JP2002098038A - Device for converting heat energy into kinetic energy and electric energy using shape memory material - Google Patents

Device for converting heat energy into kinetic energy and electric energy using shape memory material

Info

Publication number
JP2002098038A
JP2002098038A JP2000335258A JP2000335258A JP2002098038A JP 2002098038 A JP2002098038 A JP 2002098038A JP 2000335258 A JP2000335258 A JP 2000335258A JP 2000335258 A JP2000335258 A JP 2000335258A JP 2002098038 A JP2002098038 A JP 2002098038A
Authority
JP
Japan
Prior art keywords
nut
shape memory
memory material
energy
screw shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000335258A
Other languages
Japanese (ja)
Inventor
Tatsuya Ishibashi
達弥 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000335258A priority Critical patent/JP2002098038A/en
Publication of JP2002098038A publication Critical patent/JP2002098038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a simple and practical energy converting means using a function of converting heat energy of shape memory material into kinetic energy for recovering effective kinetic energy and electric energy from lower order heat energy discharged unused. SOLUTION: On a nut movable to reciprocate along a screw shaft fixed to a machine frame, one end of each of the shape memory material and a bias spring is installed, and the other end of each is installed on the machine frame. At respective parts of heating medium and cooling medium existing at different positions on both sides of the screw shaft, the nut on the screw shaft is movable to be rotated to reciprocate in accordance with an expansion state of the shape memory material, and the shape memory material itself installed on the nut is also moved alternately and easily to the parts of both the heating medium and the cooling medium in accordance with motion of the nut. By installing a known kinetic energy and electric energy converting device on this nut, it becomes a means to efficiently take out energy based on temperature difference between the heating medium and the cooling medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の属する技術分野]本発明は、形状
記憶材料を用いて低位熱エネルギを効率よく運動エネル
ギおよび電気エネルギに変換するためのエネルギ変換装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy conversion device for efficiently converting low heat energy into kinetic energy and electric energy using a shape memory material.

【0002】[従来の技術]従来、形状記憶材料を用い
て低位熱エネルギを運動エネルギおよび電気エネルギに
変換するための技術としては、各種形態のものが発明さ
れてきている。この技術は、形状記憶材料が温熱媒下で
は大きな形状回復力を発生し、一方、冷熱媒下では小さ
な力で変形することを利用して、それらの差から運動エ
ネルギおよび電気エネルギを取り出すものである。
(注;この場合の温熱媒と冷熱媒とにおける、「温」と
「冷」との意味は相対的な意味で用いている) そのためには、エネルギ差を発生させる温熱媒下および
冷熱媒下へと形状記憶材料の位置を交互に入れ替える際
のメカニズム、あるいは形状記憶材料のところへ温熱媒
と冷熱媒とを交互に移動させる際のメカニズムが必要と
なる。しかし、これまでのメカニズムには両熱媒下への
形状記憶材料の移動メカニズムが複雑で効率が悪いと
か、メカニズムはシンプルであるにもかかわらずエネル
ギの取り出し方法が実用的でないとか、熱媒が液体であ
る場合や気体である場合には変換効率が悪くなるとか、
あるいは温・冷熱媒を形状記憶材料の位置へそれぞれ交
互に移動させるメカニズムではエネルギ損失の割合が過
大になるとか、などの様々な欠点があった。このような
理由で、形状記憶材料が本来有するところの熱エネルギ
を有効な運動エネルギに変換する際の効率(Ni−Ti
合金の場合で、4〜6%程度)を十分に達成できるメカ
ニズムが存在しなかった。そのため、火力発電所・原子
力発電所・地熱発電所・工場などから排出される温排水
あるいはLNG,LPGなどを気化させるときに排出さ
れる冷排水、等が有する膨大な量の低位熱エネルギを有
効な運動エネルギおよび電気エネルギとして活用するこ
とが出来なかった。
[Prior Art] Conventionally, various types of techniques for converting low heat energy into kinetic energy and electric energy using a shape memory material have been invented. This technology takes advantage of the fact that a shape memory material generates a large shape recovery force under a heating medium, while deforming with a small force under a cooling medium, and extracts kinetic energy and electric energy from the difference between them. is there.
(Note: In this case, the terms "warm" and "cold" are used in a relative sense between the heating medium and the cooling medium.) For this purpose, under the heating medium and the cooling medium that generate an energy difference Therefore, a mechanism for alternately changing the position of the shape memory material or a mechanism for alternately moving the heating medium and the cooling medium to the shape memory material is required. However, the mechanism so far has been that the mechanism of moving the shape memory material under both heating media is complicated and inefficient, or that the mechanism is simple but the energy extraction method is not practical, If it is liquid or gas, the conversion efficiency will be worse,
Alternatively, the mechanism of alternately moving the hot / cold heat medium to the position of the shape memory material has various disadvantages such as an excessive energy loss ratio. For this reason, the efficiency (Ni-Ti) in converting the original thermal energy of the shape memory material into effective kinetic energy is obtained.
(About 4 to 6% in the case of alloys), there was no mechanism that could sufficiently achieve this. Therefore, a huge amount of low heat energy, such as hot waste water discharged from thermal power plants, nuclear power plants, geothermal power plants, factories, etc., or cold waste water discharged when evaporating LNG, LPG, etc., is effective. Kinetic and electrical energy could not be utilized.

