軸受8に比べて厳しい。
For this reason, conventionally, the bearing housing 6
The above-mentioned rotary shaft 2 is rotatably supported by first and second ball bearings 7 and 8 on the inside. These first and second ball bearings 7, 8 are angular type ball bearings as shown in FIG. The configuration of these first and second ball bearings 7 and 8 is basically the same. However, of these two ball bearings 7 and 8,
The lubrication condition of the first ball bearing 7 near the exhaust passage 1 through which high-temperature exhaust flows and the temperature rise is remarkable is close to the air supply passage 5 through which low-temperature air flows, and the temperature rise is not so significant.
It is severer than the second ball bearing 8.

【0005】この様な第一、第二の玉軸受7、8は、内
周面に外輪軌道9を有する外輪10と、外周面に内輪軌
道11を有する内輪12と、これら外輪軌道9と内輪軌
道11との間に転動自在に設けられた複数個の玉13、
13とを備える。又、これら各玉13、13は、円環状
の保持器14に設けた複数のポケット15内に、それぞ
れ1個ずつ転動自在に保持している。又、図示の例の場
合には、上記内輪12を、片側の肩部をなくした、所謂
カウンタボアとしている。又、上記保持器14の外周面
を、上記外輪10の内周面に近接対向させる事により、
この保持器14の直径方向位置をこの外輪10により規
制する、外輪案内としている。
The first and second ball bearings 7 and 8 have an outer race 10 having an outer raceway 9 on an inner peripheral surface, an inner race 12 having an inner raceway 11 on an outer peripheral surface, and the outer race 9 and the inner race. A plurality of balls 13 provided so as to roll freely between the track 11 and
13 is provided. Each of these balls 13 is held in a plurality of pockets 15 provided in an annular holder 14 so as to be able to roll one by one. In the illustrated example, the inner ring 12 has a so-called counter bore in which one shoulder is not provided. In addition, by making the outer peripheral surface of the retainer 14 closely approach the inner peripheral surface of the outer ring 10,
An outer ring guide for restricting the diametric position of the retainer 14 by the outer ring 10 is provided.

【0006】この様な第一、第二の玉軸受7、8のうち
の第一の玉軸受7は、上記外輪10を前記軸受ハウジン
グ6の一端部(図2〜3の左端部)に内嵌すると共に、
上記内輪12を上記回転軸2の一端部に外嵌固定する事
により、この回転軸2の一端部を上記軸受ハウジング6
に対し、回転自在に支持している。一方、上記第二の玉
軸受8は、外輪10を軸受ハウジング6の他端部(図2
〜3の右端部)に内嵌すると共に、内輪12を上記回転
軸2の他端部に外嵌固定する事により、この回転軸2の
他端部を上記軸受ハウジング6に対し、回転自在に支持
している。又、上記第一、第二の玉軸受7、8を構成す
る1対の外輪10、10には、圧縮ばね16により互い
に離れる方向の弾力を付与している。即ち、これら両外
輪10、10の互いに対向する端面にそれぞれ押圧環1
7、17を突き合わせ、これら両押圧環17、17同士
の間に上記圧縮ばね16を挟持している。従って、上記
第一、第二の玉軸受7、8は、互いに接触角の方向を逆
にした状態{背面組み合せ(DB)型}で組み込まれて
いる。
The first ball bearing 7 of the first and second ball bearings 7 and 8 has the outer ring 10 inside one end of the bearing housing 6 (the left end in FIGS. 2 and 3). Along with fitting
The inner ring 12 is externally fitted and fixed to one end of the rotating shaft 2 so that one end of the rotating shaft 2 is connected to the bearing housing 6.
, And are rotatably supported. On the other hand, the second ball bearing 8 connects the outer ring 10 to the other end of the bearing housing 6 (FIG. 2).
3 and the inner ring 12 is externally fixed to the other end of the rotary shaft 2 so that the other end of the rotary shaft 2 is rotatable with respect to the bearing housing 6. I support it. Further, a pair of outer races 10, 10 constituting the first and second ball bearings 7, 8 are provided with elasticity in a direction away from each other by a compression spring 16. That is, the pressing rings 1 are respectively attached to the end faces of the outer rings 10 and 10 facing each other.
The compression springs 16 are sandwiched between the pressing rings 17 and 17. Therefore, the first and second ball bearings 7 and 8 are assembled in a state where the directions of the contact angles are reversed with each other (back-side combination (DB) type).

【0007】更に、上記軸受ハウジング6を納めたケー
シング18内に給油通路19を設けて、この軸受ハウジ
ング6と上記各玉軸受7、8を潤滑自在としている。即
ち、ターボチャージャを装着したエンジンの運転時に潤
滑油は、上記給油通路19の上流端に設けたフィルタ2
0により異物を除去されて、上記ケーシング18の内周
面と上記軸受ハウジング6の外周面との間に設けた、円
環状の隙間空間21に送り込まれる。尚、この隙間空間
21は、上記軸受ハウジング6とケーシング18との嵌
合を隙間嵌にする事により設けている。そして、この隙
間空間21を上記潤滑油で満たす事により、上記軸受ハ
ウジング6の外周面と上記ケーシング18の内周面との
間に全周に亙って油膜(オイルフィルム)を形成し、こ
の軸受ハウジング6の振動を上記ケーシング18に伝わ
りにくくしている。言い換えれば、上記隙間空間21に
満たされた潤滑油によって、上記回転軸2の回転に基づ
く振動を減衰させている(オイルフィルムダンパ)。更
に、上記隙間空間21に送り込まれた潤滑油の一部は、
上記外輪10に隣接する押圧環17に設けたノズル孔2
2から、上記第一の玉軸受7を構成する内輪12の外周
面に向け、径方向外方から斜めに噴出し、この第一の玉
軸受7を潤滑(オイルジェット潤滑)する。この様にし
て第一の玉軸受7に向けて噴出した潤滑油は、この第一
の玉軸受7の他、上記第二の玉軸受8も潤滑してから、
排油口23より排出される。
Further, an oil supply passage 19 is provided in a casing 18 containing the bearing housing 6 so that the bearing housing 6 and the ball bearings 7 and 8 can be lubricated. That is, during operation of the engine equipped with the turbocharger, the lubricating oil is supplied to the filter 2 provided at the upstream end of the oil supply passage 19.
After the foreign matter is removed by 0, the foreign matter is fed into an annular gap space 21 provided between the inner peripheral surface of the casing 18 and the outer peripheral surface of the bearing housing 6. The gap 21 is provided by fitting the bearing housing 6 and the casing 18 into a gap. By filling the gap space 21 with the lubricating oil, an oil film (oil film) is formed over the entire circumference between the outer peripheral surface of the bearing housing 6 and the inner peripheral surface of the casing 18. The vibration of the bearing housing 6 is hardly transmitted to the casing 18. In other words, the vibration caused by the rotation of the rotating shaft 2 is attenuated by the lubricating oil filled in the gap space 21 (oil film damper). Further, part of the lubricating oil sent into the gap space 21 is:
Nozzle hole 2 provided in pressing ring 17 adjacent to outer ring 10
2, the first ball bearing 7 is lubricated (oil jet lubrication) toward the outer peripheral surface of the inner ring 12 constituting the first ball bearing 7 from the radially outward direction. The lubricating oil jetted toward the first ball bearing 7 in this manner lubricates not only the first ball bearing 7 but also the second ball bearing 8,
The oil is discharged from the oil discharge port 23.

