JP2002096092A - Method of controlling grain size of floc as well as water treating method and device - Google Patents
Method of controlling grain size of floc as well as water treating method and deviceInfo
- Publication number
- JP2002096092A JP2002096092A JP2000286676A JP2000286676A JP2002096092A JP 2002096092 A JP2002096092 A JP 2002096092A JP 2000286676 A JP2000286676 A JP 2000286676A JP 2000286676 A JP2000286676 A JP 2000286676A JP 2002096092 A JP2002096092 A JP 2002096092A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- aeration
- treatment
- floc
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02W10/12—
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フロックの粒径制
御方法並びに水処理方法及び装置に関し、詳しくは、嫌
気性微生物によって脱窒処理を行う際に発生するフロッ
クの粒径を制御し、処理水の固液分離を効率よく行える
ようにした方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the particle size of floc and a method and apparatus for treating water, and more particularly, to a method for controlling the particle size of floc generated when performing denitrification by anaerobic microorganisms. The present invention relates to a method and an apparatus for efficiently performing solid-liquid separation of water.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】水中に
存在する硝酸性、亜硝酸性窒素を除去する方法として、
嫌気性微生物である脱窒菌を利用した嫌気処理が広く行
われている。脱窒菌は、溶存酸素が存在する好気状態で
は、分子状の酸素を用いて呼吸し、溶存酸素の存在しな
い嫌気状態では、分子状酸素の代わりに硝酸性窒素等の
酸素を用いて呼吸する。したがって、脱窒菌が呼吸する
ことにより、溶存酸素が消費されて嫌気状態になるとと
もに、硝酸性窒素が還元されて窒素ガスとなり、水中か
ら窒素分が除去される。BACKGROUND OF THE INVENTION As a method for removing nitrate and nitrite nitrogen present in water,
Anaerobic treatment using denitrifying bacteria, which are anaerobic microorganisms, is widely performed. Denitrifying bacteria breathe using molecular oxygen in the aerobic state where dissolved oxygen exists, and breathe using oxygen such as nitrate nitrogen instead of molecular oxygen in the anaerobic state where dissolved oxygen does not exist. . Therefore, when the denitrifying bacteria breathe, the dissolved oxygen is consumed and the state becomes anaerobic, and the nitrate nitrogen is reduced to nitrogen gas, and the nitrogen content is removed from the water.
【0003】しかし、嫌気状態を長時間持続すると、微
生物の微細フロック化が発生し、処理水の固液分離が困
難になってくる。例えば、分離膜を用いて固液分離する
場合は、微細フロックによる目詰まりが発生し易くな
り、分離膜の洗浄を頻繁に行う必要があった。このた
め、例えば特開平6−76870号公報に記載された懸
濁液の分離方法では、微生物処理を行う懸濁液槽から抜
出した懸濁液に対して、最初に遠心分離法等による濃縮
分離工程でSS成分濃度を下げてから膜分離工程を行う
ことにより、分離膜の目詰まりを低減するようにしてい
る。However, if the anaerobic state is maintained for a long time, micro floc formation of microorganisms occurs, and solid-liquid separation of treated water becomes difficult. For example, when solid-liquid separation is performed using a separation membrane, clogging due to fine flocs is likely to occur, and it has been necessary to frequently wash the separation membrane. For this reason, for example, in the method for separating a suspension described in JP-A-6-76870, the suspension extracted from the suspension tank for performing the microorganism treatment is first concentrated and separated by centrifugation or the like. Clogging of the separation membrane is reduced by performing the membrane separation step after lowering the SS component concentration in the step.
【0004】また、間欠曝気により嫌気処理と好気処理
とを交互に行う水処理法の場合、例えば特開平11−3
47550号公報に記載された膜分離方法では、曝気装
置を分離膜の下方に設置し、好気処理の際には曝気装置
から空気を曝気し、嫌気処理の際には密閉された処理槽
内の酸素をほとんど含まないガスを循環させて曝気装置
から曝気することにより分離膜の曝気洗浄を行い、分離
膜の目詰まりを解消するようにしている。In the case of a water treatment method in which anaerobic treatment and aerobic treatment are alternately performed by intermittent aeration, for example, Japanese Patent Application Laid-Open No. H11-3
In the membrane separation method described in Japanese Patent No. 47550, an aeration device is installed below the separation membrane, air is aerated from the aeration device during aerobic treatment, and inside an airtight treatment tank during anaerobic treatment. The separation membrane is aerated and cleaned by circulating a gas containing almost no oxygen and aeration from the aeration apparatus to eliminate clogging of the separation membrane.
