JP2002089570A - Ball bearing for turbo-charger - Google Patents

Ball bearing for turbo-charger

Info

Publication number
JP2002089570A
JP2002089570A JP2000281881A JP2000281881A JP2002089570A JP 2002089570 A JP2002089570 A JP 2002089570A JP 2000281881 A JP2000281881 A JP 2000281881A JP 2000281881 A JP2000281881 A JP 2000281881A JP 2002089570 A JP2002089570 A JP 2002089570A
Authority
JP
Japan
Prior art keywords
raceway
ball
contact
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000281881A
Other languages
Japanese (ja)
Inventor
Yutaka Kondo
豊 近藤
Kenji Yakura
健二 矢倉
Norifumi Ikeda
憲文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000281881A priority Critical patent/JP2002089570A/en
Publication of JP2002089570A publication Critical patent/JP2002089570A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supercharger (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ball bearing for a turbo-charger having little rotation resistance (rotating torque) and emitting little heat. SOLUTION: The radius of curvature r9a of the cross-sectional shape of an outer ring raceway 9a is 52 to 54% of the diameter d13 of each ball 13. The radius of curvature r11a of the cross-sectional shape of an inner ring raceway 11a is 53 to 55% of the diameter d13 of each ball 13. The angle α of contact of each ball 13 is 8 to 20 deg.. As a result, the area of contact at the portion of contact between the rolling surface of each ball 13, the outer ring raceway 9a and the inner ring raceway 11a is reduced and a slip which occurs at the portion of contact is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明のターボチャージャ用
玉軸受は、例えば自動車用エンジンの出力を向上させる
為のターボチャージャに組み込み、タービンとインペラ
とを接続する回転軸をハウジングに対し、回転自在に支
持する為に利用する。特に本発明は、回転抵抗(回転ト
ルク)が小さく、発熱量の少ないターボチャージャ用玉
軸受を実現するものである。
TECHNICAL FIELD The ball bearing for a turbocharger according to the present invention is incorporated in a turbocharger for improving the output of an automobile engine, for example, and a rotating shaft connecting a turbine and an impeller is rotatable with respect to a housing. Use to support. Particularly, the present invention realizes a ball bearing for a turbocharger having a small rotation resistance (rotation torque) and a small amount of heat generation.

【0002】[0002]

【従来の技術】エンジンの出力を排気量を変えずに増大
させる為、エンジンに送り込む空気を排気のエネルギに
より圧縮するターボチャージャが、広く使用されてい
る。このターボチャージャは、排気のエネルギを、排気
通路の途中に設けたタービンにより回収し、このタービ
ンをその端部に固定した回転軸により、給気通路の途中
に設けたコンプレッサのインペラを回転させる。このイ
ンペラは、エンジンの運転に伴って数万乃至は十数万mi
n-1 (r.p.m.)の速度で回転し、上記給気通路を通じて
エンジンに送り込まれる空気を圧縮する。
2. Description of the Related Art In order to increase the output of an engine without changing the displacement, a turbocharger for compressing air sent to the engine by the energy of the exhaust is widely used. This turbocharger collects the energy of exhaust gas by a turbine provided in the middle of the exhaust passage, and rotates an impeller of a compressor provided in the middle of the air supply passage by a rotating shaft fixed to an end of the turbine. This impeller can be tens of thousands or hundreds of thousands of mi with the operation of the engine.
It rotates at a speed of n -1 (rpm) and compresses the air sent to the engine through the air supply passage.

【0003】図2〜3は、この様なターボチャージャの
1例を示している。このターボチャージャは、排気流路
1を流通する排気により、回転軸2の一端(図2の左
端)に固定したタービン3を回転させる。この回転軸2
の回転は、この回転軸2の他端(図2の右端)に固定し
たインペラ4に伝わり、このインペラ4が給気流路5内
で回転する。この結果、この給気流路5の上流端開口か
ら吸引された空気が圧縮されて、ガソリン、軽油等の燃
料と共にエンジンのシリンダ室内に送り込まれる。この
様なターボチャージャの回転軸2は、数万〜十数万min
-1 (r.p.m.)もの高速で回転し、しかも、エンジンの
運転状況に応じてその回転速度が頻繁に変化する。従っ
て、上記回転軸2は、軸受ハウジング6に対し、小さな
回転抵抗で支持する必要がある。
FIGS. 2 and 3 show an example of such a turbocharger. The turbocharger rotates the turbine 3 fixed to one end (the left end in FIG. 2) of the rotating shaft 2 by exhaust gas flowing through the exhaust flow path 1. This rotating shaft 2
Is transmitted to the impeller 4 fixed to the other end (the right end in FIG. 2) of the rotating shaft 2, and the impeller 4 rotates in the air supply passage 5. As a result, the air sucked from the upstream end opening of the air supply passage 5 is compressed and sent into the cylinder chamber of the engine together with fuel such as gasoline or light oil. The rotation axis 2 of such a turbocharger is tens of thousands to several hundred thousand minutes.
It rotates at a speed as high as -1 (rpm), and its rotation speed changes frequently depending on the operating condition of the engine. Therefore, the rotating shaft 2 needs to be supported by the bearing housing 6 with a small rotation resistance.

【0004】この為に従来から、上記軸受ハウジング6
の内側に上記回転軸2を、それぞれがターボチャージャ
用玉軸受である第一、第二の玉軸受7、8により、回転
自在に支持している。これら第一、第二の玉軸受7、8
は、図4〜5に示す様なアンギュラ型玉軸受である。こ
れら第一、第二の玉軸受7、8の構成は、基本的には同
じである。但し、これら両玉軸受7、8のうち、高温の
排気が流通する排気流路1に近く、温度上昇が著しい第
一の玉軸受7の潤滑条件は、低温の空気が流通する給気
流路5に近く、温度上昇がそれ程著しくはない、第二の
玉軸受8に比べて厳しい。
For this reason, conventionally, the bearing housing 6
The above-mentioned rotating shaft 2 is rotatably supported by first and second ball bearings 7 and 8, each of which is a ball bearing for a turbocharger. These first and second ball bearings 7, 8
Is an angular type ball bearing as shown in FIGS. The configuration of these first and second ball bearings 7 and 8 is basically the same. However, of these two ball bearings 7, 8, the lubrication condition of the first ball bearing 7, which is close to the exhaust passage 1 through which high-temperature exhaust flows and whose temperature rises remarkably, is determined by the air supply passage 5 through which low-temperature air flows. , And the temperature rise is not so significant, which is more severe than that of the second ball bearing 8.