【0008】尚、図示の例の場合、軸受ハウジング6の
内周面と第一、第二の玉軸受7、8の外周面との間に
も、それぞれ隙間空間24、24が存在している。そし
て、これら各隙間空間24、24にも上記潤滑油が満た
されており、上記回転軸2の回転に基づく振動の減衰を
図っている。又、図示は省略するが、軸受ハウジングと
ケーシングとを一体に形成する場合もある。この様な場
合は、少なくとも何れかの玉軸受の外周面と軸受ハウジ
ング(ケーシング)の内周面との間に隙間空間を設け、
この隙間空間を上述の様に潤滑油で満たす事により、回
転軸の回転に基づく振動の減衰を図る。又、この隙間空
間に送り込まれた潤滑油の一部を上記玉軸受に向けて送
り込む事により、この玉軸受の潤滑を行なう。
In the case of the illustrated example, gap spaces 24 are also provided between the inner peripheral surface of the bearing housing 6 and the outer peripheral surfaces of the first and second ball bearings 7 and 8, respectively. . Each of the clearance spaces 24 is also filled with the lubricating oil, thereby attenuating vibration caused by rotation of the rotating shaft 2. Although not shown, the bearing housing and the casing may be integrally formed. In such a case, a clearance space is provided between at least one of the outer peripheral surface of the ball bearing and the inner peripheral surface of the bearing housing (casing).
By filling the gap with the lubricating oil as described above, the vibration due to the rotation of the rotating shaft is attenuated. Further, by lubricating a part of the lubricating oil fed into the gap toward the ball bearing, the ball bearing is lubricated.

【0009】[0009]

【発明が解決しようとする課題】ところで、上述の様な
従来のターボチャージャ用回転支持装置の場合、回転軸
2の回転に基づく振動の減衰を図るべく、軸受ハウジン
グ6の外周面とケーシング18の内周面との間の隙間空
間21に多量の潤滑油を送り込み、この隙間空間21内
にこの潤滑油を高い圧力で存在させている。この為、こ
の隙間空間21からノズル孔22を通じて多量の潤滑油
が、第一の玉軸受7に向けて噴出する。又、これと共
に、第二の玉軸受8にも多量の潤滑油が供給される。こ
の様に第一、第二の玉軸受7、8に多量の潤滑油が供給
される事は、これら各玉軸受7、8の潤滑及び冷却を図
る面からは好ましい。ところが、この様に多量の潤滑油
が第一、第二の玉軸受7、8に供給されると、これら第
一、第二の玉軸受7、8の回転抵抗(回転トルク)が大
きくなり、ターボチャージャのレスポンス(アクセルに
対する追従性)が悪くなる可能性がある。
By the way, in the case of the above-mentioned conventional rotary support device for a turbocharger, in order to attenuate the vibration caused by the rotation of the rotary shaft 2, the outer peripheral surface of the bearing housing 6 and the casing 18 are formed. A large amount of lubricating oil is fed into a gap space 21 between the inner peripheral surface and the lubricating oil, and the lubricating oil is made to exist in the gap space 21 at a high pressure. Therefore, a large amount of lubricating oil is ejected from the gap space 21 through the nozzle hole 22 toward the first ball bearing 7. At the same time, a large amount of lubricating oil is also supplied to the second ball bearing 8. Supplying a large amount of lubricating oil to the first and second ball bearings 7 and 8 in this manner is preferable from the viewpoint of lubricating and cooling the ball bearings 7 and 8. However, when such a large amount of lubricating oil is supplied to the first and second ball bearings 7, 8, the rotation resistance (rotation torque) of these first and second ball bearings 7, 8 increases, The response of the turbocharger (the ability to follow the accelerator) may be degraded.

【0010】上記第一、第二の玉軸受7、8の回転抵抗
の低減を図る為に、これら第一、第二の玉軸受7、8に
供給する潤滑油の量を可及的に少なくする事が考えられ
る。具体的には、例えば上記隙間空間21に送り込む潤
滑油を少なくしたり、上記ノズル孔22の内径を小さく
したりする事が考えられる。ところが、この様に潤滑油
の供給量を少なくすると、これら第一、第二の玉軸受
7、8の潤滑性及び冷却性が低下する他、次の様な不都
合が生じる可能性がある。即ち、上記隙間空間21に送
り込む潤滑油を少なくした場合は、この隙間空間21の
潤滑油の圧力が低下する。この結果、上記回転軸2の回
転に基づく振動の減衰性能が低下し、振動並びに騒音が
大きくなるだけでなく、耐久性が低下する可能性もあ
る。又、上記ノズル孔22の内径を小さくした場合に
は、フィルタ19で除去しきれなかった異物が、このノ
ズル孔22内で詰まる可能性が大きくなる。本発明は、
この様な事情に鑑みて、玉軸受に供給する潤滑油の量を
変えずに、この玉軸受の回転抵抗の低減を図る事によ
り、低振動、低騒音で回転抵抗の小さいターボチャージ
ャ用回転支持装置を実現べく発明したものである。
In order to reduce the rotational resistance of the first and second ball bearings 7 and 8, the amount of lubricating oil supplied to the first and second ball bearings 7 and 8 should be as small as possible. It is possible to do. Specifically, for example, it is conceivable to reduce the amount of lubricating oil fed into the gap space 21 or to reduce the inner diameter of the nozzle hole 22. However, if the supply amount of the lubricating oil is reduced in this way, the lubricity and cooling performance of the first and second ball bearings 7 and 8 are reduced, and the following inconvenience may occur. That is, when the amount of the lubricating oil fed into the gap space 21 is reduced, the pressure of the lubricating oil in the gap space 21 decreases. As a result, the damping performance of the vibration based on the rotation of the rotating shaft 2 is reduced, and not only the vibration and the noise are increased, but also the durability may be reduced. Further, when the inner diameter of the nozzle hole 22 is reduced, the possibility that foreign matter that cannot be completely removed by the filter 19 becomes clogged in the nozzle hole 22 increases. The present invention
In view of such circumstances, by reducing the rotational resistance of the ball bearing without changing the amount of lubricating oil supplied to the ball bearing, a low vibration, low noise and low rotational resistance rotation support for the turbocharger is achieved. It was invented to realize the device.