【0005】いずれの場合も、嫌気状態における微生物
の微細フロック化に対して、濃縮分離工程を行うことに
よって分離膜の負担を軽減したり、分離膜の曝気洗浄を
継続的に行うことによって目詰まりを解消したりするも
のであり、微生物の微細フロック化そのものに対しての
検討は全くなされていない。[0005] In any case, the microbial flocculation of microorganisms in an anaerobic state can be reduced by reducing the load on the separation membrane by performing a concentration separation step or by continuously performing aeration and washing of the separation membrane. No study has been made on the micro floc formation of microorganisms.
【0006】また、前者の方法では、遠心分離設備を別
途必要とし、後者の方法では、処理槽内のガスを曝気装
置に循環させるための配管やミストセパレータ等の設備
を別途必要とするため、一般的な水処理装置への適用が
困難であった。In the former method, a centrifugal separator is separately required, and in the latter method, piping and a mist separator for circulating the gas in the processing tank to the aeration device are separately required. It was difficult to apply to general water treatment equipment.
【0007】なお、後者のように、間欠曝気を行うこと
によって硝化と脱窒とを単一の処理槽で行う場合は、好
気状態と嫌気状態とが交互に繰返され、嫌気状態となっ
ている時間が短いため、嫌気状態で専ら脱窒処理を行う
脱窒処理槽に比べて微生物の微細フロック化による影響
は比較的少ない。[0007] When nitrification and denitrification are performed in a single treatment tank by intermittent aeration as in the latter case, an aerobic state and an anaerobic state are alternately repeated, and an anaerobic state occurs. Because of the short duration, the effect of micro-flocculation of microorganisms is relatively small compared to a denitrification treatment tank that exclusively performs denitrification in an anaerobic state.
【0008】そこで本発明は、微生物の微細フロック化
自体を抑制し、微生物が形成するフロックの粒径を制御
することにより、固液分離操作を効率よく行うことが可
能となるフロックの粒径制御方法を提供するとともに、
このフロックの粒径制御を利用して効果的な脱窒処理と
膜分離処理とを簡単な装置構成で実施することができる
水処理方法及び装置を提供することを目的としている。[0008] Accordingly, the present invention provides a method for controlling the size of flocs, which makes it possible to perform a solid-liquid separation operation efficiently by suppressing the formation of microscopic flocs of the microorganisms and controlling the particle size of the flocs formed by the microorganisms. Provide a method,
It is an object of the present invention to provide a water treatment method and apparatus capable of performing effective denitrification processing and membrane separation processing with a simple apparatus configuration using the control of the particle size of flocs.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明のフロックの粒径制御方法は、嫌気性微生物
によって窒素を除去する脱窒処理槽内を曝気処理するこ
とにより、前記嫌気性微生物が形成するフロックの粒径
を制御することを特徴としている。Means for Solving the Problems To achieve the above object, the method for controlling the particle size of floc of the present invention comprises the steps of aerating the inside of a denitrification tank for removing nitrogen by anaerobic microorganisms. It is characterized by controlling the particle size of the floc formed by the microorganism.
【0010】さらに、本発明のフロックの粒径制御方法
は、前記脱窒処理槽内で発生したフロックの粒径を計測
し、この計測結果と、あらかじめ設定した最適粒径範囲
とを比較し、この比較結果から前記曝気処理量を調節す
ることを特徴とし、前記曝気処理を、あらかじめ設定し
た曝気条件に基づくシーケンス制御によって実施するこ
とを特徴としている。Further, the floc particle size control method of the present invention measures the floc particle size generated in the denitrification tank, compares the measurement result with a preset optimal particle size range, The amount of the aeration process is adjusted based on the comparison result, and the aeration process is performed by sequence control based on a preset aeration condition.