【0005】この様な第一、第二の玉軸受7、8は、内
周面に外輪軌道9を有する外輪10と、外周面に内輪軌
道11を有する内輪12と、これら外輪軌道9と内輪軌
道11との間に転動自在に設けた複数個の玉13、13
とを備える。又、これら各玉13、13は、円環状の保
持器14に設けた複数のポケット15内に、それぞれ1
個ずつ転動自在に保持している。又、図示の例の場合に
は、上記内輪12を、片側の肩部をなくした、所謂カウ
ンタボアとしている。又、上記保持器14の外周面を、
上記外輪10の内周面に近接対向させる事により、この
保持器14の直径方向位置をこの外輪10により規制す
る、外輪案内としている。
The first and second ball bearings 7 and 8 have an outer race 10 having an outer raceway 9 on an inner peripheral surface, an inner race 12 having an inner raceway 11 on an outer peripheral surface, and the outer race 9 and the inner race. A plurality of balls 13, 13 provided to be able to roll freely between the track 11 and
And Each of these balls 13, 13 is placed in a plurality of pockets 15 provided in an annular retainer 14, respectively.
It is held so that it can roll freely one by one. In the illustrated example, the inner ring 12 has a so-called counter bore in which one shoulder is not provided. Further, the outer peripheral surface of the cage 14 is
An outer ring guide is provided in which the diametrical position of the retainer 14 is regulated by the outer ring 10 by being opposed to the inner peripheral surface of the outer ring 10.

【0006】この様な第一、第二の玉軸受7、8のうち
の第一の玉軸受7は、上記外輪10を前記軸受ハウジン
グ6の一端部に内嵌すると共に、上記内輪12を上記回
転軸2の一端部に外嵌固定する事により、この回転軸2
の一端部を上記軸受ハウジング6に対し、回転自在に支
持している。一方、上記第二の玉軸受8は、外輪10を
軸受ハウジング6の他端部に内嵌すると共に、内輪12
を上記回転軸2の他端部に外嵌固定する事により、この
回転軸2の他端部を上記軸受ハウジング6に対し、回転
自在に支持している。又、上記第一、第二の玉軸受7、
8を構成する1対の外輪10、10には、圧縮ばね16
により互いに離れる方向の弾力を付与している。即ち、
これら両外輪10、10の互いに対向する端面にそれぞ
れ押圧環17、17を突き合わせ、これら両押圧環1
7、17同士の間に上記圧縮ばね16を挟持している。
従って、上記第一、第二の玉軸受7、8は、互いに接触
角の方向を逆にした状態{背面組み合せ(DB)型}で
組み込まれている。
The first ball bearing 7 of the first and second ball bearings 7 and 8 has the outer ring 10 fitted inside one end of the bearing housing 6 and the inner ring 12 fitted with the inner ring 12. By externally fitting and fixing to one end of the rotating shaft 2, the rotating shaft 2
Is rotatably supported by the bearing housing 6. On the other hand, the second ball bearing 8 fits the outer race 10 inside the other end of the bearing housing 6 and
Is fixed to the other end of the rotating shaft 2 so that the other end of the rotating shaft 2 is rotatably supported by the bearing housing 6. Further, the first and second ball bearings 7,
The compression spring 16
Provides elasticity in a direction away from each other. That is,
Pressing rings 17, 17 are respectively butted against end faces of the outer rings 10, 10 facing each other.
The compression spring 16 is sandwiched between the members 7 and 17.
Therefore, the first and second ball bearings 7 and 8 are assembled in a state where the directions of the contact angles are reversed with each other (back-side combination (DB) type).

【0007】更に、上記軸受ハウジング6を納めたケー
シング18内に給油通路を設けて、上記各玉軸受7、8
を潤滑自在としている。ターボチャージャを装着したエ
ンジンの運転時に潤滑油は、フィルタ19により異物を
除去されてから、上記ケーシング18の内周面と上記軸
受ハウジング6の外周面との間の隙間空間を通過して、
上記外輪10に隣接する押圧環17に設けたノズル孔2
0から、上記第一の玉軸受7を構成する内輪12の外周
面に向け、径方向外方から斜めに噴出し、この第一の玉
軸受7を潤滑(オイルジェット潤滑)する。この様にし
て第一の玉軸受7に向けて噴出した潤滑油は、この第一
の玉軸受7の他、上記第二の玉軸受8も潤滑してから、
排油口21より排出される。
Further, an oil supply passage is provided in a casing 18 in which the bearing housing 6 is accommodated, and the respective ball bearings 7 and 8 are provided.
Is lubricated freely. During operation of the engine equipped with the turbocharger, the lubricating oil passes through a clearance space between the inner peripheral surface of the casing 18 and the outer peripheral surface of the bearing housing 6 after foreign substances are removed by the filter 19,
Nozzle hole 2 provided in pressing ring 17 adjacent to outer ring 10
From 0, the first ball bearing 7 is lubricated (oil jet lubrication) toward the outer peripheral surface of the inner ring 12 constituting the first ball bearing 7 obliquely from the outside in the radial direction. The lubricating oil jetted toward the first ball bearing 7 in this manner lubricates not only the first ball bearing 7 but also the second ball bearing 8,
The oil is discharged from the oil discharge port 21.

【0008】[0008]

【発明が解決しようとする課題】ところで、近年ターボ
チャージャの高過給化、高回転化が図られており、これ
に伴って、上述の様な従来のターボチャージャ用玉軸受
である、第一、第二の玉軸受7、8の発熱が、無視でき
なくなってきている。この様な玉軸受7、8の発熱は、
回転抵抗の原因でもある、各玉13、13の転動面と外
輪軌道9及び内輪軌道11との接触部の摩擦が熱エネル
ギに変換される事(摩擦熱)により生じる。従って、回
転抵抗を低減すれば、発熱量が低減する。ところで、こ
の様な発熱量は、一般的に知られている様に、上記各玉
13、13の転動面と外輪軌道9又は内輪軌道11との
接触部での接触圧(P)と、これら各玉13、13の接
触部での滑り速度(V)との積で表されるPV値に大き
く影響する。そして、このPV値が小さい程、上記玉軸
受7、8の発熱量が小さくなり、回転抵抗も小さくな
る。
In recent years, high turbocharging and high rotation of a turbocharger have been attempted, and accordingly, the first conventional turbocharger ball bearing as described above has been developed. The heat generated by the second ball bearings 7 and 8 cannot be ignored. Heat generation of such ball bearings 7 and 8 is as follows.
The frictional contact between the rolling surfaces of the balls 13, 13 and the outer raceway 9 and the inner raceway 11, which is also a cause of the rotational resistance, is caused to be converted into heat energy (friction heat). Therefore, if the rotational resistance is reduced, the amount of generated heat is reduced. By the way, such a calorific value is, as generally known, a contact pressure (P) at a contact portion between the rolling surface of each of the balls 13 and 13 and the outer raceway 9 or the inner raceway 11, and It greatly affects the PV value represented by the product of these balls 13 and 13 and the sliding speed (V) at the contact portion. And, the smaller the PV value, the smaller the amount of heat generated by the ball bearings 7 and 8 and the smaller the rotational resistance.

