JP2011188654A - Sma heat engine and sma type power generating device using the same - Google Patents

Sma heat engine and sma type power generating device using the same Download PDF

Info

Publication number
JP2011188654A
JP2011188654A JP2010052512A JP2010052512A JP2011188654A JP 2011188654 A JP2011188654 A JP 2011188654A JP 2010052512 A JP2010052512 A JP 2010052512A JP 2010052512 A JP2010052512 A JP 2010052512A JP 2011188654 A JP2011188654 A JP 2011188654A
Authority
JP
Japan
Prior art keywords
sma
spring
cylindrical container
heat
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052512A
Other languages
Japanese (ja)
Inventor
Toshio Sakuma
俊雄 佐久間
Hiroki Cho
弘基 長
Takae Yamamoto
隆栄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita University
Original Assignee
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita University filed Critical Oita University
Priority to JP2010052512A priority Critical patent/JP2011188654A/en
Publication of JP2011188654A publication Critical patent/JP2011188654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new SMA (shape memory alloy) power generating device which obtains high output in low load strain and has a mechanism in which an SMA element can be uniformly heated and cooled, and to provide an SMA type power generating device in which a large number of the SMA power generating engines are combined with one another to be operated by low quality heat energy. <P>SOLUTION: In the SMA heat engine, a spiral spring 200 shaped with shape memory alloy plate is housed in a cylindrical container 100 which is rotatably installed, a pair of spiral spring type actuators A1, A2 is provided which rotates the cylindrical container 100 by the winding/unwinding force obtained by heating-cooling of the spiral spring 200, the respective actuators A1, A2 are connected by a belt 400 so as to be windable and unwindable, an induction coil 600 is disposed between the actuators A1-A2, a permanent magnet 700 is mounted on a belt part 401 inserted into the induction coil 600, and electromotive current feeding circuits 610, 620 are connected to the induction coil 600. The SMA type power generating device is made of a plurality of the SMA heat engines. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、形状記憶合金を利用した所謂SMA熱エンジンとそれを利用したSMA式発電装置に関するものである。 The present invention relates to a so-called SMA heat engine using a shape memory alloy and an SMA power generator using the so-called SMA heat engine.

地球環境問題や資源枯渇などの問題を克服するためには,合理的なエネルギー利用体制を構築する必要がある.それゆえ,工場などから排出される未利用エネルギーの回収システムの構築が望まれている.
図1は工場排熱の温度別排出比率を示している.200℃以上の排熱は熱交換器や熱電素子などにより50〜90%のエネルギー回収が可能である.
しかし排熱の約80%は200℃以下の低品位熱エネルギーが占めている.100℃でのエクセルギー効率は10%程度と小さく,低品位熱エネルギーの回収はランキンサイクルのような液体の相変化を利用する方法では,伝熱面積あるいはポンプ動力などの補助動力が大きくなり,エネルギーコストに大きな課題を持つ.また熱電素子を利用するためには250℃以上の温度差が必要である.
In order to overcome problems such as global environmental problems and resource depletion, it is necessary to construct a rational energy utilization system. Therefore, the construction of a recovery system for unused energy discharged from factories is desired.
Fig. 1 shows the exhaust rate by temperature of factory waste heat. Exhaust heat above 200 ° C can recover 50 to 90% of energy with heat exchangers and thermoelectric elements.
However, about 80% of exhaust heat is occupied by low-grade heat energy below 200 ° C. Exergy efficiency at 100 ° C is as low as about 10%, and low-grade thermal energy recovery uses a liquid phase change such as Rankine cycle, which increases the heat transfer area or auxiliary power such as pump power. It has a big problem in energy cost. In order to use thermoelectric elements, a temperature difference of 250 ° C or more is required.

このような理由から,現在低品位熱エネルギーはヒートポンプあるいは給湯用の熱源として利用されている.
しかし熱供給は遠距離の輸送が困難であるため,熱源と熱需要地が隣接した場合に限られており,排熱の一部分しか有効活用されていない.そのため,低品位熱エネルギーを機械的・電気的エネルギーに変換することができればエネルギー輸送が容易になり,排熱の一層の有効活用を図ることができる.
For these reasons, low grade thermal energy is currently used as a heat source for heat pumps or hot water supply.
However, since heat supply is difficult to transport over long distances, it is limited to the case where the heat source and the heat demand area are adjacent to each other, and only a part of the exhaust heat is effectively utilized. Therefore, if low-grade thermal energy can be converted into mechanical and electrical energy, energy transport will be easier and more effective use of exhaust heat will be possible.

このような観点から,200℃以下の低品位熱エネルギーを機械的・電気的エネルギーに変換するシステムの開発が求められている.これまでに,低品位熱エネルギーを使用し低沸点のアンモニアを蒸発させ,タービンを駆動させることにより発電する低位熱発電システムが開発されている.しかし装置が大型で設置コストが多大であるため,コンビナートなど一部大型な工場施設で使用されるにとどまっている.このような理由から,低コストな低品位熱エネルギー回収システムとして形状記憶合金(以下SMAと言う)を用いたエンジンが研究されている. From this point of view, there is a need to develop a system that converts low-grade thermal energy below 200 ° C into mechanical and electrical energy. So far, low-level thermal power generation systems have been developed that use low-grade thermal energy to evaporate low-boiling ammonia and drive the turbine to generate electricity. However, because the equipment is large and installation costs are high, it is only used in some large factory facilities such as industrial complexes. For these reasons, an engine using a shape memory alloy (hereinafter referred to as SMA) has been studied as a low-cost low-grade thermal energy recovery system.