【0011】[0011]

【課題を解決するための手段】本発明のターボチャージ
ャ用回転支持装置は、前述した従来から知られているタ
ーボチャージャ用回転支持装置と同様に、その一端部に
タービンを、その他端部にインペラを、それぞれ固定し
た回転軸を、軸受ハウジングの内側に回転自在に支持す
る為、これら回転軸の両端部外周面と軸受ハウジングの
内周面との間に玉軸受を、互いに接触角の方向を逆にし
た状態で設けている。そして、この玉軸受は、内周面に
外輪軌道を有する外輪と、外周面に内輪軌道を有する内
輪と、これら外輪軌道と内輪軌道との間に転動自在に設
けられた複数個の玉とを備えている。又、少なくとも何
れかの玉軸受の外周面と上記軸受ハウジングの内周面と
の間と、この軸受ハウジングの外周面とこの軸受ハウジ
ングを納めるケーシングの内周面との間との、少なくと
も何れかの間に設けた円環状の隙間空間に潤滑油を送り
込んでいる。そして、この隙間空間をこの潤滑油で満た
す事により上記回転軸の振動を減衰自在とすると共に、
上記隙間空間に送り込まれた上記潤滑油の一部を上記玉
軸受に向けて供給する事により、この玉軸受の潤滑を行
なう様に構成している。
The rotary support device for a turbocharger according to the present invention has a turbine at one end and an impeller at the other end, similarly to the above-described rotary support device for a turbocharger. In order to rotatably support the fixed rotating shafts inside the bearing housing, ball bearings are provided between the outer circumferential surfaces of both ends of the rotating shafts and the inner circumferential surface of the bearing housing. It is provided in an inverted state. The ball bearing includes an outer ring having an outer raceway on an inner peripheral surface, an inner racer having an inner raceway on an outer peripheral surface, and a plurality of balls rotatably provided between the outer raceway and the inner raceway. It has. Also, at least one of between an outer peripheral surface of at least one of the ball bearings and an inner peripheral surface of the bearing housing, and between an outer peripheral surface of the bearing housing and an inner peripheral surface of a casing for housing the bearing housing. The lubricating oil is fed into the annular gap space provided between them. By filling the gap with the lubricating oil, the vibration of the rotating shaft can be attenuated freely.
The lubrication of the ball bearing is performed by supplying a part of the lubricating oil fed into the gap space toward the ball bearing.

【0012】特に、本発明のターボチャージャ用回転支
持装置に於いては、上記隙間空間から潤滑油を送り込ま
れる玉軸受に関して、上記外輪軌道の断面形状の曲率半
径を上記各玉の直径の52〜54%とすると共に、同じ
く上記内輪軌道の断面形状の曲率半径を上記各玉の直径
の53〜55%とし、同じく上記接触角を8〜20°と
している。尚、この接触角が8〜20°の範囲にあるの
は、常温時の状態である。但し、運転時にもこの接触角
が8〜20°の範囲にある事が、好ましい。又、上記隙
間空間から潤滑油を送り込まれる玉軸受が、上記回転軸
の両端部のうちのタービン側端部を支持する玉軸受であ
る場合には、この玉軸受の接触角を14〜18°とする
事が、より好ましい。
In particular, in the rotary support device for a turbocharger according to the present invention, regarding the ball bearing into which the lubricating oil is fed from the clearance, the radius of curvature of the cross-sectional shape of the outer raceway is set to be 52 to the diameter of each ball. Similarly, the radius of curvature of the cross-sectional shape of the inner raceway is 53 to 55% of the diameter of each ball, and the contact angle is 8 to 20 °. Note that the contact angle is in the range of 8 to 20 ° at normal temperature. However, it is preferable that this contact angle be in the range of 8 to 20 ° even during operation. Further, when the ball bearing into which the lubricating oil is fed from the clearance space is a ball bearing that supports the turbine-side end of the both ends of the rotary shaft, the contact angle of the ball bearing is 14 to 18 °. Is more preferable.

【0013】[0013]

【作用】上述の様に構成する本発明のターボチャージャ
用回転支持装置の場合には、玉軸受に供給する潤滑油の
量を少なくする事なく、回転抵抗(回転トルク)の低減
を図れる。即ち、上記玉軸受の外輪軌道の断面形状の曲
率半径を各玉の直径の52〜54%としている為、これ
ら各玉の転動面と外輪軌道との接触部の接触面積(接触
楕円の大きさ)を小さくでき、しかも、この接触部の接
触圧を適正に保てる。この為、上記玉軸受の耐久性を確
保しつつ、回転抵抗の低減を図れる。尚、上記曲率半径
が52%未満の場合には、上記接触面積が大きくなり過
ぎて、回転抵抗が大きくなる。これに対して、上記曲率
半径が54%を越えた場合には、上記接触面積が小さく
なり過ぎて、この接触部の接触圧が増大し、上記各玉の
転動面や外輪軌道に剥離等の損傷が発生し易くなる。
With the rotary support device for a turbocharger of the present invention configured as described above, the rotation resistance (rotation torque) can be reduced without reducing the amount of lubricating oil supplied to the ball bearings. That is, since the radius of curvature of the cross-sectional shape of the outer raceway of the ball bearing is 52 to 54% of the diameter of each ball, the contact area of the contact portion between the rolling surface of each ball and the outer raceway (the size of the contact ellipse) ) Can be reduced, and the contact pressure of the contact portion can be appropriately maintained. For this reason, it is possible to reduce the rotational resistance while ensuring the durability of the ball bearing. If the radius of curvature is less than 52%, the contact area becomes too large and the rotational resistance increases. On the other hand, if the radius of curvature exceeds 54%, the contact area becomes too small, the contact pressure of this contact portion increases, and the rolling surface of each ball and the outer ring raceway separate. Damage is likely to occur.