【0009】一方、上記各玉13、13の転動面と外輪
軌道9及び内輪軌道11との接触部は、実際は、これら
各部材13、9、11の接触部での弾性変形により、ヘ
ルツの接触理論で導かれる楕円状の領域になる事が分か
っている。そして、上記滑り速度(V)は、上記各玉1
3、13の転動方向に対して直交する方向に広がる(こ
の方向が楕円の長径となる)上記接触楕円の幅方向(長
径方向)端部で最も大きくなり、この接触楕円の幅(長
径)が大きくなる程、上記滑り速度(V)も大きくな
る。又、この接触楕円の幅が大きくなる程、接触面積も
大きくなる。そして、この様な接触楕円の幅は、上記各
玉13、13の直径d13に対する、上記外輪軌道9及び
内輪軌道11の断面形状の各曲率半径r9 、r11の比が
小さくなるほど、大きくなる。従って、上記外輪軌道9
及び内輪軌道11の各曲率半径r9、r11の比が所定値
よりも下回った場合には、上記滑り速度(V)の増大が
上記PV値に及ぼす影響が大きくなり、このPV値が増
大すると共に、上記接触面積も増大する。従って、これ
らPV値及び接触面積を小さくし、上記玉軸受7、8の
回転抵抗及び発熱量を低減する為に、上記外輪軌道9及
び内輪軌道11の各曲率半径r9 、r11の比を所定値以
上に規制する必要がある。
On the other hand, the contact portions between the rolling surfaces of the balls 13 and the outer ring raceway 9 and the inner ring raceway 11 are actually caused by the elastic deformation of the contact portions of these members 13, 9 and 11, resulting in a hertz. It is known that it becomes an elliptical region derived from the contact theory. Then, the sliding speed (V) is determined for each ball 1
The contact ellipse spreads in a direction perpendicular to the rolling directions of the ellipses 3 and 13 (this direction becomes the major axis of the ellipse). The contact ellipse becomes largest at the width direction (major axis direction) end, and the width (major axis) of the contact ellipse The slip velocity (V) also increases as the value increases. Also, as the width of the contact ellipse increases, the contact area also increases. The width of the contact ellipse increases as the ratio of the radius of curvature r 9 , r 11 of the cross-sectional shape of the outer race 9 and the inner race 11 to the diameter d 13 of the balls 13, 13 increases. Become. Therefore, the outer raceway 9
When the ratio between the radii of curvature r 9 and r 11 of the inner raceway 11 is smaller than a predetermined value, the effect of the increase in the slip speed (V) on the PV value increases, and the PV value increases. At the same time, the contact area also increases. Therefore, in order to reduce the PV value and the contact area, and to reduce the rotational resistance and the calorific value of the ball bearings 7 and 8, the ratio of the radii of curvature r 9 and r 11 of the outer ring raceway 9 and the inner ring raceway 11 is determined. It is necessary to regulate to more than a predetermined value.

【0010】これに対して、上記各玉13、13の直径
13に対する、上記外輪軌道9及び内輪軌道11の各曲
率半径r9 、r11の比が大きくなり過ぎた場合には、上
記接触面積は小さくなるが、上記接触圧(P)が大きく
なる為、発熱量が増大すると共に、これら各玉13、1
3の転動面や各軌道9、11に剥離が生じる迄の時間
(剥離寿命)が不十分になる。従って、上記玉軸受7、
8の耐久性を十分に確保しつつ、この玉軸受7、8の回
転抵抗及び発熱量を低減する為には、上記各玉13、1
3の直径d13に対する、上記外輪軌道9及び内輪軌道1
1の断面形状の各曲率半径r9 、r11の比を、所定の範
囲内に規制する必要がある。
On the other hand, if the ratio of the radii of curvature r 9 , r 11 of the outer raceway 9 and the inner raceway 11 to the diameter d 13 of the balls 13, 13 becomes too large, the contact is reduced. Although the area is small, the contact pressure (P) is large, so that the calorific value is increased, and each of the balls 13, 1
The time (separation life) until the separation occurs on the rolling surface 3 and the tracks 9 and 11 becomes insufficient. Therefore, the ball bearing 7,
In order to reduce the rotational resistance and the calorific value of the ball bearings 7 and 8 while sufficiently securing the durability of the balls 8, the balls 13, 1
For 3 diameter d 13, the outer ring raceway 9 and the inner ring raceway 1
It is necessary to restrict the ratio of the radii of curvature r 9 and r 11 of the cross-sectional shape of No. 1 to a predetermined range.