【0003】[発明が解決しようとする課題]本発明
は、現在未利用のまま排出されている膨大な量の低位熱
エネルギから有効な運動エネルギおよび電気エネルギを
回収するために、形状記憶材料の有する熱エネルギを有
効な運動エネルギに変換する際の効率を最大限に引き出
すための、シンプルで実用的なエネルギ変換装置を確立
しようとするものである。
[0003] The present invention aims at recovering effective kinetic energy and electrical energy from a huge amount of low-level thermal energy that is currently unused and discharged. It is an object of the present invention to establish a simple and practical energy conversion device for maximizing the efficiency in converting the heat energy to effective kinetic energy.

【0004】[課題を解決するための手段]本発明は異
なる位置に存在する温熱媒と冷熱媒との温度差から、効
率よく運動および電気エネルギを取り出すことを目的と
している。そのため機枠に固定されたネジ軸上を回転往
復移動できるようになっているナットに、形状記憶材料
とバイアススプリングとを組み合わせて取り付けること
により、形状記憶材料の伸縮に対応して形状記憶材料自
体が異なる位置に存在する両熱媒下へ交互にかつ容易に
移動でき、効率よくエネルギを取り出すシンプルな手段
を考えた。
[0004] It is an object of the present invention to efficiently extract motion and electric energy from the temperature difference between a heating medium and a cooling medium existing at different positions. Therefore, the shape memory material itself is adapted to the expansion and contraction of the shape memory material by attaching it in combination with a shape memory material and a bias spring to a nut that can rotate and reciprocate on the screw shaft fixed to the machine frame. A simple means for efficiently and efficiently extracting energy can be alternately and easily moved under both heating media present at different positions.