【0014】又、内輪軌道の断面形状の曲率半径を上記
各玉の直径の53〜55%としている為、上記外輪軌道
の場合と同様に、上記各玉の転動面と内輪軌道との接触
部の接触面積(接触楕円の大きさ)を小さくでき、しか
も、この接触部の接触圧を適正に保てる。この為、上記
玉軸受の耐久性を確保しつつ、回転抵抗の低減を図れ
る。尚、上記曲率半径が53%未満の場合には、上記接
触面積が大きくなり過ぎて、回転抵抗が大きくなる。こ
れに対して、上記曲率半径が55%を越えた場合には、
上記接触面積が小さくなり過ぎて、この接触部の接触圧
が増大し、上記各玉の転動面や内輪軌道に剥離等の損傷
が発生し易くなる。
Also, since the radius of curvature of the cross-sectional shape of the inner raceway is 53 to 55% of the diameter of each ball, the contact between the rolling surface of each ball and the inner raceway is the same as in the case of the outer raceway. The contact area (the size of the contact ellipse) of the contact portion can be reduced, and the contact pressure of the contact portion can be appropriately maintained. For this reason, it is possible to reduce the rotational resistance while ensuring the durability of the ball bearing. If the radius of curvature is less than 53%, the contact area becomes too large and the rotational resistance increases. On the other hand, when the radius of curvature exceeds 55%,
When the contact area becomes too small, the contact pressure of the contact portion increases, and the rolling surface of each ball and the inner ring raceway are liable to be damaged such as peeling.

【0015】尚、上記外輪軌道と内輪軌道とで曲率半径
の規制範囲が少し異なる(外輪軌道の曲率半径の規制範
囲が52〜54%であるのに対し、内輪軌道の曲率半径
の規制範囲が53〜55%である)理由は、次の通りで
ある。即ち、上記外輪軌道に関する接触面積と、上記内
輪軌道に関する接触面積とが同じ場合、上記各玉の転動
面と外輪軌道との接触圧(POUT )は、これら各玉に加
わる遠心力分だけ、上記内輪軌道の接触圧(PIN)より
も大きくなる(POUT >PIN)。この為、この接触圧
(POUT )が大きくなる分だけ、上記各玉の転動面と外
輪軌道との接触部の接触面積を確保し、この接触圧(P
OUT )の低減を図る必要がある。この様な理由から、上
記外輪軌道の曲率半径の規制範囲と上記内輪軌道の曲率
半径の規制範囲とを、上述の様に少しだけ異ならせてい
る。
The range of the radius of curvature is slightly different between the outer raceway and the inner raceway (the range of the radius of curvature of the outer raceway is 52 to 54%, whereas the range of the radius of curvature of the inner raceway is less. The reason is as follows. That is, when the contact area on the outer raceway is the same as the contact area on the inner raceway, the contact pressure (P OUT ) between the rolling surface of each ball and the outer raceway is equal to the centrifugal force applied to each ball. , And becomes larger than the contact pressure (P IN ) of the inner raceway (P OUT > P IN ). For this reason, the contact area of the contact portion between the rolling surface of each ball and the outer ring raceway is secured by an amount corresponding to the increase in the contact pressure (P OUT ).
OUT ) must be reduced. For this reason, the range of the radius of curvature of the outer raceway and the range of the radius of curvature of the inner raceway are slightly different as described above.

【0016】又、上記各玉の接触角を8〜20°として
いる為、上記各玉の転動面と外輪軌道及び内輪軌道との
接触部で生じる滑りを小さくでき、接触面圧が過大にな
る事も防止できる。この為、上記滑りに基づく回転抵抗
の増大や振動を低減でき、しかも、耐久性の確保を図れ
る。尚、上記接触角が20°を越えた場合には、上記滑
りが著しくなり、この滑りに基づく回転抵抗や振動が増
大する。これに対して、上記接触角が8°未満の場合に
は、上記各玉の転動面と外輪軌道及び内輪軌道とのラジ
アル隙間が小さくなり過ぎる。この結果、上記接触部の
接触圧が過大になり、上記各軌道や各玉の転動面に剥離
等の損傷が発生し易くなる。
Further, since the contact angle of each of the balls is set to 8 to 20 °, slip generated at the contact portion between the rolling surface of each of the balls and the outer raceway and the inner raceway can be reduced, and the contact surface pressure becomes excessively large. Can be prevented. For this reason, an increase in rotational resistance and vibration due to the slip can be reduced, and durability can be ensured. If the contact angle exceeds 20 °, the slip becomes remarkable, and the rotational resistance and vibration based on the slip increase. On the other hand, when the contact angle is less than 8 °, the radial gap between the rolling surface of each ball and the outer raceway and the inner raceway is too small. As a result, the contact pressure of the contact portion becomes excessive, and damage such as peeling is likely to occur on the rolling surface of each track or each ball.

【0017】本発明のターボチャージャ用回転支持装置
は、上述の様な理由により、上記玉軸受に供給する潤滑
油の量を少なくする事なく、この玉軸受の回転抵抗を低
減する事ができる。この結果、オイルフィルムバンパの
減衰性能、並びに、上記玉軸受の潤滑性及び冷却性を低
下する事なく、低振動、低騒音で回転抵抗の小さいター
ボチャージャ用回転支持装置を実現できる。
The rotation supporting device for a turbocharger according to the present invention can reduce the rotational resistance of the ball bearing without reducing the amount of lubricating oil supplied to the ball bearing for the above-described reason. As a result, a low-vibration, low-noise, low-rotational-rotation support device for a turbocharger can be realized without lowering the damping performance of the oil film bumper and the lubrication and cooling properties of the ball bearing.