【0011】また、本発明の水処理方法は、脱窒処理槽
内で嫌気性処理を行って窒素を除去するとともに、該脱
窒処理槽内を曝気処理することによって粒径を制御した
嫌気性微生物のフロックを形成し、該フロックを含む処
理水に対して膜分離処理を行うことにより、前記フロッ
クを分離することを特徴とし、特に、前記膜分離処理を
行った膜ろ過水を次工程に送出するとともに、濃縮水を
前記脱窒処理槽に返送することを特徴としている。In the water treatment method of the present invention, an anaerobic treatment is performed in a denitrification treatment tank to remove nitrogen, and an anaerobic treatment in which the particle size is controlled by performing aeration treatment in the denitrification treatment tank. Forming flocs of microorganisms and performing a membrane separation process on the treated water containing the flocs, thereby separating the flocs, and in particular, membrane filtration water subjected to the membrane separation process in the next step. It is characterized in that the concentrated water is sent out and returned to the denitrification tank.
【0012】さらに、本発明の水処理装置は、嫌気状態
下で嫌気性微生物による脱窒処理を行う脱窒処理槽と、
該脱窒処理槽内で発生するフロックの粒径を計測する粒
径計測手段と、該脱窒処理槽内に酸素を供給するための
曝気手段と、前記粒径計測手段で計測したフロックの粒
径に基づいて前記曝気手段の曝気処理量を制御する曝気
制御手段と、該脱窒処理槽から抜出した処理水の固液分
離を行う膜分離手段とを備えていることを特徴としてい
る。Further, the water treatment apparatus of the present invention comprises: a denitrification treatment tank for performing a denitrification treatment by an anaerobic microorganism under an anaerobic condition;
Particle size measuring means for measuring the particle size of floc generated in the denitrification treatment tank, aeration means for supplying oxygen into the denitrification treatment tank, and floc particles measured by the particle size measurement means It is characterized by comprising an aeration control means for controlling the amount of aeration treatment of the aeration means on the basis of a diameter, and a membrane separation means for performing solid-liquid separation of treated water extracted from the denitrification treatment tank.
【0013】[0013]
【発明の実施の形態】図1は本発明のフロックの粒径制
御方法を適用した水処理装置の一形態例を示す系統図で
ある。この水処理装置は、脱窒処理槽(嫌気槽)11
と、クロスフロー方式の膜分離装置12とを組合わせた
ものであって、脱窒処理槽11において嫌気状態下で嫌
気性微生物による生物学的脱窒処理を行うとともに、膜
分離装置12において嫌気性微生物のフロックを処理水
から分離することにより、原水中に含まれる硝酸性窒素
を除去して原水の脱窒処理を行うように形成されてい
る。FIG. 1 is a system diagram showing one embodiment of a water treatment apparatus to which a method for controlling the particle size of flocs of the present invention is applied. This water treatment apparatus includes a denitrification treatment tank (anaerobic tank) 11
And a cross-flow type membrane separation device 12, which performs a biological denitrification treatment with anaerobic microorganisms under anaerobic conditions in the denitrification treatment tank 11 and an anaerobic treatment in the membrane separation device 12. By separating floc of germ-free microorganisms from the treated water, nitrate nitrogen contained in the raw water is removed to perform a denitrification treatment of the raw water.
【0014】脱窒処理槽11には、微生物混合水を撹拌
するための撹拌機13と、微生物混合水の酸化還元電位
(ORP)を計測するための酸化還元電位計(ORP
計)14と、微生物混合水中に酸素を供給するための曝
気装置15とが設けられており、経路16から流入した
原水と微生物とを混合して硝酸性窒素を生物学的に窒素
に還元する処理を行う。The denitrification tank 11 has a stirrer 13 for stirring the microorganism-mixed water and an oxidation-reduction potentiometer (ORP) for measuring the oxidation-reduction potential (ORP) of the microorganism-mixed water.
14) and an aerator 15 for supplying oxygen to the microorganism-mixed water, and mixes raw water and microorganisms flowing through the path 16 to biologically reduce nitrate nitrogen to nitrogen. Perform processing.
【0015】膜分離装置12には、脱窒処理槽11から
経路17に抜出した処理水を加圧するためのポンプ18
と、固液分離処理(ろ過処理)した膜ろ過水を次工程に
送出するための経路19と、濃縮水を脱窒処理槽11に
返送するための経路20とが設けられおり、フロックを
分離するろ過処理が行われるとともに、中空糸膜の膜内
面に沿って流れる処理水により、膜面に付着したフロッ
クを剥離してフロックの堆積を抑制するようにしてい
る。The membrane separation device 12 has a pump 18 for pressurizing the treated water extracted from the denitrification treatment tank 11 to the path 17.