【0005】[発明の実施の形態]本発明の装置は、図
1に示す次のようなものである。ここで、ネジ軸(2)
は右ネジの場合とし、ナット(3)が右回転した場合に
進む方向を前進方向、左回転した場合に進む方向を後進
方向とする。また、形状記憶材料(6)およびバイアス
スプリング(12)はコイルスプリングの形状の場合と
し、この時の形状記憶材料のスプリングは短縮の状態に
形状記憶されている。かつ冷熱媒(17)下にある形状
記憶材料(6)のスプリングはバイアススプリング(1
2)によって引き伸ばされるバネ定数を有し、またバイ
アススプリング(12)は温熱媒(16)下にある形状
記憶材料(6)のスプリングによって引き伸ばされるバ
ネ定数を有するように、それぞれのバネ定数が設定され
ている。機枠(1)に固定されたネジ軸(2)には回転
往復移動ができるようになっているナット(3)が組み
合わされており、その軸方向における前進側(4)にあ
る自在支点(5)には形状記憶材料(6)の一端(7)
が結合されており、かつその他端(8)はナット(3)
の前進側遠方上にある機枠(1)の自在支点(9)に結
合されている。このナット(3)の軸方向における後進
側(10)にある自在支点(11)にはバイアススプリ
ング(12)の一端(13)が結合されており、かつそ
の他端(14)はナット(3)の後進側遠方上にある機
枠(1)の自在支点(15)に結合されている。また、
ネジ軸(2)は温熱媒(16)と冷熱媒(17)とのあ
いだに配置されている。さらに、ネジ軸(2)上で回転
往復移動できるナット(3)には、その回転往復移動を
直線運動あるいは回転運動として取り出すための既知の
運動変換装置(18)、および電気エネルギとして取り
出すための既知の発電変換装置(19)が変換目的に応
じて取り付けられている。本発明の実施の形態を、以下
図1及び図2により説明する。まず、図1に示すように
ナット(3)に取り付けられたバイアススプリング(1
2)が全縮状態で、またその力により全伸状態となった
形状記憶材料(6)が、ネジ軸(2)の片側(図では下
側)にある温熱媒(16)の部分に位置する状態を起点
とする。つまり、ネジ軸(2)上のナット(3)が軸上
で移動できる範囲の後進側最大到達点(20)にある状
態を、本説明におけるナット(2)の移動開始点とす
る。このナット(2)の移動開始点は、形状記憶材料
(6)が温熱媒(16)下で形状回復を起こし、短縮を
開始する最初の位置である。この温熱媒(16)下の位
置で発生する形状記憶材料(6)の形状回復力は、バイ
アススプリング(12)の力に十分勝るため、形状記憶
材料(6)はバイアススプリング(12)を伸張させな
がら、それ自身は元の形状に戻ろうとして短縮を開始す
る。その結果、ネジ軸(2)上で回転移動できるように
なっているナット(3)は形状回復力の一部の力で右回
転しながら、かつ軸方向では前進することになるため、
それに取り付けられている形状記憶材料(6)とバイア
ススプリング(12)はネジ軸(2)を挟んだもう一つ
の側(図では上側)にある冷熱媒(17)の部分へと移
動していく。このようにして形状記憶材料(6)が短縮
しながら冷熱媒(17)側へと移動していき、図2に示
すように全縮状態となった時に、ナット(3)は軸上に
おいて移動できる範囲の前進側最大到達点(21)に到
達したことになる。その結果、今度は全伸状態のバイア
ススプリング(12)の引っ張り力の方が冷熱媒(1
7)下で全縮した状態の形状記憶材料(6)の短縮力よ
りも十分勝ることになるため、この時点からバイアスス
プリング(12)は短縮を開始することになり、これに
合わせて形状記憶材料(6)は引っ張られて伸張を開始
することになる。このバイアススプリング(12)の短
縮力の一部により、ナット(3)は左回転と軸方向上で
の後進を開始する。その後ナット(3)に取り付けられ
ている形状記憶材料(6)は伸張を続けながら、またバ
イアススプリング(12)は短縮を続けながら、両者と
もネジ軸挟んだ片側(図では下側)にある温熱媒(1
6)の部分へと移動していき、最後にナット(3)の位
置は図1に示したと同じそれの軸上における後進側最大
到達点(20)(移動開始点とした点)に至る。以降、
ナット(3)の運動に注目して考えれば、固定ネジ軸
(2)上のナット(3)は再び右回転を行いながら軸上
を前進して前進側最大到達点(21)に達し、その後、
また左回転を行いながら軸上を後進して後進側最大到達
点(20)に達する運動を繰り返す。すなわち、ナット
(3)は軸上の2点である(20)と(21)の間の回
転往復運動を繰り返すことになる。したがって、この回
転往復運動を行うナット(3)に対して既知の運動エネ
ルギ変換装置(18)である直線往復運動への変換装
置、あるいは回転運動への変換装置を取り付ければ、温
熱媒と冷熱媒とが有しているエネルギ差を運動エネルギ
として効率よく取り出すことが出来る。さらに既知の電
気エネルギ変換装置(19)である発電装置(揺動型発
電機、回転型発電機など)を単独で取り付けるか、ある
いは運動エネルギ変換装置(18)と組み合わせて用い
るかすれば、効率よく電気エネルギとして取り出すこと
も出来る。以上が課題を解決するための手段である。
[Embodiment of the Invention] The apparatus of the present invention is as shown in FIG. Here, screw shaft (2)
Is the case of a right-handed screw, and the direction in which the nut (3) advances when turned clockwise is the forward direction, and the direction in which the nut (3) rotates counterclockwise is the reverse direction. The shape memory material (6) and the bias spring (12) are in the form of a coil spring, and the shape memory material spring at this time is stored in a shortened state. The spring of the shape memory material (6) under the cooling medium (17) is a bias spring (1).
Each spring constant is set so that it has a spring constant that is stretched by 2) and the bias spring (12) has a spring constant that is stretched by the spring of the shape memory material (6) under the heating medium (16). Have been. A screw shaft (2) fixed to the machine frame (1) is combined with a nut (3) that can rotate and reciprocate, and a free fulcrum (4) on the forward side (4) in the axial direction. 5) One end (7) of the shape memory material (6)
And the other end (8) is a nut (3)
Is connected to the free fulcrum (9) of the machine frame (1) located on the far side of the forward side. One end (13) of a bias spring (12) is connected to a free fulcrum (11) on the reverse side (10) in the axial direction of the nut (3), and the other end (14) is a nut (3). Is connected to the free fulcrum (15) of the machine frame (1) located on the distant side on the reverse side. Also,
