JP2002097523A - Production method for sintered ore and its apparatus - Google Patents

Production method for sintered ore and its apparatus

Info

Publication number
JP2002097523A
JP2002097523A JP2000285474A JP2000285474A JP2002097523A JP 2002097523 A JP2002097523 A JP 2002097523A JP 2000285474 A JP2000285474 A JP 2000285474A JP 2000285474 A JP2000285474 A JP 2000285474A JP 2002097523 A JP2002097523 A JP 2002097523A
Authority
JP
Japan
Prior art keywords
raw material
rod
pallet
sintering
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000285474A
Other languages
Japanese (ja)
Other versions
JP3573078B2 (en
Inventor
Masaru Matsumura
勝 松村
Masahiko Hoshi
雅彦 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000285474A priority Critical patent/JP3573078B2/en
Publication of JP2002097523A publication Critical patent/JP2002097523A/en
Application granted granted Critical
Publication of JP3573078B2 publication Critical patent/JP3573078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a sintered ore capable of suppressing a gas flow toward the palette width direction, and lowering the deviation of sintering time, and to provide an apparatus thereof. SOLUTION: (1) The method for producing the sintered ore is carried out by feeding a sintered raw material in a piled layer of a raw material of a DL-type sintering machine, while inserting a bar of material in the progressing direction of the palette, followed by igniting and sintering, wherein a longitudinal cross section in the palette width direction of the above bar of material has a widen shape toward the base of the palette. (2) The plural number of the bars of material are arranged in parallel in the progressing direction of the palette in the piled layer of the raw material in the DL-type sintering machine, wherein a longitudinal cross section in the palette width direction of the bar of material has a widen shape toward the base of the palette.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パレット幅方向の
ガス流れを抑制し、パレット幅方向の焼成時間偏差を小
さくすることが可能な焼結鉱の製造方法とその装置とに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a sintered ore capable of suppressing a gas flow in a pallet width direction and reducing a deviation in firing time in a pallet width direction.

【0002】[0002]

【従来の技術】焼結原料は数種類の鉄鉱石、CaO源と
しての石灰石、SiO2およびMgO源としての蛇紋
粉、燃料としての粉コークスおよび返鉱等から構成され
ている。通常、これらの原料はその銘柄毎に原料槽に貯
蔵されて、配合に応じて定量切り出しされている。切り
出された各銘柄は原料搬送用のベルトコンベアー上で合
流し、造粒機まで搬送される。造粒機において、原料に
水分が添加されて造粒が行われる。造粒後の原料は焼結
機に供給され、原料堆積層の最上部が点火され、原料堆
積層へ大気が下方吸引されることによって焼結反応が上
部から下部に進行する。下部の焼成が完了すると、焼結
機排鉱部で破砕された後にクーラーで冷却される。この
焼結鉱の製造に際し、造粒後の原料は焼結機直上のホッ
パーよりロールフィーダーによって定量切出しされ、装
入シュートを介してパレット内に装入される。装入され
た原料はパレット内で堆積する際に斜面を形成する。こ
の斜面形成により、粗粒が堆積層の下層部に、細粒部が
堆積層の上層部に配置される。この堆積層の層厚方向の
粒度偏析が特徴となっている。通常、焼結原料堆積層の
下層部の通気性は悪い。この通気性を改善できれば、焼
結鉱の生産性が向上し、焼結鉱の品質指標であるRDI
(還元粉化性)が改善される。この通気性の悪化原因は
以下の2要因が挙げられる。第1要因は、下層部におけ
る水分凝縮である。焼結反応は、上層部から下層部へ反
応が進行するため、上層における原料水分は気化すると
ガス流れに乗って、下層原料において冷却されて水分が
凝縮する。
2. Description of the Related Art Sintering raw materials are composed of several types of iron ore, limestone as a CaO source, serpentine powder as a source of SiO 2 and MgO, coke breeze as a fuel, and ore return. Usually, these raw materials are stored in a raw material tank for each brand, and are cut out in a fixed amount according to the composition. The cut brands are combined on a belt conveyor for transporting raw materials and transported to a granulator. In a granulator, water is added to a raw material to perform granulation. The raw material after granulation is supplied to a sintering machine, the uppermost part of the raw material deposition layer is ignited, and the atmosphere is sucked downward into the raw material deposition layer, whereby the sintering reaction proceeds from the upper part to the lower part. When the lower part is fired, it is crushed in the sintering machine and cooled by a cooler. In the production of this sintered ore, the raw material after granulation is cut out by a roll feeder from a hopper immediately above the sintering machine and charged into a pallet via a charging chute. The charged raw material forms a slope as it is deposited in the pallet. Due to the formation of the slope, coarse grains are arranged in the lower part of the deposition layer, and fine grains are arranged in the upper part of the deposition layer. The sediment is characterized by grain size segregation in the thickness direction. Usually, the air permeability of the lower part of the sintering raw material deposition layer is poor. If this permeability can be improved, the productivity of sinter will improve, and RDI, which is a quality index of sinter, will be improved.
(Reduced powderability) is improved. The following two factors are cited as the causes of the deterioration of the air permeability. The first factor is moisture condensation in the lower part. In the sintering reaction, the reaction proceeds from the upper layer to the lower layer. Therefore, when the raw material water in the upper layer is vaporized, it is carried on the gas flow, and is cooled in the lower layer raw material to condense the water.