【0011】又、上記各玉13、13の転動面と外輪軌
道9及び内輪軌道11との接触部では、この接触部に存
在する上記接触楕円がスピンする事に伴う滑りが発生す
る。この様な滑りは、上記各玉13、13の接触角αが
大きくなるほど著しくなり、その結果、発生する摩擦熱
に基づく温度上昇も著しくなる。又、高速回転時には、
遠心力により上記各玉13、13の接触角αが初期設定
角度よりも大きくなり、その結果、上述の様な滑りが大
きくなって発熱が著しくなる。これに対して、上記接触
角αが小さくなり過ぎると、上記各玉13、13の転動
面と外輪軌道9及び内輪軌道11とのラジアル隙間が小
さくなる事に伴い、上記接触部の接触面圧が大きくな
り、回転抵抗及び発熱量が増大し易くなる。従って、上
記玉軸受7、8の耐久性を十分に確保しつつ、この玉軸
受7、8の回転抵抗及び発熱量を低減する為には、上記
各玉13、13の接触角αも所定の範囲内に規制する必
要がある。本発明は、この様な事情に鑑みて、回転抵抗
が小さく、発熱量の少ないターボチャージャ用玉軸受を
実現すべく発明したものである。
In addition, at the contact portion between the rolling surfaces of the balls 13 and the outer raceway 9 and the inner raceway 11, slip occurs due to the spin of the contact ellipse existing at the contact portion. Such a slip increases as the contact angle α between the balls 13 increases, and as a result, the temperature rise due to the generated frictional heat also increases. Also, at high speed rotation,
Due to the centrifugal force, the contact angle α of each of the balls 13, 13 becomes larger than the initially set angle, and as a result, the above-mentioned slip increases and heat generation becomes remarkable. On the other hand, if the contact angle α becomes too small, the radial clearance between the rolling surface of each of the balls 13 and the outer raceway 9 and the inner raceway 11 becomes smaller, and the contact surface of the contact portion becomes smaller. The pressure is increased, and the rotational resistance and the amount of generated heat tend to increase. Therefore, in order to reduce the rotational resistance and the amount of heat generated by the ball bearings 7 and 8 while ensuring the durability of the ball bearings 7 and 8 sufficiently, the contact angle α of each of the balls 13 and 13 is also predetermined. It is necessary to regulate within the range. SUMMARY OF THE INVENTION In view of such circumstances, the present invention has been devised to realize a ball bearing for a turbocharger having a small rotation resistance and a small amount of heat generation.

【0012】[0012]

【課題を解決するための手段】本発明のターボチャージ
ャ用玉軸受は、前述した従来から知られているターボチ
ャージャ用玉軸受と同様に、内周面に外輪軌道を有し、
ハウジングの内側に支持される外輪と、外周面に内輪軌
道を有し、タービンとインペラとを接続する回転軸に外
嵌固定される内輪と、上記外輪軌道と内輪軌道との間に
転動自在に設けられた複数個の玉とを備える。そして、
上記回転軸の両端部とハウジングの内周面との間に、互
いに接触角の方向を逆にした状態で組み込む。
The ball bearing for a turbocharger of the present invention has an outer raceway on its inner peripheral surface, similarly to the above-mentioned conventionally known ball bearing for a turbocharger.
An outer race supported inside the housing, an inner race having an inner raceway on the outer peripheral surface, the inner race being externally fixed to a rotating shaft connecting the turbine and the impeller, and rolling freely between the outer raceway and the inner raceway And a plurality of balls provided in the plurality. And
It is assembled between the both ends of the rotating shaft and the inner peripheral surface of the housing with the directions of the contact angles being opposite to each other.

【0013】特に、本発明のターボチャージャ用玉軸受
に於いては、上記外輪軌道の断面形状の曲率半径を上記
各玉の直径の52〜54%とすると共に、上記内輪軌道
の断面形状の曲率半径を上記各玉の直径の53〜55%
とし、更に、上記接触角を8〜20°としている。尚、
この接触角が8〜20°の範囲にあるのは、常温時の状
態である。又、上記回転軸の両端部のうちのタービン側
端部を支持するものは、上記接触角を14〜18°とす
る事が、より好ましい。
In particular, in the turbocharger ball bearing of the present invention, the radius of curvature of the cross-sectional shape of the outer raceway is set to 52 to 54% of the diameter of each ball, and the curvature of the cross-sectional shape of the inner raceway is also set. The radius is 53 to 55% of the diameter of each ball.
And the contact angle is set to 8 to 20 °. still,
This contact angle is in the range of 8 to 20 ° at a normal temperature. Further, it is more preferable that the one that supports the turbine-side end of both ends of the rotating shaft has the contact angle of 14 to 18 °.

【0014】[0014]

【作用】上述の様に構成する本発明のターボチャージャ
用玉軸受の場合には、回転抵抗(回転トルク)及び発熱
量の低減を図れる。即ち、外輪軌道の断面形状の曲率半
径を各玉の直径の52〜54%としている為、これら各
玉の転動面と外輪軌道との接触部の接触面積及び滑り速
度(V)を小さくできる。この為、回転抵抗が低減する
と共に、これら各玉の転動面と外輪軌道との接触部の発
熱を抑える事ができる。尚、上記曲率半径が52%未満
の場合には、上記接触面積及び滑り速度(V)が大きく
なり過ぎて、回転抵抗並びに発熱量が大きくなる。これ
に対して、上記曲率半径が54%を越えた場合には、上
記接触面積が小さくなり過ぎて、この接触部の接触圧
(P)が増大し、発熱量が大きくなると共に、上記各玉
の転動面や外輪軌道に剥離等の損傷が発生し易くなる。
With the ball bearing for a turbocharger of the present invention configured as described above, the rotation resistance (rotation torque) and the amount of generated heat can be reduced. That is, since the radius of curvature of the cross-sectional shape of the outer raceway is 52 to 54% of the diameter of each ball, the contact area and the sliding speed (V) of the contact portion between the rolling surface of each ball and the outer raceway can be reduced. . For this reason, the rotational resistance can be reduced, and the heat generation at the contact portion between the rolling surface of each ball and the outer raceway can be suppressed. If the radius of curvature is less than 52%, the contact area and the sliding speed (V) become too large, and the rotational resistance and the heat generation increase. On the other hand, when the radius of curvature exceeds 54%, the contact area becomes too small, the contact pressure (P) of the contact portion increases, the heat value increases, and the ball The rolling surface and the outer raceway are likely to be damaged such as peeling.

【0015】又、内輪軌道の断面形状の曲率半径を上記
各玉の直径の53〜55%としている為、上記外輪軌道
の場合と同様に、上記各玉の転動面と内輪軌道との接触
部の接触面積及び滑り速度(V)を小さくできる。この
為、回転抵抗を低減して、これら各玉の転動面と内輪軌
道との接触部の発熱を抑える事ができる。尚、上記曲率
半径が53%未満の場合には、上記接触面積及び滑り速
度(V)が大きくなり過ぎて、回転抵抗並びに発熱量が
大きくなる。これに対して、上記曲率半径が55%を越
えた場合には、上記接触面積が小さくなり過ぎて、この
接触部の接触圧(P)が増大し、発熱量が大きくなると
共に、上記各玉の転動面や内輪軌道に剥離等の損傷が発
生し易くなる。
Since the radius of curvature of the cross-sectional shape of the inner raceway is 53 to 55% of the diameter of each ball, the contact between the rolling surface of each ball and the inner raceway is the same as in the case of the outer raceway. The contact area of the portion and the sliding speed (V) can be reduced. For this reason, it is possible to reduce the rotational resistance and suppress the heat generation at the contact portion between the rolling surface of each ball and the inner raceway. If the radius of curvature is less than 53%, the contact area and the sliding speed (V) become too large, and the rotational resistance and the heat generation increase. On the other hand, when the radius of curvature exceeds 55%, the contact area becomes too small, the contact pressure (P) of the contact portion increases, the calorific value increases, and the ball The rolling surface and the inner raceway are likely to be damaged such as peeling.