The screw shaft (2) is arranged between the heating medium (16) and the cooling medium (17). In addition, a nut (3) which can be reciprocated rotationally on the screw shaft (2) has a known motion conversion device (18) for extracting the reciprocating rotation as a linear motion or a rotary motion, and a nut for extracting the reciprocal motion as electric energy. A known power conversion device (19) is mounted for conversion purposes. An embodiment of the present invention will be described below with reference to FIGS. First, as shown in FIG. 1, a bias spring (1) attached to a nut (3) is used.
2) is a fully contracted state, and the shape memory material (6) that has been fully extended by the force is located at a portion of the heating medium (16) on one side (the lower side in the figure) of the screw shaft (2). Starting state. That is, the state in which the nut (3) on the screw shaft (2) is at the maximum point (20) on the reverse side where the nut can move on the shaft is defined as the movement start point of the nut (2) in the present description. The starting point of the movement of the nut (2) is the first position where the shape memory material (6) recovers its shape under the heating medium (16) and starts to shorten. Since the shape recovery force of the shape memory material (6) generated at the position below the heating medium (16) sufficiently exceeds the force of the bias spring (12), the shape memory material (6) expands the bias spring (12). As it does, it begins to shorten in an attempt to return to its original shape. As a result, the nut (3), which is rotatable on the screw shaft (2), is rotated rightward by a part of the shape recovery force and moves forward in the axial direction.
The shape memory material (6) and the bias spring (12) attached thereto move to the portion of the cooling medium (17) on the other side (upper side in the figure) of the screw shaft (2). . In this way, the shape memory material (6) moves toward the cooling medium (17) while shortening, and when the shape memory material (6) is fully contracted as shown in FIG. 2, the nut (3) moves on the shaft. This means that the robot has reached the maximum forward-side reaching point (21) within the possible range. As a result, the tensile force of the bias spring (12) in the fully extended state is lower than that of the cooling medium (1).
7) Since the contraction force of the shape memory material (6) in the fully contracted state is far superior to the contraction force, the bias spring (12) starts the contraction from this point, and the shape memory is adjusted accordingly. Material (6) will be pulled and begin to stretch. Due to a part of the shortening force of the bias spring (12), the nut (3) starts to rotate counterclockwise and to move backward in the axial direction. Thereafter, while the shape memory material (6) attached to the nut (3) continues to elongate, and the bias spring (12) continues to shorten, both of them are located on one side (lower side in the figure) sandwiching the screw shaft. Medium (1
6), and finally, the position of the nut (3) reaches the maximum backward reaching point (20) on the same axis as that shown in FIG. Or later,
Considering the movement of the nut (3), the nut (3) on the fixed screw shaft (2) moves forward on the shaft while rotating clockwise again to reach the maximum point (21) on the forward side. ,
In addition, the robot repeats the backward movement on the shaft while rotating leftward to reach the maximum backward reaching point (20). That is, the nut (3) repeats the rotational reciprocating motion between the two points (20) and (21) on the shaft. Therefore, if a conversion device for linear reciprocation or a conversion device for rotary motion, which is a known kinetic energy conversion device (18), is attached to the nut (3) performing the rotary reciprocation, a heating medium and a cooling medium can be used. It is possible to efficiently extract the energy difference between the two as kinetic energy. Efficiently, a power generator (a rocking generator, a rotary generator, etc.), which is a known electric energy converter (19), is installed alone or used in combination with a kinetic energy converter (18). It can also be extracted as electrical energy. The above is means for solving the problem.