【0018】[0018]

【発明の実施の形態】図1は、本発明の実施の形態の1
例を示している。尚、本発明の特徴は、ターボチャージ
ャ用回転支持装置を構成する玉軸受25の形状を工夫す
る事により、回転抵抗の低減を図る点にある。上記ター
ボチャージャ用回転支持装置の全体構成に就いては、前
述の図2〜3に示した構造を含み、従来から知られてい
る、所謂オイルフィルムダンパを設けた回転支持装置と
同様であるから、同等部分に関する図示並びに説明は、
省略若しくは簡略にし、以下、本発明の特徴部分を中心
に説明する。
FIG. 1 shows a first embodiment of the present invention.
An example is shown. A feature of the present invention is that the rotational resistance is reduced by devising the shape of the ball bearing 25 constituting the rotation support device for a turbocharger. The overall structure of the turbocharger rotation support device includes the structure shown in FIGS. 2 and 3 and is the same as a conventionally known rotation support device provided with a so-called oil film damper. , For illustrations and explanations of equivalent parts,
The description will be omitted or simplified, and the following description will focus on features of the present invention.

【0019】本例のターボチャージャ用回転支持装置を
構成する上記玉軸受25は、内周面に外輪軌道9aを有
する外輪10と、外周面に内輪軌道11aを有する内輪
12と、これら外輪軌道9aと内輪軌道11aとの間に
転動自在に設けられた複数個の玉13とを備える。そし
て、この玉軸受25を、例えば図2〜3に示す様に、回
転軸2の両端部と軸受ハウジング6の内周面との間に、
互いに接触角αの方向を逆にした状態で組み込む。
The ball bearing 25 constituting the rotary support device for a turbocharger of this embodiment includes an outer ring 10 having an outer raceway 9a on an inner peripheral surface, an inner race 12 having an inner raceway 11a on an outer peripheral surface, and the outer raceway 9a. And a plurality of balls 13 provided to be able to roll freely between the inner ring raceway 11a. Then, as shown in FIGS. 2 and 3, for example, the ball bearing 25 is placed between both ends of the rotating shaft 2 and the inner peripheral surface of the bearing housing 6.
The contact angles α are reversed with respect to each other.

【0020】又、本例の場合、上記外輪軌道9aの断面
形状の曲率半径r9aを、上記各玉13の直径d13の52
〜54%{r9a=(0.52〜0.54)d13}として
いる。又、上記内輪軌道11aの断面形状の曲率半径r
11a を、上記各玉13の直径d13の53〜55%{r
11a =(0.53〜0.55)d13}としている。更に
は、これら各玉13の接触角αを、8〜20°としてい
る。尚、この接触角αが8〜20°の範囲にあるのは、
常温時の状態である。但し、運転時にも上記接触角αが
8〜20°の範囲にあるのが好ましい。
In the case of the present embodiment, the radius of curvature r 9a of the cross-sectional shape of the outer raceway 9a is set to 52 of the diameter d 13 of each ball 13.
5454% {r 9a = (0.52-0.54) d 13 }. Also, the radius of curvature r of the cross-sectional shape of the inner raceway 11a
11a is 53 to 55% of the diameter d 13 of each ball 13 {r
11a = is set to (0.53~0.55) d 13}. Further, the contact angle α of each of the balls 13 is set to 8 to 20 °. The reason why the contact angle α is in the range of 8 to 20 ° is that
This is the state at normal temperature. However, it is preferable that the contact angle α is in the range of 8 to 20 ° even during operation.

【0021】又、上記回転軸2の両端部のうちのタービ
ン3側の端部(図2の左端部)を支持する場合には、上
記接触角αを14〜18°とする事が、より好ましい。
即ち、図2に示す様に、上記回転軸2の両端部のうちの
タービン3側の端部は、高温の排気が流通する排気流路
1に近い為、低温の空気が流通する給気流路5に近いイ
ンペラ4側の端部(図2の右端部)に比べて、温度上昇
が著しい。この為、運転時に上記各玉13の接触角αが
初期設定角度よりも大きく変化し易く、次述する作用を
発揮しにくくなる可能性がある。従って、タービン3側
の端部を支持する場合には、上記インペラ4側の端部を
支持する場合に比べて、上記接触角αの範囲をより厳密
に規制する必要がある。この様な理由により、上記ター
ビン3側の端部(図2の左端部)を支持する場合には、
上記接触角αを上述の様な範囲とする事が、より好まし
い。
When supporting the end of the rotating shaft 2 on the turbine 3 side (the left end in FIG. 2), the contact angle α is preferably set to 14 to 18 °. preferable.
That is, as shown in FIG. 2, the end of the rotating shaft 2 on the turbine 3 side of the two ends is close to the exhaust passage 1 through which the high-temperature exhaust flows, so that the supply passage through which the low-temperature air flows. The temperature rise is remarkable as compared to the end near the impeller 4 (the right end in FIG. 2). Therefore, during operation, the contact angle α of each of the balls 13 tends to change more than the initially set angle, which may make it difficult to exert the operation described below. Therefore, when supporting the end on the turbine 3 side, the range of the contact angle α needs to be more strictly regulated than when supporting the end on the impeller 4 side. For such a reason, when supporting the end on the turbine 3 side (the left end in FIG. 2),
It is more preferable that the contact angle α be in the above range.