【0016】尚、上記外輪軌道と内輪軌道とで曲率半径
の規制範囲が少し異なる(外輪軌道の曲率半径の規制範
囲が52〜54%であるのに対し、内輪軌道の曲率半径
の規制範囲が53〜55%である)理由は、次の通りで
ある。即ち、上記各玉の転動面と外輪軌道及び内輪軌道
との接触面積が同じである場合は、上記各玉の転動面と
外輪軌道との接触圧(POUT )は、これら各玉に加わる
遠心力分だけ、上記内輪軌道の接触圧(PIN)よりも大
きくなる(POUT >PIN)。この為、この接触圧(P
OUT )が大きくなる分だけ、上記各玉の転動面と外輪軌
道との接触面積を確保し、この接触圧(POUT )の低減
を図る必要がある。言い換えれば、この外輪軌道の接触
面積を確保すべく、この外輪軌道の曲率半径を上記内輪
軌道の曲率半径に比べ、小さくする必要がある。この様
な理由から、上記外輪軌道の曲率半径の規制範囲と上記
内輪軌道の曲率半径の規制範囲とを、上述の様に少しだ
け異ならせている。
The range of the radius of curvature is slightly different between the outer raceway and the inner raceway (the range of the radius of curvature of the outer raceway is 52 to 54%, whereas the range of the radius of curvature of the inner raceway is less. The reason is as follows. That is, when the contact area between the rolling surface of each ball and the outer raceway and the inner raceway is the same, the contact pressure (P OUT ) between the rolling surface of each ball and the outer raceway is applied to each ball. The applied centrifugal force is larger than the contact pressure (P IN ) of the inner raceway (P OUT > P IN ). Therefore, the contact pressure (P
OUT ) increases, it is necessary to secure a contact area between the rolling surface of each ball and the outer raceway to reduce the contact pressure (P OUT ). In other words, in order to secure the contact area of the outer raceway, it is necessary to make the radius of curvature of the outer raceway smaller than the radius of curvature of the inner raceway. For this reason, the range of the radius of curvature of the outer raceway and the range of the radius of curvature of the inner raceway are slightly different as described above.

【0017】又、上記各玉の接触角を8〜20°として
いる為、上記各玉の転動面と外輪軌道及び内輪軌道との
接触部で生じる滑りが小さくなると共に、接触面圧が過
大になる事も防止できる。この為、回転抵抗を低減し
て、これら各玉の転動面と外輪軌道及び内輪軌道との接
触部の発熱を抑える事ができる。尚、上記接触角が20
°を越えた場合には、上記滑りが著しくなり、この滑り
による発熱量が増大する。これに対して、上記接触角が
8°未満の場合には、上記各玉の転動面と外輪軌道及び
内輪軌道とのラジアル隙間が小さくなり過ぎる。この結
果、上記接触部の接触面圧(P)が過大になり、回転抵
抗と発熱量とが増大し易くなる。
Further, since the contact angle of each ball is set to 8 to 20 °, the slip generated at the contact portion between the rolling surface of each ball and the outer raceway and the inner raceway is reduced, and the contact surface pressure is excessive. Can be prevented. For this reason, it is possible to reduce the rotational resistance and suppress heat generation at the contact portions between the rolling surfaces of these balls and the outer raceway and the inner raceway. The contact angle is 20
When the angle exceeds °, the slip becomes remarkable, and the amount of heat generated by the slip increases. On the other hand, when the contact angle is less than 8 °, the radial gap between the rolling surface of each ball and the outer raceway and the inner raceway is too small. As a result, the contact surface pressure (P) of the contact portion becomes excessive, and the rotational resistance and the amount of generated heat tend to increase.

【0018】[0018]

【発明の実施の形態】図1は、本発明の実施の形態の1
例を示している。本例のターボチャージャ用玉軸受22
は、内周面に外輪軌道9aを有し、軸受ハウジング6
(図2〜3参照)の内側に支持される外輪10と、外周
面に内輪軌道11aを有し、タービン3とインペラ4と
を接続する回転軸2(図2〜3参照)に外嵌固定される
内輪12と、上記外輪軌道9aと内輪軌道11aとの間
に転動自在に設けられた複数個の玉13とを備える。
又、これら各玉13は、円環状の保持器14に設けた複
数のポケット15(図1には省略、図4〜5参照)内
に、それぞれ1個ずつ転動自在に保持している。又、図
示の例の場合は、上記内輪12を、片側の肩部をなくし
た、所謂カウンタボアとしている。又、前述の図4〜5
に示した従来構造と同様に、上記保持器14の外周面
を、上記外輪10の内周面に近接対向させる事により、
この保持器14の直径方向位置をこの外輪10により規
制する、外輪案内としている。そして、前述の図2〜3
に示す様なターボチャージャの回転軸2の両端部と軸受
ハウジング6の内周面との間に、互いに接触角αの方向
を逆にした状態で組み込む。
FIG. 1 shows a first embodiment of the present invention.
An example is shown. Ball bearing 22 for turbocharger of this example
Has an outer raceway 9a on the inner peripheral surface thereof, and has a bearing housing 6
An outer race 10 supported inside (see FIGS. 2 and 3) and an inner raceway 11a on the outer peripheral surface are externally fitted and fixed to a rotating shaft 2 (see FIGS. 2 and 3) connecting the turbine 3 and the impeller 4. And a plurality of balls 13 rotatably provided between the outer raceway 9a and the inner raceway 11a.
Each of these balls 13 is rotatably held in a plurality of pockets 15 (omitted in FIG. 1, see FIGS. 4 and 5) provided in an annular retainer 14. In the illustrated example, the inner ring 12 has a so-called counterbore without one shoulder. In addition, FIGS.
In the same manner as in the conventional structure shown in FIG. 1, by making the outer peripheral surface of the retainer 14 approach and closely face the inner peripheral surface of the outer ring 10,
An outer ring guide for restricting the diametric position of the retainer 14 by the outer ring 10 is provided. And the above-mentioned FIGS.
And between the two ends of the rotary shaft 2 of the turbocharger and the inner peripheral surface of the bearing housing 6 with the directions of the contact angles α reversed.