【0006】[実施例]本発明の実施の形態としては、
以下に述べるものとする。 (イ)ネジの形態を、すべりネジやボールネジなどの各
種のネジにしたもの。 (ロ)形状記憶材料およびバイアススプリングの形状
を、コイル状、渦巻き状、板状、棒状、網状などの圧縮
あるいは引っ張りに際して弾性体として作用するように
したもの。 (ハ)図3に示すように、バイアススプリングのナット
への取り付け位置を形状記憶材料と同じ側にしたもの。
(形状記憶材料が全伸のときバイアススプリングは自由
長である全伸。形状記憶材料が全縮である自由長のと
き、バイアススプリングは全縮) (ニ)図4に示すように、バイアススプリングの代わり
にクランクを用いたもの。 (ホ)図5に示すように、バイアススプリングの代わり
に形状記憶材料を用い、もう一組の温・冷熱媒を軸の両
側ナットを挟んで点対称に配置したもの。 (ヘ)図6に示すように、バイアススプリングの代わり
に形状記憶材料を用い、それらをナットを挟んで点対称
に配置したもの。 (ト)図1で示した実施例および(ハ)、(ニ)、
(ホ)、(ヘ)のような実施例を、クランク軸の左右に
平行に複数個、多段に配置させたもの。 (チ)図1で示した実施例および(ハ)、(ニ)、
(ホ)、(ヘ)のような実施例を、クランク軸の周囲に
円周状に複数個、多段に配置させたもの。 (リ)各実施例において図7に示すように、機枠上の自
在支点の構成を単なる自在支点ではなく、ネジとナット
の組み合わせにしたもの。 (ヌ)各実施例において、形状記憶材料とバイアススプ
リングとが取り付けられているナットの回転往復移動に
同期して、その往復移動範囲を規定するためのカム装置
をナットと機枠との間に取り付けたもの。 (ル)各実施例において図8に示すように、形状記憶材
料が温熱媒あるいは冷熱媒に近づいたとき、ナットの回
転位置よりも熱媒へより早く近づくようなカム装置を、
自在支点のところに取り付けたもの。
[Embodiment] As an embodiment of the present invention,
It will be described below. (A) Various types of screws, such as slide screws and ball screws, in the form of screws. (B) A shape memory material and a bias spring, each of which has a shape such as a coil, a spiral, a plate, a bar, a net, or the like that acts as an elastic body when compressed or pulled. (C) As shown in FIG. 3, the mounting position of the bias spring to the nut is on the same side as the shape memory material.
(When the shape memory material is fully expanded, the bias spring is free length. When the shape memory material is fully reduced, the bias spring is fully contracted.) (D) As shown in FIG. Instead of using a crank. (E) As shown in FIG. 5, a shape memory material is used in place of the bias spring, and another set of hot / cold heating medium is arranged point-symmetrically with the nuts on both sides of the shaft interposed therebetween. (F) As shown in FIG. 6, a shape memory material is used in place of the bias spring, and they are arranged point-symmetrically with a nut interposed therebetween. (G) The embodiment shown in FIG. 1 and (c), (d),
(E) A plurality of embodiments as in (f) arranged in multiple stages parallel to the left and right of the crankshaft. (H) The embodiment shown in FIG. 1 and (C), (D),
(E) A plurality of the embodiments shown in (f) arranged circumferentially around the crankshaft in multiple stages. (I) In each embodiment, as shown in FIG. 7, the configuration of the universal fulcrum on the machine frame is not a simple universal fulcrum but a combination of a screw and a nut. (V) In each embodiment, a cam device for defining the reciprocating range of the nut is provided between the nut and the machine frame in synchronization with the reciprocating rotation of the nut on which the shape memory material and the bias spring are attached. Attached. (R) In each embodiment, as shown in FIG. 8, a cam device that approaches the heating medium earlier than the rotational position of the nut when the shape memory material approaches the heating medium or the cooling medium,
Attached to a free fulcrum.