And a path 19 for sending the membrane filtered water subjected to the solid-liquid separation processing (filtration processing) to the next step, and a path 20 for returning the concentrated water to the denitrification treatment tank 11. In addition to the filtration treatment, flocs attached to the membrane surface are separated by treated water flowing along the inner surface of the hollow fiber membrane to suppress the accumulation of flocs.
【0016】このように形成された水処理装置におい
て、脱窒処理槽11では、槽内の嫌気状態が長く持続す
ることによって嫌気性微生物の微細フロックが発生する
ようになり、脱窒処理槽11で微細フロックが発生する
と、膜分離装置12の中空糸膜に設けられている微細孔
内に微細フロックが侵入し、該微細孔を閉塞してしま
う。したがって、脱窒処理槽11で発生するフロックの
粒径を、中空糸膜の微細孔より十分に大きくし、フロッ
クが微細孔内に侵入できないようにすることにより、微
細孔の閉塞を抑制することができ、膜面に付着したフロ
ックを、中空糸膜内を流れる処理水によって剥離するこ
とが可能となる。In the water treatment apparatus thus formed, in the denitrification treatment tank 11, fine flocs of anaerobic microorganisms are generated due to long-lasting anaerobic state in the tank. When the fine flocs are generated, the fine flocs penetrate into the fine holes provided in the hollow fiber membrane of the membrane separation device 12 and close the fine holes. Therefore, the particle size of the flocs generated in the denitrification treatment tank 11 is made sufficiently larger than the fine pores of the hollow fiber membrane to prevent the flocs from entering the fine pores, thereby suppressing blockage of the fine pores. This makes it possible to remove the flocs attached to the membrane surface by the treatment water flowing in the hollow fiber membrane.
【0017】微細フロックの発生は、嫌気状態で微生物
が硝酸性窒素の酸素を取り込んで呼吸することにより、
原形質の排出が少なくなることに起因している。すなわ
ち、微生物に分子状酸素を適量与えて酸素呼吸させ、原
形質の排出を促進することにより、原形質によって各微
生物をまとめた状態の粒径の大きなフロックを形成する
ことができる。The generation of fine flocs occurs when microorganisms take in oxygen of nitrate nitrogen and breathe under anaerobic conditions.
This is due to reduced excretion of protoplasm. In other words, a suitable amount of molecular oxygen is given to microorganisms to cause oxygen respiration, thereby facilitating excretion of the protoplasm, thereby forming a floc having a large particle size in a state where the respective microorganisms are put together by the protoplasm.
【0018】一方、嫌気状態の判定は、微生物混合水の
酸化還元電位を計測することによって知ることができ
る。例えば、通常の間歇曝気の場合、曝気中の好気状態
では酸化還元電位が+100mV程度となり、曝気を停
止した嫌気状態では酸化還元電位が−100mV程度と
なる。また、脱窒処理槽11で嫌気状態をそのまま持続
させると、酸化還元電位が−300〜−400mVに達
することも珍しくなく、このようなときに、前記微細フ
ロックが発生し易くなる。On the other hand, the determination of the anaerobic state can be known by measuring the oxidation-reduction potential of the mixed water of microorganisms. For example, in the case of normal intermittent aeration, the oxidation-reduction potential is about +100 mV in an aerobic state during aeration, and about -100 mV in an anaerobic state in which aeration is stopped. Further, if the anaerobic state is maintained as it is in the denitrification treatment tank 11, the oxidation-reduction potential often reaches −300 to −400 mV, and in such a case, the fine flocs easily occur.
【0019】酸化還元電位は、流入する原水の性状(硝
酸性窒素含有量、有機物含有量等)や滞留時間、微生物
の種類等の条件によって異なってくるが、あらかじめ脱
窒処理槽11で生成するフロックの粒径と微生物混合水
の酸化還元電位との関係を調べておくことにより、酸化
還元電位を調整することによってフロックの粒径を制御
することが可能となる。The oxidation-reduction potential varies depending on the properties of the raw water flowing in (content of nitrate nitrogen, content of organic substances, etc.), residence time, types of microorganisms, etc., but is generated in advance in the denitrification treatment tank 11. By examining the relationship between the particle size of the floc and the oxidation-reduction potential of the microbial mixed water, it is possible to control the particle size of the floc by adjusting the oxidation-reduction potential.