【0019】特に、本発明のターボチャージャ用玉軸受
22の場合には、上記外輪軌道9aの断面形状の曲率半
径r9aを上記各玉13の直径d13の52〜54%とする
と共に、上記内輪軌道11aの断面形状の曲率半径r
11a を上記各玉13の直径d13の53〜55%としてい
る。更には、これら各玉13の接触角αを8〜20°と
している。尚、この接触角αが8〜20°の範囲にある
のは、常温時の状態である。
In particular, in the case of the turbocharger ball bearing 22 of the present invention, the radius of curvature r 9a of the cross-sectional shape of the outer raceway 9a is set to be 52 to 54% of the diameter d 13 of each of the balls 13, and The radius of curvature r of the cross-sectional shape of the inner raceway 11a
The 11a is set to 53 to 55% of the diameter d 13 of the balls 13. Further, the contact angle α of each of the balls 13 is set to 8 to 20 °. Note that the contact angle α is in the range of 8 to 20 ° at the time of normal temperature.

【0020】又、上記回転軸2の両端部のうちのタービ
ン3側の端部(図2の左端部)を支持する場合には、上
記接触角αを14〜18°とする事が、より好ましい。
即ち、図2に示す様に、上記回転軸の両端部のうちのタ
ービン3側の端部は、高温の排気が流通する排気流路1
に近い為、低温の空気が流通する給気流路5に近いイン
ペラ4側の端部(図2の右端部)に比べて、温度上昇が
著しい。この為、運転時に上記各玉13の接触角αが初
期設定角度よりも大きく変化し易く、次述する作用を発
揮しにくくなる可能性がある。従って、タービン3側の
端部を支持する場合には、上記インペラ4側の端部を支
持する場合に比べて、上記接触角αの範囲をより厳密に
規制する必要がある。この様な理由により、上記タービ
ン3側の端部(図2の左端部)を支持する場合には、上
記接触角αを上述の様な範囲とする事が、より好まし
い。
Further, when supporting the end (left end in FIG. 2) of the both ends of the rotary shaft 2 on the turbine 3 side, it is more preferable to set the contact angle α to 14 to 18 °. preferable.
That is, as shown in FIG. 2, of the two ends of the rotating shaft, the end on the turbine 3 side is disposed in an exhaust passage 1 through which high-temperature exhaust flows.
, The temperature rise is remarkable as compared with the end (the right end in FIG. 2) on the impeller 4 side near the air supply passage 5 through which low-temperature air flows. Therefore, during operation, the contact angle α of each of the balls 13 tends to change more than the initially set angle, which may make it difficult to exert the operation described below. Therefore, when supporting the end on the turbine 3 side, the range of the contact angle α needs to be more strictly regulated than when supporting the end on the impeller 4 side. For such a reason, when supporting the end on the turbine 3 side (the left end in FIG. 2), it is more preferable to set the contact angle α in the above range.

【0021】上述の様に構成する本発明のターボチャー
ジャ用玉軸受の場合には、回転抵抗(回転トルク)及び
発熱量の低減を図れる。即ち、上記外輪軌道9aの断面
形状の曲率半径r9aを各玉13の直径d13の52〜54
%としている為、これら各玉13の転動面と外輪軌道9
aとの接触部の接触面積及び滑り速度(V)を小さくで
きる。この為、回転抵抗を低減して、これら各玉13の
転動面と外輪軌道9aとの接触部の発熱を抑える事がで
きる。尚、上記曲率半径r9aが52%未満の場合には、
上記接触面積及び滑り速度(V)が大きくなり過ぎて、
回転抵抗並びに発熱量が大きくなる。これに対して、上
記曲率半径r9aが54%を越えた場合には、上記接触面
積が小さくなり過ぎて、この接触部の接触圧(P)が増
大し、発熱量が大きくなると共に、上記各玉13の転動
面や外輪軌道9aに剥離等の損傷が発生し易くなる。
In the case of the turbocharger ball bearing of the present invention configured as described above, the rotation resistance (rotation torque) and the amount of generated heat can be reduced. That is, 52 to 54 of diameter d 13 of the outer ring raceway 9a of the cross-sectional shape of the curvature radius r 9a the respective balls 13
%, The rolling surface of each ball 13 and the outer raceway 9
The contact area and the sliding speed (V) of the contact portion with the contact a can be reduced. For this reason, it is possible to reduce the rotational resistance and suppress the heat generation at the contact portion between the rolling surface of each ball 13 and the outer raceway 9a. When the radius of curvature r 9a is less than 52%,
The contact area and the sliding speed (V) become too large,
Rotational resistance and heat generation increase. On the other hand, when the radius of curvature r 9a exceeds 54%, the contact area becomes too small, the contact pressure (P) of the contact portion increases, the heat generation increases, and The rolling surface of each ball 13 and the outer raceway 9a are liable to be damaged such as peeling.

【0022】又、上記内輪軌道11aの断面形状の曲率
半径r11a を上記各玉13の直径d 13の53〜55%と
している為、上記外輪軌道9aの場合と同様に、上記各
玉13の転動面と内輪軌道11aとの接触部の接触面積
及び滑り速度(V)を小さくできる。この為、回転抵抗
が低減すると共に、これら各玉13の転動面と内輪軌道
11aとの接触部の発熱を抑える事ができる。尚、上記
曲率半径r11a が53%未満の場合には、上記接触面積
及び滑り速度(V)が大きくなり過ぎて、回転抵抗並び
に発熱量が大きくなる。これに対して、上記曲率半径r
11a が55%を越えた場合には、上記接触面積が小さく
なり過ぎて、この接触部の接触圧(P)が増大し、発熱
量が大きくなると共に、上記各玉13の転動面や内輪軌
道に剥離等の損傷が発生し易くなる。
The curvature of the cross-sectional shape of the inner raceway 11a is as follows.
Radius r11a Is the diameter d of each ball 13 1353-55% of
As in the case of the outer ring raceway 9a,
Contact area of contact portion between rolling surface of ball 13 and inner raceway 11a
And the sliding speed (V) can be reduced. Because of this, rotation resistance
And the rolling surface of each ball 13 and the inner raceway
It is possible to suppress heat generation at the contact portion with the contact 11a. The above
Radius of curvature r11a Is less than 53%, the above contact area
And the slip speed (V) becomes too large, and the rotational resistance
The calorific value increases. On the other hand, the curvature radius r
11a Exceeds 55%, the contact area is small.
Too much, the contact pressure (P) of this contact portion increases,
As the amount increases, the rolling surface of each ball 13 and the inner ring gauge
Damage such as peeling is likely to occur on the road.