【0022】上述の様に構成する玉軸受25を組み込ん
だ、本発明のターボチャージャ用回転支持装置の場合に
は、この玉軸受25に供給する潤滑油の量を少なくする
事なく、回転抵抗(回転トルク)の低減を図れる。即
ち、この玉軸受25の外輪軌道9aの断面形状の曲率半
径r9aを各玉13の直径d13の52〜54%としている
為、これら各玉13の転動面と外輪軌道9aとの接触部
の接触面積(接触楕円の大きさ)を小さくでき、しか
も、この接触部の接触圧を適正に保てる。この為、上記
玉軸受25の耐久性を確保しつつ、回転抵抗の低減を図
れる。尚、上記曲率半径r9aが52%未満の場合には、
上記接触面積が大きくなり過ぎて、回転抵抗が大きくな
る。これに対して、上記曲率半径r9aが54%を越えた
場合には、上記接触面積が小さくなり過ぎて、この接触
部の接触圧が増大し、上記各玉13の転動面や外輪軌道
9aに剥離等の損傷が発生し易くなる。
In the case of the rotary support device for a turbocharger according to the present invention in which the ball bearing 25 constructed as described above is incorporated, the rotational resistance (rotation resistance) is reduced without reducing the amount of lubricating oil supplied to the ball bearing 25. Rotation torque) can be reduced. That is, because of the curvature radius r 9a of the cross-sectional shape of the outer ring raceway 9a of the ball bearing 25 and 52 to 54% of the diameter d 13 of each ball 13, the contact between the rolling surface and the outer raceway 9a of the balls 13 The contact area (the size of the contact ellipse) of the contact portion can be reduced, and the contact pressure of the contact portion can be appropriately maintained. For this reason, the rotation resistance can be reduced while ensuring the durability of the ball bearing 25. When the radius of curvature r 9a is less than 52%,
The contact area becomes too large, and the rotational resistance increases. On the other hand, if the radius of curvature r 9a exceeds 54%, the contact area becomes too small, the contact pressure of this contact portion increases, and the rolling surface of each ball 13 and the outer raceway 9a is likely to be damaged, such as peeling.

【0023】又、内輪軌道11aの断面形状の曲率半径
11a を上記各玉13の直径の53〜55%としている
為、上記外輪軌道9aの場合と同様に、上記各玉13の
転動面と内輪軌道11aとの接触部の接触面積(接触楕
円の大きさ)を小さくでき、しかも、この接触部の接触
圧を適正に保てる。この為、上記玉軸受25の耐久性を
確保しつつ、回転抵抗の低減を図れる。尚、上記曲率半
径r11a が53%未満の場合には、上記接触面積が大き
くなり過ぎて、回転抵抗が大きくなる。これに対して、
上記曲率半径r11a が55%を越えた場合には、上記接
触面積が小さくなり過ぎて、この接触部の接触圧が増大
し、上記各玉13の転動面や内輪軌道11aに剥離等の
損傷が発生し易くなる。
[0023] Further, since the radius of curvature r 11a of the cross-sectional shape of the inner ring raceway 11a is set to 53 to 55% of the diameter of the balls 13, as in the case of the outer ring raceway 9a, rolling surfaces of the balls 13 The contact area (the size of the contact ellipse) of the contact portion between the contact ring and the inner raceway 11a can be reduced, and the contact pressure of the contact portion can be maintained properly. For this reason, the rotation resistance can be reduced while ensuring the durability of the ball bearing 25. If the radius of curvature r 11a is less than 53%, the contact area becomes too large and the rotation resistance increases. On the contrary,
If the radius of curvature r 11a exceeds 55%, the contact area becomes too small, the contact pressure of this contact portion increases, and the rolling surface of each ball 13 and the inner raceway 11a may be separated. Damage is likely to occur.

【0024】尚、上記外輪軌道9aと内輪軌道11aと
で曲率半径r9a、r11a の規制範囲が少し異なる(外輪
軌道9aの曲率半径r9aの規制範囲が52〜54%であ
るのに対し、内輪軌道11aの曲率半径r11a の規制の
規制範囲が53〜55%である)理由は、次の通りであ
る。即ち、上記外輪軌道9aに関する接触面積と、上記
内輪軌道11aに関する接触面積とが同じ場合、上記各
玉13の転動面と外輪軌道9aとの接触圧(POUT
は、これら各玉13に加わる遠心力分だけ、上記内輪軌
道11aの接触圧(PIN)よりも大きくなる(POUT
IN)。この為、この接触圧(POUT )が大きくなる分
だけ、上記各玉13の転動面と外輪軌道9aとの接触部
の接触面積を確保し、この接触圧(POUT )の低減を図
る必要がある。言い換えれば、この外輪軌道9aに関す
る接触面積を確保すべく、この外輪軌道9aの曲率半径
9aを上記内輪軌道11aの曲率半径r11a に比べて小
さくし、上記接触圧(POUT )の低減を図る必要があ
る。この様な理由から、上記外輪軌道9aの曲率半径r
9aの規制範囲と上記内輪軌道11aの曲率半径r11a
規制範囲とを、上述の様に少しだけ異ならせている。
尚、周知の様に、上記外輪軌道9aと内輪軌道11aと
で、断面形状の曲率半径r9a、r11a を同じとした場合
でも、外輪軌道9aに関する接触楕円の面積が内輪軌道
11aに関する接触楕円の面積よりも大きくなる。但
し、本発明の対象となるターボチャージャ用回転支持装
置の玉軸受は、極めて高速で運転されるので、上記遠心
力の値も大きくなり、上述の様に、曲率半径の値を変え
てまで、外輪軌道9aに関する接触楕円の面積を内輪軌
道11a関する接触楕円の面積よりも大きくしなければ
ならない場合がある。
It should be noted that the radius of curvature r 9a , r 11a of the outer ring raceway 9a is slightly different from that of the inner ring raceway 11a (in contrast to the range of 52 to 54% for the radius of curvature r 9a of the outer raceway 9a). regulation range of regulation of the radius of curvature r 11a of the inner ring raceway 11a is 53 to 55%) reason is as follows. That is, when the contact area on the outer raceway 9a is the same as the contact area on the inner raceway 11a, the contact pressure (P OUT ) between the rolling surface of each ball 13 and the outer raceway 9a.
Is larger than the contact pressure (P IN ) of the inner raceway 11a by the centrifugal force applied to each of the balls 13 (P OUT >
P IN ). Therefore, the contact pressure (P OUT) only increases correspondingly, to ensure the contact area of the contact portion between the rolling surface and the outer ring raceway 9a of the balls 13, reducing the contact pressure (P OUT) There is a need. In other words, in order to secure a contact area with respect to the outer ring raceway 9a, the radius of curvature r 9a of the outer ring raceway 9a is made smaller than the radius of curvature r 11a of the inner ring raceway 11a to reduce the contact pressure (P OUT ). It is necessary to plan. For this reason, the radius of curvature r of the outer raceway 9a is as follows.
And restricting a range of the radius of curvature r 11a of the regulating range and the inner ring raceway 11a of 9a, is made different slightly as described above.
As is well known, even if the outer raceway 9a and the inner raceway 11a have the same radius of curvature r 9a , r11a of the cross-sectional shape, the area of the contact ellipse for the outer raceway 9a is equal to the contact ellipse for the inner raceway 11a. Area. However, since the ball bearing of the rotary support device for a turbocharger, which is an object of the present invention, is operated at an extremely high speed, the value of the centrifugal force also increases, as described above, until the value of the radius of curvature is changed. In some cases, the area of the contact ellipse for the outer raceway 9a must be larger than the area of the contact ellipse for the inner raceway 11a.