【0020】すなわち、脱窒処理槽11における脱窒処
理を損なわない範囲で酸化還元電位を高く維持すること
により、微生物の酸素呼吸による原形質の排出によって
適度な粒径のフロックを形成することができる。脱窒処
理を損なわない酸化還元電位は、通常は+100〜−1
00mVの範囲が適当であり、前記酸化還元電位計14
によって微生物混合水の酸化還元電位を連続的に計測
し、この計測値が、適度な粒径のフロックが形成される
所定の酸化還元電位の範囲内になるように曝気処理を行
うことにより、微細フロックの生成を抑制することがで
きる。That is, by maintaining the oxidation-reduction potential at a high level within a range that does not impair the denitrification treatment in the denitrification treatment tank 11, it is possible to form flocs having an appropriate particle size by discharging the protoplasm by the oxygen respiration of microorganisms. it can. The oxidation-reduction potential that does not impair the denitrification treatment is usually +100 to −1
The range of 00 mV is appropriate, and the redox potentiometer 14
The oxidation-reduction potential of the microbial mixed water is measured continuously, and the aeration process is performed so that the measured value falls within a predetermined oxidation-reduction potential range in which flocs having an appropriate particle size are formed. Flock generation can be suppressed.
【0021】また、曝気処理は、微生物に酸素を供給で
きればよく、撹拌効果や膜洗浄効果は全く考慮しなくて
よいため、脱窒処理槽11内の適宜な位置だけでなく、
脱窒処理槽11内に流入する水が流れる経路16、経路
17、経路20にも設けることが可能である。また、曝
気用のガスは酸素を含んでいればよく、通常は空気を用
いればよいが、酸素ガスを使用することもできる。In the aeration treatment, it is sufficient that oxygen can be supplied to the microorganisms, and the stirring effect and the membrane washing effect need not be considered at all. Therefore, not only the appropriate position in the denitrification treatment tank 11 but also
The path 16, the path 17, and the path 20 through which the water flowing into the denitrification tank 11 flows can be provided. Further, the gas for aeration only needs to contain oxygen, and usually air may be used, but oxygen gas can also be used.
【0022】さらに、曝気処理は、あらかじめ設定した
最適粒径範囲のフロックが形成できるように行えばよ
く、例えば、微生物混合水の酸化還元電位に応じて曝気
装置15の弁15aの開度を調節して連続的に曝気を行
ったり、あるいは、計測値が所定の酸化還元電位以下に
なったら弁15aを開き、所定の酸化還元電位以上にな
ったら弁15aを閉じるようにして間欠的に曝気を行っ
たりすることができ、あらかじめ設定した曝気条件に基
づくシーケンス制御によって曝気時間や曝気量を調節す
ることより、脱窒処理槽11の全体を均一な状態にする
ことができる。Further, the aeration treatment may be performed so as to form a floc having an optimum particle size range set in advance. For example, the opening degree of the valve 15a of the aeration device 15 is adjusted in accordance with the oxidation-reduction potential of the microorganism-mixed water. Aeration is performed continuously, or the valve 15a is opened when the measured value is lower than a predetermined oxidation-reduction potential, and the valve 15a is closed when the measurement value is higher than a predetermined oxidation-reduction potential. By adjusting the aeration time and the amount of aeration by sequence control based on a preset aeration condition, the entire denitrification treatment tank 11 can be made uniform.
【0023】このようにして所定の曝気処理を行い、粒
径を制御した嫌気性微生物のフロックを形成させること
により、該フロックを含む処理水のろ過処理を行う膜分
離装置12における中空糸膜の目詰まり発生を抑制する
ことができ、安定した膜分離を長時間にわたって継続す
ることができる。By performing a predetermined aeration process in this way to form flocs of anaerobic microorganisms having a controlled particle size, the hollow fiber membrane in the membrane separation device 12 for performing a filtration process of the treated water containing the flocs is formed. Clogging can be suppressed, and stable membrane separation can be continued for a long time.
【0024】さらに、通常の脱窒処理槽11に、酸化還
元電位計14等の粒径計測手段と、曝気処理量を制御可
能な曝気装置15とを設置するだけで実施が可能である
から、既存の脱窒処理設備への適用も容易であり、設備
コストや運転コストも低廉である。Further, the present invention can be carried out simply by installing a particle size measuring means such as an oxidation-reduction potentiometer 14 and an aerator 15 capable of controlling the amount of aeration treatment in the ordinary denitrification tank 11. It is easy to apply to existing denitrification equipment, and equipment and operating costs are low.
【0025】なお、本形態例では、粒径計測手段とし
て、酸化還元電位によってフロックの粒径を間接的に計
測するようにしているが、パーティクルカウンターによ
って直接的に粒径を計測することもできる。また、微生
物混合水の溶存酸素濃度(DO)を計測することによっ
てもフロックの粒径を間接的に計測することが可能であ
り、この場合の最適な溶存酸素濃度は、0.5mg/l
以下である。In the present embodiment, the particle size of the floc is indirectly measured by the oxidation-reduction potential as the particle size measuring means, but the particle size can also be measured directly by a particle counter. . Also, the particle size of the floc can be indirectly measured by measuring the dissolved oxygen concentration (DO) of the mixed water of microorganisms. In this case, the optimal dissolved oxygen concentration is 0.5 mg / l.
It is as follows.
【0026】また、曝気装置15における曝気処理量を
制御する曝気制御手段は、酸化還元電位計14等の粒径
計測手段からの電気信号によって直接的に電磁弁を開閉
してもよく、粒径計測手段からの電気信号をコンピュー
ター等で処理して弁の開閉を制御することもでき、さら
に、曝気用空気を供給するブロワーの運転を制御して曝
気量を制御することも可能である。このとき、曝気処理
に連動して撹拌機13による撹拌量を調整することもで
きる。The aeration control means for controlling the amount of aeration treatment in the aeration device 15 may open and close the electromagnetic valve directly by an electric signal from a particle size measuring means such as the oxidation-reduction potentiometer 14. The opening and closing of the valve can be controlled by processing the electric signal from the measuring means by a computer or the like, and the aeration amount can be controlled by controlling the operation of the blower that supplies the air for aeration. At this time, the amount of stirring by the stirrer 13 can be adjusted in conjunction with the aeration process.
【0027】また、膜分離手段である膜分離装置の形式
も任意であり、クロスフロー方式に限らず、全量ろ過方
式や併用方式を用いることもでき、内圧式ではなく、外
圧式を用いることもできる。そして、フロックの分離
は、膜分離に限らず、砂ろ過等の固液分離手段を採用し
た場合であっても、微細フロックによる閉塞を抑制した
効率のよいろ過処理を行うことができる。Further, the type of the membrane separation device as the membrane separation means is not limited, and is not limited to the cross-flow type, but may be a full-filtration type or a combined type, and may be an external pressure type instead of an internal pressure type. it can. The separation of flocs is not limited to membrane separation, and even when solid-liquid separation means such as sand filtration is employed, an efficient filtration process in which blockage by fine flocks is suppressed can be performed.
【0028】加えて、微生物の呼吸に必要な有機炭素源
を、原水中の有機炭素質でまかなえる場合と、不足分を
外部から添加する場合とがあるが、後者の場合は、脱窒
処理を十分に行わせるために理論量よりも若干多めに添
加する必要があり、処理水のBODが上昇するおそれが
あったが、適度な曝気を行うことにより、微生物による
BODの消費が発生し、BODの上昇も防止することが
できる。In addition, an organic carbon source necessary for the respiration of microorganisms may be provided by organic carbonaceous matter in raw water, or a shortage may be added from the outside. In the latter case, denitrification treatment is required. It was necessary to add a little more than the theoretical amount in order to sufficiently perform the treatment, and there was a risk that the BOD of the treated water might increase. However, by performing appropriate aeration, consumption of BOD by microorganisms occurred, Can be prevented from rising.
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば、
脱窒処理槽での微細フロックの発生を抑制することがで
きるので、フロックを分離するための固液分離を効率よ
く行うことができる。また、既存の脱窒処理設備にも簡
単に適用が可能である。As described above, according to the present invention,
Since generation of fine flocs in the denitrification tank can be suppressed, solid-liquid separation for separating flocs can be efficiently performed. In addition, it can be easily applied to existing denitrification treatment equipment.
【図1】 本発明のフロックの粒径制御方法を適用した
水処理装置の一形態例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of a water treatment apparatus to which a floc particle size control method of the present invention is applied.
11…脱窒処理槽、12…膜分離装置、13…撹拌機、
14…酸化還元電位計、15…曝気装置、18…ポンプ11: denitrification tank, 12: membrane separator, 13: stirrer,
14: redox potentiometer, 15: aeration device, 18: pump
フロントページの続き Fターム(参考) 4D006 GA02 HA01 KA01 KB22 KB23 MA01 PB08 PC62 4D040 AA22 AA55 AA61 BB07 BB24 BB67 BB91 BB92 Continued on the front page F term (reference) 4D006 GA02 HA01 KA01 KB22 KB23 MA01 PB08 PC62 4D040 AA22 AA55 AA61 BB07 BB24 BB67 BB91 BB92
Claims (6)
窒処理槽内を曝気処理することにより、前記嫌気性微生
物が形成するフロックの粒径を制御することを特徴とす
るフロックの粒径制御方法。1. A method for controlling the size of flocs formed by anaerobic microorganisms by subjecting a denitrification treatment tank for removing nitrogen by anaerobic microorganisms to an aeration treatment to control the particle size of flocs formed by the anaerobic microorganisms. .
粒径を計測し、この計測結果と、あらかじめ設定した最
適粒径範囲とを比較し、この比較結果から前記曝気処理
量を調節することを特徴とする請求項1記載のフロック
の粒径制御方法。2. The particle size of floc generated in the denitrification treatment tank is measured, the measurement result is compared with a preset optimum particle size range, and the aeration treatment amount is adjusted based on the comparison result. 2. The method for controlling the particle size of floc according to claim 1, wherein:
気条件に基づくシーケンス制御によって実施することを
特徴とする請求項1記載のフロックの粒径制御方法。3. The floc particle size control method according to claim 1, wherein the aeration process is performed by a sequence control based on a preset aeration condition.
径制御方法を適用した水処理方法であって、前記脱窒処
理槽内で嫌気性処理を行って窒素を除去するとともに、
該脱窒処理槽内を曝気処理することによって粒径を制御
した嫌気性微生物のフロックを形成し、該フロックを含
む処理水に対して膜分離処理を行うことにより、前記フ
ロックを分離することを特徴とする水処理方法。4. A water treatment method to which the method for controlling floc particle size according to claim 1, 2 or 3, wherein nitrogen is removed by performing anaerobic treatment in the denitrification treatment tank.
The denitrification treatment tank is subjected to aeration treatment to form flocs of anaerobic microorganisms having a controlled particle size, and the membrane is subjected to a membrane separation treatment for treated water containing the flocs, thereby separating the flocs. Characterized water treatment method.
程に送出するとともに、濃縮水を前記脱窒処理槽に返送
することを特徴とする請求項4記載の水処理方法。5. The water treatment method according to claim 4, wherein the membrane filtered water subjected to the membrane separation treatment is sent to the next step, and the concentrated water is returned to the denitrification treatment tank.
理を行う脱窒処理槽と、該脱窒処理槽内で発生するフロ
ックの粒径を計測する粒径計測手段と、該脱窒処理槽内
に酸素を供給するための曝気手段と、前記粒径計測手段
で計測したフロックの粒径に基づいて前記曝気手段の曝
気処理量を制御する曝気制御手段と、該脱窒処理槽から
抜出した処理水の固液分離を行う膜分離手段とを備えて
いることを特徴とする水処理装置。6. A denitrification treatment tank for performing a denitrification treatment by an anaerobic microorganism under an anaerobic condition, a particle size measuring means for measuring a particle size of floc generated in the denitrification treatment tank, and a denitrification treatment. Aeration means for supplying oxygen into the tank, aeration control means for controlling the amount of aeration of the aeration means based on the particle size of the floc measured by the particle size measurement means, and extraction from the denitrification treatment tank And a membrane separation means for performing solid-liquid separation of the treated water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000286676A JP4605877B2 (en) | 2000-09-21 | 2000-09-21 | Flock particle size control method and water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000286676A JP4605877B2 (en) | 2000-09-21 | 2000-09-21 | Flock particle size control method and water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002096092A true JP2002096092A (en) | 2002-04-02 |
JP4605877B2 JP4605877B2 (en) | 2011-01-05 |
Family
ID=18770563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000286676A Expired - Fee Related JP4605877B2 (en) | 2000-09-21 | 2000-09-21 | Flock particle size control method and water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4605877B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012228645A (en) * | 2011-04-26 | 2012-11-22 | Hitachi Ltd | Water treatment apparatus, water treating method, and program for the method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031886A (en) * | 1983-07-28 | 1985-02-18 | Hitachi Ltd | Control apparatus of sewage treating apparatus |
JPS6133296A (en) * | 1984-07-23 | 1986-02-17 | Nishihara Environ Sanit Res Corp | Sewage treatment |
JPH0240295A (en) * | 1988-07-29 | 1990-02-09 | Hitachi Ltd | Apparatus for controlling activated sludge |
JPH02135198A (en) * | 1989-09-20 | 1990-05-24 | Hitachi Ltd | Microbe treating equipment and waste water treating equipment |
JPH04131199A (en) * | 1990-09-21 | 1992-05-01 | Ebara Infilco Co Ltd | Concurrent disposal of night soil and septic tank sludge |
-
2000
- 2000-09-21 JP JP2000286676A patent/JP4605877B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031886A (en) * | 1983-07-28 | 1985-02-18 | Hitachi Ltd | Control apparatus of sewage treating apparatus |
JPS6133296A (en) * | 1984-07-23 | 1986-02-17 | Nishihara Environ Sanit Res Corp | Sewage treatment |
JPH0240295A (en) * | 1988-07-29 | 1990-02-09 | Hitachi Ltd | Apparatus for controlling activated sludge |
JPH02135198A (en) * | 1989-09-20 | 1990-05-24 | Hitachi Ltd | Microbe treating equipment and waste water treating equipment |
JPH04131199A (en) * | 1990-09-21 | 1992-05-01 | Ebara Infilco Co Ltd | Concurrent disposal of night soil and septic tank sludge |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012228645A (en) * | 2011-04-26 | 2012-11-22 | Hitachi Ltd | Water treatment apparatus, water treating method, and program for the method |
Also Published As
Publication number | Publication date |
---|---|
JP4605877B2 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6488854B2 (en) | Activated sludge wastewater treatment system and method | |
EP3403996B1 (en) | Granule-forming method and waste water treatment method | |
JP2007038107A (en) | Method for treating organic drainage | |
JP2000093998A (en) | Method and apparatus for treating high-concentration waste water | |
KR100769997B1 (en) | Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) | |
JP6670192B2 (en) | Organic sludge processing method and processing apparatus | |
JP2007275846A (en) | Wastewater treatment system and wastewater treatment method | |
JPH07116685A (en) | Aerobic biological treatment of organic waste liquor | |
JP2002096092A (en) | Method of controlling grain size of floc as well as water treating method and device | |
JP2000093992A (en) | Wastewater treatment system | |
JP4101539B2 (en) | Wastewater treatment equipment | |
JP2005137991A (en) | Drainage treatment apparatus | |
JP2004530530A (en) | Wastewater treatment apparatus and method with enhanced solids weight loss (ESR) | |
JP2007222830A (en) | Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it | |
JPH11347550A (en) | Membrane separation method and apparatus | |
JP2009214073A (en) | Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor | |
CN111087132A (en) | Integrated membrane biological reaction device, wastewater treatment system and method | |
KR200295835Y1 (en) | Nature flowing and dipping type membrane separation system | |
JPWO2020021752A1 (en) | Garbage disposal equipment | |
JP2003205297A (en) | Waste water treating system | |
JP3200032B2 (en) | Sludge treatment equipment | |
JP4551650B2 (en) | Biological treatment equipment | |
JP2004337811A (en) | Organic wastewater treatment apparatus and organic waste water treatment method | |
KR100404690B1 (en) | Apparatus for advanced treatment of water polluted by organic substances | |
KR20020009956A (en) | Apparatus and method for waste water processing contain heavy metal and a pollutant non decomposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101005 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |