JP2002095635A - Endoscope system - Google Patents

Endoscope system

Info

Publication number
JP2002095635A
JP2002095635A JP2001088256A JP2001088256A JP2002095635A JP 2002095635 A JP2002095635 A JP 2002095635A JP 2001088256 A JP2001088256 A JP 2001088256A JP 2001088256 A JP2001088256 A JP 2001088256A JP 2002095635 A JP2002095635 A JP 2002095635A
Authority
JP
Japan
Prior art keywords
filter
light
band
image
diagram showing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001088256A
Other languages
Japanese (ja)
Other versions
JP3583731B2 (en
Inventor
Kazuhiro Atono
和弘 後野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001088256A priority Critical patent/JP3583731B2/en
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to US10/333,155 priority patent/US7892169B2/en
Priority to EP01953304A priority patent/EP1302152B1/en
Priority to EP10011752.2A priority patent/EP2319390B1/en
Priority to PCT/JP2001/006205 priority patent/WO2002007588A1/en
Publication of JP2002095635A publication Critical patent/JP2002095635A/en
Application granted granted Critical
Publication of JP3583731B2 publication Critical patent/JP3583731B2/en
Priority to US12/169,185 priority patent/US20080294105A1/en
Priority to US12/169,161 priority patent/US20080281154A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain tissue data at a desired depth near a tissue surface of the body. SOLUTION: A light source device 4 is structured by comprising a xenon lamp 11, a heat ray cut filter 12 which shuts off a heat ray in a white light, an aperture device 13 which controls amount of white light passed through the heat ray cut filter 11, a rotational filter 14 which makes surface sequential light from illumination light that is composed of a first filter group arranged in outside diametrical sections and for the purpose of outputting the surface sequential light of an overlapped spectral property suitable for color recreation, and a second filter group arranged in inside diametrical sections and for the purpose of outputting narrow band surface sequential light of a discrete spectral property capable of extracting tissue data of a desired depth layer, a condenser lens 16 which focuses surface sequential light passed through the rotational filter 14 on incidence faces of light guides 15 disposed in an electron endoscope 3, and a control circuit 17 which controls rotation of the rotational filter 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体組織の像を撮
像し信号処理する内視鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope apparatus for capturing an image of a living tissue and processing the signal.

【0002】[0002]

【従来の技術】従来より、照明光を照射し体腔内の内視
鏡画像を得る内視鏡装置が広く用いられている。この種
の内視鏡装置では、光源装置からの照明光を体腔内にラ
イトガイド等を用い導光しその戻り光により被写体を撮
像する撮像手段を有する電子内視鏡が用いられ、ビデオ
プロセッサにより撮像手段からの撮像信号を信号処理す
ることにより観察モニタに内視鏡画像を表示し患部等の
観察部位を観察するようになっている。
2. Description of the Related Art Conventionally, an endoscope apparatus which irradiates illumination light to obtain an endoscopic image in a body cavity has been widely used. In this type of endoscope device, an electronic endoscope having imaging means for guiding illumination light from a light source device into a body cavity by using a light guide or the like and capturing an image of a subject by return light is used, and a video processor is used. An endoscope image is displayed on an observation monitor by performing signal processing on an image pickup signal from the image pickup means, and an observation site such as an affected part is observed.

【0003】内視鏡装置において通常の生体組織観察を
行う場合は、光源装置で可視光領域の白色光を発光し、
例えばRGB等の回転フィルタを介することで面順次光
を被写体に照射し、この面順次光による戻り光をビデオ
プロセッサで同時化し画像処理することでカラー画像を
得たり、内視鏡の撮像手段の撮像面の前面にカラーチッ
プを配し白色光による戻り光をカラーチップにてRGB
に分離することで撮像しビデオプロセッサで画像処理す
ることカラー画像を得ている。
When ordinary living tissue observation is performed with an endoscope device, a light source device emits white light in the visible light region,
For example, the subject is irradiated with plane-sequential light through a rotation filter such as RGB, and the return light due to the plane-sequential light is synchronized with a video processor to perform image processing, thereby obtaining a color image, A color chip is arranged on the front surface of the imaging surface, and return light by white light is RGB by the color chip.
Then, a color image is obtained by taking an image by separating the image and processing the image with a video processor.

【0004】一方、生体組織では、照射される光の波長
により光の吸収特性及び散乱特性が異なるため、近年、
例えば赤外光を照明光として生体組織に照射し生体組織
に深部の組織の観察が可能な赤外光内視鏡装置が種々提
案されている。
[0004] On the other hand, in living tissue, light absorption and scattering characteristics differ depending on the wavelength of the irradiated light.
For example, various infrared endoscope apparatuses have been proposed that can irradiate a living tissue with infrared light as illumination light and observe a tissue deep in the living tissue.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、生体組
織の診断では、組織表面近くの深部組織情報も重要な観
察対象となるが、上記の赤外光内視鏡装置では、組織表
面よりも深い深部組織情報しか得ることができない。
However, in diagnosing a living tissue, deep tissue information near the tissue surface is also an important observation object. However, in the infrared endoscope apparatus described above, a deep portion of the tissue is deeper than the tissue surface. Only organization information can be obtained.

【0006】また、白色光を回転フィルタによりRGB
面順次光として、生体組織に照射すると、その波長域が
異なるために、各色の光による撮像信号は、生体組織の
組織表面近くの異なる深部組織情報を有しているが、一
般にはこのRGB面順次光による内視鏡画像をより自然
な色画像とするため、白色光は、各波長域がオーバーラ
ップしたRGB光に分離される。
Also, white light is converted into RGB light by a rotation filter.
When a living tissue is irradiated as plane-sequential light, the wavelength range is different. Therefore, the imaging signal by the light of each color has different deep tissue information near the tissue surface of the living tissue. In order to make the endoscope image by the light into a more natural color image in order, the white light is separated into RGB light in which each wavelength region overlaps.

【0007】すなわち、オーバーラップしたRGB光で
は、各波長域による光の撮像信号には幅のある深部組織
情報が取り込まれるため、生体組織の組織表面近くの所
望の深部の組織情報を視認することが難しいといった問
題がある。
In other words, in the overlapped RGB light, a wide depth of tissue information is captured in an image signal of light in each wavelength range, so that desired deep tissue information near the tissue surface of a living tissue can be visually recognized. Is difficult.

【0008】本発明は、上記事情に鑑みてなされたもの
であり、生体組織の組織表面近くの所望の深部の組織情
報を得ることのできる内視鏡装置及び光源装置を提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an endoscope apparatus and a light source apparatus which can obtain desired deep tissue information near a tissue surface of a living tissue. I have.

【0009】[0009]

【課題を解決するための手段】本発明の内視鏡装置は、
可視光領域を含む照明光を供給する照明光供給手段と、
前記照明光を被写体に照射し戻り光により前記被写体を
撮像する撮像手段を有する内視鏡と、前記撮像手段から
の撮像信号を信号処理する信号処理手段とを備えた内視
鏡装置において、前記照明光の複数の波長域の少なくと
も1つの波長域を制限し前記被写体の離散的な分光分布
のバンド像を前記撮像手段に結像させる帯域制限手段
を、前記照明光供給手段から前記撮像手段に至る光路上
に備えて構成される。
An endoscope apparatus according to the present invention comprises:
Illumination light supply means for supplying illumination light including a visible light region,
An endoscope having an imaging unit that irradiates the object with the illumination light and images the object with return light; and an endoscope device including a signal processing unit that performs signal processing on an imaging signal from the imaging unit. A band limiting unit that limits at least one of a plurality of wavelength ranges of the illumination light and forms a band image of a discrete spectral distribution of the subject on the imaging unit from the illumination light supply unit to the imaging unit; It is configured to be provided on the optical path leading to.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態について述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1ないし図33は本発明の第1の実施の
形態に係わり、図1は内視鏡装置の構成を示す構成図、
図2は図1の回転フィルタの構成を示す構成図、図3は
図2の回転フィルタの第1のフィルタ組の分光特性を示
す図、図4は図2の回転フィルタの第2のフィルタ組の
分光特性を示す図、図5は図1の内視鏡装置により観察
する生体組織の層方向構造を示す図、図6は図1の内視
鏡装置からの照明光の生体組織の層方向への到達状態を
説明する図、図7は図3の第1のフィルタ組を透過した
面順次光による各バンド画像を示す図、図8は図4の第
2のフィルタ組を透過した面順次光による各バンド画像
を示す図、図9は図1の調光回路による調光制御を説明
する図、図10は図2の回転フィルタの第2のフィルタ
組の第1の変形例の分光特性を示す図、図11は図2の
回転フィルタの第2のフィルタ組の第2の変形例の分光
特性を示す図、図12は図2の回転フィルタの第2のフ
ィルタ組の第3の変形例の分光特性を示す図、図13は
図2の回転フィルタの第2のフィルタ組の第3の変形例
の作用を説明する図、図14は図1のキセノンランプの
分光分布の第1の例を示す図、図15は図14のキセノ
ンランプの分光分布の際の回転フィルタの第2のフィル
タ組の第4の変形例の分光特性を示す図、図16は図1
4の第2のフィルタ組の第4の変形例による生体組織照
明光の分光特性を示す図、図17は図1のキセノンラン
プの分光分布の第2の例を示す図、図18は図1のCC
Dの分光感度特性の一例を示す図、図19はキセノンラ
ンプの分光分布が第2の例でかつCCDの分光感度特性
が図18の時の回転フィルタの第2のフィルタ組の第5
の変形例に蒸着する減光フィルタの分光特性を示す図、
図20は図19の減光フィルタを蒸着した第2のフィル
タ組の第5の変形例の分光特性を示す図、図21は図1
の光源装置の第1の変形例の構成を示す構成図、図22
は図21の減光回転フィルタの構成を示す構成図、図2
3は図1の光源装置の第2の変形例の構成を示す構成
図、図24は図23の減光フィルタを構成する第1の減
光フィルタの減光特性を示す図、図25は図23の減光
フィルタを構成する第2の減光フィルタの減光特性を示
す図、図26は図23の減光フィルタの減光特性を示す
図、図27は図2の回転フィルタの第2のフィルタ組の
詳細なの分光特性を示す一例を示す図、図28は図2の
回転フィルタの第2のフィルタ組の第6の変形例の分光
特性を示す図、図29は図1のビデオプロセッサの変形
例の要部の構成を示す図、図30は図29のビデオプロ
セッサの作用を説明する第1の図、図31は図29のビ
デオプロセッサの作用を説明する第2の図、図32は図
2の回転フィルタの第2のフィルタ組の第7の変形例を
示す図、図33は図32の第2のフィルタ組の第7の変
形例の分光特性を示す図である。
FIGS. 1 to 33 relate to a first embodiment of the present invention. FIG. 1 is a configuration diagram showing a configuration of an endoscope apparatus.
2 is a configuration diagram showing the configuration of the rotary filter of FIG. 1, FIG. 3 is a diagram showing spectral characteristics of a first filter set of the rotary filter of FIG. 2, and FIG. 4 is a second filter set of the rotary filter of FIG. FIG. 5 is a diagram showing a layered structure of a living tissue observed by the endoscope apparatus of FIG. 1, and FIG. 6 is a diagram showing a layered direction of living tissue of illumination light from the endoscope apparatus of FIG. FIG. 7 is a view showing each band image by plane-sequential light transmitted through the first set of filters in FIG. 3, and FIG. 8 is a plane sequential transmitted through the second set of filters in FIG. FIG. 9 is a diagram showing each band image by light, FIG. 9 is a diagram for explaining dimming control by the dimming circuit in FIG. 1, and FIG. 10 is a spectral characteristic of a first modification of the second filter set of the rotary filter in FIG. FIG. 11 is a diagram showing spectral characteristics of a second modification of the second filter set of the rotary filter of FIG. 2; 2 is a diagram showing the spectral characteristics of a third modification of the second filter set of the rotary filter of FIG. 2, and FIG. 13 is a diagram illustrating the operation of the third modification of the second filter set of the rotary filter of FIG. FIG. 14 is a diagram showing a first example of the spectral distribution of the xenon lamp of FIG. 1, and FIG. 15 is a fourth modification of the second filter set of the rotating filter in the case of the spectral distribution of the xenon lamp of FIG. FIG. 16 is a diagram showing spectral characteristics of an example, and FIG.
FIG. 17 is a diagram showing spectral characteristics of living tissue illumination light according to a fourth modification of the second filter set of FIG. 4, FIG. 17 is a diagram showing a second example of the spectral distribution of the xenon lamp of FIG. 1, and FIG. CC
FIG. 19 is a diagram showing an example of the spectral sensitivity characteristic of D. FIG. 19 is the fifth example of the second filter set of the rotary filter when the spectral distribution of the xenon lamp is the second example and the spectral sensitivity characteristic of the CCD is FIG.
The figure showing the spectral characteristics of the neutral density filter deposited in the modified example of
FIG. 20 is a diagram showing the spectral characteristics of a fifth modification of the second filter set in which the neutral density filter of FIG. 19 is deposited, and FIG.
FIG. 22 is a configuration diagram showing a configuration of a first modification of the light source device of FIG.
FIG. 2 is a configuration diagram showing the configuration of the dimming rotation filter of FIG.
3 is a configuration diagram showing a configuration of a second modification of the light source device in FIG. 1, FIG. 24 is a diagram showing the dimming characteristics of a first dimming filter constituting the dimming filter in FIG. 23, and FIG. 23 is a diagram showing the dimming characteristics of the second dimming filter constituting the dimming filter of FIG. 23, FIG. 26 is a diagram showing the dimming characteristics of the dimming filter of FIG. 23, and FIG. 27 is the second diagram of the rotating filter of FIG. FIG. 28 is a diagram showing an example showing detailed spectral characteristics of the filter set of FIG. 28, FIG. 28 is a diagram showing spectral characteristics of a sixth modification of the second filter set of the rotary filter of FIG. 2, and FIG. 29 is a video processor of FIG. FIG. 30 is a first diagram illustrating the operation of the video processor of FIG. 29, FIG. 31 is a second diagram illustrating the operation of the video processor of FIG. 29, and FIG. FIG. 33 is a view showing a seventh modification of the second filter set of the rotary filter of FIG. 2; It is a diagram illustrating a second spectral characteristic of the second filter set of the seventh modified example.

【0012】図1に示すように、本実施の形態の内視鏡
装置1は、体腔内に挿入し体腔内組織を撮像する撮像手
段としてCCD2を有する電子内視鏡3と、電子内視鏡
3に照明光を供給する光源装置4と、電子内視鏡3のC
CD2からの撮像信号を信号処理して内視鏡画像を観察
モニタ5に表示したり内視鏡画像を符号化して圧縮画像
として画像ファイリング装置6に出力するビデオプロセ
ッサ7とから構成される。
As shown in FIG. 1, an endoscope apparatus 1 according to the present embodiment includes an electronic endoscope 3 having a CCD 2 as an image pickup means for inserting into a body cavity and imaging tissue in the body cavity, and an electronic endoscope. A light source device 4 for supplying illumination light to the light source 3 and a C of the electronic endoscope 3
A video processor 7 processes an image signal from the CD 2 to display an endoscope image on the observation monitor 5 or encodes the endoscope image and outputs it to the image filing device 6 as a compressed image.

【0013】光源装置4は、照明光を発光するキセノン
ランプ11と、白色光の熱線を遮断する熱線カットフィ
ルタ12と、熱線カットフィルタ12を介した白色光の
光量を制御する絞り装置13と、照明光を面順次光にす
る回転フィルタ14と、電子内視鏡3内に配設されたラ
イトガイド15の入射面に回転フィルタ14を介した面
順次光を集光させる集光レンズ16と、回転フィルタ1
4の回転を制御する制御回路17とを備えて構成され
る。
The light source device 4 includes a xenon lamp 11 that emits illumination light, a heat ray cut filter 12 that cuts off heat rays of white light, an aperture device 13 that controls the amount of white light passing through the heat ray cut filter 12, A rotating filter 14 for converting illumination light into a surface-sequential light, a condenser lens 16 for condensing surface-sequential light via the rotating filter 14 on an incident surface of a light guide 15 disposed in the electronic endoscope 3, Rotary filter 1
4 and a control circuit 17 for controlling the rotation.

【0014】回転フィルタ14は、図2に示すように、
円盤状に構成され中心を回転軸とした2重構造となって
おり、外側の径部分には図3に示すような色再現に適し
たオーバーラップした分光特性の面順次光を出力するた
めの第1のフィルタ組を構成するR1フィルタ14r1,
G1フィルタ14g1,B1フィルタ14b1が配置され、
内側の径部分には図4に示すような所望の深層組織情報
が抽出可能な離散的な分光特性の狭帯域な面順次光を出
力するための第2のフィルタ組を構成するR2フィルタ
14r2,G2フィルタ14g2,B2フィルタ14b2が
配置されている。そして、回転フィルタ14は、図1に
示すように、制御回路17により回転フィルタモータ1
8の駆動制御がなされ回転され、また径方向の移動(回
転フィルタ14の光路に垂直な移動であって、回転フィ
ルタ14の第1のフィルタ組あるいは第2のフィルタ組
を選択的に光路上に移動)が後述するビデオプロセッサ
の7内のモード切替回路42からの制御信号によりモー
ド切替モータ19によって行われる。
As shown in FIG. 2, the rotary filter 14
It has a disk-like structure and has a double structure with the center as a rotation axis. The outer diameter portion is for outputting plane-sequential light having overlapping spectral characteristics suitable for color reproduction as shown in FIG. R1 filters 14r1, which constitute the first filter set,
A G1 filter 14g1 and a B1 filter 14b1 are arranged,
In the inner diameter portion, R2 filters 14r2 and R2 constituting a second filter set for outputting narrow band plane-sequential light having discrete spectral characteristics from which desired deep tissue information can be extracted as shown in FIG. A G2 filter 14g2 and a B2 filter 14b2 are arranged. Then, as shown in FIG. 1, the rotary filter 14 is controlled by the control
8 is rotated and moved in the radial direction (movement perpendicular to the optical path of the rotary filter 14, and the first filter set or the second filter set of the rotary filter 14 is selectively placed on the optical path). The movement is performed by the mode switching motor 19 according to a control signal from a mode switching circuit 42 in the video processor 7 described later.

【0015】なお、キセノンランプ11、絞り装置1
3、回転フィルタモータ18及びモード切替モータ19
には電源部10より電力が供給される。
The xenon lamp 11, the aperture device 1
3. Rotary filter motor 18 and mode switching motor 19
Is supplied with power from the power supply unit 10.

【0016】図1に戻り、ビデオプロセッサ7は、CC
D2を駆動するCCD駆動回路20と、対物光学系21
を介してCCD2により体腔内組織を撮像した撮像信号
を増幅するアンプ22と、アンプ22を介した撮像信号
に対して相関2重サンプリング及びノイズ除去等を行う
プロセス回路23と、プロセス回路23を経た撮像信号
をデジタル信号の画像データに変換するA/D変換器2
4と、A/D変換器24からの画像データにホワイトバ
ランス処理を施すホワイトバランス回路25と、回転フ
ィルタ14による面順次光を同時化するためのセレクタ
26及び同時化メモリ27、28,29と、同時化メモ
リ27、28,29に格納された面順次光の各画像デー
タを読み出しガンマ補正処理、輪郭強調処理、色処理等
を行う画像処理回路30と、画像処理回路30からの画
像データをアナログ信号に変換するD/A回路31,3
2,33と、D/A回路31,32,33の出力を符号
化する符号化回路34と、光源装置4の制御回路17か
らの回転フィルタ14の回転に同期した同期信号を入力
し各種タイミング信号を上記各回路に出力するタイミン
グジェネレータ35とを備えて構成される。
Returning to FIG. 1, the video processor 7
A CCD drive circuit 20 for driving D2, and an objective optical system 21
, An amplifier 22 that amplifies an image signal obtained by imaging the tissue in the body cavity by the CCD 2 via the CCD 2, a process circuit 23 that performs correlated double sampling, noise removal, and the like on the image signal that has passed through the amplifier 22, and a process circuit 23. A / D converter 2 for converting an imaging signal into digital signal image data
4, a white balance circuit 25 for performing white balance processing on image data from the A / D converter 24, a selector 26 for synchronizing plane-sequential light by the rotary filter 14, and synchronizing memories 27, 28, 29. An image processing circuit 30 that reads out the image data of the field sequential light stored in the synchronization memories 27, 28, and 29 and performs gamma correction processing, contour enhancement processing, color processing, and the like, and outputs image data from the image processing circuit 30. D / A circuits 31 and 3 for converting to analog signals
2, 33, an encoding circuit 34 for encoding the outputs of the D / A circuits 31, 32, 33, and a synchronizing signal synchronized with the rotation of the rotary filter 14 from the control circuit 17 of the light source device 4 and various timings. And a timing generator 35 that outputs a signal to each of the above circuits.

【0017】また、電子内視鏡2には、モード切替スイ
ッチ41が設けられており、このモード切替スイッチ4
1の出力がビデオプロセッサ7内のモード切替回路42
に出力されるようになっている。ビデオプロセッサ7の
モード切替回路42は、制御信号を調光回路43,調光
制御パラメータ切替回路44及び光源装置4のモード切
替モータ19に出力するようになっている。調光制御パ
ラメータ切替回路44は、回転フィルタ14の第1のフ
ィルタ組あるいは第2のフィルタ組に応じた調光制御パ
ラメータを調光回路43に出力し、調光回路43はモー
ド切替回路42からの制御信号及び調光制御パラメータ
切替回路44からの調光制御パラメータに基づき光源装
置4の絞り装置13を制御し適正な明るさ制御を行うよ
うになっている。
The electronic endoscope 2 is provided with a mode changeover switch 41.
1 is a mode switching circuit 42 in the video processor 7
Is output to The mode switching circuit 42 of the video processor 7 outputs a control signal to the dimming circuit 43, the dimming control parameter switching circuit 44, and the mode switching motor 19 of the light source device 4. The dimming control parameter switching circuit 44 outputs a dimming control parameter corresponding to the first filter set or the second filter set of the rotary filter 14 to the dimming circuit 43. Based on the control signal and the dimming control parameter from the dimming control parameter switching circuit 44, the diaphragm device 13 of the light source device 4 is controlled to perform appropriate brightness control.

【0018】次に、このように構成された本実施の形態
の内視鏡装置の作用について説明する。
Next, the operation of the thus configured endoscope apparatus of the present embodiment will be described.

【0019】図5に示すように、体腔内組織51は、例
えば深さ方向に異なった血管等の吸収体分布構造を持つ
場合が多い。粘膜表層付近には主に毛細血管52が多く
分布し、またこの層より深い中層には毛細血管の他に毛
細血管より太い血管53が分布し、さらに深層にはさら
に太い血管54が分布するようになる。
As shown in FIG. 5, the tissue 51 in the body cavity often has an absorber distribution structure such as a blood vessel different in the depth direction. Many capillaries 52 are mainly distributed near the surface layer of the mucous membrane, and in the middle layer deeper than this layer, a blood vessel 53 thicker than the capillaries is distributed in addition to the capillaries, and a thicker blood vessel 54 is further distributed in the deeper layer. become.

【0020】一方、光は体腔内組織51に対する光の深
さ方向の深達度は、光の波長に依存しており、可視域を
含む照明光は、図6に示すように、青(B)色のような
波長が短い光の場合、生体組織での吸収特性及び散乱特
性により表層付近までしか光は深達せず、そこまでの深
さの範囲で吸収、散乱を受け、表面から出た光が観測さ
れる。また、青(B)色光より波長が長い、緑(G)色
光の場合、青(B)色光が深達する範囲よりさらに深い
所まで深達し、その範囲で吸収、散乱を受け、表面から
出た光が観測される。さらにまた、緑(G)色光より波
長が長い、赤(R)色光は、さらに深い範囲まで光が到
達する。
On the other hand, the light reaches the tissue 51 in the body cavity in the depth direction of the light depending on the wavelength of the light. As shown in FIG. ) In the case of light with a short wavelength such as color, light can only reach the surface layer due to absorption and scattering characteristics in living tissue, and is absorbed and scattered within the range of the depth, and exits from the surface. Light is observed. In the case of green (G) light having a wavelength longer than that of blue (B) light, the light reaches deeper than the range where blue (B) light deepens, and is absorbed and scattered in that range and exits from the surface. Light is observed. Furthermore, red (R) light, which has a longer wavelength than green (G) light, reaches a deeper range.

【0021】通常観察時には、照明光の光路上に回転フ
ィルタ14の第1のフィルタ組であるR1フィルタ14
r1,G1フィルタ14g1,B1フィルタ14b1に位置
するようにビデオプロセッサの7内のモード切替回路が
制御信号によりモード切替モータ19を制御する。
At the time of normal observation, the R1 filter 14 as the first filter set of the rotary filter 14 is provided on the optical path of the illumination light.
The mode switching circuit in the video processor 7 controls the mode switching motor 19 according to the control signal so as to be located at r1, the G1 filter 14g1, and the B1 filter 14b1.

【0022】体腔内組織51の通常観察時におけるR1
フィルタ14r1,G1フィルタ14g1,B1フィルタ1
4bは、図3に示したように各波長域がオーバーラップ
させるために、B1フィルタ14b1によるCCD4で撮
像される撮像信号には図7(a)に示すような浅層での
組織情報を多く含む浅層及び中層組織情報を有するバン
ド画像が撮像され、また、G1フィルタ14g1によるC
CD4で撮像される撮像信号には図7(b)に示すよう
な中層での組織情報を多く含む浅層及び中層組織情報を
有するバンド画像が撮像され、さらにR1フィルタ14
r1によるCCD4で撮像される撮像信号には図7
(c)に示すような深層での組織情報を多く含む中層及
び深層組織情報を有するバンド画像が撮像される。
R 1 at the time of normal observation of the tissue 51 in the body cavity
Filter 14r1, G1 filter 14g1, B1 filter 1
4b, as shown in FIG. 3, since the respective wavelength ranges overlap each other, the imaging signal captured by the CCD 4 using the B1 filter 14b1 contains a large amount of tissue information in a shallow layer as shown in FIG. A band image having tissue information including shallow and middle layers is captured, and the C1 image is obtained by the G1 filter 14g1.
As shown in FIG. 7B, a band image having shallow-layer and middle-layer tissue information containing a large amount of tissue information in the middle layer is captured as an image signal captured by the CD4.
FIG. 7 shows an image pickup signal picked up by the CCD 4 by r1.
A band image having middle and deep tissue information including a large amount of tissue information at the deep layer as shown in FIG.

【0023】そしてビデオプロセッサ7により、これら
RGB撮像信号を同時化して信号処理することで、内視
鏡画像としては所望あるいは自然な色再現の内視鏡画像
を得ることが可能となる。
Then, by synchronizing the RGB image signals with the video processor 7 and performing signal processing, it is possible to obtain an endoscope image having a desired or natural color reproduction as the endoscope image.

【0024】一方、電子内視鏡3のモード切替スイッチ
41が押されると、その信号がビデオプロセッサ7のモ
ード切替回路42に入力される。モード切替回路42
は、光源装置4のモード切替モータ19に制御信号を出
力することで、通常観察時に光路上にあった回転フィル
タ14の第1のフィルタ組を移動させ第2のフィルタ組
を光路上に配置するように回転フィルタ14を光路に対
して駆動する。
On the other hand, when the mode changeover switch 41 of the electronic endoscope 3 is pressed, the signal is inputted to the mode changeover circuit 42 of the video processor 7. Mode switching circuit 42
Outputs a control signal to the mode switching motor 19 of the light source device 4 to move the first filter set of the rotary filter 14 that was on the optical path during normal observation and dispose the second filter set on the optical path. The rotary filter 14 is driven with respect to the optical path as described above.

【0025】第2のフィルタ組による体腔内組織51の
狭帯域光観察時におけるR2フィルタ14r2,G2フィ
ルタ14g2,B2フィルタ14b2は、照明光を図4に
示したように離散的な分光特性の狭帯域な面順次光とす
るために、B2フィルタ14b2によるCCD4で撮像さ
れる撮像信号には図8(a)に示すような浅層での組織
情報を有するバンド画像が撮像され、また、G2フィル
タ14g2によるCCD4で撮像される撮像信号には図
8(b)に示すような中層での組織情報を有するバンド
画像が撮像され、さらにR2フィルタ14r2によるCC
D4で撮像される撮像信号には図8(c)に示すような
深層での組織情報を有するバンド画像が撮像されれる。
The R2 filter 14r2, the G2 filter 14g2, and the B2 filter 14b2 at the time of narrow-band light observation of the tissue 51 in the body cavity by the second filter set cause the illumination light to have a narrow discrete spectral characteristic as shown in FIG. In order to obtain band-sequential light in a sequential manner, a band image having tissue information in a shallow layer as shown in FIG. A band image having tissue information in the middle layer as shown in FIG. 8 (b) is picked up by an image pickup signal picked up by the CCD 4 by the 14g2, and furthermore, a CC image by the R2 filter 14r2 is picked up.
A band image having tissue information in a deep layer as illustrated in FIG. 8C is captured in the imaging signal captured in D4.

【0026】この時、図3及び図4から明らかなよう
に、第1のフィルタ組による透過光量に対して第2のフ
ィルタ組による透過光量は、その帯域が狭くなるため減
少するため、調光制御パラメータ切替回路44は、回転
フィルタ14の第1のフィルタ組あるいは第2のフィル
タ組に応じた調光制御パラメータを調光回路43に出力
することで、調光回路43は絞り装置13を制御し、図
9に示すように、ビデオプロセッサ7の図示しない設定
パネルでの設定値Lxに応じた通常観察時の絞り装置1
3による例えばリニアな絞り制御線61に対して、狭帯
域光観察時では絞り装置13を制御して設定値Lxに応
じた絞り制御曲線62により光量Mxを制御する。
At this time, as is apparent from FIGS. 3 and 4, the amount of light transmitted by the second filter set is smaller than the amount of light transmitted by the first filter set because the band becomes narrower. The control parameter switching circuit 44 outputs a dimming control parameter corresponding to the first filter set or the second filter set of the rotary filter 14 to the dimming circuit 43, so that the dimming circuit 43 controls the diaphragm device 13. Then, as shown in FIG. 9, the aperture device 1 at the time of normal observation according to the set value Lx on a setting panel (not shown) of the video processor 7.
For narrow linear light observation, for example, a linear aperture control line 61 by 3 is used to control the aperture device 13 to control the light amount Mx by an aperture control curve 62 corresponding to the set value Lx.

【0027】具体的には、第1のフィルタ組から第2の
フィルタ組に変更したことに連動して、光量設定値Lx
に対応する絞りレベル値が図9に示すようにMx1から
Mx2に変更になり、その結果、絞りが開放される方向
に制御され、フィルタが狭帯域化することにより照明光
量が減少することを補償するように動作する。
Specifically, in conjunction with the change from the first filter set to the second filter set, the light amount set value Lx
The aperture level value corresponding to is changed from Mx1 to Mx2 as shown in FIG. 9, and as a result, the aperture is controlled in the opening direction, and the reduction of the illumination light amount due to the narrow band of the filter is compensated. To work.

【0028】これにより狭帯域光観察時においても十分
な明るさの画像データが得られる。
As a result, image data with sufficient brightness can be obtained even during narrow-band light observation.

【0029】このように本実施の形態では、体腔内組織
51の通常観察時に、必要に応じてモード切替スイッチ
41を押下することで、回転フィルタ14の第1のフィ
ルタ組から第2のフィルタ組に切り替えて狭帯域光観察
に移行でき、この狭帯域光観察においては回転フィルタ
14の第2のフィルタ組により、体腔内組織51のそれ
ぞれの層の組織情報を分離した状態で撮像信号として得
ることができ、また絞り装置13を制御することで適切
な光量の撮像信号を得ることができるので、診断に重要
な体腔内組織51の各層の組織情報を層レベルで分離し
て確実に視認が可能となり、体腔内組織51の状態をよ
り正確に診断できる。
As described above, in the present embodiment, during normal observation of the tissue 51 in the body cavity, the mode switch 41 is depressed as necessary, so that the first filter set of the rotary filter 14 is switched to the second filter set. In this narrow-band light observation, the tissue information of each layer of the body cavity tissue 51 is obtained as an imaging signal in a separated state by the second filter set of the rotating filter 14. In addition, since the imaging signal of an appropriate amount of light can be obtained by controlling the diaphragm device 13, the tissue information of each layer of the tissue 51 in the body cavity, which is important for diagnosis, can be separated at the layer level and reliably viewed. Thus, the state of the tissue 51 in the body cavity can be more accurately diagnosed.

【0030】なお、第2のフィルタ組は、照明光の分光
特性を図4に示すようなフィルタ組(R2フィルタ14
r2,G2フィルタ14g2,B2フィルタ14b2)とし
たが、これに限らず、第2のフィルタ組の第1の変形例
として、照明光を例えば図10に示すようなの離散的な
分光特性の狭帯域な面順次光を生じさせるフィルタ組と
しても良い。この第1の変形例のフィルタ組では、Gフ
ィルタとRフィルタは第1のフィルタ組のGフィルタと
Rフィルタと同様とし、Bフィルタのみを狭帯域化して
いる。これは特に、生体組織表面近くの毛細血管構造等
に注目し、その他のバンド画像は従来の画像と同じでよ
い場合に好適である。
The second filter set includes a filter set (R2 filter 14) as shown in FIG.
r2, G2 filter 14g2, B2 filter 14b2). However, the present invention is not limited to this. As a first modified example of the second filter set, for example, a narrow band of discrete spectral characteristics as shown in FIG. It may be a filter set that generates a light in a sequential manner. In the filter set of the first modified example, the G filter and the R filter are the same as the G filter and the R filter of the first filter set, and only the B filter is narrowed. This is particularly suitable when attention is paid to a capillary structure or the like near the surface of the living tissue, and other band images may be the same as conventional images.

【0031】また、フィルタ特性は可視光域に限定され
ず、第2のフィルタ組の第2の変形例として、照明光を
例えば図11に示すようなの離散的な分光特性の狭帯域
な面順次光を生じさせるフィルタ組としても良い。この
第2の変形例のフィルタ組は、生体表面の凹凸と極深層
付近の吸収体を観察するために、Bを近紫外域に設定
し、Rを近赤外域に設定することで、通常観察では得ら
れない画像情報を得るのに好適である。
The filter characteristics are not limited to the visible light range. As a second modification of the second filter set, the illumination light is converted into a narrow band plane-sequential light having discrete spectral characteristics as shown in FIG. A filter set that generates light may be used. The filter set according to the second modification is configured to set B to a near-ultraviolet region and R to a near-infrared region in order to observe irregularities on the surface of a living body and an absorber near a very deep layer. This is suitable for obtaining image information that cannot be obtained.