【0025】又、上記各玉13の接触角αを8〜20°
としている為、上記各玉13の転動面と外輪軌道9a及
び内輪軌道11aとの接触部で生じる滑りを小さくで
き、接触面圧が過大になる事も防止できる。この為、上
記滑りに基づく回転抵抗の増大や振動を低減でき、しか
も、耐久性の確保を図れる。尚、上記接触角αが20°
を越えた場合には、上記滑りが著しくなり、この滑りに
基づく回転抵抗や振動が増大する。これに対して、上記
接触角αが8°未満の場合には、上記各玉13の転動面
と外輪軌道9a及び内輪軌道11aとのラジアル隙間が
小さくなり過ぎる。この結果、上記接触部の接触圧が過
大になり、上記各軌道9a、11aや各玉13の転動面
に剥離等の損傷が発生し易くなる。
The contact angle α of each of the balls 13 is 8 to 20 °.
Therefore, it is possible to reduce the slip generated at the contact portion between the rolling surface of each ball 13 and the outer raceway 9a and the inner raceway 11a, and it is possible to prevent the contact surface pressure from becoming excessive. For this reason, an increase in rotational resistance and vibration due to the slip can be reduced, and durability can be ensured. Note that the contact angle α is 20 °
When the value exceeds the above range, the slip becomes remarkable, and the rotational resistance and vibration based on the slip increase. On the other hand, when the contact angle α is less than 8 °, the radial gap between the rolling surface of each ball 13 and the outer raceway 9a and the inner raceway 11a is too small. As a result, the contact pressure of the contact portion becomes excessive, and the rolling surfaces of the tracks 9a and 11a and the balls 13 are liable to be damaged such as peeling.

【0026】従って、上記玉軸受25に供給する潤滑油
の量を少なくする事なく、この玉軸受25の回転抵抗を
低減する事ができる。この結果、オイルフィルムバンパ
の減衰性能及びこの玉軸受25の潤滑性及び冷却性を低
下する事なく、低振動、低騒音で回転抵抗の小さいター
ボチャージャ用回転支持装置を実現できる。
Accordingly, the rotational resistance of the ball bearing 25 can be reduced without reducing the amount of lubricating oil supplied to the ball bearing 25. As a result, a low-vibration, low-noise, and low-rotational-rotation support device for a turbocharger can be realized without deteriorating the damping performance of the oil film bumper and the lubricity and cooling performance of the ball bearing 25.

【0027】[0027]

【発明の効果】本発明は、以上に述べた通り構成し作用
する為、回転抵抗(回転トルク)が小さく、低振動、低
騒音のターボチャージャ用回転支持装置を実現できる。
特に、この回転支持装置を構成する玉軸受に供給する潤
滑油の量を少なくする事なく、この玉軸受の回転抵抗の
低減を図れる。言い換えれば、この玉軸受の潤滑性及び
冷却性やオイルフイルムバンパの減衰性が低下する事な
く、回転抵抗の低減を図れる。従って、この回転支持装
置を組み込んだターボチャージャのレスポンス向上を図
れ、このターボチャージャの耐久性及び信頼性を含む性
能向上に寄与できる。
Since the present invention is constructed and operates as described above, a rotation supporting device for a turbocharger having a small rotation resistance (rotation torque), low vibration and low noise can be realized.
In particular, the rotation resistance of the ball bearing can be reduced without reducing the amount of lubricating oil supplied to the ball bearing constituting the rotation support device. In other words, the rotational resistance can be reduced without reducing the lubricity and cooling of the ball bearing and the damping of the oil film bumper. Therefore, it is possible to improve the response of the turbocharger incorporating the rotation support device, and to contribute to the performance improvement including the durability and reliability of the turbocharger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1例を示す、玉軸受の部
分断面図。
FIG. 1 is a partial sectional view of a ball bearing showing an example of an embodiment of the present invention.

【図2】ターボチャージャの全体構成を示す断面図。FIG. 2 is a cross-sectional view showing the overall configuration of the turbocharger.

【図3】図2のA部拡大図。FIG. 3 is an enlarged view of a portion A in FIG. 2;

【図4】従来のターボチャージャ用回転支持装置に組み
込んでいた玉軸受の断面図。
FIG. 4 is a cross-sectional view of a ball bearing incorporated in a conventional turbocharger rotation support device.

【符号の説明】[Explanation of symbols]