【0007】[発明の効果] (イ)異なる位置に存在する温熱媒と冷熱媒の部分へ、
形状記憶材料がそれの伸縮に対応して移動するメカニズ
ムが、ネジとナットの組み合わせを基本に用いているた
めシンプルである。 (ロ)形状記憶材料が温熱媒と冷熱媒との間を往復移動
する際、形状記憶材料は温熱媒と冷熱媒との部分におい
てはそれぞれ一時停止することから、エネルギ差を十分
に吸収できるメカニズムである。 (ハ)温熱媒が液体で冷熱媒が気体のような場合であっ
ても、形状記憶材料が主として冷却される場所は温熱媒
上の部分ではなく、軸を挟んだ反対側の冷熱媒のみが存
在する部分であるため冷却効果が高くなり、その結果運
動への変換あるいは電気エネルギへの変換効率がよい。
[Effects of the Invention] (a) To the portions of the heating medium and the cooling medium existing at different positions,
The mechanism by which the shape memory material moves in accordance with its expansion and contraction is simple because it basically uses a combination of screws and nuts. (B) When the shape memory material reciprocates between the heating medium and the cooling medium, the shape memory material temporarily stops at the heating medium and the cooling medium, so that the mechanism capable of sufficiently absorbing the energy difference. It is. (C) Even when the heating medium is a liquid and the cooling medium is a gas, the shape memory material is mainly cooled not at the portion on the heating medium but at the cooling medium on the opposite side of the shaft. Since it is an existing portion, the cooling effect is enhanced, and as a result, conversion efficiency into motion or conversion efficiency into electric energy is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の説明図(その1)である。FIG. 1 is an explanatory diagram (part 1) of the present invention.