【0023】尚、上記外輪軌道9aと内輪軌道11aと
で曲率半径r9a、r11a の規制範囲が少し異なる(外輪
軌道9aの曲率半径r9aの規制範囲が52〜54%であ
るのに対し、内輪軌道11aの曲率半径r11a の規制範
囲が53〜55%である)理由は、次の通りである。即
ち、上記各玉13の転動面と外輪軌道9a及び内輪軌道
11aとの接触面積が同じである場合は、上記各玉13
の転動面と外輪軌道9aとの接触圧(POUT )は、これ
ら各玉13に加わる遠心力分だけ、上記内輪軌道11a
の接触圧(PIN)よりも大きくなる(POUT >PIN)。
この為、この接触圧(POUT )が大きくなる分だけ、上
記各玉13の転動面と外輪軌道9aとの接触面積を確保
し、この接触圧(POUT )の低減を図る必要がある。言
い換えれば、この外輪軌道9aの接触面積を確保すべ
く、この外輪軌道9aの曲率半径r 9aを上記内輪軌道1
1aの曲率半径r11a に比べ、小さくする必要がある。
この様な理由により、上記外輪軌道9aの曲率半径r9a
の規制範囲と上記内輪軌道11aの曲率半径11a の規制
範囲とを、上述の様に少しだけ異ならせている。尚、周
知の様に、外輪軌道9aと内輪軌道11aとで、断面形
状の曲率半径r9a、r 11a を同じとした場合でも、外輪
軌道9aに関する接触楕円の面積が内輪軌道11aに関
する接触楕円の面積よりも大きくなる。但し、本発明の
対象となるターボチャージャ用玉軸受は、極めて高速で
運転されるので、上記遠心力の値も大きくなり、上述の
様に、曲率半径の値を変えてまで、外輪軌道9aに関す
る接触楕円の面積を内輪軌道11a関する接触楕円の面
積よりも大きくしなければならない場合がある。
The outer raceway 9a and the inner raceway 11a are
Radius of curvature r9a, R11a Regulation range is slightly different (outer ring
Radius of curvature r of orbit 9a9aRegulation range is 52-54%
Whereas the radius of curvature r of the inner raceway 11a11a Regulatory scope of
The reason is as follows. Immediately
The rolling surface of each ball 13, the outer raceway 9a and the inner raceway
If the contact area with the ball 11a is the same,
Pressure between the rolling surface of the outer ring and the outer raceway 9a (POUT ) This
And the inner raceway 11a by the centrifugal force applied to each ball 13
Contact pressure (PIN) (POUT > PIN).
Therefore, the contact pressure (POUT ) Is larger,
The contact area between the rolling surface of each ball 13 and the outer raceway 9a is secured.
And the contact pressure (POUT ) Must be reduced. Word
In other words, it is necessary to secure the contact area of the outer ring raceway 9a.
Radius of curvature r of the outer raceway 9a 9aThe above inner ring raceway 1
Radius of curvature r of 1a11a Need to be smaller than
For this reason, the radius of curvature r of the outer raceway 9a is9a
And the radius of curvature of the inner raceway 11a11a Regulations
The range is slightly different as described above. In addition,
As is known, the outer raceway 9a and the inner raceway 11a have a cross-sectional shape.
Radius of curvature r9a, R 11a Even if the same
The area of the contact ellipse for the track 9a is
Larger than the area of the contact ellipse. However, the present invention
The target turbocharger ball bearings are extremely fast
As it is operated, the value of the centrifugal force also increases,
As described above, the outer ring raceway 9a is not changed until the value of the radius of curvature is changed.
The area of the contact ellipse is defined by the area of the contact ellipse with respect to the inner raceway 11a.
Sometimes it must be larger than the product.

【0024】又、上記各玉13の接触角αを8〜20°
としている為、上記各玉13の転動面と外輪軌道9a及
び内輪軌道11aとの接触部で生じる滑りを小さくする
と共に、接触面積が過大になる事も防止できる。この
為、回転抵抗が低減すると共に、これら各玉13の転動
面と外輪軌道9a及び内輪軌道11aとの接触部の発熱
を抑える事ができる。尚、上記接触角αが20°を越え
た場合には、上記滑りが著しくなり、この滑りによる発
熱量が増大する。これに対して、上記接触角αが8°未
満の場合には、上記各玉13の転動面と外輪軌道9a及
び内輪軌道11aとのラジアル隙間が小さくなり過ぎ
る。この結果、上記接触部の接触面圧(P)が過大にな
り、回転抵抗と発熱量とが増大し易くなる。
The contact angle α of each of the balls 13 is 8 to 20 °.
Therefore, it is possible to reduce the slip generated at the contact portion between the rolling surface of each ball 13 and the outer raceway 9a and the inner raceway 11a, and to prevent the contact area from becoming excessive. Therefore, the rotation resistance is reduced, and the heat generation at the contact portions between the rolling surfaces of the balls 13 and the outer raceway 9a and the inner raceway 11a can be suppressed. If the contact angle α exceeds 20 °, the slip becomes remarkable, and the amount of heat generated by the slip increases. On the other hand, when the contact angle α is less than 8 °, the radial gap between the rolling surface of each ball 13 and the outer raceway 9a and the inner raceway 11a is too small. As a result, the contact surface pressure (P) of the contact portion becomes excessive, and the rotational resistance and the amount of generated heat tend to increase.

【0025】[0025]

【発明の効果】本発明は、以上に述べた通り構成し作用
する為、回転抵抗(回転トルク)が小さく、発熱量の少
ないターボチャージャ用玉軸受を実現できる。この為、
ターボチャージャのレスポンス向上を図ると共に、玉軸
受を組み込んだターボチャージャの耐久性及び信頼性を
含む性能向上に寄与できる。
Since the present invention is constructed and operates as described above, a ball bearing for a turbocharger having a small rotation resistance (rotation torque) and a small calorific value can be realized. Because of this,
In addition to improving the response of the turbocharger, it can contribute to the improvement of the performance including durability and reliability of the turbocharger incorporating the ball bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1例を示す部分断面図。FIG. 1 is a partial cross-sectional view showing an example of an embodiment of the present invention.