1 排気流路 2 回転軸 3 タービン 4 インペラ 5 給気流路 6 軸受ハウジング 7 第一の玉軸受 8 第二の玉軸受 9、9a 外輪軌道 10 外輪 11、11a 内輪軌道 12 内輪 13 玉 14 保持器 15 ポケット 16 圧縮ばね 17 押圧環 18 ケーシング 19 給油通路 20 フィルタ 21 隙間空間 22 ノズル孔 23 排油口 24 隙間空間 25 玉軸受 DESCRIPTION OF SYMBOLS 1 Exhaust flow path 2 Rotating shaft 3 Turbine 4 Impeller 5 Air supply flow path 6 Bearing housing 7 First ball bearing 8 Second ball bearing 9, 9a Outer ring track 10 Outer ring 11, 11a Inner ring track 12 Inner ring 13 Ball 14 Cage 15 Pocket 16 Compression spring 17 Press ring 18 Casing 19 Oil supply passage 20 Filter 21 Crevice space 22 Nozzle hole 23 Oil drain 24 Gap space 25 Ball bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 憲文 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3G005 EA16 FA04 FA14 FA31 FA41 GB55 3J101 AA02 AA42 AA54 AA62 BA53 BA54 CA07 FA01 GA29  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norifumi Ikeda 1-5-150 Kugenuma Shinmei, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 3G005 EA16 FA04 FA14 FA31 FA41 GB55 3J101 AA02 AA42 AA54 AA62 BA53 BA54 CA07 FA01 GA29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 その一端部にタービンを、その他端部に
インペラを、それぞれ固定した回転軸を、軸受ハウジン
グの内側に回転自在に支持する為、これら回転軸の両端
部外周面と軸受ハウジングの内周面との間に、その内周
面に外輪軌道を有する外輪と、その外周面に内輪軌道を
有する内輪と、これら外輪軌道と内輪軌道との間に転動
自在に設けられた複数個の玉とを備えた玉軸受を、互い
に接触角の方向を逆にした状態で設け、少なくとも何れ
かの玉軸受の外周面と上記軸受ハウジングの内周面との
間と、この軸受ハウジングの外周面とこの軸受ハウジン
グを納めるケーシングの内周面との間との、少なくとも
何れかの間に設けた円環状の隙間空間に潤滑油を送り込
み、この隙間空間をこの潤滑油で満たす事により上記回
転軸の振動を減衰自在とすると共に、上記隙間空間に送
り込まれた上記潤滑油の一部を上記玉軸受に向けて供給
する事により、この玉軸受の潤滑を行なう様に構成した
ターボチャージャ用回転支持装置に於いて、上記隙間空
間から潤滑油を送り込まれる玉軸受に関して、上記外輪
軌道の断面形状の曲率半径を上記各玉の直径の52〜5
4%とすると共に、同じく内輪軌道の断面形状の曲率半
径を上記各玉の直径の53〜55%とし、同じく上記接
触角を8〜20°とした事を特徴とするターボチャージ
ャ用回転支持装置。
A rotating shaft having a turbine fixed at one end thereof and an impeller fixed at the other end thereof is rotatably supported inside the bearing housing. An outer ring having an outer raceway on its inner peripheral surface, an inner racer having an inner raceway on its outer peripheral surface, and a plurality of rollingly provided between the outer raceway and the inner raceway. And a ball bearing provided with the balls having the contact angles opposite to each other, and between at least one of the outer peripheral surface of the ball bearing and the inner peripheral surface of the bearing housing, and the outer periphery of the bearing housing. Lubricating oil is fed into an annular gap provided between at least one of the surface and the inner peripheral surface of the casing in which the bearing housing is placed, and the gap is filled with the lubricating oil so that the rotation is performed. Attenuates shaft vibration And a part of the lubricating oil fed into the clearance space is supplied toward the ball bearing to lubricate the ball bearing. Regarding the ball bearing into which lubricating oil is fed from the clearance, the radius of curvature of the cross-sectional shape of the outer raceway is set to 52 to 5 of the diameter of each ball.
A rotary support device for a turbocharger, wherein the radius of curvature of the cross-sectional shape of the inner raceway is 53 to 55% of the diameter of each ball, and the contact angle is 8 to 20 °. .
【請求項2】 隙間空間から潤滑油を送り込まれる玉軸
受が、回転軸の両端部のうちのタービン側端部を支持す
る玉軸受であり、この玉軸受の接触角を14〜18°と
した、請求項1に記載したターボチャージャ用回転支持
装置。
2. A ball bearing into which lubricating oil is fed from a gap space is a ball bearing that supports a turbine-side end of both ends of a rotating shaft, and a contact angle of the ball bearing is set to 14 to 18 °. The rotation support device for a turbocharger according to claim 1.
JP2000287855A 2000-09-22 2000-09-22 Rotational support device for turbocharger Pending JP2002098158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287855A JP2002098158A (en) 2000-09-22 2000-09-22 Rotational support device for turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000287855A JP2002098158A (en) 2000-09-22 2000-09-22 Rotational support device for turbocharger

Publications (2)

Publication Number Publication Date
JP2002098158A true JP2002098158A (en) 2002-04-05
JP2002098158A5 JP2002098158A5 (en) 2005-11-10

Family

ID=18771535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287855A Pending JP2002098158A (en) 2000-09-22 2000-09-22 Rotational support device for turbocharger

Country Status (1)

Country Link
JP (1) JP2002098158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073575A1 (en) * 2004-01-28 2005-08-11 Jtekt Corporation Oblique contact ball bearing and turbocharger
EP2042758A2 (en) 2007-09-25 2009-04-01 JTEKT Corporation Rolling bearing device and turbocharger incorporating same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073575A1 (en) * 2004-01-28 2005-08-11 Jtekt Corporation Oblique contact ball bearing and turbocharger
EP1715203A1 (en) * 2004-01-28 2006-10-25 Jtekt Corporation Oblique contact ball bearing and turbocharger
EP1715203A4 (en) * 2004-01-28 2010-11-24 Jtekt Corp Oblique contact ball bearing and turbocharger
EP2042758A2 (en) 2007-09-25 2009-04-01 JTEKT Corporation Rolling bearing device and turbocharger incorporating same

Similar Documents

Publication Publication Date Title
CN102016325B (en) Bearing device for supercharger
US5522667A (en) Ball bearing for turbocharger
US8201663B2 (en) Lubrication scavenge system
US8740465B2 (en) Bearing system
JP5071150B2 (en) Bearing device for turbocharger
US9695708B2 (en) Turbocharger spring assembly
US7547185B2 (en) Output shaft air/oil separator to redundantly protect against output shaft o-ring leakage
US9234542B2 (en) Bearing system
WO2013188086A1 (en) Bearing assembly for use with a turbine engine
JP2002039191A (en) Rotating support device for turbocharger
KR100649976B1 (en) Turbocharger rotor with low-cost ball bearing
JP2002098158A (en) Rotational support device for turbocharger
JP2002129969A (en) Rotation supporting device for turbocharger
JP2002054450A (en) Rotary support device for turbo-charger
JP2014125921A (en) Ball bearing unit for turbocharger
JP2005256893A (en) Rolling bearing for turbo charger
JP2002129967A (en) Rotation supporting device for turbocharger
JP5569114B2 (en) Turbocharger
JP2003003856A (en) Rotary support means for turbocharger
US9732800B2 (en) Turbocharger journal bearing system
JP2002129968A (en) Rotation supporting device for turbocharger
JP2004183781A (en) Rotation supporting device for turbocharger
JP2005106108A (en) Rolling bearing unit
JP2002089570A (en) Ball bearing for turbo-charger
JPH04159421A (en) Structure of bearing of turbo charger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924