<形状記憶合金(SMA)エンジンについて>
形状記憶合金(SMA)は,変形を与えても変態温度以上に加熱すると形状が回復し,また形状回復時に大きな回復力を発生する機能性材料である.SMAは民生に限らず,原子力発電所,新幹線および医療・生体材料など,高い信頼性が要求される分野においても応用されている.現在実用化されているTi-Ni形状記憶合金の作動温度領域は室温近傍〜80℃であり,いわゆる温水の温度に加熱するだけで大きな回復力を発生する.このような理由から,Ti-Ni合金を使用したSMA熱エンジンは「低品位の熱エネルギーを機械的・電気的エネルギーへと変換する」システムとして注目されていた.これまでに研究されたSMA熱エンジンにはクランク型,プーリー型,斜板式,レシプロ型の4つのタイプがある.
<About shape memory alloy (SMA) engine>
Shape memory alloy (SMA) is a functional material that recovers its shape when it is heated above its transformation temperature even when it is deformed, and generates a large recovery force when recovering its shape. SMA is applied not only to consumer products but also to fields requiring high reliability such as nuclear power plants, bullet trains, and medical / biomaterials. The working temperature range of Ti-Ni shape memory alloys currently in practical use is near room temperature to 80 ° C, and generates a large recovery force just by heating to the so-called hot water temperature. For these reasons, SMA heat engines using Ti-Ni alloys have attracted attention as a system that "converts low-grade thermal energy into mechanical and electrical energy". There are four types of SMA heat engines studied so far: crank type, pulley type, swash plate type, and reciprocating type.

<SMA熱エンジンの動作原理>
上記4つのSMA熱エンジンの基本動作原理は、ほぼ同一である.
図2はSMAの応力−ひずみ関係を示したものである.
SMA熱エンジンは基本的に2つのSMA素子を拮抗させて配置した構造となっており,加熱−冷却のサイクルを行うことによりお互いが変形−回復のサイクルを行いあうことでエンジンとして動作する.
低温状態では合金は柔らかいマルテンサイト相のため,A点の変形に必要な引張応力は小さい.一方のSMA素子にひずみを与えた後加熱すると,高温相であるオーステナイト相へと変態し,形状を回復する.このとき,ひずみ量に対する応力差が発生し,これが回復力として利用できる.発生した回復力により,冷却されているもう一方のSMA素子に変形を与える.b点まで形状を回復させた後,加熱と冷却を入れ替えると,上記と同様のプロセスが行われる.加熱−冷却サイクルを繰り返すことによってSMA熱エンジンは連続的に作動する.ここで,c−A−a−b−cで囲まれた領域が,SMA熱エンジンにおける合金の単位体積当たりに利用できる仕事量となる.
<Operation principle of SMA heat engine>
The basic operating principles of the four SMA heat engines are almost the same.
Figure 2 shows the SMA stress-strain relationship.
The SMA heat engine basically has a structure in which two SMA elements are arranged in an antagonistic manner, and operates as an engine by performing a deformation-recovery cycle by performing a heating-cooling cycle.
Since the alloy is soft martensite phase at low temperatures, the tensile stress required for deformation at point A is small. When one SMA element is strained and heated, it transforms to the austenite phase, which is a high-temperature phase, and recovers its shape. At this time, a stress difference with respect to the amount of strain is generated, which can be used as a restoring force. The other SMA element being cooled is deformed by the generated recovery force. If the shape is restored to point b and then heating and cooling are switched, the same process as above is performed. By repeating the heating-cooling cycle, the SMA heat engine operates continuously. Here, the region surrounded by c-A-a-b-c is the work available per unit volume of the alloy in the SMA heat engine.

<SMA熱エンジンの特徴>
表1に各SMA熱エンジンの特徴を示す.いずれも熱エネルギーを回転運動や往復運動などの機械的エネルギーに変換する機構である.また,負荷ひずみ3〜7%に対してSMAのエネルギー変換効率は1〜2%と大きい.また各システム単位素子質量・ひずみ当たりの出力は0.04〜0.07W/g/%程度である.さらに,SMA熱エンジンは複雑な機構を必要とせず,低コストでの作製が可能である.
<Features of SMA heat engine>
Table 1 shows the characteristics of each SMA heat engine. Both are mechanisms that convert thermal energy into mechanical energy such as rotational and reciprocating motions. In addition, the energy conversion efficiency of SMA is as large as 1-2% for load strain of 3-7%. The output per unit mass and strain of each system is about 0.04 to 0.07 W / g /%. Furthermore, the SMA heat engine does not require a complicated mechanism and can be manufactured at low cost.