【図2】ターボチャージャの全体構成を示す断面図。FIG. 2 is a cross-sectional view showing the overall configuration of the turbocharger.

【図3】図2のA部拡大図。FIG. 3 is an enlarged view of a portion A in FIG. 2;

【図4】従来構造の1例を示す断面図。FIG. 4 is a sectional view showing an example of a conventional structure.

【図5】図4の上部拡大図。FIG. 5 is an enlarged top view of FIG. 4;

【符号の説明】[Explanation of symbols]

1 排気流路 2 回転軸 3 タービン 4 インペラ 5 給気流路 6 軸受ハウジング 7 第一の玉軸受 8 第二の玉軸受 9、9a 外輪軌道 10 外輪 11、11a 内輪軌道 12 内輪 13 玉 14 保持器 15 ポケット 16 圧縮ばね 17 押圧環 18 ケーシング 19 フィルタ 20 ノズル孔 21 排油口 22 玉軸受 DESCRIPTION OF SYMBOLS 1 Exhaust flow path 2 Rotating shaft 3 Turbine 4 Impeller 5 Supply flow path 6 Bearing housing 7 First ball bearing 8 Second ball bearing 9, 9a Outer ring track 10 Outer ring 11, 11a Inner ring track 12 Inner ring 13 Ball 14 Cage 15 Pocket 16 Compression spring 17 Press ring 18 Casing 19 Filter 20 Nozzle hole 21 Oil drain 22 Ball bearing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 憲文 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内 Fターム(参考) 3G005 EA16 FA28 GB55 JA17 3J101 AA02 AA42 AA54 AA62 BA53 BA54 CA07 FA34 FA41 GA29 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Norifumi Ikeda 5-5-150 Kumeinuma Shinmei, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 3G005 EA16 FA28 GB55 JA17 3J101 AA02 AA42 AA54 AA62 BA53 BA54 CA07 FA34 FA41 GA29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内周面に外輪軌道を有し、ハウジングの
内側に支持される外輪と、外周面に内輪軌道を有し、タ
ービンとインペラとを接続する回転軸に外嵌固定される
内輪と、上記外輪軌道と内輪軌道との間に転動自在に設
けられた複数個の玉とを備え、上記回転軸の両端部とハ
ウジングの内周面との間に、互いに接触角の方向を逆に
した状態で組み込むターボチャージャ用玉軸受に於い
て、上記外輪軌道の断面形状の曲率半径を上記各玉の直
径の52〜54%とすると共に、上記内輪軌道の断面形
状の曲率半径を上記各玉の直径の53〜55%とし、更
に、上記接触角を8〜20°とした事を特徴とするター
ボチャージャ用玉軸受。
1. An inner race having an outer raceway on an inner peripheral surface and supported inside a housing, and an inner race having an inner raceway on an outer peripheral surface and externally fitted and fixed to a rotating shaft connecting a turbine and an impeller. And a plurality of balls provided rotatably between the outer raceway and the inner raceway, and the directions of the contact angles between both ends of the rotating shaft and the inner peripheral surface of the housing are mutually changed. In a turbocharger ball bearing incorporated in an inverted state, the radius of curvature of the cross-sectional shape of the outer raceway is 52 to 54% of the diameter of each ball, and the radius of curvature of the cross-sectional shape of the inner raceway is A ball bearing for a turbocharger, characterized in that the diameter of each ball is 53 to 55% and the contact angle is 8 to 20 °.
【請求項2】 回転軸の両端部のうちのタービン側端部
を支持する為に、接触角を14〜18°とした、請求項
1に記載したターボチャージャ用玉軸受。
2. The ball bearing for a turbocharger according to claim 1, wherein a contact angle is set to 14 to 18 ° to support a turbine-side end of both ends of the rotating shaft.
JP2000281881A 2000-09-18 2000-09-18 Ball bearing for turbo-charger Pending JP2002089570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281881A JP2002089570A (en) 2000-09-18 2000-09-18 Ball bearing for turbo-charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281881A JP2002089570A (en) 2000-09-18 2000-09-18 Ball bearing for turbo-charger

Publications (1)

Publication Number Publication Date
JP2002089570A true JP2002089570A (en) 2002-03-27

Family

ID=18766474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281881A Pending JP2002089570A (en) 2000-09-18 2000-09-18 Ball bearing for turbo-charger

Country Status (1)

Country Link
JP (1) JP2002089570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073575A1 (en) * 2004-01-28 2005-08-11 Jtekt Corporation Oblique contact ball bearing and turbocharger
JP2014031862A (en) * 2012-08-06 2014-02-20 Nsk Ltd Angular ball bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073575A1 (en) * 2004-01-28 2005-08-11 Jtekt Corporation Oblique contact ball bearing and turbocharger
JP2014031862A (en) * 2012-08-06 2014-02-20 Nsk Ltd Angular ball bearing

Similar Documents

Publication Publication Date Title
US5522667A (en) Ball bearing for turbocharger
US9963998B2 (en) Assembly with bearings and spacer
US7832938B2 (en) Floating bearing cartridge for a turbocharger shaft
KR840000024B1 (en) Bearing assembly for high speed shaft
US8814538B2 (en) Insulating spacer for ball bearing cartridge
US8740465B2 (en) Bearing system
CN104685183A (en) An oil-free turbocharger bearing assembly having conical shaft supported on compliant gas bearings
US9874217B2 (en) Turbomachine shaft sealing arrangement
US9695708B2 (en) Turbocharger spring assembly
KR102074849B1 (en) Outer race locating washer
JP2002039191A (en) Rotating support device for turbocharger
JP2924481B2 (en) Turbocharger thrust bearing device
JP2014125921A (en) Ball bearing unit for turbocharger
JP2002089570A (en) Ball bearing for turbo-charger
JP2002054450A (en) Rotary support device for turbo-charger
JP2002129967A (en) Rotation supporting device for turbocharger
JP2005256893A (en) Rolling bearing for turbo charger
JP2004183781A (en) Rotation supporting device for turbocharger
JP2005106108A (en) Rolling bearing unit
JP2002098158A (en) Rotational support device for turbocharger
JP2002106569A (en) Rotation support mechanism for turbocharger
JP2002129968A (en) Rotation supporting device for turbocharger
JP2003003856A (en) Rotary support means for turbocharger
JP2002054451A (en) Rotary support device for turbo-charger
WO2016199818A1 (en) Bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924