【図2】本発明の説明図(その2)である。FIG. 2 is an explanatory view (No. 2) of the present invention.

【図3】本発明の実施例(ハ)の説明図である。FIG. 3 is an explanatory diagram of an embodiment (C) of the present invention.

【図4】本発明の実施例(ニ)の説明図である。FIG. 4 is an explanatory diagram of an embodiment (d) of the present invention.

【図5】本発明の実施例(ホ)の説明図である。FIG. 5 is an explanatory diagram of an embodiment (e) of the present invention.

【図6】本発明の実施例(ヘ)の説明図である。FIG. 6 is an explanatory diagram of an embodiment (f) of the present invention.

【図7】本発明の実施例(リ)の説明図である。FIG. 7 is an explanatory diagram of an embodiment (i) of the present invention.

【図8】本発明の実施例(ル)の説明図である。FIG. 8 is an explanatory diagram of an embodiment (f) of the present invention.

【符号の説明】 1は機枠 2はネジ軸(右ネジ) 3はナット 4はナットの軸方向における前進側 5はナットの軸方向における前進側にある自在支点 6は形状記憶材料(コイルスプリングの形状) 7は形状記憶材料のナット側の端 8は形状記憶材料の機枠側の端 9はナットの前進側遠方上機枠にある自在支点 10はナットの軸方向における後進側 11はナットの軸方向における後進側にある自在支点 12はバイアススプリング(コイルスプリングの形状) 13はバイアススプリングのナット側の端 14はバイアススプリングの機枠側の端 15はナットの後進側遠方上機枠にある自在支点 16は温熱媒 17は冷熱媒 18は既知の運動変換装置 19は既知の発電変換装置 20はナットが軸上で移動できる範囲の後進側最大到達
点 21はナットが軸上で移動できる範囲の前進側最大到達
[Description of Signs] 1 is a machine frame 2 is a screw shaft (right-hand thread) 3 is a nut 4 is a forward side in the axial direction of the nut 5 is a free fulcrum on the forward side in the axial direction of the nut 6 is a shape memory material (coil spring) 7 is an end on the nut side of the shape memory material 8 is an end on the machine frame side of the shape memory material 9 is a universal fulcrum on the far upper machine frame on the forward side of the nut 10 is a backward side in the axial direction of the nut 11 is a nut The fulcrum 12 on the reverse side in the axial direction of the spring 12 is a bias spring (the shape of a coil spring) 13 is the end of the bias spring on the nut side 14 is the end of the bias spring on the machine frame side 15 is the nut on the backward and far upper machine frame A certain fulcrum 16 is a heating medium 17 is a cooling medium 18 is a known motion conversion device 19 is a known power generation conversion device 20 is a maximum backward reaching point 21 in a range in which a nut can move on an axis. Forward side maximum arrival point range Tsu bets can move on the axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機枠(1)に固定されたネジ軸(2)には
回転往復移動ができるようになっているナット(3)が
組み合わされており、その軸方向における一つの側
(4)にある自在支点(5)には形状記憶材料(6)の
一端(7)が結合されており、かつその他端(8)はナ
ット(3)のその側遠方上にある機枠(1)の自在支点
(9)に結合されている。このナット(3)の軸方向に
おけるもう一つの側(10)にある自在支点(11)に
はバイアススプリング(12)の一端(13)が結合さ
れており、かつその他端(14)はナット(3)のその
側遠方上にある機枠(1)の自在支点(15)に結合さ
れている。また、ネジ軸(2)は温熱媒(16)と冷熱
媒(17)とのあいだに配置されている。さらに、ネジ
軸(2)上で回転往復移動できるナット(3)には、そ
の回転往復移動を直線運動あるいは回転運動として取り
出すための既知の運動変換装置(18)、および電気エ
ネルギとして取り出すための既知の発電変換装置(1
9)が変換目的に応じて取り付けられている。以上のご
とき構成よりなる、形状記憶材料を用いた熱エネルギの
運動および電気エネルギへの変換装置
1. A screw shaft (2) fixed to a machine frame (1) is combined with a nut (3) capable of rotating and reciprocating movement, and one side (4) in the axial direction thereof. ) Is connected to one end (7) of a shape memory material (6) and the other end (8) is a machine frame (1) located farther to the side of the nut (3). (9). One end (13) of a bias spring (12) is connected to a free fulcrum (11) on the other side (10) in the axial direction of the nut (3), and the other end (14) is connected to the nut ( 3) is connected to the free fulcrum (15) of the machine frame (1) located on the far side of the side. The screw shaft (2) is arranged between the heating medium (16) and the cooling medium (17). In addition, a nut (3) which can be reciprocated rotationally on the screw shaft (2) has a known motion conversion device (18) for extracting the reciprocating rotation as a linear motion or a rotary motion, and a nut for extracting the reciprocal motion as electric energy. Known power generation converter (1
9) is attached according to the purpose of conversion. Apparatus for converting thermal energy into motion and electrical energy using a shape memory material having the above configuration
JP2000335258A 2000-09-26 2000-09-26 Device for converting heat energy into kinetic energy and electric energy using shape memory material Pending JP2002098038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000335258A JP2002098038A (en) 2000-09-26 2000-09-26 Device for converting heat energy into kinetic energy and electric energy using shape memory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000335258A JP2002098038A (en) 2000-09-26 2000-09-26 Device for converting heat energy into kinetic energy and electric energy using shape memory material

Publications (1)

Publication Number Publication Date
JP2002098038A true JP2002098038A (en) 2002-04-05

Family

ID=18811039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000335258A Pending JP2002098038A (en) 2000-09-26 2000-09-26 Device for converting heat energy into kinetic energy and electric energy using shape memory material

Country Status (1)

Country Link
JP (1) JP2002098038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator
JP5174271B1 (en) * 2012-08-16 2013-04-03 川西 英治 Power generation cylinder device
WO2020224021A1 (en) * 2019-05-07 2020-11-12 常州机电职业技术学院 Speed change mechanism and heat engine employing small temperature difference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111931A (en) * 2009-11-25 2011-06-09 Seiwa Giken:Kk Thermal power generator
JP5174271B1 (en) * 2012-08-16 2013-04-03 川西 英治 Power generation cylinder device
WO2020224021A1 (en) * 2019-05-07 2020-11-12 常州机电职业技术学院 Speed change mechanism and heat engine employing small temperature difference

Similar Documents

Publication Publication Date Title
US8935921B2 (en) Thermal engine capable of utilizing low temperature sources of heat
US20090000294A1 (en) Power Plant with Heat Transformation
WO2008134283A2 (en) Isothermal power
US20120031091A1 (en) High efficiency energy conversion
KR20180100700A (en) Tapered spiral gas turbine with homo-polar DC generator for combined cooling, heating, power, pressure, work and water
CN113757853A (en) Elastic heating refrigeration system with lever structure and refrigeration method thereof
Goudarzi et al. Design and construction of a two-phase fluid piston engine based on the structure of fluidyne
US7775042B1 (en) Method of transforming thermal energy
KR20110007119A (en) Liquid displacer engine
KR20170076220A (en) Hybrid Air-Brayton Cycle Power Generator System using Waste Heat, which generates simultaneously both high temperature steam and air
CN106762211B (en) A kind of stirling generator and electricity-generating method based on dielectric elastomer
JP2002098038A (en) Device for converting heat energy into kinetic energy and electric energy using shape memory material
JP2018512531A (en) Working fluid, apparatus and method for apparatus for converting heat to mechanical energy
WO2007118282A1 (en) A heat engine/heat pump
CN103122835A (en) Temperature difference engine
JP2017050418A (en) Heat recovery device
KR20190052794A (en) Generation system of organic rankine cycle integrated wind turbine cooling system
CN116147221A (en) Refrigeration driver based on spring clip material winding bending
JPH05306676A (en) Solid phase thermal energy generating system
JP2011188654A (en) Sma heat engine and sma type power generating device using the same
Cui et al. Prototype Progress Report: Elastocaloric Heat Pumps
JP6623005B2 (en) Heat reflux device, heating method and heat recovery device
CN118234925A (en) System and method for converting waste heat from a collection of computing devices into electrical energy
JP2021181865A (en) Magnetic refrigeration device
Cui et al. PROTOTYPE PROGRESS REPORT: ELASTOCALORIC HEAT PUMPS: Researchers around the world are racing to build elastocaloric cooling prototypes.