Figure 2011188654
Figure 2011188654

<SMA熱エンジンの課題>
上記に挙げたSMA熱エンジンは耐久性に課題があり,SMA素子が103〜104回のサイクルで破断に至る.そのため,SMA熱エンジンは工業的な実用レベルの耐久性を持たず,研究段階のまま実用化には至っていない.耐久性が低い原因は以下の2点が考えられる.
(1)、エンジン出力を大きくするためには負荷ひずみ(図2,E2)を大きく取る必要ある.しかしSMAの疲労寿命は負荷ひずみ1%で104回程度であり,また負荷ひずみの増加はSMA素子の疲労寿命の低下を引き起こす.
(2)、プーリー型およびレシプロ型は機構上,SMA素子に温度分布が生じる.そのためSMA素子の温度変化および形状変化が不均一になり,素子の一部分に過負荷が発生しやすく,疲労寿命低下の要因となる.
これらの課題を解決するためには,低負荷ひずみで高出力が得られ,またSMA素子を均一に加熱−冷却することのできる機構を持つ新しいSMA熱エンジンの開発が必要である.
本発明で提案する新しいSMA熱エンジンは、この問題点を克服し,実用的な耐久性である106回以上のサイクル寿命を有することを目標とする.この熱エンジンが実用化できれば,これまで排熱として処理されてきた低品位熱エネルギーを機械的・電気的エネルギーに変換して回収する排熱回収機構式のSMA式発電装置を構築する。
<Problems of SMA heat engine>
The SMA heat engines listed above have a problem in durability, and the SMA element breaks in a cycle of 10 3 to 10 4 times. Therefore, the SMA heat engine does not have an industrial practical level of durability and has not yet been put into practical use as it is in the research stage. There are two possible causes for low durability.
(1) In order to increase the engine output, it is necessary to increase the load strain (Fig. 2, E 2 ). However fatigue life of the SMA is about 10 4 times the load strain of 1%, also an increase of the load strain causes a reduction in the fatigue life of the SMA element.
(2) The pulley type and the reciprocating type have a temperature distribution in the SMA element due to the mechanism. Therefore, the temperature change and shape change of the SMA element become non-uniform, and an overload tends to occur in a part of the element, which causes a decrease in fatigue life.
In order to solve these problems, it is necessary to develop a new SMA heat engine with a mechanism that can obtain high output with low load strain and can uniformly heat and cool the SMA element.
New SMA heat engine proposed by the present invention overcomes this problem, the goal is to have practical durability and is 10 6 times or more cycle life. If this heat engine can be put into practical use, an exhaust heat recovery mechanism type SMA power generator that recovers by converting low-grade heat energy that has been treated as waste heat into mechanical and electrical energy will be constructed.

前記課題を満足する本発明の排熱回収機構式のSMA熱エンジンとSMA式発電装置の特徴とするところは、図3及び図4に示す実施例のように次の(1)〜(2)の通りである。
(1)、固定中心軸101に回転可能に装着した円筒状容器100内に、形状記憶合金板で成型したゼンマイばね200を巻取り巻戻し自在に収容し、前記ゼンマイばね200の内巻端部200Bを前記円筒状容器100内中心部に位置する前記固定中心軸101に固定装着し、前記ゼンマイばね200の外巻端部200Tを円筒状容器100の内周壁102部に固定装着してなるゼンマイばね型のアクチュエータを一対A1、A2設け、各アクチュエータA1、A2の円筒状容器100内に冷却媒体と加熱媒体を交互に給・排する冷・熱媒体給排装置300を設け、各アクチュエータA1、A2の円筒状容器100の外周室110の外周部をベルト400で巻取り巻戻し可能に連結し、前記アクチュエータA1-A2間のベルト通路500の所定区間501周囲に誘電コイル600を配置し、前記誘電コイル600内を挿通するベルト部401に永久磁石700を固定装着し、前記誘電コイル600に起電流送電回路610、620を接続したことを特徴とするSMA熱エンジン。
(2)、前記SMA熱エンジンを複数基並列配置したSMA式発電装置。
The features of the SMA heat engine of the exhaust heat recovery mechanism type and the SMA power generation device of the present invention satisfying the above-mentioned problems are as follows (1) to (2) as in the embodiment shown in FIGS. It is as follows.
(1) A spiral spring 200 molded with a shape memory alloy plate is housed in a cylindrical container 100 rotatably mounted on a fixed central shaft 101 so as to be rewound and unwound. 200B is fixedly mounted on the fixed central shaft 101 located in the center of the cylindrical container 100, and the outer spring end 200T of the spring spring 200 is fixedly mounted on the inner peripheral wall 102 of the cylindrical container 100. A pair of spring-type actuators A1, A2 are provided, and a cooling / heating medium supply / discharge device 300 for alternately supplying / discharging the cooling medium and the heating medium is provided in the cylindrical container 100 of each actuator A1, A2, and each actuator A1, The outer peripheral portion of the outer peripheral chamber 110 of the cylindrical container 100 of A2 is connected by a belt 400 so as to be rewound and rewound, and a dielectric coil 600 is disposed around a predetermined section 501 of the belt passage 500 between the actuators A1 and A2. Permanent magnets on the belt 401 inserted through the dielectric coil 600 700 and fixedly mounted, SMA heat engine, characterized in that connecting the electromotive current transmission circuit 610 and 620 to the induction coil 600.
(2) An SMA power generator in which a plurality of the SMA heat engines are arranged in parallel.

本発明は前記の手段のようにゼンマイばね型アクチュエータを利用したSMA式発電装置であり次記のように前記の課題をすべて解決した優れた効果を有する。
(1)、SMAに曲げ方向のひずみを与えた場合の疲労寿命は,曲げひずみ振幅1%で105回以上であり,引張変形よりも有利である.それゆえ,SMA素子の形状をゼンマイばね形状にし,曲げ方向の変形のみを与える.また巻数を多くすることによって動作距離を増大させることができ,低負荷ひずみで高出力(仕事量)が実現できる.
(2)、長尺のSMA素子がゼンマイばね形状に収納された形状であるため,加熱‐冷却を均一に行うことができる.
<期待される効果>
次の実施例に示すSMA式発電装置では、106回以上のサイクル寿命(8時間/日×200日=約3×106サイクル)を持つSMA熱エンジンとなれば,実用的な耐久性を持つ熱エンジンとなる.SMA熱エンジンが実用化できれば,例えば工場など熱機関から未利用のまま排出されている200℃以下の低品位エネルギーを機械的・電気的エネルギーに変換することができる.機械的・電気的エネルギーに変換することにより,需要地へのエネルギー輸送が容易になり,これまで熱源近辺の給湯等にしか使用されていなかったエネルギーの有効活用が期待できる.また,地球温暖化の原因の一つであるCO2の削減効果も大きい,
The present invention is an SMA type power generator using a spring spring type actuator as described above, and has the excellent effect of solving all the above problems as described below.
(1) The fatigue life when bending strain is applied to SMA is 10 5 times or more with a bending strain amplitude of 1%, which is more advantageous than tensile deformation. Therefore, the shape of the SMA element is changed to a spring spring shape, and only deformation in the bending direction is given. The operating distance can be increased by increasing the number of turns, and high output (work load) can be realized with low load strain.
(2) Since the long SMA element is housed in the spring shape, heating and cooling can be performed uniformly.
<Expected effect>
In the SMA type power generator shown in the following example, if it becomes an SMA heat engine having a cycle life of 10 6 times or more (8 hours / day × 200 days = about 3 × 10 6 cycles), practical durability will be obtained. It will be a heat engine. If an SMA heat engine can be put into practical use, it is possible to convert low-grade energy below 200 ° C discharged from heat engines such as factories into mechanical and electrical energy. By converting to mechanical and electrical energy, energy transportation to the demand area becomes easy, and effective use of energy that has been used only for hot water supply near the heat source can be expected. In addition, the effect of reducing CO 2 , one of the causes of global warming, is great.

発明を実施するための最良の形態を以下に示す実施例(具体例)により詳細に紹介する。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the invention will be described in detail by the following examples (specific examples).

<高寿命SMA熱エンジンの提案>
前記(1)と(2)の課題を解決した本発明のSMA式発電装置におけるSMA熱エンジンは、図3に示すゼンマイばね型アクチュエータA1、A2の原理を利用したものである。
図3において、ゼンマイばね型アクチュエータA1、A2は、固定中心軸101に回転可能に装着した円筒状容器100内に、形状記憶合金板で成型したゼンマイばね200を巻き取り巻き戻し自在に収容し、前記ゼンマイばね200の内巻端部200Bを前記円筒状容器100内中心部に位置する前記固定中心軸101に固定装着し、前記ゼンマイばね200の外巻端部200Tを円筒状容器100の内周壁102部に固定装着してなるゼンマイばね型としたものである。
つまりゼンマイばね型アクチュエータA1、A2は、ゼンマイばね200が、内巻端部200Bを円筒状容器100の固定中心軸101に固定連結され、外巻端部200Tを円筒状容器100の内周壁102部に固定連結しているので.変態温度以下の温度ではゼンマイばね200の変形力は小さく,円筒状容器100を回転させることでゼンマイばね200を巻くことができる.これを逆変態温度以上にするとゼンマイばね200の形状回復が起こり,その際の巻戻り回復力により円筒状容器100が逆回転する機構である.この機構を用いたゼンマイばね型アクチュエータAは、低負荷ひずみで高出力が得られ,かつ円筒状容器100内に直接冷熱媒体を交互に給排して、又は円筒状容器100内に冷・熱媒体を交互に給排して間接的にゼンマイばね200を均一に加熱−冷却することができる.そのため,ゼンマイばね200は高寿命となり、従来の熱エンジン機構に比べて耐久性に優れた熱エンジンになる.
<Proposal of a long-life SMA heat engine>
The SMA heat engine in the SMA power generator of the present invention that has solved the problems (1) and (2) uses the principle of the spring-spring actuators A1 and A2 shown in FIG.
In FIG. 3, the spring spring type actuators A1 and A2 accommodate a winding spring 200 molded with a shape memory alloy plate in a cylindrical container 100 rotatably mounted on a fixed central shaft 101 so as to be rewound and unwound. An inner winding end portion 200B of the mainspring spring 200 is fixedly attached to the fixed central shaft 101 located in the central portion of the cylindrical container 100, and an outer winding end portion 200T of the mainspring spring 200 is fixed to the inner peripheral wall 102 of the cylindrical container 100. It is a spring type that is fixedly attached to the part.
In other words, the spring spring type actuators A1 and A2 include the spring spring 200 having the inner winding end portion 200B fixedly connected to the fixed central shaft 101 of the cylindrical container 100 and the outer winding end portion 200T connected to the inner peripheral wall 102 portion of the cylindrical container 100. Because it is fixedly connected to. At a temperature lower than the transformation temperature, the spring force of the mainspring 200 is small, and the mainspring 200 can be wound by rotating the cylindrical container 100. When the temperature is higher than the reverse transformation temperature, the shape of the mainspring spring 200 is recovered, and the cylindrical container 100 is rotated reversely by the rewind recovery force. The spring-spring type actuator A using this mechanism can obtain a high output with a low load strain, and can directly supply / discharge a cooling medium directly into / from the cylindrical container 100 or cool / heat into the cylindrical container 100. The spring spring 200 can be heated and cooled uniformly uniformly by supplying and discharging the medium alternately. Therefore, the mainspring 200 has a long life, and is a heat engine that is more durable than the conventional heat engine mechanism.

<ゼンマイばね型アクチュエータを用いたSMA熱エンジン>
ゼンマイばね型アクチュエータを用いたSMA熱エンジンは、図4に示す新しい機構となる。
新しい機構のSMA熱エンジンは、図4に示すように一対のゼンマイばね型アクチュエータA1、A2を可撓性のベルト400で連結し、前記アクチュエータA1、A2のベルト通路の所定区間の周囲に誘電コイル600を配置し、前記誘電コイル600内を挿通するベルト部401に永久磁石700を固定装着し、前記誘電コイル600に起電流送電回路610、620を接続することにより、熱エネルギーでゼンマイばね型アクチュエータA1、A2のゼンマイばね200、200の拡縮とその拡縮力によるベルト巻取り・巻戻しを交互に作動させて機械的エネルギーに変換し、機械的エネルギーをベルト部401と永久磁石700と誘電コイル600により電気エネルギーに変換して起電流送電回路610、620で回収するものである.
即ち、SMA熱エンジンは、円筒状容器100内に冷却媒体と加熱媒体を交互に給・排する冷却媒体供給管301と加熱媒体供給管302と排出管303とを主構成とする冷・熱媒体給排装置300により片方のアクチュエータA1を加熱し他方のアクチュエータA2を冷却すると,片方A1のゼンマイばね200の形状回復による収縮巻締めと他方A2のゼンマイばね200の巻戻り反力によりベルト400を片方A1のゼンマイばね200側に巻き取る.次に加熱した片方A1のゼンマイばね200を冷却し,他方A2のゼンマイばね200を加熱すると,ベルト400は他方A2のゼンマイばね200側に巻き取られる.この加熱−冷却のサイクルを繰り返して当該熱エネルギーをベルト400の往復運動という機械的エネルギーに変換する。そしてこの機械的エネルギーをゼンマイばね200間に位置するベルト400による永久磁石700の直線往復運動により,誘電コイル600に誘導電流を誘起し,発電が行われるのである.
<SMA heat engine using spring-spring actuator>
The SMA heat engine using the spring spring type actuator is a new mechanism shown in FIG.
As shown in FIG. 4, the SMA heat engine of the new mechanism connects a pair of spring-spring type actuators A1 and A2 with a flexible belt 400, and a dielectric coil around a predetermined section of the belt path of the actuators A1 and A2. 600, a permanent magnet 700 is fixedly attached to the belt portion 401 inserted through the dielectric coil 600, and electromotive force transmission circuits 610 and 620 are connected to the dielectric coil 600, so that a spring spring type actuator can be used with thermal energy. The A1 and A2 springs 200, 200 are expanded and contracted and the belt winding / rewinding by the expansion / contraction force is alternately operated to convert it into mechanical energy. The mechanical energy is converted into the belt 401, the permanent magnet 700, and the dielectric coil 600. Is converted to electrical energy by the electromotive force transmission circuit 610, 620 and recovered.
That is, the SMA heat engine has a cooling / heating medium mainly composed of a cooling medium supply pipe 301, a heating medium supply pipe 302, and a discharge pipe 303 for alternately supplying / discharging the cooling medium and the heating medium to / from the cylindrical container 100. When one actuator A1 is heated by the supply / discharge device 300 and the other actuator A2 is cooled, the belt 400 is moved to one side due to the shrinkage tightening due to the shape recovery of the spring spring 200 of the one A1 and the rewinding reaction force of the spring spring 200 of the other A2. Wind up the A1 spring 200 side. Next, when the heated one A1 spring 200 is cooled and the other A2 spring 200 is heated, the belt 400 is wound on the other A2 spring 200 side. By repeating this heating-cooling cycle, the thermal energy is converted into mechanical energy called reciprocating motion of the belt 400. The mechanical energy is induced by the linear reciprocation of the permanent magnet 700 by the belt 400 located between the springs 200, and an induction current is induced in the dielectric coil 600 to generate power.

<前記SMA熱エンジンを使用した本発明のSMA式発電装置>
上記SMA熱エンジンを使用し排熱回収する本発明のSMA式発電装置は、その概略図を図5に示す.同システムは図4で示した前記SMA熱エンジンを複数基並列に配置して起電流送電回路610を統合化するとともに,冷・熱媒体給排装置300を統合化したタンデム式発電装置である。
冷・熱媒体給排装置300は、排熱回収機構式の冷・熱媒体給排装置であり、各SMA熱エンジンのゼンマイばね型アクチュエータA1、A2における円筒状容器100内に又は円筒状容器100内に、冷却媒体と加熱媒体を交互に給・排する冷却媒体供給管301と加熱媒体供給管302と排出管303とを連通統合して、これらの冷・熱給排切替制御機能を有して構成される.
冷却媒体供給管301と加熱媒体供給管302の切替バルブ300Vの操作は、図6に示す例のように、各SMA熱エンジンの切替動作に連動して機械的に行えば外部動力は不要である.
<SMA power generator of the present invention using the SMA heat engine>
The schematic diagram of the SMA power generator of the present invention that uses the SMA heat engine to recover exhaust heat is shown in FIG. The system is a tandem power generator in which a plurality of the SMA heat engines shown in FIG. 4 are arranged in parallel to integrate the electromotive force transmission circuit 610 and the cooling / heating medium supply / discharge device 300.
The cooling / heating medium supply / discharge device 300 is an exhaust heat recovery mechanism type cooling / heating medium supply / discharge device, and is installed in the cylindrical container 100 or the cylindrical container 100 in the spring spring type actuators A1, A2 of each SMA heat engine. The cooling medium supply pipe 301, the heating medium supply pipe 302, and the discharge pipe 303, which alternately supply and discharge the cooling medium and the heating medium, are connected and integrated to have a control function for switching between these cooling and heat supply / discharge. Configured.
If the operation of the switching valve 300V of the cooling medium supply pipe 301 and the heating medium supply pipe 302 is mechanically performed in conjunction with the switching operation of each SMA heat engine as in the example shown in FIG. 6, no external power is required. .

図6には各対のゼンマイばね型アクチュエータA1、A2に対する冷・熱給排装置の切替機構の概略図を示す。この切替機構は,一対の前記切替バルブ300VにリミットバーL1、L2を設け、このリミットバーL1、L2をリンクアームRで連結して連動可能にし、リミットバーL1、L2の先部をベルト400上の永久磁石700の往復作動路に蹴り作動可能に隣接する。これにより、ベルト400上の永久磁石700は往作動限位置ではリミットバーL1を蹴ってゼンマイばね型アクチュエータA1側の切替バルブ300Vを冷水供給から熱水供給に切り替え、これと並行してリミットバーL2はリンクアームRを介してリミットバーL1と連動してゼンマイばね型アクチュエータA2側の切替バルブ300Vを熱水供給から冷水供給に切り替える。また永久磁石700は復作動限位置ではリミットバーL2を蹴ってゼンマイばね型アクチュエータA2側の切替バルブ300Vを冷水供給から熱水供給に切り替え、これと並行してリミットバーL1はリンクアームRを介してリミットバーL2と連動してゼンマイばね型アクチュエータA1側の切替バルブ300Vを熱水供給から冷水供給に切り替える。以上を交互に行いゼンマイばね型アクチュエータA1、A2への冷媒・熱媒給排を自動的に行い連続発電作動を行うものである。 FIG. 6 shows a schematic diagram of the switching mechanism of the cold / heat supply / discharge device for each pair of spring spring type actuators A1, A2. In this switching mechanism, a pair of switching valves 300V are provided with limit bars L1 and L2, and the limit bars L1 and L2 are connected by a link arm R so that they can be interlocked. The permanent magnet 700 is adjacent to the reciprocating operation path of the permanent magnet 700 so as to be operable. As a result, the permanent magnet 700 on the belt 400 kicks the limit bar L1 at the forward operation limit position to switch the switching valve 300V on the spring-spring type actuator A1 side from cold water supply to hot water supply, and in parallel with this, the limit bar L2 Switches the switching valve 300V on the spring-spring type actuator A2 side from the hot water supply to the cold water supply in conjunction with the limit bar L1 via the link arm R. Further, the permanent magnet 700 kicks the limit bar L2 at the return operation limit position to switch the switching valve 300V on the spring-spring type actuator A2 side from cold water supply to hot water supply, and in parallel, the limit bar L1 passes through the link arm R. In conjunction with the limit bar L2, the switching valve 300V on the spring-spring type actuator A1 side is switched from hot water supply to cold water supply. The above procedure is alternately performed to automatically supply and discharge the refrigerant and the heat medium to the spring-spring actuators A1 and A2, thereby performing the continuous power generation operation.

<排熱回収機構の出力>
例として断面積1mm2,長さ1500mmのSMA材10gと,外径が100mm,中心軸の直径が16mmの容器を用いた場合のゼンマイばね型アクチュエータの出力を試算する.この容器にSMA素子をゼンマイ状に巻いた場合,巻き数は5となり,また最大の曲げひずみは約1%となる.
ここで、一般的に使用されるTi-Ni形状記憶合金の応力-ひずみ曲線から、図2のAおよびc点での応力を100MPa、a点での応力を200MPa,b点での応力を600MPaと仮定し、またb点でのひずみE1を0.2%とする.
利用できるひずみ量は、最大の曲げひずみであるE2とE1の差0.8%であるため、エンジンのストロークは
1500(mm)×0.8(%)×10-2=12(mm)=0.012(m)
である.
また断面積が1mm2であるため、100MPaであれば100Nの力が作用していることになる.
ここから,図2の利用できるエネルギーc→A→a→bは、その面積を台形に近似して概算すると
0.012(m)×((600(N)-100(N))+(200(N)-100(N))×2-1=3.6(N・m)=3.6(J)
と計算される.
2つのゼンマイばね型アクチュエータを使用し,1秒間で引張、1秒間で圧縮を行う、つまり1サイクルを2秒で行ったとすると,仕事率は
3.6(J)×2÷2(s)=3.6(J/s)=3.6(W)
と試算される。
このゼンマイばね型アクチュエータを一対により構成した1基のSMA熱エンジンの出力を試算する.小型の誘電コイルと永久磁石を用いた場合の,運動エネルギーから電気エネルギーへの変換効率を60%とする.1基のSMA熱エンジンの発電量は出力3.6Wの60%である2.16Wであると試算される.この場合,単位素子質量・ひずみ当たりの出力は0.102W/g/%となり,表1で示した他のSMA熱エンジンに比べ高効率な機構である.
25組のSMA熱エンジン(50個のゼンマイねじ型アクチュエータ)を並列に配置したSMA式発電装置(排熱回収機構型)の出力とサイズを試算する.SMA式発電装置の出力は約50Wとなり,小型の街灯を照らすに十分な電力を発生させることができる.また複雑な機構を必要としないため,装置全体のサイズは長さ80cm×幅50cm×高さ30cm程度の大きさになり,低コストで作製可能である.
<Output of exhaust heat recovery mechanism>
As an example, we estimate the output of a spring-spring actuator using a 10 g SMA material with a cross-sectional area of 1 mm 2 and a length of 1500 mm, and a container with an outer diameter of 100 mm and a central axis diameter of 16 mm. When the SMA element is wound in the shape of a spring in this container, the number of turns is 5, and the maximum bending strain is about 1%.
From the stress-strain curve of a commonly used Ti-Ni shape memory alloy, the stress at points A and c in Fig. 2 is 100 MPa, the stress at point a is 200 MPa, and the stress at point b is 600 MPa. suppose, also the strain E 1 at the point b to 0.2%.
The amount of strain that can be used is 0.8%, which is the difference between E 2 and E 1 , which is the maximum bending strain.
1500 (mm) x 0.8 (%) x 10 -2 = 12 (mm) = 0.012 (m)
It is.
Since the cross-sectional area is 1 mm 2, so that if the 100 MPa 100 N force is acting.
From this, the available energy c → A → a → b in Fig. 2 is approximated by approximating its area to a trapezoid.
0.012 (m) × ((600 (N) -100 (N)) + (200 (N) -100 (N)) × 2 -1 = 3.6 (N ・ m) = 3.6 (J)
Is calculated.
If two spring-type actuators are used and tension is performed in 1 second and compression is performed in 1 second, that is, 1 cycle is performed in 2 seconds, the work rate is
3.6 (J) × 2 ÷ 2 (s) = 3.6 (J / s) = 3.6 (W)
It is estimated.
The output of one SMA heat engine that consists of a pair of spring-spring actuators is estimated. The conversion efficiency from kinetic energy to electrical energy is 60% when a small dielectric coil and permanent magnet are used. The power generation of one SMA heat engine is estimated to be 2.16W, which is 60% of the output 3.6W. In this case, the output per unit element mass and strain is 0.102 W / g /%, which is a highly efficient mechanism compared to the other SMA heat engines shown in Table 1.
The output and size of an SMA power generator (waste heat recovery mechanism type) in which 25 sets of SMA heat engines (50 mainspring screw type actuators) are arranged in parallel are estimated. The output of the SMA power generator is about 50W, which can generate enough power to illuminate a small streetlight. In addition, since no complicated mechanism is required, the overall size of the device is about 80 cm long x 50 cm wide x 30 cm high, and can be manufactured at low cost.

本発明のSMA式発電装置は、前記のように優れた効果を呈するため、これまで熱源近辺の給湯等にしか使用されていなかった廃熱エネルギーを電気ネルギーに有効活用できる.また,地球温暖化の原因の一つであるCO2の削減効果も大きいなど地球環境改善・維持産業等に大きく貢献する。 Since the SMA power generator of the present invention exhibits excellent effects as described above, waste heat energy that has been used only for hot water supply in the vicinity of the heat source can be effectively used for electric energy. Also it contributes greatly like to global environmental improvement and maintenance industries greater reduction effect of CO 2 which is one of the causes of global warming.

工場排熱の温度別排出比率を示したグラフである。左 (a) 冷却時は変態温度以下のためSMAの変形力は小さい。 右 (b) 加熱時は変態温度以上ではSMAは形状回復する。It is the graph which showed the discharge ratio according to temperature of factory waste heat. Left (a) When cooling, the deformation force of SMA is small because it is below the transformation temperature. Right (b) During heating, the shape of SMA recovers above the transformation temperature. SMAの応力−ひずみ関係を示したグラフである。It is the graph which showed the stress-strain relationship of SMA. ゼンマイばね型SMAアクチュエータの原理の説明図である。It is explanatory drawing of the principle of a mainspring spring type SMA actuator. ゼンマイばね型アクチュエータを用いたSMA熱エンジンの基本原理構成を模式的に示す説明図である。It is explanatory drawing which shows typically the basic principle structure of the SMA heat engine using a spring spring type | mold actuator. SMA熱エンジンを使用し排熱回収するSMA式発電装置の説明図である。It is explanatory drawing of the SMA type electric power generating apparatus which uses an SMA heat engine and collect | recovers exhaust heat. 図5における冷・熱給排装置における切替機構の概略説明図である。It is a schematic explanatory drawing of the switching mechanism in the cold / heat supply / discharge device in FIG.

101 固定中心軸
100 円筒状容器
200 ゼンマイばね
200B 内巻端部
200T 外巻端部
102 内周壁
A1、A2 ゼンマイばね型のアクチュエータ
110 外周室
300 冷・熱媒体給排装置
400 ベルト
500 ベルト通路
501 所定区間
600 誘電コイル
700 永久磁石
610、620 起電流送電回路
101 Fixed center axis
100 cylindrical container
200 Spring mainspring
200B Inner winding end
200T outer winding end
102 Inner peripheral walls A1, A2 Spring-spring type actuator
110 Outer chamber
300 Cooling / heating medium supply / discharge device
400 belts
500 belt path
501 Predetermined section
600 dielectric coil
700 permanent magnet
610, 620 electromotive force transmission circuit

Claims (2)

固定中心軸101に回転可能に装着した円筒状容器100内に、形状記憶合金板で成型したゼンマイばね200を巻取り巻戻し自在に収容し、前記ゼンマイばね200の内巻端部200Bを前記円筒状容器100内中心部に位置する前記固定中心軸101に固定装着し、前記ゼンマイばね200の外巻端部200Tを円筒状容器100の内周壁102部に固定装着してなるゼンマイばね型のアクチュエータを一対A1、A2設け、各アクチュエータA1、A2の円筒状容器100内に冷却媒体と加熱媒体を交互に給・排する冷・熱媒体給排装置300を設け、各アクチュエータA1、A2の円筒状容器100の外周室110の外周部をベルト400で巻取り巻戻し可能に連結し、前記アクチュエータA1-A2間のベルト通路500の所定区間501周囲に誘電コイル600を配置し、前記誘電コイル600内を挿通するベルト部401に永久磁石700を固定装着し、前記誘電コイル600に起電流送電回路610、620を接続したことを特徴とするSMA熱エンジン。 A spiral spring 200 molded with a shape memory alloy plate is accommodated in a cylindrical container 100 rotatably mounted on a fixed central shaft 101 so as to be rewound and unwound, and an inner winding end 200B of the spiral spring 200 is accommodated in the cylindrical container 100. A spring-spring type actuator that is fixedly mounted on the fixed central shaft 101 located in the center of the cylindrical container 100, and the outer winding end 200T of the spring 200 is fixedly mounted on the inner peripheral wall 102 of the cylindrical container 100. A1 and A2 are provided, and a cooling / heating medium supply / discharge device 300 for alternately supplying and discharging the cooling medium and the heating medium is provided in the cylindrical container 100 of each actuator A1 and A2, and the cylindrical shape of each actuator A1 and A2 is provided. The outer peripheral portion of the outer peripheral chamber 110 of the container 100 is connected by a belt 400 so as to be rewound and rewound, and a dielectric coil 600 is disposed around a predetermined section 501 of the belt passage 500 between the actuators A1-A2. The permanent magnet 700 is fixed to the belt part 401 through which the An SMA heat engine characterized in that it is fixedly mounted and electromotive force transmission circuits 610 and 620 are connected to the dielectric coil 600. 前記SMA熱エンジンを複数基配置したMSA式発電装置。 An MSA power generator in which a plurality of the SMA heat engines are arranged.
JP2010052512A 2010-03-10 2010-03-10 Sma heat engine and sma type power generating device using the same Pending JP2011188654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052512A JP2011188654A (en) 2010-03-10 2010-03-10 Sma heat engine and sma type power generating device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010052512A JP2011188654A (en) 2010-03-10 2010-03-10 Sma heat engine and sma type power generating device using the same

Publications (1)

Publication Number Publication Date
JP2011188654A true JP2011188654A (en) 2011-09-22

Family

ID=44794285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052512A Pending JP2011188654A (en) 2010-03-10 2010-03-10 Sma heat engine and sma type power generating device using the same

Country Status (1)

Country Link
JP (1) JP2011188654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414385A (en) * 2013-07-29 2013-11-27 佛山市川东磁电股份有限公司 Magnetic-heating device
CN108836256A (en) * 2018-06-26 2018-11-20 上海交通大学 The radial line of the noninvasive diagnosis and treatment machine of gastrointestinal tract contacts expanding mechanism
KR102290906B1 (en) * 2021-04-09 2021-08-19 주식회사 뫼비우스전기 Waste heat energy recovery apparatus using shape memory alloy, refrigerant circulation system of air conditioner equipped with the same and cooling apparatus for engine equipped with the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123222U (en) * 1984-07-17 1986-02-12 株式会社高岳製作所 Switch operating device using shape memory alloy
JPS6357346U (en) * 1986-09-30 1988-04-16
JPS6392081U (en) * 1986-12-05 1988-06-14
JP2003240397A (en) * 2001-11-26 2003-08-27 Sony Corp Cooler and cooling/power generating set using shape memory alloy, and cooling method
JP2005248886A (en) * 2004-03-05 2005-09-15 Actment Co Ltd Drive device, rotary power generating device and generator
JP2006321303A (en) * 2005-05-18 2006-11-30 Bridgestone Corp Generator, and bicycle and belt conveyer system therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123222U (en) * 1984-07-17 1986-02-12 株式会社高岳製作所 Switch operating device using shape memory alloy
JPS6357346U (en) * 1986-09-30 1988-04-16
JPS6392081U (en) * 1986-12-05 1988-06-14
JP2003240397A (en) * 2001-11-26 2003-08-27 Sony Corp Cooler and cooling/power generating set using shape memory alloy, and cooling method
JP2005248886A (en) * 2004-03-05 2005-09-15 Actment Co Ltd Drive device, rotary power generating device and generator
JP2006321303A (en) * 2005-05-18 2006-11-30 Bridgestone Corp Generator, and bicycle and belt conveyer system therewith

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414385A (en) * 2013-07-29 2013-11-27 佛山市川东磁电股份有限公司 Magnetic-heating device
CN108836256A (en) * 2018-06-26 2018-11-20 上海交通大学 The radial line of the noninvasive diagnosis and treatment machine of gastrointestinal tract contacts expanding mechanism
KR102290906B1 (en) * 2021-04-09 2021-08-19 주식회사 뫼비우스전기 Waste heat energy recovery apparatus using shape memory alloy, refrigerant circulation system of air conditioner equipped with the same and cooling apparatus for engine equipped with the same

Similar Documents

Publication Publication Date Title
US20180216604A1 (en) Energy recovery device
US8769947B2 (en) Exhaust system
EP2157317B2 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
US10171010B2 (en) Method and apparatus for generating energy using piezo elements
US20080148754A1 (en) Cryogenic cooling system with energy regeneration
JP2012523815A (en) Thermoelectric energy storage system having two heat storage tanks and method for storing thermoelectric energy
GB2494088A (en) Energy storage type wind-power generating system
JP2011188654A (en) Sma heat engine and sma type power generating device using the same
WO2016097214A1 (en) Heat transfer in an energy recovery device
US20160138575A1 (en) An energy recovery device
CN102654114B (en) Energy harvesting system
US8614519B2 (en) Electric power storage power plant
WO2015077235A1 (en) Concentrated solar power systems and methods utilizing cold thermal energy storage
Zaversky et al. A novel high-efficiency solar thermal power plant featuring electricity storage-Ideal for the future power grid with high shares of renewables
JP6651880B2 (en) Eddy current heating device
JP5504935B2 (en) Heat medium heating device and power generation system including the same
JP2005248886A (en) Drive device, rotary power generating device and generator
JPH05306676A (en) Solid phase thermal energy generating system
CN116722766B (en) Dual-cycle nuclear power system with coupled plasma and liquid metal and working method
Arun et al. Energy generation from road vehicle
CN110778471B (en) Thermo-acoustic driven power generation system and method based on pyroelectric effect
CN105986924A (en) VM circulating heat pump power generation device
JP2002098038A (en) Device for converting heat energy into kinetic energy and electric energy using shape memory material
US20100096104A1 (en) Energy transformation and storage system for heating and cooling
WO2015014963A1 (en) Method and apparatus for utilising wind energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415