【0032】さらに、第2のフィルタ組の第3の変形例
として、図12に示すようにGフィルタの代わりに、B
2a、B2bと短波長域で近接する2つのフィルタを備えた
フィルタ組としても良い。これは、この付近の波長帯域
が生体の極表層付近までしか深達しないことを利用し
て、吸収特性より散乱特性の微妙な差を映像化するのに
好適である。すなわち、図13に示すように、生体の吸
収特性が、B2a、B2bの中心波長ではほぼ等しくなるよ
う、散乱特性が大きく変わるような位置でフィルタを構
成すると表層付近散乱特性を画像化にするのに好適であ
る。医学上は、早期ガンなど粘膜表層付近の細胞配列の
乱れを伴う疾患の識別診断に利用することが想定され
る。
Further, as a third modified example of the second filter set, as shown in FIG.
A filter set including two filters 2a and B2b that are close to each other in a short wavelength range may be used. This is suitable for imaging a delicate difference in scattering characteristics rather than absorption characteristics by utilizing the fact that the wavelength band in the vicinity extends only to the vicinity of the very surface layer of a living body. That is, as shown in FIG. 13, when a filter is formed at a position where the scattering characteristic changes greatly so that the absorption characteristics of the living body become substantially equal at the center wavelength of B2a and B2b, the near-surface scattering characteristics can be imaged. It is suitable for. Medically, it is assumed that the present invention is used for discriminating and diagnosing diseases such as early cancer, which have disordered cell arrangement near the mucosal surface layer.

【0033】また、一般にキセノンランプ等は紫外光を
遮断するように製造されていることが多い。図14に照
明光源の分光分布の例を示す。そのため、第2のフィル
タ組のB領域では、短波長側を図15のように透過域と
して開放特性にしても、光源の分光特性との組み合わせ
では図16に示すような特性となり、結果として狭帯域
照明光特性を実現することができる。また、光学フィル
タを製作する場合、通常は多層干渉膜フィルタの蒸着に
よる場合が多く、その製造方法ではその分光透過率特性
を狭帯域化するのに、何層もの膜を蒸着せねばならず、
そのためコスト増やフィルタの厚みが増すという問題が
あるが、このようにランプ特性を利用して、片側を開放
特性とすることで、製造コスト、及び厚みを薄くするこ
とができる。
Generally, a xenon lamp or the like is often manufactured so as to block ultraviolet light. FIG. 14 shows an example of the spectral distribution of the illumination light source. For this reason, in the B region of the second filter set, even if the short wavelength side is set as an open characteristic as a transmission region as shown in FIG. 15, the characteristic as shown in FIG. 16 is obtained in combination with the spectral characteristics of the light source. Band illumination light characteristics can be realized. In addition, when manufacturing an optical filter, it is often the case that a multilayer interference film filter is usually deposited, and in the manufacturing method, in order to narrow the band of the spectral transmittance characteristic, a number of layers must be deposited,
Therefore, there is a problem that the cost is increased and the thickness of the filter is increased. However, by making the one side open using the lamp characteristics, the manufacturing cost and the thickness can be reduced.

【0034】また、光源の分光分布が図17に示すよう
な場合、またCCDの分光感度特性が図18に示すよう
な場合、回転フィルタ14の第1のフィルタ組から第2
のフィルタ組に切替ることに連動し、狭帯域化による光
量減を補償するために明るめに調光が設定され、その結
果B2バンド画像は適切だが、G2バンド画像、R2バン
ド画像は飽和気味になることが考えられる。あるいは図
1のホワイトバランス回路25でホワイトバランスが調
整され、その結果として、第2のフィルタ組、光源装
置、CCD感度特性によって明るさレベルの低いB2バ
ンド画像が過度に増幅され、そしてSNの悪い画像が観
察されることになる。
When the spectral distribution of the light source is as shown in FIG. 17 and the spectral sensitivity characteristic of the CCD is as shown in FIG.
In conjunction with switching to the filter set of, the dimming is set brighter to compensate for the decrease in light amount due to the narrowing of the band. As a result, the B2 band image is appropriate, but the G2 band image and the R2 band image are slightly saturated. It can be considered. Alternatively, the white balance is adjusted by the white balance circuit 25 of FIG. 1, and as a result, the B2 band image having a low brightness level is excessively amplified by the second filter set, the light source device, and the CCD sensitivity characteristic, and the SN is poor. An image will be observed.

【0035】したがって、光源分光分布特性、CCD分
光感度特性など、システム分光感度に影響を与える要素
の分光分布を考慮して、帯域特性だけでなくピーク透過
率特性も制御することが必要になる。
Therefore, it is necessary to control not only the band characteristic but also the peak transmittance characteristic in consideration of the spectral distribution of factors that affect the system spectral sensitivity, such as the light source spectral distribution characteristic and the CCD spectral sensitivity characteristic.

【0036】そこで、フィルタ以外のシステム分光感度
特性、及び調光特性を考慮して、第2のフィルタ組の第
5の変形例として、適切な明るさの画像を得るための図
19に示すような減光特性a,bを有する減光フィルタ
を回転フィルタ14のR2フィルタ14r2,G2フィル
タ14g2に蒸着あるいは接着して構成しても良い。そ
の結果、図20に示すような特性を有する狭帯域のフィ
ルタ組をえることができる。このように、帯域特性だけ
でなく。その透過率特性も適切に設定することができ、
各バンドで最適な明るさの画像を観察することができ
る。
Therefore, as shown in FIG. 19, a fifth modification of the second set of filters for obtaining an image of appropriate brightness in consideration of the system spectral sensitivity characteristics other than the filters and the dimming characteristics. A neutral density filter having various neutral density characteristics a and b may be formed by vapor deposition or bonding to the R2 filter 14r2 and the G2 filter 14g2 of the rotary filter 14. As a result, a narrow band filter set having the characteristics shown in FIG. 20 can be obtained. Thus, not only the band characteristics. Its transmittance characteristics can also be set appropriately,
An image with the optimal brightness can be observed in each band.

【0037】光源分光分布特性、CCD分光感度特性な
ど、システム分光感度に影響を与える要素の分光分布を
考慮して、帯域特性だけでなくピーク透過率特性も制御
する方法としては、上記のごとく減光フィルタを回転フ
ィルタ14のR2フィルタ14r2,G2フィルタ14g2
に蒸着あるいは接着する以外に、図21に示すように、
光源装置4の第1の変形例を回転フィルタ14と別体に
光路上に減光回転フィルタ61を設けて構成しても良
い。この減光回転フィルタ61は、図22に示すよう
に、回転フィルタ14と同様な2重構造となっており
(図2参照)、回転フィルタ14のR1フィルタ14r
1,G1フィルタ14g1,B1フィルタ14b1,B2フィ
ルタ14b2に対応する各部は透過部となっており、R2
フィルタ14r2,G2フィルタ14g2に対応する部分
のみそれぞれの帯域光を減光する減光フィルタ62,6
3となっている。そして、減光回転フィルタ61は回転
フィルタ14と同様に制御回路17の制御信号に基づい
て回転フィルタモータ64により回転駆動されると共
に、モード切替回路42からの制御信号に基づいてモー
ド切替モータ65により径方向が光路に対して垂直に移
動可能で、その駆動タイミングは回転フィルタ14と同
期して行われる。
The method of controlling not only the band characteristic but also the peak transmittance characteristic in consideration of the spectral distribution of factors that affect the system spectral sensitivity such as the light source spectral distribution characteristic and the CCD spectral sensitivity characteristic is reduced as described above. The optical filter is an R2 filter 14r2 of the rotary filter 14, a G2 filter 14g2.
In addition to vapor deposition or bonding, as shown in FIG.
The first modified example of the light source device 4 may be configured by providing a dimming rotation filter 61 on the optical path separately from the rotation filter 14. As shown in FIG. 22, the dimming rotary filter 61 has the same double structure as the rotary filter 14 (see FIG. 2), and the R1 filter 14r of the rotary filter 14
1, each part corresponding to the G1 filter 14g1, the B1 filter 14b1, and the B2 filter 14b2 is a transmission part.
Dimming filters 62, 6 for dimming the respective band lights only at the portions corresponding to the filters 14r2 and the G2 filter 14g2.
It is 3. The dimming rotation filter 61 is driven to rotate by a rotation filter motor 64 based on a control signal of the control circuit 17 similarly to the rotation filter 14, and is controlled by a mode switching motor 65 based on a control signal from the mode switching circuit 42. The radial direction can move perpendicular to the optical path, and the drive timing is synchronized with the rotation filter 14.

【0038】また、光源分光分布特性、CCD分光感度
特性など、システム分光感度に影響を与える要素の分光
分布を考慮して、帯域特性だけでなくピーク透過率特性
も制御する方法としては、上記のごとく減光回転フィル
タ61を設けた光源装置ではなく、図23に示すよう
に、光源装置4の第2の変形例を複数のフィルタを組み
合わせ所望の帯域透過率を有する減光フィルタ71をモ
ード切替回路42からの制御信号に基づいてフィルタ移
動モータ72により光路に対して挿入及び抜去可能で、
その駆動は回転フィルタ14の第1のフィルタ時には抜
去され第2のフィルタ時には挿入して行われる。この減
光フィルタ71は、例えば図24に示す減光特性を有す
る第1の減光フィルタと図25に示す減光特性を有する
第2の減光フィルタとを組み合わせることにより図26
のような減光特性を持たせることで、帯域特性だけでな
くピーク透過率特性も制御することを可能としている。
The method of controlling not only the band characteristic but also the peak transmittance characteristic in consideration of the spectral distribution of elements that affect the system spectral sensitivity such as the light source spectral distribution characteristic and the CCD spectral sensitivity characteristic is described above. As shown in FIG. 23, instead of the light source device provided with the dimming rotation filter 61, as shown in FIG. 23, the mode of the dimming filter 71 having a desired band transmittance is switched by combining a plurality of filters in the second modified example of the light source device 4. It can be inserted and removed from the optical path by the filter moving motor 72 based on a control signal from the circuit 42,
The driving is performed by removing the rotary filter 14 during the first filter and inserting the rotary filter 14 during the second filter. This neutral density filter 71 is obtained by combining a first neutral density filter having the neutral density characteristics shown in FIG. 24 with a second neutral density filter having the neutral density characteristics shown in FIG.
By providing such a dimming characteristic, not only the band characteristic but also the peak transmittance characteristic can be controlled.

【0039】なお、上記R2フィルタ14r2,G2フィ
ルタ14g2,B2フィルタ14b2の具体的な分光特性
の一例としては、図27に示すように、R2フィルタ1
4r2は波長帯域が600nmを含み半値幅20〜40
nmのバンドパス特性を有し、G2フィルタ14g2は波
長帯域が540nmを含み半値幅20〜40nmのバン
ドパス特性を有し、さらにB2フィルタ14b2は波長帯
域が420nmを含み半値幅20〜40nmのバンドパ
ス特性を有する。
As an example of specific spectral characteristics of the R2 filter 14r2, G2 filter 14g2, and B2 filter 14b2, as shown in FIG.
4r2 has a wavelength band including 600 nm and a half width of 20 to 40.
The G2 filter 14g2 has a band width of 540 nm and a band width of 20 to 40 nm, and the B2 filter 14b2 has a band width of 420 nm and a band width of 20 to 40 nm. Has path characteristics.

【0040】図27に示したような分光特性にすると、
可視光域のおける血液の吸収が大きい帯域である420
nmを含む狭帯域特性を持つ照明光で観察することで、
粘膜表面上の毛細血管構築の高いコントラストで再現で
きる上、生体粘膜中の吸収体の深さ方向の分布を異なる
色で再現することができ、血管像等の吸収体の深さ方向
の相対位置を概観することが可能となる。
When the spectral characteristics are as shown in FIG.
420 in the visible light region where blood absorption is large
By observing with illumination light having a narrow band characteristic including nm,
Capable of reproducing the capillary structure on the mucosal surface with high contrast, and the depth distribution of the absorber in the living mucosa can be reproduced in different colors, and the relative position of the absorber in the depth direction such as a blood vessel image Can be overviewed.

【0041】また、上記R2フィルタ14r2,G2フィ
ルタ14g2,B2フィルタ14b2の変形例として、図
28に示すような分光特性のG’フィルタ14g’,
G”フィルタ14g”,B2フィルタ14b2としてもよ
く、この場合のG’フィルタ14g’は波長帯域が55
0nmを含み半値幅20〜40nmのバンドパス特性を
有し、G”フィルタ14g”は波長帯域が500nmを
含み半値幅20〜40nmのバンドパス特性を有し、さ
らにB2フィルタ14b2は波長帯域が420nmを含み
半値幅20〜40nmのバンドパス特性を有する。
As a modification of the R2 filter 14r2, G2 filter 14g2, and B2 filter 14b2, a G 'filter 14g' having spectral characteristics as shown in FIG.
The G "filter 14g" and the B2 filter 14b2 may be used. In this case, the G 'filter 14g' has a wavelength band of 55.
The G "filter 14g" has a bandpass characteristic of 20 to 40 nm including a wavelength band of 500 nm including a wavelength band of 20 nm to 40 nm, and the B2 filter 14b2 has a bandpass characteristic of a wavelength band of 420 nm including a wavelength band of 500 nm. And has a band pass characteristic of a half value width of 20 to 40 nm.

【0042】図28に示したような分光特性にすると、
可視光域のおける血液の吸収が大きい帯域である420
nmを含む狭帯域特性を持つ照明光で観察することで、
粘膜表面上の毛細血管構築の高いコントラストで再現で
きる上、隣接する波長帯域として500nm付近のバン
ドパス光を備えることで、粘膜表面の構造に特化した画
像再現が実現できる。
When the spectral characteristics as shown in FIG. 28 are obtained,
420 in the visible light region where blood absorption is large
By observing with illumination light having a narrow band characteristic including nm,
In addition to being able to reproduce high-contrast capillary structures on the mucosal surface and providing band-pass light near 500 nm as an adjacent wavelength band, image reproduction specialized for the structure of the mucosal surface can be realized.

【0043】なお、第1のフィルタ組から第2のフィル
タ組に変更したことに連動して、光量設定値Lxに対応
する絞りレベル値が図9に示したようにMx1からMx2
に変更になり、その結果、絞りが開放される方向に制御
され、フィルタが狭帯域化することにより照明光量が減
少することを補償するように動作するとしたが、露光時
間を延長して照射光量を上げてもよい。
In conjunction with the change from the first filter set to the second filter set, the aperture level value corresponding to the light amount set value Lx is changed from Mx1 to Mx2 as shown in FIG.
As a result, the aperture is controlled in the opening direction, and the filter operates to compensate for the decrease in illumination light amount due to the narrow band of the filter. May be raised.

【0044】ただし、被写体となる生体は必ずしも静止
しているわけではなく蠕動や拍動を伴うため、画像観察
中にフリーズ動作を行うと、画像がCCDへの露光中に
動くことになり、このような露光時間の延長による照射
光量の増加では、画像のぶれが大きくなるといった問題
が生じる。
However, since the living body to be the subject is not always stationary but involves peristalsis and pulsation, if a freeze operation is performed during image observation, the image moves during exposure to the CCD. The increase in the amount of irradiation due to the extension of the exposure time causes a problem that the image blur increases.

【0045】そこで、ビデオプロセッサ7の変形例とし
て、図29に示すように、常に数フレーム分の画像を記
録するプリフリーズ用のメモリ200,201、202
を同時化メモリ27,28,29の後段に設けると共
に、同時化メモリ27,28,29の出力信号とセレク
タ26の入力信号によりフィールド間で画像データを比
較し動きを検出する動き検出回路210を設ける。
Therefore, as a modified example of the video processor 7, as shown in FIG. 29, pre-freeze memories 200, 201, and 202 for always recording images of several frames.
Is provided at the subsequent stage of the synchronization memories 27, 28, and 29, and a motion detection circuit 210 that compares image data between fields based on an output signal of the synchronization memories 27, 28, and 29 and an input signal of the selector 26 to detect a motion is provided. Provide.

【0046】このように構成することで、電子内視鏡3
に設けられたモード切替指示スイッチ41が押下される
と、モード切替回路42がタイミングジェネレータ35
を制御し光源装置4の制御回路17によりに露光時間を
通常観察時の2倍(回転フィルタ14の第2のフィルタ
組での回転速度を第1フィルタ組での回転速度の半分)
とするように回転フィルタ14の回転を制御する。
With this configuration, the electronic endoscope 3
When the mode switching instruction switch 41 provided in the controller is pressed, the mode switching circuit 42
And the exposure time is doubled by the control circuit 17 of the light source device 4 as compared with the normal observation (the rotation speed of the second filter set of the rotary filter 14 is half of the rotation speed of the first filter set).
The rotation of the rotary filter 14 is controlled as follows.

【0047】また、電子内視鏡3に設けられたフリーズ
スイッチ205が押下された場合は、例えば通常観察時
では図30のタイミングで、また狭帯域観察時には図3
1のタイミングで、動き検出回路210によりフィール
ド間での画像データを比較して動きを検出し、メモリ2
00,201、202に記録する画像データの更新を制
御する。
When the freeze switch 205 provided on the electronic endoscope 3 is depressed, for example, at the timing shown in FIG. 30 for normal observation and at the timing shown in FIG.
At timing 1, the motion detection circuit 210 compares the image data between the fields to detect a motion,
Update of image data recorded in 00, 201, and 202 is controlled.

【0048】具体的には、図30の通常観察時を例に説
明すると、例えば動き検出回路210により同時化メモ
リ27に記憶された1フィールド期間の画像データR0
とセレクタ26に入力される1フィールド期間の画像デ
ータG0を比較し(第1の比較)、さらに同時化メモリ
28に記憶された1フィールド期間の画像データG0と
セレクタ26に入力される1フィールド期間の画像デー
タB0を比較し(第2の比較)、共に動きがないと判断
すると、モード切替回路42がタイミングジェネレータ
35を制御し、次のフィールド期間(図中の*期間)で
メモリ200,201、202に同時化メモリ27,2
8,29に記憶されている画像データR0,G0,B0を
書き込む。
More specifically, taking the case of normal observation in FIG. 30 as an example, for example, the image data R0 of one field period stored in the synchronization memory 27 by the motion detection circuit 210
And the one-field period image data G0 input to the selector 26 (first comparison). Further, the one-field period image data G0 stored in the synchronization memory 28 and the one-field period input to the selector 26 are compared. (Second comparison), and when it is determined that there is no motion, the mode switching circuit 42 controls the timing generator 35 to store the memories 200 and 201 in the next field period (* period in the figure). , 202 to the synchronization memories 27, 2
The image data R0, G0, B0 stored in 8, 29 are written.

【0049】また、動き検出回路210により上記第2
の比較した結果、動きがないと判断された後、同時化メ
モリ29に記憶された1フィールド期間の画像データB
0とセレクタ26に入力される1フィールド期間の画像
データR1を比較し(第3の比較)し、第3の比較の結
果においても動きがないと判断されると、モード切替回
路42がタイミングジェネレータ35を制御し、次のフ
ィールド期間(図中の☆期間)でメモリ200,20
1、202が更新され、同時化メモリ27,28,29
に記憶されている画像データR1,G0,B0が上書きさ
れるなお、第3の比較の結果、動きがあると判断される
と、上記の☆期間では、更新されず、メモリ200,2
01、202には上記の*期間で記録されたデータが保
持される。
The motion detection circuit 210 uses the second
As a result of the comparison, it is determined that there is no motion, and the image data B for one field period stored in the synchronization memory 29
0 is compared with the image data R1 for one field period input to the selector 26 (third comparison). If it is determined that there is no motion in the result of the third comparison, the mode switching circuit 42 35 in the next field period (the period in the figure).
1, 202 are updated and the synchronization memories 27, 28, 29
The image data R1, G0, and B0 stored in the memory 200, 2 are not updated in the above-mentioned period when it is determined that there is a motion as a result of the third comparison.
01 and 202 hold data recorded in the * period.

【0050】このようにしてメモリ200,201、2
02の更新が順次、次段のフィールドでなされる。な
お、狭帯域観察時も露光時間が2倍となるだけで、図3
1に示すように、メモリ200,201、202に対し
て同様な更新がなされる。
In this way, the memories 200, 201, 2
02 is sequentially updated in the next field. Note that the exposure time is only doubled during narrow band observation.
1, similar updates are made to the memories 200, 201, and 202.

【0051】そして、電子内視鏡3に設けられたフリー
ズスイッチ205が押下されると、モード切替回路42
がタイミングジェネレータ35を制御し、同時化メモリ
27,28,29からの読み出しを停止し、メモリ20
0,201、202から読み出した画像データを画像処
理回路30に出力する。
When the freeze switch 205 provided on the electronic endoscope 3 is pressed, the mode switching circuit 42
Controls the timing generator 35, stops reading from the synchronization memories 27, 28 and 29,
The image data read from 0, 201, and 202 is output to the image processing circuit 30.

【0052】ただし、メモリ200,201、202に
画像データがない場合、またはモード切替指示スイッチ
41が押下され回転フィルタ14の第2のフィルタ組に
切り替えられた直後は、動き検出回路210により動き
が検出されるまでは、フリーズスイッチ205が押下さ
れても、同時化メモリ27,28,29からの読み出し
を継続し、動きが検出されて始めて同時化メモリ27,
28,29からの読み出しを停止する。
However, when there is no image data in the memories 200, 201, and 202, or immediately after the mode switching instruction switch 41 is pressed to switch to the second filter set of the rotary filter 14, the motion is detected by the motion detecting circuit 210. Until the detection, the reading from the synchronization memories 27, 28, and 29 is continued even if the freeze switch 205 is pressed.
The reading from 28 and 29 is stopped.

【0053】図29のようにメモリ200,201、2
02及び動き検出回路210を設けることで、狭帯域観
察時に露光時間を延長した際に、フリーズをかけても、
画像のぶれを最小限に抑えた画像を得ることができる。
As shown in FIG. 29, the memories 200, 201, 2
02 and the motion detection circuit 210, when the exposure time is extended during narrow-band observation,
An image in which blurring of the image is minimized can be obtained.

【0054】ところで、一般的に励起光による生体組織
の蛍光画像は、粘膜表面の微細な構造を反映しないが、
可視光では発見し難い病変の存在を明らかにする。一
方、毛細血管構築像など粘膜表面の微細構造は、病変の
鑑別診断などに重要な情報となることが知られている。
そこで、この2つの情報を組み合わせて画像として表示
することで、診断能を向上させるようにしてもよい。
In general, a fluorescence image of a living tissue by excitation light does not reflect the fine structure of the mucous membrane surface.
Clarify the presence of lesions that are difficult to detect with visible light. On the other hand, it is known that the fine structure of the mucosal surface such as a capillary blood vessel image is important information for differential diagnosis of a lesion.
Therefore, the diagnostic capability may be improved by combining these two pieces of information and displaying them as an image.

【0055】具体的には、R2フィルタ14r2,G2フ
ィルタ14g2,B2フィルタ14b2のかわりに、図3
2に示すように、励起光用のFフィルタ14fと、G2
フィルタ14g2及びB2フィルタ14b2により回転フ
ィルタの第2のフィルタ組を構成する。ここで、励起光
用のFフィルタ14fの分光特性は、図33に示すよう
な特性となっている。
Specifically, instead of the R2 filter 14r2, the G2 filter 14g2, and the B2 filter 14b2, FIG.
As shown in FIG. 2, an F filter 14f for excitation light and G2
The filter 14g2 and the B2 filter 14b2 constitute a second filter set of the rotary filter. Here, the spectral characteristics of the excitation light F filter 14f are as shown in FIG.

【0056】Fフィルタ14fによる狭帯域の励起光を
生体組織に照射すると、図33に示すような波長の蛍光
が生体組織より発光される。従って、上記の実施の形態
の如く広帯域特性を持つ色再現特性を重視した通常観察
と、蛍光と狭帯域光を重ねた画像による高機能観察を切
り替えて適用することが可能となる。
When the living tissue is irradiated with the excitation light of a narrow band by the F filter 14f, fluorescence having a wavelength as shown in FIG. 33 is emitted from the living tissue. Therefore, it is possible to switch between the normal observation in which the color reproduction characteristic having the broadband characteristic is emphasized as in the above-described embodiment and the high-performance observation using an image in which the fluorescent light and the narrow-band light are superimposed.

【0057】このように蛍光観察による可視光では発見
が困難な病変の観察と、狭帯域光による粘膜表面の詳細
な観察とが行えるので、診断能を向上させることができ
る。
As described above, it is possible to observe a lesion which is difficult to be detected by visible light by fluorescence observation, and to perform detailed observation of the mucous membrane surface with narrow band light, so that diagnostic performance can be improved.

【0058】図34ないし図36は本発明の第2の実施
の形態に係わり、図34は内視鏡装置の構成を示す構成
図、図35は図34の回転フィルタの構成を示す構成
図、図36は図34のカラーチップの分光特性を示す図
である。
FIGS. 34 to 36 relate to the second embodiment of the present invention. FIG. 34 is a configuration diagram showing the configuration of the endoscope apparatus, FIG. 35 is a configuration diagram showing the configuration of the rotary filter of FIG. FIG. 36 is a diagram showing the spectral characteristics of the color chip of FIG.

【0059】第2の実施の形態は、第1の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the second embodiment is almost the same as the first embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0060】図34に示すように、本実施の形態の電子
内視鏡3ではCCD2の前面にカラーチップ81を配置
しカラーCCD2aを構成して、通常観察時において同
時式の内視鏡装置1を構成している。カラーCCD2a
からのカラー撮像信号はA/D変換器24でカラー画像
データに変換された後、色分離回路82で色分離された
後、ホワイトバランス回路25に入力され、セレクタ2
6を介してメモリ83,84,85に格納された後、画
像処理回路30で補間処理等がなされた後所望の画像処
理がなされるようになっている。
As shown in FIG. 34, in the electronic endoscope 3 according to the present embodiment, a color chip 81 is arranged on the front surface of the CCD 2 to constitute a color CCD 2a. Is composed. Color CCD 2a
Is converted into color image data by an A / D converter 24, is color-separated by a color separation circuit 82, is input to a white balance circuit 25, and is
After the image data is stored in the memories 83, 84, and 85 via the interface 6, the image processing circuit 30 performs an interpolation process or the like, and then performs a desired image process.

【0061】光源装置4の回転フィルタ86は、図35
に示すように、第1の実施の形態の第2のフィルタ組と
同様な分光特性であるR2フィルタ14r2,G2フィル
タ14g2,B2フィルタ14b2からなり、制御回路1
7の制御信号に基づいて回転フィルタモータ18により
回転駆動され、電子内視鏡3に設けられたモード切替ス
イッチ41の指示信号を受けたモード切替回路42から
の制御信号に基づいてフィルタ移動モータ87により光
路に対して挿入及び抜去されるようになっている。
The rotary filter 86 of the light source device 4 has the structure shown in FIG.
As shown in FIG. 7, the control circuit 1 includes an R2 filter 14r2, a G2 filter 14g2, and a B2 filter 14b2 having spectral characteristics similar to those of the second filter set of the first embodiment.
7, is driven to rotate by the rotary filter motor 18 based on the control signal from the mode changeover switch 42 provided on the electronic endoscope 3, and receives a command signal from the mode switching circuit 42 based on the control signal from the mode switching circuit 42. To be inserted into and removed from the optical path.

【0062】このように構成された本実施の形態では、
通常観察時には回転フィルタ86は光路上より抜去さ
れ、白色光が生体組織に照射される。そして、この白色
光による生体組織像がカラーCCD2aにより撮像され
る。このときCCD2の前面にカラーチップ81の分光
特性を図36に示す。
In the present embodiment configured as described above,
During normal observation, the rotary filter 86 is removed from the optical path, and white light is applied to the living tissue. Then, the biological tissue image by the white light is captured by the color CCD 2a. At this time, the spectral characteristics of the color chip 81 on the front surface of the CCD 2 are shown in FIG.

【0063】一方、狭帯域光観察時には、回転フィルタ
86は光路上に挿入され、R2フィルタ14r2,G2フ
ィルタ14g2,B2フィルタ14b2による面順次光が
生体組織に照射される。そして、この面順次光による生
体組織像がカラーCCD2aにより撮像される。
On the other hand, at the time of narrow-band light observation, the rotating filter 86 is inserted on the optical path, and the living tissue is irradiated with the field sequential light by the R2 filter 14r2, G2 filter 14g2, and B2 filter 14b2. Then, an image of the living tissue by this plane-sequential light is captured by the color CCD 2a.

【0064】したがって、狭帯域光観察時にはR2フィ
ルタ14r2,G2フィルタ14g2,B2フィルタ14b
2による離散的な狭帯域分光特性を有した面順光が生体
組織に照射されるので、本実施の形態でも第1の実施の
形態と同様な効果を得ることができる。
Therefore, at the time of narrow-band light observation, the R2 filter 14r2, the G2 filter 14g2, and the B2 filter 14b
Since the living tissue is irradiated with the surface normal light having discrete narrow band spectral characteristics according to 2, the same effects as those of the first embodiment can be obtained in this embodiment.

【0065】図37ないし図46は本発明の第3の実施
の形態に係わり、図37は内視鏡装置の構成を示す構成
図、図38は図37の帯域制限フィルタのバンドパス特
性を示す図、図39は図38の帯域制限フィルタによる
離散的な狭帯域の面順次光の分光特性を示す図、図40
は図37の帯域制限フィルタの第1の変形例のバンドパ
ス特性を示す図、図41は図40の帯域制限フィルタに
よる離散的な狭帯域の面順次光の分光特性を示す図、図
42は図37の帯域制限フィルタの第2の変形例のバン
ドパス特性を示す図、図43は図37のキセノンランプ
の分光特性の一例を示す図、図44はキセノンランプの
分光特性が図43の際の図37の帯域制限フィルタの第
3の変形例のバンドパス特性を示す図、図45は図37
の光源装置の変形例の構成を示す構成図、図46は図4
5の減光回転フィルタの構成を示す図である。
FIGS. 37 to 46 relate to the third embodiment of the present invention. FIG. 37 is a block diagram showing the configuration of the endoscope apparatus, and FIG. 38 shows the band-pass characteristics of the band limiting filter of FIG. FIGS. 39 and 39 show spectral characteristics of discrete narrow-band plane-sequential light by the band-limiting filter of FIG. 38.
FIG. 41 is a diagram showing band-pass characteristics of a first modification of the band-limiting filter of FIG. 37, FIG. 41 is a diagram showing spectral characteristics of discrete narrow-band plane-sequential light by the band-limiting filter of FIG. 40, and FIG. FIG. 43 is a diagram showing bandpass characteristics of a second modification of the band limiting filter of FIG. 37, FIG. 43 is a diagram showing an example of the spectral characteristics of the xenon lamp of FIG. 37, and FIG. FIG. 45 is a diagram showing bandpass characteristics of a third modification of the band limiting filter of FIG. 37, and FIG.
FIG. 46 is a configuration diagram showing a configuration of a modification of the light source device of FIG.
FIG. 5 is a diagram illustrating a configuration of a neutral density rotating filter of No. 5;

【0066】第3の実施の形態は、第1の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the third embodiment is almost the same as the first embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0067】本実施の形態の光源装置4は、図37に示
すように、R1フィルタ14r1,G1フィルタ14g1,
B1フィルタ14b1が配置された回転フィルタ91と、
透過光の帯域を制限する図38に示すような多峰性のバ
ンドパス特性(R2バンド、G2バンド、B2バンド)を
有する帯域制限フィルタ92とを備え、回転フィルタ9
1は制御回路17の制御信号に基づいて回転フィルタモ
ータ18により回転駆動され、帯域制限フィルタ92は
モード切替スイッチ41の指示信号を受けたモード切替
回路42からの制御信号に基づいてフィルタ移動モータ
87により光路に対して挿入及び抜去されるようになっ
ている。
As shown in FIG. 37, the light source device 4 of the present embodiment has an R1 filter 14r1, a G1 filter 14g1,
A rotary filter 91 on which the B1 filter 14b1 is arranged;
A band limiting filter 92 having bandpass characteristics (R2 band, G2 band, B2 band) having a multimodal band as shown in FIG.
1 is rotationally driven by the rotary filter motor 18 based on a control signal from the control circuit 17, and the band limiting filter 92 is a filter moving motor 87 based on a control signal from the mode switching circuit 42 which has received an instruction signal from the mode switching switch 41. To be inserted into and removed from the optical path.

【0068】このように構成された本実施の形態では、
帯域制限フィルタ92が光路に挿入されることで、回転
フィルタ91を透過した面順次光は、図39に示すよう
に、離散的な狭帯域の面順次光となり、この狭帯域の面
順次光が生体組織に照射されるので、本実施の形態でも
第1の実施の形態と同様な効果を得ることができる。
In the present embodiment configured as described above,
By inserting the band limiting filter 92 in the optical path, the plane-sequential light transmitted through the rotation filter 91 becomes discrete narrow-band plane-sequential light as shown in FIG. Since the living tissue is irradiated, the same effects as those of the first embodiment can be obtained in this embodiment.

【0069】なお、本実施の形態では、帯域制限フィル
タ92は図38に示したようにRGB3つのバンドでの
狭帯域特性を有するように構成したが、これに限らず、
生体表面構造だけの観察能を向上させたいという場合に
は、3つのバンドすべてを狭帯域化する必要ななく、B
バンドのみを狭帯域にすればよいので、図40に示すよ
うに、変形的な多峰性のバンドパス特性を有する帯域制
限フィルタを用いても良く、このような帯域制限フィル
タをRGBの回転フィルタ91と組み合わせることによ
り、図41に示すようなBバンドのみ狭帯域特性をもつ
面順次光を生体組織に照射できる。
In the present embodiment, the band limiting filter 92 is configured to have a narrow band characteristic in three bands of RGB as shown in FIG. 38, but is not limited to this.
When it is desired to improve the observability of only the surface structure of the living body, it is not necessary to narrow all the three bands.
Since only the band needs to be narrower, a band-limiting filter having a deformable multi-peak band-pass characteristic may be used as shown in FIG. 40. Such a band-limiting filter may be an RGB rotation filter. By combining this with 91, it is possible to irradiate living tissue with plane-sequential light having narrow band characteristics only in the B band as shown in FIG.

【0070】Bバンドのみ狭帯域特性を持たせるため
に、帯域制限フィルタ92を図42に示すようにRGB
光をB’のみの光とするのような帯域制限フィルタとし
てもよく、このB’のみの狭帯域特性の具体例として
は、長帯域が420nmを含み半値幅20〜40nmの
バンドパス特性を有する。
In order to provide only the B band with a narrow band characteristic, the band limiting filter 92 is changed to RGB as shown in FIG.
The band-limiting filter may be such that the light is only B 'light. As a specific example of the narrow-band characteristic of only B', the long band has a band-pass characteristic of 420 nm and a half-value width of 20 to 40 nm. .

【0071】図42に示したような分光特性にすると、
可視光域のおける血液の吸収が大きい帯域である420
nmを含む狭帯域特性を持つ照明光で観察することで、
粘膜表面上の毛細血管構築の高いコントラストで再現で
きる。
When the spectral characteristics as shown in FIG. 42 are obtained,
420 in the visible light region where blood absorption is large
By observing with illumination light having a narrow band characteristic including nm,
Capable of reproducing high-contrast capillary structures on the mucosal surface.

【0072】また、図43に示すようにキセノンランプ
の分光特性が短波長域で減衰している特性など有する場
合等、回転フィルタ91の短波長域側の遮断特性を利用
できる場合には、図44に示すように、短波長側がバン
ドパス特性ではなく開放特性を有するに示すように帯域
制限フィルタを用いても良い。
In the case where the cutoff characteristic of the rotary filter 91 on the short wavelength side can be used, such as when the xenon lamp has a characteristic in which the spectral characteristic is attenuated in the short wavelength range as shown in FIG. As shown at 44, a band-limiting filter may be used as shown in “Short wavelength side has open characteristics instead of bandpass characteristics”.

【0073】また、ランプが短波長域でエネルギが低下
することと、さらにCCD分光感度特性がこの領域で感
度低下することを考慮すると、ホワイトバランス等の色
調整処理を行った結果、B2バンド画像はゲインが過度
に増大され、非常にノイズの多い画像となる。
Considering that the energy of the lamp is reduced in the short wavelength region and that the spectral sensitivity characteristic of the CCD is reduced in this region, the color adjustment processing such as white balance results in a B2 band image. Has an excessively increased gain, resulting in a very noisy image.

【0074】そこで、光源装置の変形例として、図45
に示すように、光路上に減光回転フィルタフィルタ95
を抜去可能に挿入することで、ランプ、CCD等のフィ
ルタ以外の分光特性を考慮してホワイトバランスを取っ
たあとも、各バンド画像が適切なSN特性を有するよう
に、光源側で各バンドの光量を調整する。
Therefore, as a modification of the light source device, FIG.
As shown in FIG. 7, a dimming rotation filter 95 is provided on the optical path.
After the white balance is taken into consideration by taking into account the spectral characteristics other than the filters such as the lamp and the CCD, the respective light sources can be configured to have appropriate SN characteristics. Adjust the light intensity.

【0075】すなわち、図46に示すように、減光回転
フィルタフィルタ95を回転フィルタ91のB1フィル
タ14b1に対応する各部は透過部とし、R1フィルタ1
4r1,G1フィルタ14g1に対応する部分をそれぞれ
の帯域光を減光する減光フィルタとして構成する。そし
て、減光回転フィルタ95は回転フィルタ91と同様に
制御回路17の制御信号に基づいて回転フィルタモータ
96により回転駆動されると共に、モード切替回路42
からの制御信号に基づいてモード切替モータ97により
径方向が光路に対して垂直に移動可能で、その駆動タイ
ミングは回転フィルタ91と同期して行われる。
That is, as shown in FIG. 46, each part of the rotary filter 91 corresponding to the B1 filter 14b1 is a transmission part, and the R1 filter 1
A portion corresponding to the 4r1 and G1 filter 14g1 is configured as a neutral density filter for dimming each band light. The dimming rotation filter 95 is driven to rotate by a rotation filter motor 96 based on a control signal of the control circuit 17 similarly to the rotation filter 91, and the mode switching circuit 42
The radial direction can be moved vertically with respect to the optical path by the mode switching motor 97 based on the control signal from the controller, and the drive timing is synchronized with the rotation filter 91.

【0076】図47ないし図50は本発明の第4の実施
の形態に係わり、図47は内視鏡装置の構成を示す構成
図、図48は図47の通常観察時の光源装置から照射さ
れる光の分光分布を一例を示す図、図49は図47の電
源部による各バンドの照明タイミングとそのときの光量
制御タイミングを示す図、図50は図47の電源部によ
る狭帯域観察時の光源装置から照射される光の分光分布
を一例を示す図である。
FIGS. 47 to 50 relate to the fourth embodiment of the present invention. FIG. 47 is a view showing the structure of an endoscope apparatus. FIG. FIG. 49 is a diagram showing an example of the spectral distribution of light, FIG. 49 is a diagram showing the illumination timing of each band by the power supply unit in FIG. 47, and the light amount control timing at that time, and FIG. FIG. 3 is a diagram illustrating an example of a spectral distribution of light emitted from a light source device.

【0077】第4の実施の形態は、第3の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the fourth embodiment is almost the same as the third embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0078】本実施の形態の光源装置は、図47に示す
ように、電源部10が調光回路43からの制御信号を受
けキセノンランプ11の駆動電圧を可変できるようにな
っている。
In the light source device of this embodiment, as shown in FIG. 47, the power supply unit 10 can change the driving voltage of the xenon lamp 11 by receiving a control signal from the dimming circuit 43.

【0079】ランプの特性を考慮して、実際の光源装置
から照射される光の分光分布は図48のようになる。ラ
ンプが短波長域でエネルギが低下することと、さらにC
CD分光感度特性がこの領域で感度低下することを考慮
すると、ホワイトバランス等の色調整処理を行った結
果、B2バンド画像はゲインが過度に増大され、非常に
ノイズの多い画像となる。
Considering the characteristics of the lamp, the spectral distribution of the light emitted from the actual light source device is as shown in FIG. The lamp has reduced energy in the short wavelength range,
Considering that the CD spectral sensitivity characteristic decreases in this region, the B2 band image becomes excessively noisy as a result of performing the color adjustment processing such as white balance, as a result of excessively increasing the gain.

【0080】そこで、本実施の形態では、ランプ、CC
D等のフィルタ以外の分光特性を考慮してホワイトバラ
ンスを取ったあとも、各バンド画像が適切なSN特性を
有するように、光源側で各バンドの光量を調整する。な
お、帯域制限フィルタ92では、図44に示した分光特
性を有するとする。
Therefore, in this embodiment, the lamp, CC
Even after the white balance is taken in consideration of spectral characteristics other than the filter such as D, the light amount of each band is adjusted on the light source side so that each band image has an appropriate SN characteristic. It is assumed that the band limiting filter 92 has the spectral characteristics shown in FIG.

【0081】図49に各バンドの照明タイミングと、そ
のときの光量制御タイミングを示す。帯域制限フィルタ
92が光路上に挿入されていない通常観察時では、図4
9(a)に示す照明タイミングに対して、電源部10は
調光回路43からの制御信号を受けキセノンランプ11
の駆動電圧の電圧レベルを制御し図49(b)に示すよ
うな光量制御を行う。なお、遮光期間に光量を低下させ
るのは、ランプから発生する熱を軽減するためである。
FIG. 49 shows the illumination timing of each band and the light amount control timing at that time. At the time of normal observation in which the band limiting filter 92 is not inserted on the optical path, FIG.
9 (a), the power supply unit 10 receives a control signal from the dimming circuit 43, and controls the xenon lamp 11
And the light level control as shown in FIG. 49 (b) is performed. The reason why the light amount is reduced during the light blocking period is to reduce the heat generated from the lamp.

【0082】一方、帯域制限フィルタ92が光路上に挿
入されている狭帯域光観察時では、図49(c)に示す
照明タイミングに対して、電源部10は調光回路43か
らの制御信号を受けキセノンランプ11の駆動電圧の電
圧レベルを制御し図49(d)に示すような光量制御を
行う。
On the other hand, at the time of narrow-band light observation in which the band-limiting filter 92 is inserted on the optical path, the power supply unit 10 transmits the control signal from the dimming circuit 43 to the illumination timing shown in FIG. The voltage level of the driving voltage of the receiving xenon lamp 11 is controlled to perform light amount control as shown in FIG.

【0083】このように本実施の形態では、第3の実施
の形態の効果に加え、キセノンランプ11の駆動電圧の
電圧レベルを制御しない場合の光源から照射される光の
分光分布(図48参照)が、図50に示すような分光特
性となり、各バンド画像が適切なSN特性を有する光量
制御が実現できる。
As described above, in the present embodiment, in addition to the effects of the third embodiment, the spectral distribution of light emitted from the light source when the voltage level of the driving voltage of the xenon lamp 11 is not controlled (see FIG. 48) ) Has spectral characteristics as shown in FIG. 50, and light amount control in which each band image has appropriate SN characteristics can be realized.

【0084】図51は本発明の第5の実施の形態に係る
内視鏡装置の構成を示す構成図である。
FIG. 51 is a configuration diagram showing a configuration of an endoscope apparatus according to the fifth embodiment of the present invention.

【0085】第5の実施の形態は、第3の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the fifth embodiment is almost the same as the third embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0086】図51に示すように、本実施の形態の電子
内視鏡3ではCCD2の前面にカラーチップ101を配
置しカラーCCD2aを構成して、同時式の内視鏡装置
1を構成している。カラーCCD2aからのカラー撮像
信号はA/D変換器24でカラー画像データに変換され
た後、色分離回路102で色分離された後、ホワイトバ
ランス回路25に入力され、セレクタ26を介してメモ
リ103に格納された後、画像処理回路30で補間処理
等がなされた後所望の画像処理がなされるようになって
いる。
As shown in FIG. 51, in the electronic endoscope 3 of this embodiment, a color chip 101 is arranged on the front surface of the CCD 2 to constitute a color CCD 2a, and the simultaneous endoscope apparatus 1 is constructed. I have. The color imaging signal from the color CCD 2a is converted into color image data by the A / D converter 24, color-separated by the color separation circuit 102, input to the white balance circuit 25, and input to the memory 103 via the selector 26. After that, the image processing circuit 30 performs interpolation processing and the like, and then performs desired image processing.

【0087】光源装置4は、多峰性のバンドパス特性
(図38、図40、図44参照)を有する帯域制限フィ
ルタ92とを備え、帯域制限フィルタ92はモード切替
スイッチ41の指示信号を受けたモード切替回路42か
らの制御信号に基づいてフィルタ移動モータ87により
光路に対して挿入及び抜去されるようになっている。
The light source device 4 includes a band limiting filter 92 having multi-peak band pass characteristics (see FIGS. 38, 40, and 44). The band limiting filter 92 receives an instruction signal from the mode switch 41. Based on the control signal from the mode switching circuit 42, the filter is moved into and out of the optical path by the filter moving motor 87.

【0088】このように構成された本実施の形態では、
帯域制限フィルタ92が光路に挿入されることで、カラ
ーチップ101を介したCCD2で撮像される像の分光
特性は離散的な狭帯域バンド像(図39参照)となり、
この狭帯域バンド像を画像処理することにより、本実施
の形態でも第3の実施の形態と同様な効果を得ることが
できる。
In the present embodiment configured as described above,
By inserting the band limiting filter 92 into the optical path, the spectral characteristics of the image captured by the CCD 2 via the color chip 101 become a discrete narrow band image (see FIG. 39).
By performing image processing on the narrow band image, the present embodiment can provide the same effect as that of the third embodiment.

【0089】図52は本発明の第6の実施の形態に係る
内視鏡装置の構成を示す構成図である。
FIG. 52 is a configuration diagram showing a configuration of an endoscope apparatus according to the sixth embodiment of the present invention.

【0090】第6の実施の形態は、第5の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the sixth embodiment is almost the same as the fifth embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0091】本実施の形態では、図52に示すように、
通常観察用の光源装置111の他に狭帯域観察用の光源
装置112を別体に設けている。
In this embodiment, as shown in FIG.
A light source device 112 for narrowband observation is provided separately from the light source device 111 for normal observation.

【0092】光源装置111は、照明光発光手段として
キセノンランプ11を有し、キセノンランプ11からの
白色光は絞り装置13を介してカラーCCD2aを備え
た電子内視鏡3のライトガイド15の入射面に入射され
るようになっている。
The light source device 111 has a xenon lamp 11 as illumination light emitting means, and white light from the xenon lamp 11 enters a light guide 15 of an electronic endoscope 3 having a color CCD 2 a via a diaphragm device 13. The light is incident on the surface.

【0093】また、光源装置112は、照明光発光手段
として超高圧水銀ランプ113を備え、超高圧水銀ラン
プ113からの光は絞り装置13で調光され、帯域制限
フィルタ92を介して電子内視鏡3の処置具チャンネル
(図示せず)に挿通される照明プローブ114の入射面
に入射されるようになっている。
The light source device 112 includes an extra-high pressure mercury lamp 113 as illumination light emitting means. The light from the extra high pressure mercury lamp 113 is dimmed by the diaphragm device 13, and is electronically viewed through the band limiting filter 92. The light is incident on an incident surface of an illumination probe 114 inserted through a treatment tool channel (not shown) of the mirror 3.

【0094】ここで、光源装置111,112のそれぞ
れの絞り装置13は、調光回路43によりモード切替回
路42からの制御信号及び調光制御パラメータ切替回路
44からの調光制御パラメータに基づき制御されるよう
になっている。
Here, the aperture devices 13 of the light source devices 111 and 112 are controlled by the dimming circuit 43 based on the control signal from the mode switching circuit 42 and the dimming control parameters from the dimming control parameter switching circuit 44. It has become so.

【0095】本実施の形態では、通常観察時には、光源
装置111の絞り装置13が明るめに設定されると共
に、光源装置112の絞り装置13が暗めに設定あるい
は遮断される。
In the present embodiment, during normal observation, the aperture device 13 of the light source device 111 is set to be bright, and the aperture device 13 of the light source device 112 is set to be dark or shut off.

【0096】また、狭帯域光観察時には、光源装置11
2の絞り装置13が明るめに設定されると共に、光源装
置111の絞り装置13が暗めに設定あるいは遮断され
る。
Further, at the time of narrow-band light observation, the light source device 11
The second aperture device 13 is set brighter, and the aperture device 13 of the light source device 111 is set darker or shut off.

【0097】このようにそれぞれの絞り装置13を設定
することで、狭帯域光観察時には照明プローブ114の
出射面から狭帯域光が照射されるので、本実施の形態で
も第5の実施の形態と同様な効果を得ることができる。
By setting the respective diaphragm devices 13 in this manner, narrow-band light is emitted from the emission surface of the illumination probe 114 during narrow-band light observation, so that the present embodiment is different from the fifth embodiment in that Similar effects can be obtained.

【0098】図53ないし図57は本発明の第7の実施
の形態に係わり、図53は内視鏡装置の構成を示す構成
図、図54は図53のキセノンランプの分光分布の一例
を示す図、図55は図53の超高圧水銀ランプの分光分
布の一例を示す図、図56は図53の光混合部の構成を
示す構成図、図57は図56の光混合部による狭帯域観
察時の光源装置から照射される光の分光分布を一例を示
す図である。
FIGS. 53 to 57 relate to the seventh embodiment of the present invention. FIG. 53 is a diagram showing the configuration of an endoscope apparatus, and FIG. 54 shows an example of the spectral distribution of the xenon lamp of FIG. FIG. 55 is a diagram showing an example of the spectral distribution of the ultra-high pressure mercury lamp of FIG. 53, FIG. 56 is a configuration diagram showing the configuration of the light mixing unit of FIG. 53, and FIG. 57 is narrow band observation by the light mixing unit of FIG. FIG. 6 is a diagram illustrating an example of a spectral distribution of light emitted from the light source device at the time.

【0099】第7の実施の形態は、第3の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the seventh embodiment is almost the same as the third embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0100】本実施の形態の光源装置3では、図53に
示すように、2つのランプ、図54に示すような比較的
ブロードな分光分布を有するキセノンランプ11と、キ
セノンランプ11の光路と直交した光路上に設けられた
図55に示すような複数の輝線スペクトルを有する超高
圧水銀ランプ113とを備え、このキセノンランプ11
と超高圧水銀ランプ113からのそれぞれの光を混合す
る光混合部121を有して構成される。そして、光混合
部121で混合された光は絞り装置13及び回転フィル
タ91を介して電子内視鏡3に供給される。
In the light source device 3 of this embodiment, as shown in FIG. 53, two lamps, a xenon lamp 11 having a relatively broad spectral distribution as shown in FIG. 54, and a light path orthogonal to the xenon lamp 11 An ultra-high pressure mercury lamp 113 having a plurality of emission line spectra as shown in FIG.
And a light mixing unit 121 that mixes respective lights from the super-high pressure mercury lamp 113 with the light. Then, the light mixed by the light mixing unit 121 is supplied to the electronic endoscope 3 via the diaphragm device 13 and the rotary filter 91.

【0101】光混合部121は、図56に示すように、
キセノンランプ11からの光の光量を調整する絞り12
2と、超高圧水銀ランプ113からの光量を調整する絞
り123と、絞り122及び絞り123を介した光を合
成し絞り装置13及び回転フィルタ91の光路上に出力
するハーフミラー124と、モード切替回路42からの
制御信号に基づき絞り122及び絞り123を制御する
絞り制御回路125とから構成される。
As shown in FIG. 56, the light mixing section 121
Aperture 12 for adjusting the amount of light from xenon lamp 11
2, a diaphragm 123 for adjusting the amount of light from the ultra-high pressure mercury lamp 113, a diaphragm 122 and a half mirror 124 for combining light passing through the diaphragm 123 and outputting the light on the optical path of the diaphragm device 13 and the rotary filter 91, and a mode switch. An aperture control circuit 125 controls the aperture 122 and the aperture 123 based on a control signal from the circuit 42.

【0102】狭帯域観察時は、絞り制御回路125によ
りキセノンランプ11前面の絞り122を閉じ、超高圧
水銀ランプ113前面の絞り123を開放することで、
光混合部121から出射される照明光は超高圧水銀ラン
プ113と同等の分光特性を持つ光となる。そしてこの
光をR1G1B1の回転フィルタ91を透過させること
で、図57に示すようなRGBの狭帯域面順次光を生体
組織に照射する。
At the time of narrow-band observation, the stop control circuit 125 closes the stop 122 in front of the xenon lamp 11 and opens the stop 123 in front of the ultra-high pressure mercury lamp 113,
The illumination light emitted from the light mixing unit 121 is light having spectral characteristics equivalent to those of the ultra-high pressure mercury lamp 113. The light is transmitted through a rotating filter 91 of R1G1B1 to irradiate the living tissue with RGB narrow band sequential light as shown in FIG.

【0103】一方、通常観察時には、絞り制御回路12
5により超高圧水銀ランプ113前面の絞り122を閉
じ、キセノンランプ11前面の絞り123を開放するこ
とで、自然な色再現を可能とするRGBの面順次光を生
体組織に照射する。
On the other hand, during normal observation, the aperture control circuit 12
By closing the stop 122 on the front of the ultra-high pressure mercury lamp 113 and opening the stop 123 on the front of the xenon lamp 11 by 5, the living tissue is irradiated with RGB plane-sequential light enabling natural color reproduction.

【0104】このように本実施の形態でも第3の実施の
形態と同様な効果を得ることができる。
As described above, the present embodiment can provide the same effects as those of the third embodiment.

【0105】なお、キセノンランプ11及び超高圧水銀
ランプ113の中間的な照明光を得るときは、両ランプ
前面の絞りの開放率を調整することで、両ランプ特性が
絞りの開放比率に応じた割合で混合され、両ランプとは
異なる分光特性を有する照明光を得ることができる。
When obtaining intermediate illumination light between the xenon lamp 11 and the ultra-high pressure mercury lamp 113, the opening characteristics of the apertures on the front of both lamps are adjusted so that the characteristics of both lamps correspond to the aperture ratio of the apertures. Illumination light that is mixed at a ratio and has spectral characteristics different from those of both lamps can be obtained.

【0106】また、モード切替に応じて、調光制御パラ
メータが調光テーブルを変更するなどして、調光回路4
3の動作を変更し、照明光分光分布が変化したことでの
照明光量の変化を補償する。その結果、粘膜表面構造を
詳細に観察するなど、その目的に応じた照明光分光分布
に切り替える場合でも、常に適切な明るさの映像を観察
することができる。
Further, the dimming control parameter changes the dimming table according to the mode switching, and the dimming circuit 4
The operation of step 3 is changed to compensate for a change in the illumination light amount due to a change in the illumination light spectral distribution. As a result, even when switching to the illumination light spectral distribution according to the purpose, such as observing the mucosal surface structure in detail, it is possible to always observe an image with appropriate brightness.

【0107】図58は本発明の第8の実施の形態に係る
内視鏡装置の構成を示す構成図である。
FIG. 58 is a configuration diagram showing a configuration of an endoscope apparatus according to the eighth embodiment of the present invention.

【0108】第8の実施の形態は、第1の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the eighth embodiment is almost the same as the first embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0109】本実施の形態は、図58に示すように、狭
帯域面順次光を電子内視鏡3に供給する専用の狭帯域用
光源装置131と、電子内視鏡3で撮像された狭帯域面
順次光を処理する専用の狭帯域用ビデオプロセッサ13
2とを有する、狭帯域観察内視鏡装置である。
In this embodiment, as shown in FIG. 58, a dedicated narrow-band light source device 131 for supplying narrow-band plane-sequential light to the electronic endoscope 3 and a narrow-band light source device 131 picked up by the electronic endoscope 3 are provided. Narrow-band video processor 13 for processing band-plane sequential light
2 is a narrow-band observation endoscope apparatus.

【0110】光源装置131に設けられた狭帯域回転フ
ィルタ133は、狭帯域RGB面順次光を生成するため
にR2フィルタ14r2,G2フィルタ14g2,B2フィ
ルタ14b2(図4参照)からなる。
The narrow-band rotation filter 133 provided in the light source device 131 includes an R2 filter 14r2, a G2 filter 14g2, and a B2 filter 14b2 (see FIG. 4) for generating narrow-band RGB plane sequential light.

【0111】このように本実施の形態でも狭帯域面順次
光による狭帯域観察が可能となる。
As described above, also in the present embodiment, narrow band observation using narrow band surface sequential light becomes possible.

【0112】また、狭帯域回転フィルタ133を有する
狭帯域用光源装置131が狭帯域用ビデオプロセッサ1
32に接続されると、狭帯域用光源装置131の制御回
路17から狭帯域用光源装置131の照明光分光特性の
種別に関する情報が識別信号として調光制御パラメータ
切替回路44に出力される。調光制御パラメータ切替回
路44には、予め識別信号と制御パラメータの対応は対
応表の形式で記録されており、この対応表に基づいて適
切な制御信号が調光回路43に出力され、その結果、照
明光分光特性に応じた調光制御が可能となる。
Further, the narrow-band light source device 131 having the narrow-band rotation filter 133 is used for the narrow-band video processor 1.
When connected to 32, the control circuit 17 of the narrow-band light source device 131 outputs information on the type of the illumination light spectral characteristic of the narrow-band light source device 131 to the dimming control parameter switching circuit 44 as an identification signal. The correspondence between the identification signal and the control parameter is recorded in advance in the dimming control parameter switching circuit 44 in the form of a correspondence table, and an appropriate control signal is output to the dimming circuit 43 based on the correspondence table. In addition, dimming control according to the illumination light spectral characteristic can be performed.

【0113】図59及び図60は本発明の第9の実施の
形態に係わり、図59は内視鏡装置の構成を示す構成
図、図60は図59の電子内視鏡の先端に装着可能な帯
域制限フィルタを有するアダプタを示す図である。
FIGS. 59 and 60 relate to the ninth embodiment of the present invention. FIG. 59 is a configuration diagram showing the configuration of an endoscope apparatus, and FIG. 60 is attachable to the tip of the electronic endoscope of FIG. FIG. 3 is a diagram illustrating an adapter having a wide band-limiting filter.

【0114】第9の実施の形態は、第1の実施の形態と
ほとんど同じであるので、異なる点のみ説明し、同一の
構成には同じ符号をつけ説明は省略する。
Since the ninth embodiment is almost the same as the first embodiment, only different points will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.

【0115】本実施の形態は、図59に示すように、通
常観察用の電子内視鏡151、通常観察用の面順次光を
電子内視鏡151に供給する光源装置152及び電子内
視鏡151からの撮像信号を信号処理するビデオプロセ
ッサ153とからなる内視鏡装置154と、この内視鏡
装置154とは別体に狭帯域光観察用内視鏡装置155
を備えて構成される。ここで、光源装置152は、キセ
ノンランプ11及び絞り装置13と、R1フィルタ14
r1,G1フィルタ14g1,B1フィルタ14b1が配置
された回転フィルタ91とを有している。
In this embodiment, as shown in FIG. 59, an electronic endoscope 151 for normal observation, a light source device 152 for supplying field sequential light for normal observation to the electronic endoscope 151, and an electronic endoscope An endoscope device 154 including a video processor 153 that performs signal processing on an image pickup signal from the image sensor 151, and an endoscope device 155 for narrowband light observation separately from the endoscope device 154.
It is comprised including. Here, the light source device 152 includes the xenon lamp 11 and the aperture device 13 and the R1 filter 14.
r1, a G1 filter 14g1, and a B1 filter 14b1.

【0116】狭帯域光観察用内視鏡装置155は、電子
内視鏡151の処置具チャンネルに挿通される細径電子
内視鏡156、狭帯域面順次光を細径電子内視鏡156
に供給する光源装置157及び細径電子内視鏡156か
らの撮像信号を信号処理するビデオプロセッサ158と
から構成される。光源装置152は、超高圧水銀ランプ
113及び絞り装置13と、R2フィルタ14r2,G2
フィルタ14g2,B2フィルタ14b2が配置された回
転フィルタ160とを有している。
The narrow-band light observation endoscope apparatus 155 includes a small-diameter electronic endoscope 156 inserted into the treatment instrument channel of the electronic endoscope 151, and a narrow-diameter electronic endoscope 156 which transmits narrow-band surface sequential light.
And a video processor 158 that performs signal processing on image signals from the small-diameter electronic endoscope 156. The light source device 152 includes an ultrahigh-pressure mercury lamp 113 and a diaphragm device 13 and an R2 filter 14r2, G2
A rotary filter 160 on which the filter 14g2 and the B2 filter 14b2 are arranged.

【0117】通常観察時は内視鏡装置154を用いて行
い、狭帯域光観察時は狭帯域光観察用内視鏡装置155
を用いて行う。
The normal observation is performed using the endoscope apparatus 154, and the narrow-band light observation is performed using the endoscope apparatus 155 for narrow-band light observation.
This is performed using

【0118】本実施の形態でも第1の実施の形態と同様
な効果を得ることができる。
In the present embodiment, the same effects as in the first embodiment can be obtained.

【0119】なお、狭帯域光観察用内視鏡装置155
は、通常の内視鏡を接続することができる。
The endoscope device 155 for narrowband light observation
Can be connected to a normal endoscope.

【0120】また、上記電子内視鏡151の先端に、図
58に示すような帯域制限フィルタ170を有するアダ
プタ171を装着しても良い。これにより内視鏡装置1
54を用いても狭帯域光観察を行うことができる。
Further, an adapter 171 having a band limiting filter 170 as shown in FIG. 58 may be attached to the tip of the electronic endoscope 151. Thereby, the endoscope device 1
Even with the use of 54, narrow-band light observation can be performed.

【0121】なお、図60では対物光学系21の前面に
帯域制限フィルタ170を貼ったアダプタ171を装着
した例であるが、照明レンズ172前面に帯域制限フィ
ルタ170を装着するようにしても良い。
Although FIG. 60 shows an example in which the adapter 171 having the band limiting filter 170 attached to the front surface of the objective optical system 21 is attached, the band limiting filter 170 may be attached to the front surface of the illumination lens 172.

【0122】[0122]

【発明の効果】以上説明したように本発明によれば、生
体組織の組織表面近くの所望の深部の組織情報を得るこ
とができるという効果がある。
As described above, according to the present invention, there is an effect that tissue information at a desired deep portion near the tissue surface of a living tissue can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る内視鏡装置の
構成を示す構成図
FIG. 1 is a configuration diagram showing a configuration of an endoscope apparatus according to a first embodiment of the present invention.

【図2】図1の回転フィルタの構成を示す構成図FIG. 2 is a configuration diagram showing a configuration of a rotary filter of FIG. 1;

【図3】図2の回転フィルタの第1のフィルタ組の分光
特性を示す図
FIG. 3 is a diagram illustrating spectral characteristics of a first filter set of the rotary filter of FIG. 2;

【図4】図2の回転フィルタの第2のフィルタ組の分光
特性を示す図
FIG. 4 is a diagram illustrating spectral characteristics of a second filter set of the rotary filter of FIG. 2;

【図5】図1の内視鏡装置により観察する生体組織の層
方向構造を示す図
5 is a diagram showing a layered structure of a living tissue observed by the endoscope apparatus of FIG. 1;

【図6】図1の内視鏡装置からの照明光の生体組織の層
方向への到達状態を説明する図
FIG. 6 is a view for explaining how illumination light from the endoscope apparatus shown in FIG. 1 arrives in a layer direction of a living tissue;

【図7】図3の第1のフィルタ組を透過した面順次光に
よる各バンド画像を示す図
FIG. 7 is a view showing each band image by plane-sequential light transmitted through the first filter set of FIG. 3;

【図8】図4の第2のフィルタ組を透過した面順次光に
よる各バンド画像を示す図
FIG. 8 is a view showing each band image by plane-sequential light transmitted through the second filter set of FIG. 4;

【図9】図1の調光回路による調光制御を説明する図FIG. 9 is a view for explaining dimming control by the dimming circuit of FIG. 1;

【図10】図2の回転フィルタの第2のフィルタ組の第
1の変形例の分光特性を示す図、
FIG. 10 is a diagram showing spectral characteristics of a first modification of the second filter set of the rotary filter in FIG. 2;

【図11】図2の回転フィルタの第2のフィルタ組の第
2の変形例の分光特性を示す図
FIG. 11 is a diagram illustrating spectral characteristics of a second modification of the second filter set of the rotary filter of FIG. 2;

【図12】図2の回転フィルタの第2のフィルタ組の第
3の変形例の分光特性を示す図
FIG. 12 is a diagram illustrating spectral characteristics of a third modification of the second filter set of the rotary filter of FIG. 2;

【図13】図2の回転フィルタの第2のフィルタ組の第
4の変形例の分光特性を示す図
FIG. 13 is a diagram showing spectral characteristics of a fourth modification of the second filter set of the rotary filter of FIG. 2;

【図14】図1のキセノンランプの分光分布の第1の例
を示す図
FIG. 14 is a diagram showing a first example of a spectral distribution of the xenon lamp of FIG.

【図15】図14のキセノンランプの分光分布の際の回
転フィルタの第2のフィルタ組の第4の変形例の分光特
性を示す図
FIG. 15 is a diagram showing the spectral characteristics of a fourth modified example of the second filter set of the rotating filter in the case of the spectral distribution of the xenon lamp in FIG. 14;

【図16】図14の第2のフィルタ組の第4の変形例に
よる生体組織照明光の分光特性を示す図
FIG. 16 is a diagram illustrating spectral characteristics of living tissue illumination light according to a fourth modification of the second filter set in FIG. 14;

【図17】図1のキセノンランプの分光分布の第2の例
を示す図
FIG. 17 is a diagram showing a second example of the spectral distribution of the xenon lamp of FIG.

【図18】図1のCCDの分光感度特性の一例を示す図18 is a diagram showing an example of the spectral sensitivity characteristics of the CCD in FIG.

【図19】キセノンランプの分光分布が第2の例でかつ
CCDの分光感度特性が図18の時の回転フィルタの第
2のフィルタ組の第5の変形例に蒸着する減光フィルタ
の分光特性を示す図
19 is a diagram illustrating a second example of the second filter set of the rotary filter when the spectral distribution of the xenon lamp is the second example and the spectral sensitivity characteristic of the CCD is that of FIG. 18; FIG. Figure showing

【図20】図19の減光フィルタを蒸着した第2のフィ
ルタ組の第5の変形例の分光特性を示す図
FIG. 20 is a diagram showing spectral characteristics of a fifth modification of the second filter set in which the neutral density filter of FIG. 19 is deposited.

【図21】図1の光源装置の第1の変形例の構成を示す
構成図
FIG. 21 is a configuration diagram showing a configuration of a first modification of the light source device of FIG. 1;

【図22】図21の減光回転フィルタの構成を示す構成
FIG. 22 is a configuration diagram showing a configuration of a dimming rotation filter of FIG. 21;

【図23】図1の光源装置の第2の変形例の構成を示す
構成図
FIG. 23 is a configuration diagram showing a configuration of a second modification of the light source device in FIG. 1;

【図24】図23の減光フィルタを構成する第1の減光
フィルタの減光特性を示す図
FIG. 24 is a diagram showing the dimming characteristics of a first dimming filter constituting the dimming filter of FIG. 23;

【図25】図23の減光フィルタを構成する第2の減光
フィルタの減光特性を示す図
FIG. 25 is a diagram showing the dimming characteristics of a second dimming filter constituting the dimming filter of FIG. 23;

【図26】図23の減光フィルタの減光特性を示す図FIG. 26 is a diagram showing the dimming characteristics of the dimming filter of FIG. 23;

【図27】図2の回転フィルタの第2のフィルタ組の詳
細なの分光特性を示す一例を示す図
FIG. 27 is a diagram showing an example showing detailed spectral characteristics of a second filter set of the rotary filter of FIG. 2;

【図28】図2の回転フィルタの第2のフィルタ組の第
6の変形例の分光特性を示す図
FIG. 28 is a diagram illustrating spectral characteristics of a sixth modification of the second filter set of the rotary filter in FIG. 2;

【図29】図1のビデオプロセッサの変形例の要部の構
成を示す図
FIG. 29 is a diagram showing a configuration of a main part of a modification of the video processor of FIG. 1;

【図30】図29のビデオプロセッサの作用を説明する
第1の図
FIG. 30 is a first diagram illustrating the operation of the video processor in FIG. 29;

【図31】図29のビデオプロセッサの作用を説明する
第2の図
FIG. 31 is a second diagram illustrating the operation of the video processor in FIG. 29;

【図32】図2の回転フィルタの第2のフィルタ組の第
7の変形例を示す図
FIG. 32 is a diagram showing a seventh modification of the second filter set of the rotary filter of FIG. 2;

【図33】図32の第2のフィルタ組の第7の変形例の
分光特性を示す図
FIG. 33 is a diagram showing the spectral characteristics of a seventh modification of the second filter set shown in FIG. 32;

【図34】本発明の第2の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 34 is a configuration diagram showing a configuration of an endoscope apparatus according to a second embodiment of the present invention.

【図35】図34の回転フィルタの構成を示す構成図FIG. 35 is a configuration diagram showing the configuration of the rotary filter of FIG. 34;

【図36】図34のカラーチップの分光特性を示す図FIG. 36 is a diagram showing the spectral characteristics of the color chip of FIG. 34;

【図37】本発明の第3の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 37 is a configuration diagram showing a configuration of an endoscope apparatus according to a third embodiment of the present invention.

【図38】図37の帯域制限フィルタのバンドパス特性
を示す図
FIG. 38 is a diagram showing bandpass characteristics of the band limiting filter of FIG. 37;

【図39】図38の帯域制限フィルタによる離散的な狭
帯域の面順次光の分光特性を示す図
FIG. 39 is a view showing the spectral characteristics of discrete narrow-band plane-sequential light by the band-limiting filter of FIG. 38;

【図40】図37の帯域制限フィルタの第1の変形例の
バンドパス特性を示す図
FIG. 40 is a diagram showing bandpass characteristics of a first modification of the band-limiting filter shown in FIG. 37;

【図41】図40の帯域制限フィルタによる離散的な狭
帯域の面順次光の分光特性を示す図
FIG. 41 is a diagram showing spectral characteristics of discrete narrow-band plane-sequential light by the band-limiting filter of FIG. 40;

【図42】図37の帯域制限フィルタの第2の変形例の
バンドパス特性を示す図
FIG. 42 is a diagram showing bandpass characteristics of a second modification of the bandpass filter shown in FIG. 37;

【図43】図37のキセノンランプの分光特性の一例を
示す
FIG. 43 shows an example of the spectral characteristics of the xenon lamp of FIG. 37.

【図44】キセノンランプの分光特性が図43の際の図
37の帯域制限フィルタの第3の変形例のバンドパス特
性を示す図
FIG. 44 is a diagram showing band-pass characteristics of a third modification of the band-limiting filter shown in FIG. 37 when the xenon lamp has spectral characteristics shown in FIG. 43;

【図45】図37の光源装置の変形例の構成を示す構成
FIG. 45 is a configuration diagram showing a configuration of a modification of the light source device of FIG. 37;

【図46】図45の減光回転フィルタの構成を示す図FIG. 46 is a diagram showing a configuration of a dimming rotation filter of FIG. 45;

【図47】本発明の第4の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 47 is a configuration diagram showing a configuration of an endoscope apparatus according to a fourth embodiment of the present invention.

【図48】図47の通常観察時の光源装置から照射され
る光の分光分布を一例を示す図
48 is a diagram showing an example of the spectral distribution of light emitted from the light source device during normal observation in FIG. 47.

【図49】図47の電源部による各バンドの照明タイミ
ングとそのときの光量制御タイミングを示す図
49 is a diagram showing the illumination timing of each band by the power supply unit in FIG. 47 and the light amount control timing at that time.

【図50】図47の電源部による狭帯域観察時の光源装
置から照射される光の分光分布を一例を示す図
50 is a diagram showing an example of the spectral distribution of light emitted from the light source device during narrow-band observation by the power supply unit in FIG. 47.

【図51】本発明の第5の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 51 is a configuration diagram showing a configuration of an endoscope apparatus according to a fifth embodiment of the present invention.

【図52】本発明の第6の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 52 is a configuration diagram showing a configuration of an endoscope apparatus according to a sixth embodiment of the present invention.

【図53】本発明の第7の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 53 is a configuration diagram showing a configuration of an endoscope apparatus according to a seventh embodiment of the present invention.

【図54】図53のキセノンランプの分光分布の一例を
示す図
54 shows an example of the spectral distribution of the xenon lamp in FIG. 53.

【図55】図53の超高圧水銀ランプの分光分布の一例
を示す図
FIG. 55 is a view showing an example of the spectral distribution of the extra-high pressure mercury lamp of FIG. 53.

【図56】図53の光混合部の構成を示す構成図FIG. 56 is a configuration diagram showing the configuration of the light mixing unit in FIG. 53;

【図57】図56の光混合部による狭帯域観察時の光源
装置から照射される光の分光分布を一例を示す図
FIG. 57 is a diagram showing an example of a spectral distribution of light emitted from the light source device at the time of narrow-band observation by the light mixing unit in FIG. 56.

【図58】本発明の第8の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 58 is a configuration diagram showing a configuration of an endoscope apparatus according to an eighth embodiment of the present invention.

【図59】本発明の第9の実施の形態に係る内視鏡装置
の構成を示す構成図
FIG. 59 is a configuration diagram showing a configuration of an endoscope apparatus according to a ninth embodiment of the present invention.

【図60】図59の電子内視鏡の先端に装着可能な帯域
制限フィルタを有するアダプタを示す図
60 is a diagram showing an adapter having a band-limiting filter that can be attached to the tip of the electronic endoscope in FIG. 59.

【符号の説明】[Explanation of symbols]

1…内視鏡装置 2…CCD 3…電子内視鏡 4…光源装置 5…観察モニタ 6…画像ファイリング装置 7…ビデオプロセッサ 10…電源部 11…キセノンランプ 12…熱線カットフィルタ 13…絞り装置 14…回転フィルタ 15…ライトガイド 16…集光レンズ 17…制御回路 18…回転フィルタモータ 19…モード切替モータ19 20…CCD駆動回路 21…対物光学系 22…アンプ 23…プロセス回路 24…A/D変換器 25…ホワイトバランス回路 26…セレクタ 27、28,29…同時化メモリ 30…画像処理回路 31,32,33…D/A回路 34…符号化回路 35…タイミングジェネレータ 41…モード切替スイッチ 42…モード切替回路 43…調光回路 44…調光制御パラメータ切替回路 DESCRIPTION OF SYMBOLS 1 ... Endoscope apparatus 2 ... CCD 3 ... Electronic endoscope 4 ... Light source apparatus 5 ... Observation monitor 6 ... Image filing apparatus 7 ... Video processor 10 ... Power supply unit 11 ... Xenon lamp 12 ... Heat ray cut filter 13 ... Aperture apparatus 14 ... Rotating filter 15 ... Light guide 16 ... Condenser lens 17 ... Control circuit 18 ... Rotary filter motor 19 ... Mode switching motor 19 20 ... CCD drive circuit 21 ... Objective optical system 22 ... Amplifier 23 ... Process circuit 24 ... A / D conversion Unit 25 White balance circuit 26 Selector 27, 28, 29 Simultaneous memory 30 Image processing circuit 31, 32, 33 D / A circuit 34 Encoding circuit 35 Timing generator 41 Mode switch 42 Mode Switching circuit 43: dimming circuit 44: dimming control parameter switching circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 可視光領域を含む照明光を供給する照明
光供給手段と、前記照明光を被写体に照射し戻り光によ
り前記被写体を撮像する撮像手段を有する内視鏡と、前
記撮像手段からの撮像信号を信号処理する信号処理手段
とを備えた内視鏡装置において、 前記照明光の複数の波長域の少なくとも1つの波長域を
制限し前記被写体の離散的な分光分布のバンド像を前記
撮像手段に結像させる帯域制限手段を、前記照明光供給
手段から前記撮像手段に至る光路上に備えたことを特徴
とする内視鏡装置。
1. An endoscope having an illumination light supply unit for supplying illumination light including a visible light region, an imaging unit for irradiating the illumination light to a subject and imaging the subject by return light, and An endoscope apparatus comprising: a signal processing unit that performs signal processing on an image pickup signal, wherein at least one of a plurality of wavelength ranges of the illumination light is limited, and a band image of a discrete spectral distribution of the subject is formed. An endoscope apparatus comprising: a band limiting unit that forms an image on an imaging unit on an optical path from the illumination light supply unit to the imaging unit.
【請求項2】 前記照明光供給手段は、 前記帯域制限手段の制限に応じて、前記照明光の光量を
前記波長域毎に制御する光量制御手段を備えたことを特
徴とする請求項1に記載の内視鏡装置。
2. The apparatus according to claim 1, wherein the illumination light supply unit includes a light amount control unit that controls a light amount of the illumination light for each of the wavelength ranges according to a restriction of the band limitation unit. The endoscope apparatus according to claim 1.
【請求項3】 可視光領域を含む照明光を発光する照明
光発光手段と、 前記照明光の複数の波長域の少なくとも1つの波長域を
制限し離散的な分光分布の光を生成する帯域制限手段を
備えたことを特徴とする光源装置。
3. An illuminating light emitting unit that emits illuminating light including a visible light region, and a band limiting unit that limits at least one of a plurality of wavelength regions of the illuminating light to generate light having a discrete spectral distribution. A light source device comprising means.
【請求項4】 前記帯域制限手段の制限に応じて、前記
照明光の光量を前記波長域毎に制御する光量制御手段を
備えたことを特徴とする請求項3に記載の光源装置。
4. The light source device according to claim 3, further comprising a light amount control unit that controls a light amount of the illumination light for each of the wavelength ranges according to a restriction of the band restriction unit.
JP2001088256A 2000-07-21 2001-03-26 Endoscope device and light source device Expired - Lifetime JP3583731B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001088256A JP3583731B2 (en) 2000-07-21 2001-03-26 Endoscope device and light source device
EP01953304A EP1302152B1 (en) 2000-07-21 2001-07-18 Endoscope apparatus
EP10011752.2A EP2319390B1 (en) 2000-07-21 2001-07-18 Endoscope apparatus
PCT/JP2001/006205 WO2002007588A1 (en) 2000-07-21 2001-07-18 Endoscope apparatus
US10/333,155 US7892169B2 (en) 2000-07-21 2001-07-18 Endoscope apparatus
US12/169,185 US20080294105A1 (en) 2000-07-21 2008-07-08 Endoscope device
US12/169,161 US20080281154A1 (en) 2000-07-21 2008-07-08 Endoscope device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-221312 2000-07-21
JP2000221312 2000-07-21
JP2001088256A JP3583731B2 (en) 2000-07-21 2001-03-26 Endoscope device and light source device

Publications (2)

Publication Number Publication Date
JP2002095635A true JP2002095635A (en) 2002-04-02
JP3583731B2 JP3583731B2 (en) 2004-11-04

Family

ID=26596467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088256A Expired - Lifetime JP3583731B2 (en) 2000-07-21 2001-03-26 Endoscope device and light source device

Country Status (1)

Country Link
JP (1) JP3583731B2 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052187A1 (en) * 2002-12-12 2004-06-24 Olympus Corporation Imaging device
EP1488732A1 (en) 2003-06-17 2004-12-22 Olympus Corporation Electronic endoscope device
JP2006166940A (en) * 2004-12-10 2006-06-29 Olympus Corp Lighting device for endoscope
JP2006218283A (en) * 2004-09-02 2006-08-24 Olympus Corp Endoscope apparatus
JP2006341077A (en) * 2005-05-13 2006-12-21 Olympus Medical Systems Corp Biological observation system
JP2006345947A (en) * 2005-06-13 2006-12-28 Olympus Medical Systems Corp Endoscope apparatus
JP2007029454A (en) * 2005-07-27 2007-02-08 Olympus Medical Systems Corp Imaging system and treating instrument
JP2007029453A (en) * 2005-07-27 2007-02-08 Olympus Medical Systems Corp Lighting device and observation device
JP2007054113A (en) * 2005-08-22 2007-03-08 Pentax Corp Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
WO2007046188A1 (en) * 2005-10-21 2007-04-26 Olympus Medical Systems Corp. Organism imaging device and organism observing system
JP2007202589A (en) * 2006-01-30 2007-08-16 National Cancer Center-Japan Electronic endoscope apparatus
JP2007236631A (en) * 2006-03-08 2007-09-20 Olympus Medical Systems Corp Endoscope and illumination cable
JP2007244681A (en) * 2006-03-16 2007-09-27 Olympus Medical Systems Corp Biometric instrument
WO2007116663A1 (en) 2006-04-12 2007-10-18 Olympus Medical Systems Corp. Endoscope device
WO2007123028A1 (en) 2006-04-20 2007-11-01 Olympus Medical Systems Corp. Biological observation system
JP2008023101A (en) * 2006-07-21 2008-02-07 Fujifilm Corp Electronic endoscope system
WO2008015826A1 (en) 2006-08-03 2008-02-07 Olympus Medical Systems Corp. Endoscope device
WO2008020499A1 (en) 2006-08-18 2008-02-21 Olympus Medical Systems Corp. Endoscopic device and its processing method
WO2008102803A1 (en) 2007-02-22 2008-08-28 Olympus Medical Systems Corp. Intrasubject introduction system
US7479990B2 (en) 2003-06-27 2009-01-20 Olympus Corporation Programmable image processing unit which displays a tentative image during programming
JP2009513230A (en) * 2006-03-29 2009-04-02 コリア エレクトロテクノロジー リサーチ インスティチュート Light source device for fluorescence diagnosis and photodynamic therapy
US7539335B2 (en) 2005-01-12 2009-05-26 Hoya Corporation Image data processor, computer program product, and electronic endoscope system
JP2009118988A (en) * 2007-11-14 2009-06-04 Hoya Corp Endoscope apparatus
JP2009165889A (en) * 2009-05-07 2009-07-30 Olympus Corp Image processor
EP2105090A1 (en) 2008-03-27 2009-09-30 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable medium
EP2106738A1 (en) 2008-04-02 2009-10-07 Fujifilm Corporation Signal processing appartus, signal processing method and computer readable medium
JP2009253418A (en) * 2008-04-02 2009-10-29 Fujifilm Corp Image capturing apparatus, image capturing method, and program
EP2163186A1 (en) 2008-09-10 2010-03-17 FUJIFILM Corporation Endoscope system and control method for the same
EP2163185A1 (en) 2008-09-10 2010-03-17 FUJIFILM Corporation Endoscope system and drive control method thereof
JP2010069063A (en) * 2008-09-19 2010-04-02 Fujifilm Corp Method and apparatus for capturing image
JP2010075513A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Method and system for obtaining narrow-band image
EP2179687A2 (en) 2008-10-22 2010-04-28 FUJIFILM Corporation Endoscope apparatus and control method therefor
JP2010094152A (en) * 2008-10-14 2010-04-30 Fujifilm Corp Electron endoscopic system
JP2010131265A (en) * 2008-12-05 2010-06-17 Fujifilm Corp Imaging apparatus, imaging method, and program
EP2258251A1 (en) 2009-06-05 2010-12-08 Fujifilm Corporation Image obtainment method and endoscopic apparatus
JP2011036361A (en) * 2009-08-10 2011-02-24 Fujifilm Corp Endoscopic device
JP2011092690A (en) * 2009-09-30 2011-05-12 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and blood vessel information acquiring method
EP2332460A1 (en) 2005-05-13 2011-06-15 Olympus Medical Systems Corp. Biological observation apparatus
WO2011096279A1 (en) 2010-02-05 2011-08-11 オリンパス株式会社 Image processing device, endoscope system, program and image processing method
WO2011099322A1 (en) * 2010-02-10 2011-08-18 Hoya株式会社 Electronic endoscope system
JP2011200531A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and blood vessel data acquiring method
JP2011200517A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
JP2011200377A (en) * 2010-03-25 2011-10-13 Hoya Corp Light source device for electronic endoscope
JP2012011238A (en) * 2011-10-17 2012-01-19 Olympus Medical Systems Corp Endoscope device
WO2012043771A1 (en) 2010-09-30 2012-04-05 オリンパスメディカルシステムズ株式会社 Imaging device
JP2012130629A (en) * 2010-12-24 2012-07-12 Fujifilm Corp Endoscopic diagnosis system
JP2012143301A (en) * 2011-01-07 2012-08-02 Fujifilm Corp Endoscope system
JP2012152413A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Electronic endoscope system
JP2012152414A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Electronic endoscope system
US8279275B2 (en) 2005-05-11 2012-10-02 Olympus Medical Systems Corp. Signal processing device for biological observation apparatus
WO2012140970A1 (en) * 2011-04-11 2012-10-18 オリンパスメディカルシステムズ株式会社 Endoscope device
US8301229B2 (en) 2005-05-12 2012-10-30 Olympus Medical Systems Corp. Biological observation display apparatus for presenting color or spectral images
US8305427B2 (en) 2005-03-22 2012-11-06 Olympus Corporation Image processor and endoscope apparatus
JP2013063097A (en) * 2011-09-15 2013-04-11 Fujifilm Corp Endoscope system and light source device
US8451327B2 (en) 2005-08-18 2013-05-28 Hoya Corporation Electronic endoscope, endoscope light unit, endoscope processor, and electronic endoscope system
US8480571B2 (en) 2006-03-03 2013-07-09 Olympus Medical Systems Corp. Endoscopic device
WO2013111623A1 (en) * 2012-01-25 2013-08-01 富士フイルム株式会社 Endoscope system, processor device for endoscope system, and image processing method
US8500632B2 (en) 2005-07-15 2013-08-06 Olympus Medical Systems Corp. Endoscope and endoscope apparatus
JP2013153919A (en) * 2012-01-30 2013-08-15 Hoya Corp Endoscope system and light source device for endoscope
US8531512B2 (en) 2004-08-30 2013-09-10 Olympus Corporation Endoscope apparatus
US8537210B2 (en) 2004-05-24 2013-09-17 Olympus Corporation Controlling light source with endoscope type
WO2013145407A1 (en) * 2012-03-30 2013-10-03 オリンパスメディカルシステムズ株式会社 Endoscopic device
JP2014036759A (en) * 2012-08-17 2014-02-27 Hoya Corp Electronic endoscope system and light source device for endoscope
JP2014042842A (en) * 2009-09-24 2014-03-13 Fujifilm Corp Endoscope apparatus
JP2014128394A (en) * 2012-12-28 2014-07-10 Hoya Corp Endoscope device
US8858429B2 (en) 2009-07-06 2014-10-14 Fujifilm Corporation Lighting device for endoscope and endoscope device
JP2014212808A (en) * 2013-04-22 2014-11-17 Hoya株式会社 Light source device for endoscope
US9113814B2 (en) 2011-02-25 2015-08-25 Samsung Electronics Co., Ltd. Endoscope apparatus capable of providing narrow band imaging and image processing method of the endoscope apparatus
US9149174B2 (en) 2009-07-23 2015-10-06 Olympus Medical Systems Corp. Transmittance adjusting device, observation apparatus and observation system
WO2016006266A1 (en) * 2014-07-09 2016-01-14 オリンパス株式会社 Endoscopic device
US9420153B2 (en) 2010-02-10 2016-08-16 Hoya Corporation Electronic endoscope system
US9675238B2 (en) 2011-08-10 2017-06-13 Fujifilm Corporation Endoscopic device
WO2018083888A1 (en) * 2016-11-01 2018-05-11 オリンパス株式会社 Image processing device
US10031070B2 (en) 2014-11-21 2018-07-24 Hoya Corporation Analyzing device and analyzing method based on images of biological tissue captured under illumination of light with different illumination wavelength ranges
JPWO2017061003A1 (en) * 2015-10-08 2018-07-26 オリンパス株式会社 Endoscope device
US10426325B2 (en) 2014-09-03 2019-10-01 Hoya Corporation Image capturing system and electronic endoscope system
US10492660B2 (en) 2012-11-09 2019-12-03 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus and endoscope
US10722155B2 (en) 2013-05-30 2020-07-28 Hoya Corporation Method and device for generating image showing concentration distribution of biological substances in biological tissue
US11490798B2 (en) 2017-05-02 2022-11-08 Olympus Corporation Endoscope system, endoscope apparatus, light source apparatus, and method of operating endoscope system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194082A (en) 2010-03-19 2011-10-06 Fujifilm Corp Endoscope image-correcting device and endoscope apparatus
JP5606120B2 (en) 2010-03-29 2014-10-15 富士フイルム株式会社 Endoscope device
JP5351924B2 (en) 2011-04-01 2013-11-27 富士フイルム株式会社 Biological information acquisition system and method of operating biological information acquisition system
JP5329593B2 (en) * 2011-04-01 2013-10-30 富士フイルム株式会社 Biological information acquisition system and method of operating biological information acquisition system
JP5331904B2 (en) 2011-04-15 2013-10-30 富士フイルム株式会社 Endoscope system and method for operating endoscope system
JP5675496B2 (en) * 2011-05-23 2015-02-25 オリンパスメディカルシステムズ株式会社 Medical device and medical processor
JP5502812B2 (en) * 2011-07-14 2014-05-28 富士フイルム株式会社 Biological information acquisition system and method of operating biological information acquisition system
JP5426620B2 (en) 2011-07-25 2014-02-26 富士フイルム株式会社 Endoscope system and method for operating endoscope system
WO2015064470A1 (en) * 2013-10-30 2015-05-07 オリンパスメディカルシステムズ株式会社 Light source unit and endoscope device

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202217A (en) * 2002-12-12 2004-07-22 Olympus Corp Imaging apparatus
WO2004052187A1 (en) * 2002-12-12 2004-06-24 Olympus Corporation Imaging device
JP4632645B2 (en) * 2002-12-12 2011-02-16 オリンパス株式会社 Imaging device and processor device
US8000776B2 (en) 2002-12-12 2011-08-16 Olympus Corporation Imaging apparatus
US7670286B2 (en) 2003-06-17 2010-03-02 Olympus Corporation Electronic endoscopic device having a color balance adjustment system
EP1488732A1 (en) 2003-06-17 2004-12-22 Olympus Corporation Electronic endoscope device
US7479990B2 (en) 2003-06-27 2009-01-20 Olympus Corporation Programmable image processing unit which displays a tentative image during programming
US8537210B2 (en) 2004-05-24 2013-09-17 Olympus Corporation Controlling light source with endoscope type
US8531512B2 (en) 2004-08-30 2013-09-10 Olympus Corporation Endoscope apparatus
JP2006218283A (en) * 2004-09-02 2006-08-24 Olympus Corp Endoscope apparatus
JP2006166940A (en) * 2004-12-10 2006-06-29 Olympus Corp Lighting device for endoscope
US7539335B2 (en) 2005-01-12 2009-05-26 Hoya Corporation Image data processor, computer program product, and electronic endoscope system
US8305427B2 (en) 2005-03-22 2012-11-06 Olympus Corporation Image processor and endoscope apparatus
US8279275B2 (en) 2005-05-11 2012-10-02 Olympus Medical Systems Corp. Signal processing device for biological observation apparatus
US8301229B2 (en) 2005-05-12 2012-10-30 Olympus Medical Systems Corp. Biological observation display apparatus for presenting color or spectral images
EP2332460A1 (en) 2005-05-13 2011-06-15 Olympus Medical Systems Corp. Biological observation apparatus
JP2006341077A (en) * 2005-05-13 2006-12-21 Olympus Medical Systems Corp Biological observation system
JP4504324B2 (en) * 2005-05-13 2010-07-14 オリンパスメディカルシステムズ株式会社 Biological observation device
JP2006345947A (en) * 2005-06-13 2006-12-28 Olympus Medical Systems Corp Endoscope apparatus
US8500632B2 (en) 2005-07-15 2013-08-06 Olympus Medical Systems Corp. Endoscope and endoscope apparatus
JP2007029454A (en) * 2005-07-27 2007-02-08 Olympus Medical Systems Corp Imaging system and treating instrument
JP2007029453A (en) * 2005-07-27 2007-02-08 Olympus Medical Systems Corp Lighting device and observation device
US8451327B2 (en) 2005-08-18 2013-05-28 Hoya Corporation Electronic endoscope, endoscope light unit, endoscope processor, and electronic endoscope system
JP4694310B2 (en) * 2005-08-22 2011-06-08 Hoya株式会社 Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
JP2007054113A (en) * 2005-08-22 2007-03-08 Pentax Corp Electronic endoscope, endoscope light source device, endoscope processor, and endoscope system
JP2007111357A (en) * 2005-10-21 2007-05-10 Olympus Medical Systems Corp Living body imaging apparatus and living body observing system
WO2007046188A1 (en) * 2005-10-21 2007-04-26 Olympus Medical Systems Corp. Organism imaging device and organism observing system
KR100983407B1 (en) 2005-10-21 2010-09-20 올림푸스 메디칼 시스템즈 가부시키가이샤 Organism imaging device and organism observing system
JP2007202589A (en) * 2006-01-30 2007-08-16 National Cancer Center-Japan Electronic endoscope apparatus
US8480571B2 (en) 2006-03-03 2013-07-09 Olympus Medical Systems Corp. Endoscopic device
JP2007236631A (en) * 2006-03-08 2007-09-20 Olympus Medical Systems Corp Endoscope and illumination cable
US8581970B2 (en) 2006-03-16 2013-11-12 Olympus Medical Systems Corp. Living body observation device
WO2007108270A1 (en) 2006-03-16 2007-09-27 Olympus Medical Systems Corp. Living body observing device
KR101022585B1 (en) 2006-03-16 2011-03-16 올림푸스 메디칼 시스템즈 가부시키가이샤 Living body observing device
JP2007244681A (en) * 2006-03-16 2007-09-27 Olympus Medical Systems Corp Biometric instrument
JP4842325B2 (en) * 2006-03-29 2011-12-21 コリア エレクトロテクノロジー リサーチ インスティチュート Light source device for fluorescence diagnosis and photodynamic therapy
JP2009513230A (en) * 2006-03-29 2009-04-02 コリア エレクトロテクノロジー リサーチ インスティチュート Light source device for fluorescence diagnosis and photodynamic therapy
US8979741B2 (en) 2006-04-12 2015-03-17 Olympus Medical Systems Corp. Endoscopic apparatus
WO2007116663A1 (en) 2006-04-12 2007-10-18 Olympus Medical Systems Corp. Endoscope device
WO2007123028A1 (en) 2006-04-20 2007-11-01 Olympus Medical Systems Corp. Biological observation system
KR101050882B1 (en) 2006-04-20 2011-07-20 올림푸스 메디칼 시스템즈 가부시키가이샤 Biometric observation system
JP5308815B2 (en) * 2006-04-20 2013-10-09 オリンパスメディカルシステムズ株式会社 Biological observation system
JP2008023101A (en) * 2006-07-21 2008-02-07 Fujifilm Corp Electronic endoscope system
US8269824B2 (en) 2006-07-21 2012-09-18 Fujifilm Corporation Electronic endoscope system for estimating and producing spectral image of arbitrary wavelength band from image signals captured under general illumination light and those captured under specific illumination light
WO2008015826A1 (en) 2006-08-03 2008-02-07 Olympus Medical Systems Corp. Endoscope device
US8773522B2 (en) 2006-08-03 2014-07-08 Olympus Medical Systems Corp. Endoscope apparatus
WO2008020499A1 (en) 2006-08-18 2008-02-21 Olympus Medical Systems Corp. Endoscopic device and its processing method
JP2008043604A (en) * 2006-08-18 2008-02-28 Olympus Medical Systems Corp Endoscopic apparatus
WO2008102803A1 (en) 2007-02-22 2008-08-28 Olympus Medical Systems Corp. Intrasubject introduction system
JP2009118988A (en) * 2007-11-14 2009-06-04 Hoya Corp Endoscope apparatus
EP2105090A1 (en) 2008-03-27 2009-09-30 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable medium
US9052277B2 (en) 2008-03-27 2015-06-09 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable medium
EP2106738A1 (en) 2008-04-02 2009-10-07 Fujifilm Corporation Signal processing appartus, signal processing method and computer readable medium
US9097589B2 (en) 2008-04-02 2015-08-04 Fujifilm Corporation Signal processing apparatus, signal processing method and computer readable medium
JP2009253418A (en) * 2008-04-02 2009-10-29 Fujifilm Corp Image capturing apparatus, image capturing method, and program
EP2163186A1 (en) 2008-09-10 2010-03-17 FUJIFILM Corporation Endoscope system and control method for the same
EP2163185A1 (en) 2008-09-10 2010-03-17 FUJIFILM Corporation Endoscope system and drive control method thereof
US8403835B2 (en) 2008-09-10 2013-03-26 Fujifilm Corporation Endoscope system and drive control method thereof
JP2010063590A (en) * 2008-09-10 2010-03-25 Fujifilm Corp Endoscope system and drive control method thereof
US8439827B2 (en) 2008-09-10 2013-05-14 Fujifilm Corporation Endoscope system and control method for the same
JP2010069063A (en) * 2008-09-19 2010-04-02 Fujifilm Corp Method and apparatus for capturing image
JP2010075513A (en) * 2008-09-26 2010-04-08 Fujifilm Corp Method and system for obtaining narrow-band image
JP2010094152A (en) * 2008-10-14 2010-04-30 Fujifilm Corp Electron endoscopic system
EP2179687A2 (en) 2008-10-22 2010-04-28 FUJIFILM Corporation Endoscope apparatus and control method therefor
EP2335551A1 (en) 2008-10-22 2011-06-22 Fujifilm Corporation Endoscope apparatus and control method therefor
US8553075B2 (en) 2008-10-22 2013-10-08 Fujifilm Corporation Endoscope apparatus and control method therefor
JP2010131265A (en) * 2008-12-05 2010-06-17 Fujifilm Corp Imaging apparatus, imaging method, and program
JP2009165889A (en) * 2009-05-07 2009-07-30 Olympus Corp Image processor
EP2258251A1 (en) 2009-06-05 2010-12-08 Fujifilm Corporation Image obtainment method and endoscopic apparatus
US8858429B2 (en) 2009-07-06 2014-10-14 Fujifilm Corporation Lighting device for endoscope and endoscope device
US9149174B2 (en) 2009-07-23 2015-10-06 Olympus Medical Systems Corp. Transmittance adjusting device, observation apparatus and observation system
JP2011036361A (en) * 2009-08-10 2011-02-24 Fujifilm Corp Endoscopic device
JP2014042842A (en) * 2009-09-24 2014-03-13 Fujifilm Corp Endoscope apparatus
JP2011092690A (en) * 2009-09-30 2011-05-12 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and blood vessel information acquiring method
US20120274754A1 (en) * 2010-02-05 2012-11-01 Olympus Corporation Image processing device, endoscope system, information storage device, and image processing method
EP2517614A4 (en) * 2010-02-05 2014-05-28 Olympus Corp Image processing device, endoscope system, program and image processing method
EP2517614A1 (en) * 2010-02-05 2012-10-31 Olympus Corporation Image processing device, endoscope system, program and image processing method
WO2011096279A1 (en) 2010-02-05 2011-08-11 オリンパス株式会社 Image processing device, endoscope system, program and image processing method
WO2011099322A1 (en) * 2010-02-10 2011-08-18 Hoya株式会社 Electronic endoscope system
JPWO2011099322A1 (en) * 2010-02-10 2013-06-13 Hoya株式会社 Electronic endoscope system
US9420153B2 (en) 2010-02-10 2016-08-16 Hoya Corporation Electronic endoscope system
JP2011200377A (en) * 2010-03-25 2011-10-13 Hoya Corp Light source device for electronic endoscope
JP2011200531A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system, processor for electronic endoscope, and blood vessel data acquiring method
JP2011200517A (en) * 2010-03-26 2011-10-13 Fujifilm Corp Electronic endoscope system
US8643710B2 (en) 2010-09-30 2014-02-04 Olympus Medical Systems Corp. Image pickup apparatus
WO2012043771A1 (en) 2010-09-30 2012-04-05 オリンパスメディカルシステムズ株式会社 Imaging device
JP2012130629A (en) * 2010-12-24 2012-07-12 Fujifilm Corp Endoscopic diagnosis system
JP2012143301A (en) * 2011-01-07 2012-08-02 Fujifilm Corp Endoscope system
JP2012152413A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Electronic endoscope system
JP2012152414A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Electronic endoscope system
US9113814B2 (en) 2011-02-25 2015-08-25 Samsung Electronics Co., Ltd. Endoscope apparatus capable of providing narrow band imaging and image processing method of the endoscope apparatus
WO2012140970A1 (en) * 2011-04-11 2012-10-18 オリンパスメディカルシステムズ株式会社 Endoscope device
JP5167440B2 (en) * 2011-04-11 2013-03-21 オリンパスメディカルシステムズ株式会社 Endoscope device
US9675238B2 (en) 2011-08-10 2017-06-13 Fujifilm Corporation Endoscopic device
JP2013063097A (en) * 2011-09-15 2013-04-11 Fujifilm Corp Endoscope system and light source device
JP2012011238A (en) * 2011-10-17 2012-01-19 Olympus Medical Systems Corp Endoscope device
JP2013150713A (en) * 2012-01-25 2013-08-08 Fujifilm Corp Endoscope system, processor device for endoscope system, and image processing method
WO2013111623A1 (en) * 2012-01-25 2013-08-01 富士フイルム株式会社 Endoscope system, processor device for endoscope system, and image processing method
JP2013153919A (en) * 2012-01-30 2013-08-15 Hoya Corp Endoscope system and light source device for endoscope
US8939901B2 (en) 2012-03-30 2015-01-27 Olympus Medical Systems Corp. Endoscope apparatus for outputting signals corresponding to first and second narrowband wavelength bands
WO2013145407A1 (en) * 2012-03-30 2013-10-03 オリンパスメディカルシステムズ株式会社 Endoscopic device
US9775497B2 (en) 2012-03-30 2017-10-03 Olympus Corporation Endoscope apparatus for outputting signals corresponding to first and second narrowband wavelength bands
JP2014036759A (en) * 2012-08-17 2014-02-27 Hoya Corp Electronic endoscope system and light source device for endoscope
US9591966B2 (en) 2012-08-17 2017-03-14 Hoya Corporation Electronic endoscope system and light source for endoscope
US9826893B2 (en) 2012-08-17 2017-11-28 Hoya Corporation Electronic endoscope system and light source for endoscope
US10492660B2 (en) 2012-11-09 2019-12-03 Panasonic Intellectual Property Management Co., Ltd. Image processing apparatus and endoscope
US9949625B2 (en) 2012-12-28 2018-04-24 Hoya Corporation Electronic endoscope
JP2014128394A (en) * 2012-12-28 2014-07-10 Hoya Corp Endoscope device
US10986988B2 (en) 2012-12-28 2021-04-27 Hoya Corporation Electronic endoscope
JP2014212808A (en) * 2013-04-22 2014-11-17 Hoya株式会社 Light source device for endoscope
US10722155B2 (en) 2013-05-30 2020-07-28 Hoya Corporation Method and device for generating image showing concentration distribution of biological substances in biological tissue
WO2016006266A1 (en) * 2014-07-09 2016-01-14 オリンパス株式会社 Endoscopic device
US10165934B2 (en) 2014-07-09 2019-01-01 Olympus Corporation Endoscope apparatus with addition of image signals
CN106255441A (en) * 2014-07-09 2016-12-21 奥林巴斯株式会社 Endoscope apparatus
JP5981056B2 (en) * 2014-07-09 2016-08-31 オリンパス株式会社 Endoscope device
US10426325B2 (en) 2014-09-03 2019-10-01 Hoya Corporation Image capturing system and electronic endoscope system
US11224335B2 (en) 2014-09-03 2022-01-18 Hoya Corporation Image capturing system and electronic endoscope system
US10031070B2 (en) 2014-11-21 2018-07-24 Hoya Corporation Analyzing device and analyzing method based on images of biological tissue captured under illumination of light with different illumination wavelength ranges
JPWO2017061003A1 (en) * 2015-10-08 2018-07-26 オリンパス株式会社 Endoscope device
US11006821B2 (en) 2015-10-08 2021-05-18 Olympus Corporation Endoscope apparatus for changing light quantity ratio between first emphasis narrow band light and first non-emphasis narrow band light and light quantity ratio between second emphasis narrow band light and second non-emphasis narrow band light
JP6342598B1 (en) * 2016-11-01 2018-06-13 オリンパス株式会社 Image processing device
US10893810B2 (en) 2016-11-01 2021-01-19 Olympus Corporation Image processing apparatus that identifiably displays bleeding point region
WO2018083888A1 (en) * 2016-11-01 2018-05-11 オリンパス株式会社 Image processing device
US11490798B2 (en) 2017-05-02 2022-11-08 Olympus Corporation Endoscope system, endoscope apparatus, light source apparatus, and method of operating endoscope system

Also Published As

Publication number Publication date
JP3583731B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3583731B2 (en) Endoscope device and light source device
JP4855586B2 (en) Endoscope device
JP3713347B2 (en) Fluorescence endoscope device
US6960165B2 (en) Endoscope with a single image pick-up element for fluorescent and normal-light images
US7892169B2 (en) Endoscope apparatus
JP4744288B2 (en) Endoscope device
KR101184841B1 (en) Endoscopic device and its processing method
JP4147033B2 (en) Endoscope device
JP4384626B2 (en) Endoscope device
JP4855728B2 (en) Illumination device and observation device
WO2010122884A1 (en) Fluorescence image device and fluorescence image acquiring method
JP2002034893A (en) Endoscope instrument
WO2006025334A1 (en) Endoscope
AU2006225662A1 (en) Image processing device and endoscope
JP4297887B2 (en) Fluorescence endoscope device
JP5455733B2 (en) Light source device for electronic endoscope
JP4716673B2 (en) Fluorescence endoscope device
WO2006004038A1 (en) Light source device and fluorescence observation system
JP3965174B2 (en) Endoscope device
JP2003126015A (en) Endoscope
JP5455734B2 (en) Light source device for electronic endoscope
JP2005323758A (en) Electronic endoscope apparatus
JP4643253B2 (en) Fluorescence observation system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

R151 Written notification of patent or utility model registration

Ref document number: 3583731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term