【0003】第2要因は、下層部における蓄熱である。
下層部の原料への伝熱は、上層における焼結生成熱をガ
スが媒介して行われるため、上層部と比較して下層部は
多量の熱が加えられ、下層部は高温になり易い。この高
温状態は、焼結反応による原料の部分溶融を起こし易く
なり、原料中の空隙が減少し、しかもガスの熱膨張によ
って、通過ガスの質量流速が低下する。すなわち、通気
性が悪化し易くなる。この通気性悪化対策として、例え
ば特開平02-263935号公報には、原料堆積層の下部(以
下、「下層部」ともいう)に通気度制御棒を挿入する技
術が開示され、通気孔形成によって下層部の通気性を改
善できることが示されている。また、特開平09-184022
号公報には、原料堆積層に複数の通気性制御板を挿入し
て、通気溝を形成させて上層で蒸発した水分の中下層部
での凝縮を防止する技術が開示されている。
The second factor is the heat storage in the lower part.
Since the gas transfers the heat of sintering formation in the upper layer to the raw material in the lower layer, a larger amount of heat is applied to the lower layer than in the upper layer, and the lower layer is likely to become hot. In this high temperature state, the raw material is liable to be partially melted by the sintering reaction, the voids in the raw material are reduced, and the mass flow velocity of the passing gas is reduced due to the thermal expansion of the gas. That is, the air permeability tends to deteriorate. As a countermeasure against the deterioration of air permeability, for example, Japanese Patent Application Laid-Open No. 02-263935 discloses a technique of inserting a gas permeability control rod below a raw material deposition layer (hereinafter, also referred to as a “lower layer portion”). It is shown that the air permeability of the lower layer can be improved. Also, JP-A-09-184022
Japanese Patent Application Laid-Open Publication No. H11-163873 discloses a technique in which a plurality of air permeability control plates are inserted into a raw material deposition layer to form a ventilation groove to prevent moisture evaporated in an upper layer from condensing in the middle and lower layers.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通気度
制御棒または通気性制御板により通気性の改善を行うに
は、多くの通気度制御棒または通気性制御板が必要とな
る。また、通気度制御棒は給鉱部の原料堆積斜面から挿
入されているので、この斜面を転がる原料と通気度制御
棒が衝突する。一方、原料堆積斜面を原料が転がること
が斜面分級であり、本来幅方向で均一な斜面分級が望ま
れているが、通気度制御棒数の増大は、この原料と通気
度制御棒との衝突の増大を招き、その結果、斜面分級が
乱れる(具体的には、パレット幅方向の粒度偏差が大き
くなる)結果となる。
However, in order to improve the air permeability with the air permeability control rods or air permeability control plates, many air permeability control rods or air permeability control plates are required. Further, since the permeability control rod is inserted from the raw material deposition slope of the mining part, the raw material rolling on this slope collides with the permeability control rod. On the other hand, it is the slope classification that the raw material rolls on the raw material deposition slope, and it is originally desired to classify the slope uniformly in the width direction. However, the increase in the number of air permeability control rods is caused by the collision between the raw material and the air permeability control rods. As a result, slope classification is disturbed (specifically, the particle size deviation in the pallet width direction increases).

【0005】通気度制御板を挿入する方法では、通気度
制御板により形成される通気溝(以下、単に「通気溝」
ともいう)の崩壊を防止するために、板厚に限界があ
り、通気溝の幅(パレット幅方向での幅)が制約される。
板厚に制限があるため、通気度制御板を高くして、通気
溝の断面積を確保する必要がある。
In the method of inserting the air permeability control plate, a ventilation groove formed by the air permeability control plate (hereinafter simply referred to as a “vent groove”) is used.
There is a limit to the thickness of the plate, and the width of the ventilation groove (width in the pallet width direction) is restricted.
Since the thickness is limited, it is necessary to increase the air permeability control plate to secure the cross-sectional area of the ventilation groove.

【0006】一方、通気度制御板を高くすると、通気溝
直上部の原料と直上部以外の原料との層厚差が増大す
る。層厚方向における通気性は層厚と逆比例するので、
層厚差の増大は下方への焼結反応の速度差の増大を招
き、パレット幅方向の必要焼成時間の偏差が増大する。
On the other hand, when the air permeability control plate is made higher, the layer thickness difference between the raw material immediately above the ventilation groove and the raw material other than immediately above increases. Since the air permeability in the layer thickness direction is inversely proportional to the layer thickness,
The increase in the difference in the layer thickness causes an increase in the difference in the speed of the sintering reaction downward, and the deviation of the required firing time in the pallet width direction increases.

【0007】この必要焼成時間の偏差が大きくなること
によって未焼成部の発生や、未焼成部中のカーホ゛ンが排鉱
後のクーラーで燃焼して、焼結鉱の冷却を阻害するとい
う問題が発生する。また、通気度制御板を高くする悪影
響として、ガス流れ方向を乱すという問題もある。さら
に、通気度制御板等は原料堆積斜面から挿入するので、
斜面形成により形成される粒度偏析(粗粒が堆積層の下
層部に、細粒部が堆積層の上層部に偏析)がパレット幅
方向で不均一になる。その結果、パレット幅方向の焼成
時間偏差を助長させる。
[0007] If the deviation of the required sintering time becomes large, unsintered portions are generated, and the carbon in the unsintered portions is burned by the cooler after the exhaust ore, thereby hindering the cooling of the sinter. I do. In addition, there is a problem that the gas flow direction is disturbed as an adverse effect of increasing the air permeability control plate. Furthermore, since the air permeability control plate etc. is inserted from the raw material deposition slope,
The grain size segregation (coarse grains segregate in the lower part of the sedimentary layer and fine grains segregate in the upper part of the sedimentary layer) formed by the slope formation becomes uneven in the pallet width direction. As a result, the firing time deviation in the pallet width direction is promoted.

【0008】本発明の目的は、パレット幅方向のガス流
れを抑制し、パレット幅方向の焼成時間偏差を小さくす
ることが可能な焼結鉱の製造方法と装置とを提供するこ
とにある。
An object of the present invention is to provide a method and an apparatus for producing a sintered ore capable of suppressing a gas flow in a pallet width direction and reducing a firing time deviation in a pallet width direction.

【0009】[0009]

【課題を解決するための手段】本発明者は、焼結試験装
置により通気溝を形成するために挿入する棒状体の形状
を検討した結果、棒状体の形状がパレットの底面に向か
って末広がりの形状であれば、堆積層が崩れにくく、大
きな通気溝を形成でき、パレット幅方向のガス流れを抑
制し、パレット幅方向の焼成時間偏差を小さくすること
ができることを見出した。
The present inventor studied the shape of a rod inserted to form a ventilation groove using a sintering test apparatus, and found that the shape of the rod diverged toward the bottom surface of the pallet. It has been found that, if the shape is such, the deposited layer is hard to collapse, a large ventilation groove can be formed, the gas flow in the pallet width direction can be suppressed, and the firing time deviation in the pallet width direction can be reduced.

【0010】本発明は、以上の知見に基づいてなされた
もので、その要旨は下記の通りである。 (1)DL式焼結機の原料堆積層内に棒状体をパレット
進行方向に挿入しつつ焼結原料を装入し、次いで着火、
焼結を行う焼結鉱の製造方法において、前記棒状体のパ
レット幅方向縦断面の形状がパレットの底面に向かって
末広がりであることを特徴とする焼結鉱の製造方法。 (2)原料堆積層内のパレット進行方向に棒状体を複数
並列させたDL式焼結機において、前記棒状体のパレッ
ト幅方向縦断面の形状がパレットの底面に向かって末広
がりであることを特徴とするDL式焼結機。
The present invention has been made based on the above findings, and the gist is as follows. (1) The sintering raw material is charged while inserting the rod-shaped body in the raw material deposition layer of the DL type sintering machine in the pallet traveling direction, and then ignited.
A method for producing a sintered ore, wherein a shape of a vertical cross section of the rod-shaped body in a pallet width direction is divergent toward a bottom surface of the pallet. (2) In a DL-type sintering machine in which a plurality of rods are arranged side by side in the pallet advancing direction in the raw material deposition layer, the vertical cross section of the rods in the pallet width direction widens toward the bottom surface of the pallet. DL sintering machine.

【0011】[0011]

【発明の実施の形態】図1は、棒状体の形状をパラメー
タとした棒状体の断面積占有率と原料沈下量との関係を
示すグラフである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a graph showing the relationship between the occupation ratio of the cross-sectional area of a rod and the amount of raw material settlement, with the shape of the rod being a parameter.

【0012】なお、このグラフは、直方体の原料堆積層
(150mm×200mm×150mm)を各試験毎に作り、種々の形
状の棒状体を3本、原料堆積層の全奥行き(150mm)に渡
って挿入した後に引抜き、原料沈下量を計測して得たも
のである。
In this graph, a rectangular parallelepiped raw material deposition layer (150 mm × 200 mm × 150 mm) is formed for each test, and three rods of various shapes are formed over the entire depth (150 mm) of the raw material deposition layer. It is obtained by inserting and pulling out and measuring the amount of raw material settlement.

【0013】また、同図横軸の棒状体の断面積占有率
(%)は、(パレット幅方向での棒状体の断面積/パレ
ット幅方向の焼結層の断面積)×100%と定義した。
さらに、同図縦軸の原料沈下量は、通気溝直上原料の通
気溝への沈下現象を評価したものであり、原料堆積層上
面の鉛直方向の沈下距離と定義した。
Further, the sectional area occupancy (%) of the rod-shaped body on the horizontal axis in the figure is defined as (cross-sectional area of rod-shaped body in pallet width direction / cross-sectional area of sintered layer in pallet width direction) × 100%. did.
Further, the raw material settlement amount on the vertical axis in the figure is an evaluation of the sinking phenomenon of the raw material immediately above the ventilation groove into the ventilation groove, and is defined as the vertical settlement distance of the upper surface of the raw material deposition layer.

【0014】この沈下によって、原料の堆積層上面も下
方に沈下するが、沈下量の小さい方が堆積層上面の降下
量も小さくなる。なお、焼結工程における点火は堆積層
上面を着火させるので、沈下量の小さい方が焼結鉱の製
造歩留が良好となる。
Due to the settlement, the upper surface of the deposited layer of the raw material also sinks downward. The smaller the amount of settlement is, the smaller the amount of fall of the upper surface of the deposited layer is. Since the ignition in the sintering step ignites the upper surface of the deposited layer, the smaller the settlement amount, the better the production yield of the sintered ore.

【0015】沈下量が小さいと成品歩留が良好となる理
由は、下記のように推定できる。焼結工程における点火
は堆積層上面を着火させる。ここで原料の沈下が生じる
と、点火バーナーと沈下した部位での堆積層上面との距
離が長くなる。もともとバーナーと堆積層上面との距離
は適正になるように操業しているので、この距離が長く
なると原料表面の着火が不良となる。この原料表面の着
火不良によって焼結の未焼成部が発生し、歩留低下を招
く。従って、沈下量が小さいと成品歩留が良好となる。
The reason why the product yield is good when the amount of settlement is small can be estimated as follows. Ignition in the sintering step ignites the upper surface of the deposited layer. If the raw material subsides here, the distance between the ignition burner and the upper surface of the deposited layer at the submerged portion increases. Originally, the operation is performed so that the distance between the burner and the upper surface of the deposition layer is appropriate. If the distance is increased, the ignition of the surface of the raw material becomes poor. Due to the poor ignition of the surface of the raw material, an unsintered portion is generated, which causes a reduction in yield. Therefore, when the amount of settlement is small, the product yield becomes good.

【0016】図中の●:四角柱、△:三角柱を表し、
A:幅8mm、高さ40mmの四角柱、B:幅16mm、高さ40mm
の四角柱、C:幅8mm、高さ80mmの四角柱、D:幅16m
m、高さ80mmの四角柱、E:幅8mm、高さ160mmの三角
柱、F:幅8mm、高さ80mmの三角柱、G:幅16mm、高さ8
0mmの三角柱、H:幅40mm、高さ80mmの三角柱、I:幅4
0mm、高さ40mmの三角柱、J:幅8mm、高さ160mmの中空
三角柱、K:幅16mm、高さ80mmの中空三角柱、L:幅40
mm、高さ40mmの中空三角柱をそれぞれ示す。
In the figure, ●: square prism, Δ: triangular prism,
A: Square prism of width 8mm, height 40mm, B: width 16mm, height 40mm
Square pillar, C: 8mm wide, 80mm high square pillar, D: 16m wide
m, square prism with height 80mm, E: triangular prism with width 8mm, height 160mm, F: triangular prism with width 8mm, height 80mm, G: width 16mm, height 8
0mm triangular prism, H: triangular prism of width 40mm, height 80mm, I: width 4
0mm, triangular prism of height 40mm, J: hollow triangular prism of width 8mm, height 160mm, K: hollow triangular prism of width 16mm, height 80mm, L: width 40
A hollow triangular prism having a height of 40 mm and a height of 40 mm is shown.

【0017】図1に示すように、断面積占有率が大きい
領域において、●の四角柱よりも△の三角柱は原料沈下
量を効果的に抑制できることがわかる。図2は、棒状体
の代表的な形状における原料の荷重方向を概念的に示す
模式図であり、図2(a)は四角柱における原料の荷重
方向を、図2(b)は三角柱における原料の荷重方向を
それぞれ示す。
As shown in FIG. 1, in the region where the occupation ratio of the cross-sectional area is large, it can be seen that the triangular prism indicated by △ can more effectively suppress the settlement of the raw material than the square prism indicated by ●. FIG. 2 is a schematic view conceptually showing the load direction of the raw material in a representative shape of the rod-shaped body. FIG. 2 (a) shows the load direction of the raw material in a square pole, and FIG. The load direction of each is shown.

【0018】なお、図中の矢印は荷重方向を表す。図2
(a)に示すように、四角柱を使用すると、原料の荷重
が鉛直方向のみにかかるのに対して、三角柱を使用する
と、鉛直方向にかかる荷重が2方向に分散されるため、
鉛直方向にかかる原料の荷重を軽減できる。この原料の
荷重軽減効果によって、前記の原料沈下量を低減でき
る。
The arrow in the figure indicates the load direction. FIG.
As shown in (a), when a square pillar is used, the load of the raw material is applied only in the vertical direction, whereas when a triangular prism is used, the load applied in the vertical direction is dispersed in two directions.
The load of the raw material applied in the vertical direction can be reduced. By the effect of reducing the load on the raw material, the amount of the raw material settling can be reduced.

【0019】図3は、棒状体の形状をパラメータとした
棒状体の断面積占有率と冷間通気性指数との関係を示す
グラフである。なお、このグラフは、直方体の原料堆積
層(150mm×200mm×150mm)を各試験毎に作り、種々の
形状の棒状体を3本、全奥行き(150mm)に渡って挿入し
た後に引抜き、エアーを下方吸引して、冷間通気性指数
[JPU]を計測した。
FIG. 3 is a graph showing the relationship between the cross-sectional area occupancy of the rod and the cold air permeability index using the shape of the rod as a parameter. In this graph, a rectangular parallelepiped material deposition layer (150 mm x 200 mm x 150 mm) was created for each test, and three rods of various shapes were inserted over the entire depth (150 mm), then pulled out, and air was removed. By suctioning downward, the cold permeability index [JPU] was measured.

【0020】棒状体の断面積占有率(%)の定義は前記
の通りであり、冷間通気性指数はJPU=v・(h/△P)0.6
[v:吸引エアーの空塔風速、h:原料堆積層厚、△
P:原料堆積層上面下面の差圧]と定義した。
The definition of the sectional area occupancy (%) of the rod is as described above, and the cold permeability index is JPU = v · (h / △ P) 0.6
[V: air tower wind speed of suction air, h: raw material deposition layer thickness, △
P: differential pressure between the upper surface and the lower surface of the material deposition layer].

【0021】また、図中の記号は前記と同様である。同
図に示すように、断面積占有率が大きい領域において、
●の四角柱よりも△の三角柱は冷間通気性指数を効果的
に大きくすることがわかる。
The symbols in the figure are the same as those described above. As shown in the figure, in the region where the cross-sectional area occupancy is large,
It can be seen that the triangle pillar of △ effectively increases the cold permeability index than the square pillar of ●.

【0022】図4は、棒状体の代表的な形状におけるガ
スの流れ方向を概念的に示す模式図であり、図4(a)
は四角柱におけるガスの流れ方向を、図4(b)は三角
柱におけるガスの流れ方向をそれぞれ示す。
FIG. 4 is a schematic view conceptually showing a gas flow direction in a typical shape of a rod-like body.
4 shows the flow direction of the gas in the square prism, and FIG. 4B shows the flow direction of the gas in the triangular prism.

【0023】なお、図中の矢印はガスの流れ方向を表
す。図4(a)に示すように、四角柱を使用すると、ガ
スの流れがランダムな方向に分散されるのに対して、図
4(b)に示すように、三角柱を使用すると、ガスの流
れがパレット高さ方向の鉛直方向となるため、三角柱は
通気性が良好となる。三角柱を使用すると通気性が良好
となる理由は下記のように推定できる。
The arrows in the figure indicate the flow direction of the gas. As shown in FIG. 4 (a), when a square prism is used, the gas flow is dispersed in random directions, whereas as shown in FIG. 4 (b), when a triangular prism is used, the gas flow Is vertical in the height direction of the pallet, so that the triangular prism has good air permeability. The reason why the use of a triangular prism improves the air permeability can be estimated as follows.

【0024】鉛直方向での層厚上昇によって、焼結堆積
層の通気性は低下する。4角柱の棒状体を挿入した場合
には、挿入部位とその部位以外でこの層厚が二極化し、
その結果通気性も二極化する。ガス流れに、通気性の低
い部位へ向かうベクトルが生じる。このベクトルの発生
がガスの整流を乱す。一方、三角柱を挿入した場合に
は、層厚が連続的に変化するので、通気性の低い部位へ
向かうベクトルの生成が四角柱と比較して緩和される。
As the layer thickness increases in the vertical direction, the permeability of the sintered deposition layer decreases. When a quadrangular prism-shaped rod is inserted, this layer thickness becomes bipolar at the insertion site and other than that site,
As a result, the air permeability is also polarized. A vector is created in the gas flow that points to a site with poor air permeability. The generation of this vector disturbs the commutation of the gas. On the other hand, when a triangular prism is inserted, since the layer thickness changes continuously, the generation of a vector heading toward a portion with low air permeability is reduced as compared with a square prism.

【0025】このように、三角柱を使用すると、パレッ
ト高さ方向の通気性が良好になるため、焼結鉱のムラ焼
けを防止でき、焼結鉱の歩留を向上できる。また、クー
ラーにおける未燃カーホ゛ンの燃焼を抑制でき、焼結鉱の冷
却速度を大きくすることが可能となり、生産性を向上で
きる。さらに、堆積層全体の圧損を低下でき、焼成速度
も向上できる。図5は本発明の方法を行う装置例を示す
概念図である。同図に示すように、床敷ホッパー1から
床敷2をパレット6に装入した後に、サージホッパー3
からシュート4を通じて焼結原料5をパレットに供給す
る。その結果、床敷層7の上部に焼結原料の堆積層8が
形成される。この焼結原料の堆積層8の始点9は斜面を
形成しているが、この斜面に棒状体10を挿入する。こ
の挿入の際に、棒状体10は架台11に支えられてい
る。図6は、棒状体の設置状況を概念的に示すパレット
幅方向断面図である。同図に示すように、棒状体10の
形状は、パレット幅方向の断面形状がパレット6の底面
に向かって末広がりの形状がよい。この理由は、前記の
通り通気溝形成後に原料の沈下量が抑制でき、しかも、
パレット高さ方向のガス流れに整流することができるか
らである。図7(a)〜(e)は、末広がり棒状体の形
状例を概念的に示すパレット幅方向断面図である。同図
に示すように、末広がり棒状体の形状例は、(a):三
角形、(b)台形、(c)アーチ形とこれらを組み合わ
せた形状(d)および(e)等があげられる。なお、台
形等の上底部分を有する形状の場合には、原料沈下量を
低減できるようにその上底の長さを極力小さくするよう
にすることが望ましい。また、棒状体は、中空でも構わ
ない。中空であれば棒状体が軽量となり、棒状体自体の
たわみの問題を軽減できる。
As described above, when the triangular prism is used, the permeability in the height direction of the pallet is improved, so that uneven burning of the sintered ore can be prevented and the yield of the sintered ore can be improved. Further, the combustion of the unburned carbon in the cooler can be suppressed, the cooling rate of the sintered ore can be increased, and the productivity can be improved. Further, the pressure loss of the entire deposited layer can be reduced, and the firing rate can be improved. FIG. 5 is a conceptual diagram showing an example of an apparatus for performing the method of the present invention. As shown in the figure, after the floor bedding 2 is loaded from the floor bedding hopper 1 onto the pallet 6, the surge hopper 3
The sintering raw material 5 is supplied to the pallet through the chute 4. As a result, a deposited layer 8 of the sintering raw material is formed on the floor layer 7. The starting point 9 of the deposited layer 8 of the sintering raw material forms a slope, on which a rod 10 is inserted. During this insertion, the rod 10 is supported by the gantry 11. FIG. 6 is a pallet width direction cross-sectional view conceptually showing the installation state of the rods. As shown in the figure, the shape of the rod 10 is preferably such that the cross-sectional shape in the pallet width direction widens toward the bottom surface of the pallet 6. The reason for this is that the amount of settling of the raw material can be suppressed after the formation of the ventilation groove as described above, and
This is because the flow can be rectified into the gas flow in the pallet height direction. 7A to 7E are pallet width direction sectional views conceptually showing examples of the shape of the flared rod. As shown in the figure, examples of the shape of the divergent rod-shaped body include (a): a triangle, (b) a trapezoid, (c) an arch, and a combination of these (d) and (e). In the case of a shape having an upper bottom such as a trapezoid, it is desirable to reduce the length of the upper bottom as much as possible so as to reduce the amount of raw material settlement. Further, the rod-shaped body may be hollow. If the rod is hollow, the rod becomes lighter, and the problem of deflection of the rod itself can be reduced.

【0026】[0026]

【実施例】小規模試験用焼結機により、焼結速度、冷却
速度、成品歩留および品質評価試験を行った。
EXAMPLE A sintering rate, a cooling rate, a product yield and a quality evaluation test were conducted using a small-scale test sintering machine.

【0027】試験方法は下記(1)〜(8)の通りであ
る。 (1)原料:商業用焼結機で使用される配合原料[配合
ベルトコンベアーより抜出し]、 (2)焼成規模:パレット幅:400mm,原料機長方向長
さ:2400mm,原料層厚:400mm、 (3)棒状体挿入深度:棒状体先端が原料装入シュート
の先端から排鉱側へ50mmの位置(棒状体:固定)、 (4)焼成条件:吸引圧力一定:1100mmAq(風箱内)、 (5)焼結時間:点火開始から焼結排ガス温度が最高温
度に達するまでに要した時間、 (6)冷却時間:焼結排ガス最高温度から200℃に冷却
するのに要した時間(ストランド上でケーキのまま冷
却)、 (7)成品:焼結後の焼結ケーキをSI試験機にて4回
落下後の5mm篩上産物。
The test method is as follows (1) to (8). (1) Raw material: compounded raw material used in commercial sintering machine [extracted from compounding belt conveyor] (2) Firing scale: pallet width: 400mm, raw material machine length direction length: 2400mm, raw material layer thickness: 400mm, ( 3) Rod insertion depth: A position where the tip of the rod is 50 mm from the tip of the raw material charging chute to the mining side (rod: fixed). (4) Firing conditions: Constant suction pressure: 1100 mmAq (in the wind box), ( 5) Sintering time: The time required from the start of ignition until the temperature of the sintering exhaust gas reaches the maximum temperature. (6) Cooling time: The time required to cool from the maximum temperature of the sintering exhaust gas to 200 ° C (on the strand) (7) Finished product: 5 mm sieve product after dropping the sintered cake after sintering four times with an SI tester.

【0028】図8は棒状体の形状をパラメータとした棒
状体の断面積占有率と焼結時間との関係を示すグラフで
ある。また、棒状体は、W:幅、H:高さ、UW:上底
LW:下底として下記の形状のものを試験に使用し
た。
FIG. 8 is a graph showing the relationship between the occupation rate of the cross-sectional area of the rod and the sintering time, with the shape of the rod as a parameter. In addition, the rod-shaped body having the following shape was used as W: width, H: height, UW: upper bottom, LW: lower bottom, and used in the test.

【0029】 記号●:直方体C':W=21mm、H=160mm・・・・・・・・・従来例 △:三角柱E':W=21mm、H=320mm・・・・・・・・・本発明例1 △:三角柱G':W=43mm、H=160mm・・・・・・・・・本発明例2 △:三角柱I':W=107mm、H=80mm・・・・・・・・・本発明例3 □:台形柱M':UW=10mm、LW=33mm、H=160mm・本発明例4 同図に示すように、従来例の●:直方体C'に比べて本
発明例の△および□は同じ棒状体の断面積占有率におい
て焼結時間を短くすることができた。
Symbol ●: rectangular parallelepiped C ′: W = 21 mm, H = 160 mm ············ Conventional example Δ: triangular prism E ': W = 21 mm, H = 320 mm ······· Invention Example 1 Δ: Triangular prism G ′: W = 43 mm, H = 160 mm... Invention Example 2 Δ: Triangular prism I ′: W = 107 mm, H = 80 mm・ Example 3 of the present invention □: Trapezoidal column M ′: UW = 10 mm, LW = 33 mm, H = 160 mm ・ Example 4 of the present invention As shown in FIG. Nos. And □ were able to shorten the sintering time at the same cross-sectional area occupancy of the rod.

【0030】図9は棒状体の形状をパラメータとした棒
状体の断面積占有率と冷却時間との関係を示すグラフで
ある。また、棒状体は、前記図8のときと同じ形状のも
のを試験に使用した。
FIG. 9 is a graph showing the relationship between the cross-sectional area occupancy of the rod and the cooling time using the shape of the rod as a parameter. Further, the rod-shaped body having the same shape as that of FIG. 8 was used for the test.

【0031】同図に示すように、従来例の●:直方体
C'に比べて本発明例の△および□は同じ棒状体の断面
積占有率において冷却時間を短くすることができた。図
10は棒状体の形状をパラメータとした棒状体の冷却時
間と成品歩留との関係を示すグラフである。
As shown in the figure, the cooling time can be shortened in the cross-sectional area occupancy of the same rod-like material in the examples of the present invention, as compared with the conventional example of ●: rectangular parallelepiped C ′. FIG. 10 is a graph showing the relationship between the cooling time of the bar and the product yield using the shape of the bar as a parameter.

【0032】なお、成品歩留は下記の式で定義した。 成品歩留(%)=成品質量/(焼結後全質量−床敷質
量)×100 同図に示すように、従来例の●:直方体C'に比べて本
発明例の△および□は冷却時間が長い場合であっても成
品歩留の低下を抑制できた。
The product yield was defined by the following equation. Product yield (%) = product quality / (total mass after sintering−floor mass) × 100 As shown in FIG. Even if the time is long, it was possible to suppress a decrease in product yield.

【0033】図11は棒状体の形状と生産率およびRD
Iとの関係を示すグラフである。なお、生産率は、生産
率(t/(D・m2))=成品質量/(焼結時間×焼結機床面積)と
定義し、RDIは還元粉化性を意味し、製銑部会法を採
用した。同図に示すように、従来例に比べて本発明例は
生産率およびRDIが向上できた。
FIG. 11 shows the rod shape, production rate and RD.
6 is a graph showing a relationship with I. The production rate is defined as production rate (t / (D · m 2 )) = quality quantity / (sintering time × sintering machine floor area), RDI means reduced powderability, It was adopted. As shown in the figure, the production rate and RDI of the example of the present invention were improved as compared with the conventional example.

【0034】[0034]

【発明の効果】本発明により、水分凝集および蓄熱によ
る焼結原料堆積層下部の通気性悪化を、パレットの底面
に向かって末広がりの通気溝を形成することによって抑
制できる。これにより焼成時間の短縮とそれに起因する
生産性の改善が達成される。
According to the present invention, the deterioration of air permeability under the sintering material deposition layer due to moisture aggregation and heat storage can be suppressed by forming a diverging groove extending toward the bottom surface of the pallet. As a result, the firing time can be shortened and the productivity resulting therefrom can be improved.

【0035】また、パレット幅方向のガス流れを抑制で
きて、未焼成部を低減できる。この未焼成部の低減によ
って、成品歩留が改善できる。同時に、パレット幅方向
の焼成時間の偏差が低減されるので、クーラーにおける
未燃カーホ゛ンの燃焼が抑制されて、クーラーでの冷却悪化
が抑制される。併せて、通気性改善により焼結鉱の還元
粉化性が改善される。
Further, the gas flow in the pallet width direction can be suppressed, and the unfired portion can be reduced. By reducing the unsintered portion, the product yield can be improved. At the same time, the deviation of the firing time in the width direction of the pallet is reduced, so that the combustion of the unburned carbon in the cooler is suppressed, and the deterioration of the cooling in the cooler is suppressed. At the same time, the reduction pulverizability of the sintered ore is improved by the improvement of the air permeability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】棒状体の形状をパラメータとした棒状体の断面
積占有率と原料沈下量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the occupation rate of the cross-sectional area of a rod and the amount of settlement of a raw material, using the shape of the rod as a parameter.

【図2】棒状体の代表的な形状における原料の荷重方向
を概念的に示す模式図であり、図2(a)は四角柱にお
ける原料の荷重方向を、図2(b)は三角柱における原
料の荷重方向をそれぞれ示す。
FIGS. 2A and 2B are schematic diagrams conceptually showing a load direction of a raw material in a representative shape of a rod-shaped body. FIG. 2A shows a load direction of a raw material in a square pole, and FIG. The load direction of each is shown.

【図3】棒状体の形状をパラメータとした棒状体の断面
積占有率と冷間通気性指数との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the cross-sectional area occupancy of a rod and the cold permeability index, with the shape of the rod as a parameter.

【図4】棒状体の代表的な形状におけるガスの流れ方向
を概念的に示す模式図であり、図4(a)は四角柱にお
けるガスの流れ方向を、図4(b)は三角柱におけるガ
スの流れ方向をそれぞれ示す。
4A and 4B are schematic diagrams conceptually showing a gas flow direction in a typical shape of a rod-shaped body. FIG. 4A shows a gas flow direction in a square pole, and FIG. The flow direction of each is shown.

【図5】本発明の方法を行う装置例を示す概念図であ
る。
FIG. 5 is a conceptual diagram showing an example of an apparatus for performing the method of the present invention.

【図6】棒状体の設置状況を概念的に示すパレット幅方
向断面図である。
FIG. 6 is a pallet width direction cross-sectional view conceptually showing the installation state of a rod.

【図7】図7(a)〜(e)は末広がり棒状体の形状例
を概念的に示すパレット幅方向断面図である。
FIGS. 7A to 7E are pallet width direction sectional views conceptually showing examples of the shape of a divergent rod.

【図8】棒状体の形状をパラメータとした棒状体の断面
積占有率と焼結時間との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the occupation ratio of the cross-sectional area of the rod and the sintering time, with the shape of the rod as a parameter.

【図9】棒状体の形状をパラメータとした棒状体の断面
積占有率と冷却時間との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the sectional area occupancy of the rod and the cooling time, using the shape of the rod as a parameter.

【図10】棒状体の形状をパラメータとした棒状体の冷
却時間と成品歩留との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the cooling time of the bar and the product yield, using the shape of the bar as a parameter.

【図11】棒状体の形状と生産率およびRDIとの関係
を示すグラフである。
FIG. 11 is a graph showing the relationship between the shape of a rod and the production rate and RDI.

【符号の説明】[Explanation of symbols]

1:床敷ホッパー、 2:床敷、 3:サージホッパー、 4:シュート、 5:焼結原料、 6:パレット、 7:床敷層、 8:堆積層、 9:堆積層の始点、 10:棒状体、 11:架台。 1: bedding hopper, 2: bedding, 3: surge hopper, 4: chute, 5: sintering material, 6: pallet, 7: bedding layer, 8: sedimentary layer, 9: starting point of sedimentary layer, 10: Rod-shaped body, 11: mount.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 DL式焼結機の原料堆積層内に棒状体を
パレット進行方向に挿入しつつ焼結原料を装入し、次い
で着火、焼結を行う焼結鉱の製造方法において、前記棒
状体のパレット幅方向縦断面の形状がパレットの底面に
向かって末広がりであることを特徴とする焼結鉱の製造
方法。
In a method for producing a sintered ore, a sintering raw material is charged while a rod-shaped body is inserted in a raw material deposition layer of a DL type sintering machine in a pallet traveling direction, and then ignition and sintering are performed. A method for manufacturing a sintered ore, wherein a shape of a vertical cross section of a rod-shaped body in a pallet width direction is widened toward a bottom surface of the pallet.
【請求項2】 原料堆積層内のパレット進行方向に棒状
体を複数並列させたDL式焼結機において、前記棒状体
のパレット幅方向縦断面の形状がパレットの底面に向か
って末広がりであることを特徴とするDL式焼結機。
2. In a DL type sintering machine in which a plurality of rods are arranged in parallel in a pallet advancing direction in a raw material deposition layer, a shape of a vertical cross section of the rods in a pallet width direction is divergent toward a bottom surface of the pallet. DL sintering machine characterized by the following.
JP2000285474A 2000-09-20 2000-09-20 Method and apparatus for producing sintered ore Expired - Fee Related JP3573078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285474A JP3573078B2 (en) 2000-09-20 2000-09-20 Method and apparatus for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285474A JP3573078B2 (en) 2000-09-20 2000-09-20 Method and apparatus for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2002097523A true JP2002097523A (en) 2002-04-02
JP3573078B2 JP3573078B2 (en) 2004-10-06

Family

ID=18769536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285474A Expired - Fee Related JP3573078B2 (en) 2000-09-20 2000-09-20 Method and apparatus for producing sintered ore

Country Status (1)

Country Link
JP (1) JP3573078B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032797A (en) * 2010-11-23 2011-04-27 北京世纪源博科技有限责任公司 Enhanced heat exchange device for sinter of circular cooler
KR101796084B1 (en) * 2016-10-28 2017-11-10 주식회사 포스코 Apparatus for forming void and Sintering facilities

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018847B1 (en) * 1969-10-16 1975-07-02
JPH02263935A (en) * 1989-04-03 1990-10-26 Sumitomo Metal Ind Ltd Method for controlling air permeability in sintering raw material layer
JPH05125455A (en) * 1991-11-06 1993-05-21 Nippon Steel Corp Method for sintering iron ore
JPH09184022A (en) * 1995-10-30 1997-07-15 Kawasaki Steel Corp Production of sintered ore and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018847B1 (en) * 1969-10-16 1975-07-02
JPH02263935A (en) * 1989-04-03 1990-10-26 Sumitomo Metal Ind Ltd Method for controlling air permeability in sintering raw material layer
JPH05125455A (en) * 1991-11-06 1993-05-21 Nippon Steel Corp Method for sintering iron ore
JPH09184022A (en) * 1995-10-30 1997-07-15 Kawasaki Steel Corp Production of sintered ore and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032797A (en) * 2010-11-23 2011-04-27 北京世纪源博科技有限责任公司 Enhanced heat exchange device for sinter of circular cooler
KR101796084B1 (en) * 2016-10-28 2017-11-10 주식회사 포스코 Apparatus for forming void and Sintering facilities

Also Published As

Publication number Publication date
JP3573078B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
KR101074893B1 (en) Process for producing sintered ore
CN105849491B (en) Manufacture the equipment and the method using the device fabrication sintering deposit of sintering deposit
KR101462549B1 (en) Charging apparatus for raw material, apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
KR20120130260A (en) Method for producing sintered ore
JP3573078B2 (en) Method and apparatus for producing sintered ore
KR101974429B1 (en) Method for producing sintered ore
JP2012112003A (en) Method for manufacturing sintered ore
JP2014055328A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore
JP4882168B2 (en) Method and apparatus for producing sintered ore with improved air permeability
JP2003277841A (en) Method for producing sintered ore
JPH0627291B2 (en) Sintering raw material charging method
JP5428196B2 (en) Method for producing sintered ore and sintering machine
JP5124969B2 (en) Sinter ore manufacturing method
JP5888482B2 (en) Method for producing sintered ore
JP6037145B2 (en) Method for producing sintered ore
JP2014055329A (en) Measurement method for air flow rate in sintering machine and production method for sintered ore
KR20050010264A (en) Method for manufacturing sintered ore using the baking tempature on the wind box
JP2582711B2 (en) Method for improving air permeability of sintered layer
JP4932970B2 (en) Sintered pallet truck, sintering machine equipped with the same, and method for producing sintered ore
JP2725498B2 (en) Sinter production method
JP2010106341A (en) Method for manufacturing sintered ore
JPH08226773A (en) Method of controlling ventilation of sintering material layer by means of dl type sintering machine
JPH10122754A (en) Sintering machine having sinter cake supporting stand
JP4815841B2 (en) Sintering method
KR101296733B1 (en) Method for forming air hole of sintering mineral transportation pallet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Ref document number: 3573078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees