JP2010131265A - Imaging apparatus, imaging method, and program - Google Patents

Imaging apparatus, imaging method, and program Download PDF

Info

Publication number
JP2010131265A
JP2010131265A JP2008311319A JP2008311319A JP2010131265A JP 2010131265 A JP2010131265 A JP 2010131265A JP 2008311319 A JP2008311319 A JP 2008311319A JP 2008311319 A JP2008311319 A JP 2008311319A JP 2010131265 A JP2010131265 A JP 2010131265A
Authority
JP
Japan
Prior art keywords
light
wavelength band
image
filter
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008311319A
Other languages
Japanese (ja)
Other versions
JP5282343B2 (en
Inventor
Kiyohiro Maeda
青広 前田
Hiroshi Yamaguchi
博司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008311319A priority Critical patent/JP5282343B2/en
Publication of JP2010131265A publication Critical patent/JP2010131265A/en
Application granted granted Critical
Publication of JP5282343B2 publication Critical patent/JP5282343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus, imaging method, and a program, wherein both an image having visualized uneven surfaces and an image having visualized blood vessels can be obtained almost at the same time. <P>SOLUTION: The imaging apparatus, taking the image of an subject having pigments scattered over its surfaces, includes: a light irradiation part to irradiate the subject with light in a first wavelength band, whose color absorption is higher than a first prescribed value, as well as light in a second wavelength band, whose color absorption is lower than the first prescribed value, and absorbance of blood is higher than a second prescribed value; an imaging part to take the images of light in the first and second wavelength bands, of the light returning from the subject; and an image generation part to generate the first and second images of light in the first and second wavelength bands taken by the imaging part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面に色素が散布された被写体を撮像する撮像装置、方法、及びプログラムに関する。   The present invention relates to an imaging apparatus, method, and program for imaging a subject in which a pigment is scattered on a surface.

特許文献1によれば、波長帯域を変えることにより表層部分、深層部分を観察することが記載されている。また、特許文献2によれば、血液に強く吸収される波長の光を利用して微細な血管を撮像することが記載されている。
特開2001−170009号公報 特開2002−095635号公報
According to Patent Document 1, it is described that the surface layer portion and the deep layer portion are observed by changing the wavelength band. Patent Document 2 describes that a fine blood vessel is imaged using light having a wavelength that is strongly absorbed by blood.
Japanese Patent Laid-Open No. 2001-170009 JP 2002-095635 A

しかしながら、特許文献1によれば、波長を変えることにより表層部分及び深層部分の画像を得ることはできるが、表面の凹凸を観察することはできない。また、特許文献2によれば、血管を撮像することはできるが、表面の凹凸を観察することはできない。   However, according to Patent Document 1, it is possible to obtain images of the surface layer portion and the deep layer portion by changing the wavelength, but it is not possible to observe surface irregularities. According to Patent Document 2, blood vessels can be imaged, but surface irregularities cannot be observed.

上記課題を解決するために、本発明の第1の態様においては、撮像装置であって、表面に色素が散布された被写体を撮像する撮像装置であって、前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射部と、前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像部と、前記撮像部が撮像した前記第1波長帯域の光の第1画像を生成し、前記撮像部が撮像した前記第2波長帯域の光の第2画像を生成する画像生成部とを備える。   In order to solve the above-described problem, in the first aspect of the present invention, an imaging apparatus is an imaging apparatus that images a subject having a pigment dispersed on a surface thereof, and the absorption rate of the pigment is the first. Light in a first wavelength band greater than or equal to a predetermined value, and light in a second wavelength band in which the absorption rate of the dye is less than or equal to the first predetermined value and the absorption rate of blood is greater than or equal to a second predetermined value. An irradiating unit that irradiates the subject, an imaging unit that images the light in the first wavelength band of the return light from the subject and the light in the second wavelength band of the return light from the subject, respectively. And an image generation unit that generates a first image of light in the first wavelength band captured by the imaging unit and generates a second image of light in the second wavelength band captured by the imaging unit.

前記照射部は、前記第1波長帯域の光と前記第2波長帯域の光とを切り替えて照射してよく、前記撮像部は、撮像素子を有してよく、前記撮像素子は、前記第1波長帯域の光と前記第2波長帯域の光とを順次撮像してよい。   The irradiation unit may switch and irradiate light of the first wavelength band and light of the second wavelength band, the imaging unit may include an imaging element, and the imaging element includes the first imaging element. The light of the wavelength band and the light of the second wavelength band may be sequentially imaged.

前記照射部は、前記第1波長帯域の光と前記第2波長帯域の光とを同時照射してよく、前記撮像部は、前記第1波長帯域の光と前記第2波長帯域の光とを切り替えて透過するフィルタ部と、前記フィルタ部を透過した前記第1波長帯域の光と前記第2波長帯域の光とを順次撮像する撮像素子とを有してよい。   The irradiation unit may simultaneously irradiate light in the first wavelength band and light in the second wavelength band, and the imaging unit may emit light in the first wavelength band and light in the second wavelength band. You may have the filter part which switches and permeate | transmits, and the image pick-up element which images sequentially the light of the said 1st wavelength band and the light of the said 2nd wavelength band which permeate | transmitted the said filter part.

前記照射部は、前記第1波長帯域の光と前記第2波長帯域の光とを同時照射してよく、前記撮像部は、前記第1波長帯域の光を透過する第1フィルタと、前記第2波長帯域の光を透過する第2フィルタとを有してよく、前記第1フィルタを透過した前記第1波長帯域の光と、前記第2フィルタを透過した前記第2波長帯域の光とをそれぞれ撮像してよい。   The irradiation unit may simultaneously irradiate light in the first wavelength band and light in the second wavelength band, and the imaging unit may include a first filter that transmits light in the first wavelength band, A second filter that transmits light in two wavelength bands, and the light in the first wavelength band that has passed through the first filter and the light in the second wavelength band that has passed through the second filter. Each may be imaged.

前記撮像部は、複数の前記第1フィルタと複数の前記第2フィルタとが同一平面状に配列されたフィルタ部と、前記第1フィルタを透過した前記第1波長帯域の光を受光する複数の第1受光素子と、前記第2フィルタを透過した前記第2波長帯域の光を受光する複数の第2受光素子とが同一平面状に配列された撮像素子とを有してよい。   The imaging unit includes a filter unit in which a plurality of first filters and a plurality of second filters are arranged in the same plane, and a plurality of light receiving the light in the first wavelength band that has passed through the first filter. You may have an imaging device with which the 1st light receiving element and the several 2nd light receiving element which receives the light of the said 2nd wavelength band which permeate | transmitted the said 2nd filter were arranged on the same plane.

前記撮像部は、前記第1フィルタを透過した前記第1波長帯域の光を撮像する第1撮像素子と、前記第2フィルタを透過した前記第2波長帯域の光を撮像する第2撮像素子とを有してよい。   The imaging unit includes a first imaging element that images the light in the first wavelength band that has passed through the first filter, and a second imaging element that images the light in the second wavelength band that has passed through the second filter. May be included.

上記課題を解決するために、本発明の第2の態様においては、表面に色素が散布された被写体を撮像する方法であって、前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射工程と、前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像工程と、前記撮像部が撮像した前記第1波長帯域の光の第1画像を生成し、前記撮像部が撮像した前記第2波長帯域の光の第2画像を生成する画像生成工程とを備える。   In order to solve the above-described problem, in a second aspect of the present invention, there is provided a method for imaging a subject having a pigment dispersed on a surface, wherein the first wavelength has an absorption rate of the pigment equal to or greater than a first predetermined value. Irradiation step of irradiating the subject with light in a band and light in a second wavelength band in which the absorption rate of the dye is equal to or lower than the first predetermined value and the absorption rate of blood is equal to or higher than a second predetermined value An imaging step of imaging the light in the first wavelength band of the return light from the subject and the light in the second wavelength band of the return light from the subject, and the imaging unit An image generation step of generating a first image of the light in the first wavelength band and generating a second image of the light in the second wavelength band captured by the imaging unit.

上記課題を解決するために、本発明の第3の態様においては、表面に色素が散布された被写体を撮像するコンピュータを実行させるプログラムであって、前記コンピュータを、前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射部と、前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像部と、前記撮像部が撮像した前記第1波長帯域の光の第1画像を生成し、前記撮像部が撮像した前記第2波長帯域の光の第2画像を生成する画像生成部として機能させる。   In order to solve the above-described problem, in a third aspect of the present invention, there is provided a program for executing a computer that captures an image of a subject having a pigment dispersed on a surface, wherein the computer has a first absorption rate of the pigment. Light in a first wavelength band that is greater than or equal to a predetermined value, and light in a second wavelength band that has an absorption rate of the dye that is less than or equal to the first predetermined value and a blood absorption rate that is greater than or equal to a second predetermined value An imaging unit that images the irradiation unit that irradiates the subject, light in the first wavelength band of return light from the subject, and light in the second wavelength band of return light from the subject And a first image of light in the first wavelength band captured by the imaging unit, and function as an image generation unit that generates a second image of light in the second wavelength band captured by the imaging unit .

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

図1は、実施形態の撮像装置100を示す。本実施形態では、撮像装置100を内視鏡システムに適用して説明する。撮像装置100は、内視鏡101、画像生成部102、照射部103、表示部104、記録部105、及び鉗子106を備える。なお、図1のA部は、内視鏡101の先端部121を拡大して示す。   FIG. 1 illustrates an imaging apparatus 100 according to an embodiment. In the present embodiment, the imaging apparatus 100 will be described as applied to an endoscope system. The imaging apparatus 100 includes an endoscope 101, an image generation unit 102, an irradiation unit 103, a display unit 104, a recording unit 105, and forceps 106. 1 shows an enlarged view of the distal end portion 121 of the endoscope 101.

内視鏡101は、鉗子口111、撮像部112、及びライトガイド113を有する。内視鏡101の先端部121は、その先端面130に撮像部112の一部としてのレンズ131を有する。また、先端部121は、その先端面130にライトガイド113の一部としての出射口132を有する。   The endoscope 101 includes a forceps port 111, an imaging unit 112, and a light guide 113. The distal end portion 121 of the endoscope 101 has a lens 131 as a part of the imaging unit 112 on the distal end surface 130 thereof. Further, the distal end portion 121 has an emission port 132 as a part of the light guide 113 on the distal end surface 130 thereof.

照射部103は、光を被写体に照射する。照射部103は、被写体に散布される色素の吸収率が第1の所定値以上の第1波長帯域の光と、該色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光を照射する。また、照射部103は、光源107と、回転フィルタ108とを有する。光源107は、光を発光する。光源107は、電球であってもよく、LEDであってもよい。回転フィルタ108は、第1波長帯域の光を透過する第1フィルタと、第2波長帯域の光を透過する第2フィルタとを有する。照射部103は、この回転フィルタ108を回転させることにより、第1波長帯域の光と第2波長帯域の光とを切り替えて、被写体に第1波長帯域の光と、第2波長帯域の光とを照射する。なお、内視鏡101の先端部121に、第1波長帯域の光を発光するLEDと第2波長帯域の光を発光するLEDとを設けてよく、LEDが発光することにより被写体に光を照射してもよい。   The irradiation unit 103 irradiates the subject with light. The irradiating unit 103 has light of a first wavelength band in which the absorption rate of the pigment sprayed on the subject is equal to or greater than a first predetermined value, the absorption rate of the pigment is equal to or less than the first predetermined value, and blood Irradiation is performed with light in the second wavelength band having an absorptance greater than or equal to a second predetermined value. The irradiation unit 103 includes a light source 107 and a rotary filter 108. The light source 107 emits light. The light source 107 may be a light bulb or an LED. The rotary filter 108 includes a first filter that transmits light in the first wavelength band and a second filter that transmits light in the second wavelength band. The irradiating unit 103 switches the light in the first wavelength band and the light in the second wavelength band by rotating the rotary filter 108, and the light in the first wavelength band and the light in the second wavelength band are transmitted to the subject. Irradiate. An LED that emits light in the first wavelength band and an LED that emits light in the second wavelength band may be provided at the distal end portion 121 of the endoscope 101, and the subject emits light by emitting light from the LED. May be.

ライトガイド113は、例えば、光ファイバで構成されている。ライトガイド113は、照射部103が照射した光を内視鏡101の先端部121にガイドする。照射部103が照射した光はライトガイド113を介して先端面130の出射口132から出射されて被写体に照射される。   The light guide 113 is composed of, for example, an optical fiber. The light guide 113 guides the light irradiated by the irradiation unit 103 to the distal end portion 121 of the endoscope 101. The light emitted from the irradiation unit 103 is emitted from the emission port 132 of the distal end surface 130 via the light guide 113 and is irradiated to the subject.

撮像部112は、レンズ131と、CCD160とを有する。なお、撮像部112は、CCD160の代わりにCMOS等の撮像素子を有してもよい。CCD160は、レンズ131を介して入射した被写体の光を撮像する。CCD160は、照射部103が切り替えて照射した第1波長帯域の光の戻り光と、第2波長帯域の戻り光とを順次撮像する。なお、撮像部112は、図示しないがCCD160を駆動させる撮像素子駆動ドライバ、及びAD変換器等も含む。つまり、撮像素子により撮像された画像が撮像素子駆動ドライバにより読み出されて、AD変換器によってデジタル信号に変換される。この撮像素子駆動ドライバ、AD変換器等は、CPU等の情報処理装置によって制御される。情報処理装置を撮像部112の中に設けてもよく、撮像装置100の中に設けてもよい。   The imaging unit 112 includes a lens 131 and a CCD 160. Note that the imaging unit 112 may include an imaging element such as a CMOS instead of the CCD 160. The CCD 160 images the light of the subject that has entered through the lens 131. The CCD 160 sequentially captures the return light of the first wavelength band and the return light of the second wavelength band, which the irradiation unit 103 switches and irradiates. Note that the imaging unit 112 includes an imaging element driving driver that drives the CCD 160, an AD converter, and the like (not shown). That is, an image picked up by the image pickup device is read by the image pickup device driving driver and converted into a digital signal by the AD converter. The image sensor driving driver, AD converter, and the like are controlled by an information processing device such as a CPU. The information processing apparatus may be provided in the imaging unit 112 or may be provided in the imaging apparatus 100.

鉗子口111は、鉗子106が挿入される。鉗子口111は、鉗子106を先端部121にガイドする。なお、鉗子106は、各種の先端形状を備えてよい。また、鉗子口111は、鉗子106のほかに、生体を処置する種々の処理具が挿入されてよい。ノズル133は、水あるいは空気を送出する。   The forceps 106 is inserted into the forceps port 111. The forceps port 111 guides the forceps 106 to the distal end portion 121. Note that the forceps 106 may have various tip shapes. In addition to the forceps 106, the forceps port 111 may be inserted with various treatment tools for treating a living body. The nozzle 133 delivers water or air.

画像生成部102は、撮像部112が撮像した第1波長帯域の光の第1画像を生成する。また、画像生成部102は、撮像部112が撮像した第2波長帯域の光の第2画像を生成する。また、画像生成部102は、撮像部112が撮像した画像に対して種々の画像処理を施してよい。また、撮像部112が色フィルタを備える場合は、画像生成部102は、輝度色差信号の画像データを生成してもよい。この画像生成部102は、CPU等の情報処理装置によって実現してもよく、電子回路又は電気回路によって実現してもよい。   The image generation unit 102 generates a first image of light in the first wavelength band captured by the imaging unit 112. Further, the image generation unit 102 generates a second image of light in the second wavelength band captured by the imaging unit 112. In addition, the image generation unit 102 may perform various image processes on the image captured by the imaging unit 112. Further, when the imaging unit 112 includes a color filter, the image generation unit 102 may generate image data of a luminance color difference signal. The image generation unit 102 may be realized by an information processing device such as a CPU, or may be realized by an electronic circuit or an electric circuit.

また、表示部104は、画像生成部102が生成した画像を表示する。また、表示部104は、画像生成部102が生成した第1画像と、第2画像とを表示する。表示部104は、液晶、有機EL、プラズマなどのディスプレイと、該ディスプレイを制御する表示制御部とを有してよい。表示制御部は、CPU等の情報処理装置によって実現されてもよい。また、記録部105は、画像生成部102が生成した画像を記録する。また、記録部105は、画像生成部が生成した第1画像と、第2画像とを記録する。記録部105は、フラッシュメモリ等の記録媒体と、該記録媒体に画像を記録する記録制御部とを有してよい。記録制御部は、CPU等の情報処理装置によって実現されてもよい。   The display unit 104 displays the image generated by the image generation unit 102. The display unit 104 displays the first image and the second image generated by the image generation unit 102. The display unit 104 may include a display such as a liquid crystal, an organic EL, or a plasma, and a display control unit that controls the display. The display control unit may be realized by an information processing device such as a CPU. The recording unit 105 records the image generated by the image generation unit 102. The recording unit 105 records the first image and the second image generated by the image generation unit. The recording unit 105 may include a recording medium such as a flash memory and a recording control unit that records an image on the recording medium. The recording control unit may be realized by an information processing device such as a CPU.

図2は、回転フィルタ108の一例を示す。回転フィルタ108は、第1フィルタ141と第2フィルタ142とを有する。第1フィルタ141は、被写体に散布される色素の吸収率が第1の所定値以上の第1波長帯域の光を透過する。第2フィルタ142は、該色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光を透過する。回転フィルタ108には、同一円周上に第1フィルタ141と第2フィルタ142とが配設されている。また、回転フィルタ108の中央には、回転の中心となる軸143が設けられている。なお、被写体に散布される色素としては、インジコカルミン色素、クリスタルバイオレット色素、メチレンブルー色素などがある。   FIG. 2 shows an example of the rotation filter 108. The rotary filter 108 includes a first filter 141 and a second filter 142. The first filter 141 transmits light in the first wavelength band in which the absorption rate of the pigment dispersed on the subject is equal to or higher than the first predetermined value. The second filter 142 transmits light in the second wavelength band in which the absorption rate of the dye is equal to or lower than the first predetermined value and the absorption rate of blood is equal to or higher than the second predetermined value. The rotary filter 108 is provided with a first filter 141 and a second filter 142 on the same circumference. In addition, a shaft 143 serving as a center of rotation is provided at the center of the rotary filter 108. In addition, examples of the dye dispersed on the subject include an indigo carmine dye, a crystal violet dye, and a methylene blue dye.

図3は、光源107と、回転フィルタ108との対応関係の一例を示す。照射部103は、回転フィルタ108を、軸143を中心に回転させることにより、光源107が発光した光の光路上に、第1フィルタ141及び第2フィルタ142の何れかのフィルタをセットすることができる。照射部103は、この回転フィルタ108を回転することにより、第1波長帯域の光と第2波長帯域の光とを切り替えて被写体に照射することができる。なお、照射部103は、光源107と回転フィルタ108を制御する制御部を備える。この制御部は、CPU等の情報処理装置によって実現してよい。   FIG. 3 shows an example of the correspondence relationship between the light source 107 and the rotary filter 108. The irradiation unit 103 can set one of the first filter 141 and the second filter 142 on the optical path of the light emitted from the light source 107 by rotating the rotary filter 108 about the shaft 143. it can. The irradiation unit 103 can irradiate the subject by switching the light in the first wavelength band and the light in the second wavelength band by rotating the rotary filter 108. The irradiation unit 103 includes a control unit that controls the light source 107 and the rotary filter 108. This control unit may be realized by an information processing device such as a CPU.

図4は、それぞれの波長における光の吸収率のグラフを示す。図4の横軸は光の波長を示しており、縦軸は相対吸収係数を示す。この相対吸収係数が高いほど、光の吸収率は高い。実線は、インジコカルミン色素の波長における吸収率を示しており、点線は、動脈内を流れる酸化ヘモグロビンの波長における吸収率を示している。また、一点破線は、静脈内を流れる還元ヘモグロビンの波長における吸収率を示している。波長450nm以下では、酸化ヘモグロビン及び還元ヘモグロビンは、インジコカルミン色素の吸収率より高い。また、波長450nmより大きい波長では、酸化ヘモグロビン及び還元ヘモグロビンは、酸化インジコカルミン色素の吸収率より低い。このようなことから、450nmより高い500nm〜610nmにピークを持つスペクトルの光を照射すると、観察部位である被写体の表面に散布したインジコカルミン色素に、照射した光が吸収されやすくなる。また、450nm以下よりにピークを持つスペクトルの光を照射すると、観察部位である被写体の表面に散布したインジコカルミン色素に、照射した光が余り吸収されにくくなる。したがって、450nm以下にピークを持つスペクトルの光を照射すると、インジコカルミン色素を透過して、被写体の組織下にある血管の血液中の酸化ヘモグロビン、還元ヘモグロビンに吸収される。   FIG. 4 shows a graph of the light absorptance at each wavelength. The horizontal axis in FIG. 4 indicates the wavelength of light, and the vertical axis indicates the relative absorption coefficient. The higher the relative absorption coefficient, the higher the light absorption rate. The solid line indicates the absorption rate at the wavelength of the indicocarmine pigment, and the dotted line indicates the absorption rate at the wavelength of oxyhemoglobin flowing in the artery. The dashed line indicates the absorption rate at a wavelength of reduced hemoglobin flowing in the vein. At a wavelength of 450 nm or less, oxyhemoglobin and reduced hemoglobin are higher than the absorption rate of indicocarmine dye. Further, at a wavelength greater than 450 nm, oxygenated hemoglobin and reduced hemoglobin are lower than the absorption rate of the oxidized indicocarmine dye. For this reason, when light having a spectrum having a peak at 500 nm to 610 nm higher than 450 nm is irradiated, the irradiated light is easily absorbed by the indigo carmine dye dispersed on the surface of the subject that is the observation site. Further, when light having a spectrum having a peak from 450 nm or less is irradiated, the irradiated light is hardly absorbed by the indigo carmine pigment dispersed on the surface of the subject that is the observation site. Therefore, when light having a spectrum having a peak at 450 nm or less is irradiated, it passes through the indicocarmine dye and is absorbed by oxygenated hemoglobin and reduced hemoglobin in the blood of the blood vessels under the tissue of the subject.

したがって、インジコカルミン色素を被写体に散布する場合は、図4の黒枠に示すように、インジコカルミン色素の吸収率が第1の所定値以上となる450nm〜610nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いる。また、インジコカルミン色素の吸収率が第1の所定値以下であり、且つ、血液の吸収率の度合いが第2の所定値以上となる400nm〜450nmにピークを持つスペクトルの光を透過するフィルタを第2フィルタ142として用いる。なお、第1フィルタ141は、インジコカルミン色素の吸収度合いが第1の所定値以上となる第1波長帯域の光を透過してもよい。また、第2フィルタ142は、インジコカルミン色素の吸収度合いが第1の所定値以下であり、且つ、血液の吸収度合いが第2の所定値以上の第2波長帯域の光を透過してもよい。なお、インジコカルミン色素を散布する場合は、第1フィルタ141は、570nm付近にピークを持つスペクトルの光のみを透過してもよい。また、610nm付近にピークを持つスペクトルの光のみを透過してもよい。また、インジコカルミン色素の最大吸収の波長は610nmとなるが、波長が長いと組織下に深達して、ボケた画像が撮像されてしまうので、第1フィルタ141は、インジコカルミン色素の最大吸収の波長より短い波長にピークを持つスペクトルの光を透過することが好ましい。   Therefore, when the indigo carmine pigment is scattered on the subject, as shown in the black frame of FIG. 4, light having a spectrum having a peak at 450 nm to 610 nm where the absorption rate of the indigo carmine pigment is equal to or higher than the first predetermined value is used. A transmitting filter is used as the first filter 141. In addition, a filter that transmits light having a spectrum having a peak at 400 nm to 450 nm in which the absorption rate of the indicocarmine dye is equal to or lower than the first predetermined value and the blood absorption rate is equal to or higher than the second predetermined value. Is used as the second filter 142. In addition, the 1st filter 141 may permeate | transmit the light of the 1st wavelength band from which the absorption degree of an indicocarmine pigment | dye becomes more than 1st predetermined value. Further, the second filter 142 transmits light in the second wavelength band in which the absorption degree of the indicocarmine dye is equal to or lower than the first predetermined value and the blood absorption degree is equal to or higher than the second predetermined value. Good. Note that when the indicocarmine pigment is dispersed, the first filter 141 may transmit only light having a spectrum having a peak near 570 nm. Alternatively, only light having a spectrum having a peak near 610 nm may be transmitted. Further, the wavelength of maximum absorption of the indicocarmine dye is 610 nm. However, if the wavelength is long, the first filter 141 has a maximum of the indicocarmine dye because a deeper image below the tissue is captured. It is preferable to transmit light having a spectrum having a peak at a wavelength shorter than the absorption wavelength.

図5は、クリスタルバイオレット色素の波長における吸収率を示す。図5の横軸は波長を示しており、縦軸はモル吸光係数を示す。このモル吸光係数が高いほど、光の吸収率は高い。クリスタルバイオレット色素は、450nmを過ぎたあたりから吸収率が急激に高くなり、590nmを過ぎると急激に吸収率が低くなる。したがって、クリスタルバイオレット色素を被写体に散布する場合は、図5の黒枠に示すように、クリスタルバイオレット色素の吸収率が第1の所定値以上となる550nm〜590nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いる。なお、第2フィルタ142は、上述したように、クリスタルバイオレット色素の吸収率が第1の所定値以下であり、且つ、血液の吸収率の度合いが第2の所定値以上となる400nm〜450nmにピークを持つ波長の光を透過する。なお、クリスタルバイオレットを散布する場合は、第1フィルタ141は、590nm付近にピークを持つスペクトルの光のみを透過してもよい。また、クリスタルバイオレット色素の最大吸収の波長は590nmとなるが、波長が長いと組織下に深達して、ボケた画像が撮像されてしまうので、第1フィルタ141は、クリスタルバイオレット色素の最大吸収の波長より短い波長にピークを持つスペクトルの光を透過することが好ましい。   FIG. 5 shows the absorption rate at the wavelength of the crystal violet dye. The horizontal axis in FIG. 5 indicates the wavelength, and the vertical axis indicates the molar extinction coefficient. The higher the molar extinction coefficient, the higher the light absorption rate. The crystal violet dye has an absorptance that rapidly increases after about 450 nm, and decreases abruptly after 590 nm. Therefore, when the crystal violet dye is dispersed on the subject, as shown in the black frame of FIG. 5, light having a spectrum having a peak at 550 nm to 590 nm where the absorption rate of the crystal violet dye is equal to or higher than the first predetermined value is transmitted. A filter is used as the first filter 141. As described above, the second filter 142 has a crystal violet dye absorption rate of 400 nm to 450 nm where the absorption rate of the blood is equal to or lower than the first predetermined value and the blood absorption rate is equal to or higher than the second predetermined value. Transmits light with a wavelength having a peak. In addition, when spraying crystal violet, the first filter 141 may transmit only light having a spectrum having a peak near 590 nm. Further, the wavelength of maximum absorption of the crystal violet dye is 590 nm, but if the wavelength is long, the first filter 141 has a maximum absorption of the crystal violet dye because a deeper image below the tissue is captured. It is preferable to transmit light having a spectrum having a peak at a wavelength shorter than the wavelength.

図6は、メチレンブルー色素の波長における吸収率を示す。図5の横軸は波長を示しており、縦軸はモル吸光係数を示す。メチレンブルー色素は、290nm付近で吸収率が一度ピークとなり、290nmを過ぎると吸収率が小さくなる。そして、550nmを過ぎたあたりから吸収率を急激に高くなり、665nmを過ぎると急激に吸収率が低くなる。したがって、メチレンブルー色素を被写体に散布する場合は、図6の黒枠に示すように、メチレンブルー色素の吸収率が第1の所定値以上となる550nm〜665nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いる。なお、第2フィルタ142は、上述したように、メチレンブルー色素の吸収率が第1の所定値以下であり、且つ、血液の吸収率の度合いが第2の所定値以上となる400nm〜450nmにピークを持つ波長の光を透過する。なお、メチレンブルー色素を散布する場合は、第1フィルタ141は、665nm付近にピークを持つスペクトルの光のみを透過してもよい。また、290nm付近にピークを持つスペクトルの光のみを透過してもよい。また、メチレンブルー色素の最大吸収の波長は290nm、665nmとなるが、波長が長いと組織下に深達して、ボケた画像が撮像されてしまうので、第1フィルタ141は、メチレンブルー色素の最大吸収の波長である665nmより短い波長にピークを持つスペクトルの光を透過することが好ましい。   FIG. 6 shows the absorptance at the wavelength of methylene blue dye. The horizontal axis in FIG. 5 indicates the wavelength, and the vertical axis indicates the molar extinction coefficient. The methylene blue dye has an absorption peak once around 290 nm, and the absorption decreases after 290 nm. Then, the absorption rate suddenly increases from around 550 nm, and the absorption rate decreases rapidly after 665 nm. Therefore, when methylene blue dye is sprayed on the subject, as shown in the black frame of FIG. 6, a filter that transmits light having a spectrum having a peak at 550 nm to 665 nm where the absorption rate of the methylene blue dye is equal to or higher than the first predetermined value. Used as the first filter 141. As described above, the second filter 142 has a peak at 400 nm to 450 nm where the absorption rate of the methylene blue dye is equal to or lower than the first predetermined value and the degree of blood absorption rate is equal to or higher than the second predetermined value. Transmits light of a wavelength having In addition, when methylene blue pigment | dye is spread | dispersed, the 1st filter 141 may permeate | transmit only the light of the spectrum which has a peak near 665 nm. Alternatively, only light having a spectrum having a peak near 290 nm may be transmitted. The maximum absorption wavelength of the methylene blue dye is 290 nm and 665 nm. However, if the wavelength is long, the first filter 141 absorbs the maximum absorption of the methylene blue dye because a deep image penetrates and a blurred image is captured. It is preferable to transmit light having a spectrum having a peak at a wavelength shorter than 665 nm which is the wavelength.

次に、撮像装置100の動作について説明する。まず、観察部位である被写体の表面に色素を散布する。すると、被写体の表面の凹部に色素が滞留して、凸部には、色素が滞留しない。そして、照射部103が、観察部位である被写体に第1波長帯域の光を照射すると、色素が滞留している部分は第1波長帯域の光を吸収して、色素が滞留していない部分は滞留している部分に比べ第1波長帯域の光を余り吸収しない。そして、第1波長帯域の戻り光を撮像部112が撮像することにより、コントラストのある被写体の表面の画像を撮像することができる。つまり、滞留している部分は暗くなり、滞留していない部分は明るい画像となる。これにより、被写体の表面の凹凸を可視化した第1画像を撮像することができる。そして、画像生成部102は、撮像部112が撮像した第1波長帯域の光の画像を生成する。そして、表示部104は、該生成した第1波長帯域の光の画像を表示する。   Next, the operation of the imaging apparatus 100 will be described. First, a pigment is sprayed on the surface of a subject that is an observation site. Then, the pigment stays in the concave portion on the surface of the subject, and the pigment does not stay in the convex portion. When the irradiation unit 103 irradiates the subject that is the observation site with light in the first wavelength band, the portion where the dye stays absorbs the light in the first wavelength band, and the portion where the dye does not stay is It does not absorb much light in the first wavelength band compared to the staying part. Then, when the imaging unit 112 captures the return light in the first wavelength band, an image of the surface of the subject with contrast can be captured. That is, the staying part becomes dark, and the non-staying part becomes a bright image. Thereby, the 1st image which visualized the unevenness | corrugation of the surface of a to-be-photographed object can be imaged. Then, the image generation unit 102 generates an image of light in the first wavelength band captured by the imaging unit 112. The display unit 104 displays an image of the generated light in the first wavelength band.

なお、インジコカルミン色素を散布する場合は、450nm〜610nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いるので、被写体には、450nm〜610nmの第1の波長帯域の光を照射することができる。また、クリスタルバイオレット色素を散布する場合は、550nm〜590nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いるので、被写体には、550nm〜590nmにピークを持つ第1の波長帯域の光を照射することができる。また、メチレンブルー色素を散布する場合は、550nm〜665nmにピークを持つスペクトルの光を透過するフィルタを第1フィルタ141として用いるので、被写体には、550nm〜665nmにピークを持つ第1の波長帯域の光を照射することができる。   Note that when indicocarmine pigment is dispersed, a filter that transmits light having a spectrum having a peak at 450 nm to 610 nm is used as the first filter 141, so that light in the first wavelength band of 450 nm to 610 nm is used for the subject. Can be irradiated. Further, when the crystal violet dye is dispersed, a filter that transmits light having a spectrum having a peak at 550 nm to 590 nm is used as the first filter 141, so that the subject has a first wavelength band having a peak at 550 nm to 590 nm. Can be irradiated. When methylene blue dye is dispersed, a filter that transmits light having a spectrum having a peak at 550 nm to 665 nm is used as the first filter 141, so that the subject has a first wavelength band having a peak at 550 nm to 665 nm. Light can be irradiated.

次に、照射部103が、第2波長帯域の光を照射すると、表面に散布された色素には余り吸収されずに、被写体の組織下にある血管の血液に吸収される。そして、第2波長帯域の戻り光を撮像部112が撮像することにより、血管を可視化した第2画像を撮像することができる。つまり、血管部分が暗くなり、血管部分以外は明るい画像となる。なお、400nm〜450nmにピークを持つ光を透過するフィルタを第2フィルタ142として用いるので、被写体には、400nm〜450nmの第2波長帯域の光を照射することができる。   Next, when the irradiation unit 103 irradiates light in the second wavelength band, the light is absorbed by the blood of the blood vessel under the tissue of the subject without being absorbed much by the pigment dispersed on the surface. Then, when the imaging unit 112 captures the return light in the second wavelength band, it is possible to capture a second image that visualizes the blood vessel. In other words, the blood vessel portion becomes dark and a portion other than the blood vessel portion becomes a bright image. Note that since a filter that transmits light having a peak at 400 nm to 450 nm is used as the second filter 142, the subject can be irradiated with light in the second wavelength band of 400 nm to 450 nm.

また、照射部103は、CCD160のフレームレート周期間隔で、第1波長帯域の光と第2波長帯域の光とを交互に切り替えて照射してもよい。この場合は、第1波長帯域の光の第1画像と第2波長帯域の光の第2画像とが、交互に順次撮像されることになる。また、表示部104は、第1波長帯域の第1画像と第2波長帯域の第2画像とを同時に表示させてもよく、どちらか一方を表示させてもよい。第1画像と第2画像とを同時に表示させる場合は、例えば、第1表示領域に第1画像を第2表示領域に第2画像を表示させてもよい。また、照射部103は、所定の間隔で、例えば、10秒間隔で、第1波長帯域の光と第2波長帯域の光とを交互に切り替えて照射してもよい。また、ユーザの切り替え指示にしたがって、照射部103は、第1波長帯域の光と第2波長帯域の光とを切り替えてもよい。そして、撮像部112は、第1波長帯域の光と第2波長帯域の光とを順次撮像する。表示部104は、第1画像と第2画像のどちらか一方を表示してもよい。また、表示部104は、現在照射している波長帯域の光の画像を表示させてもよい。   Further, the irradiating unit 103 may alternately irradiate the light of the first wavelength band and the light of the second wavelength band at the frame rate period interval of the CCD 160. In this case, the first image of the light in the first wavelength band and the second image of the light in the second wavelength band are alternately and sequentially captured. The display unit 104 may display the first image in the first wavelength band and the second image in the second wavelength band at the same time, or may display either one of them. When the first image and the second image are displayed simultaneously, for example, the first image may be displayed in the first display area and the second image may be displayed in the second display area. Further, the irradiation unit 103 may alternately switch and irradiate the light in the first wavelength band and the light in the second wavelength band at a predetermined interval, for example, at an interval of 10 seconds. Further, the irradiation unit 103 may switch between the light in the first wavelength band and the light in the second wavelength band in accordance with a user switching instruction. The imaging unit 112 sequentially captures light in the first wavelength band and light in the second wavelength band. The display unit 104 may display either the first image or the second image. Further, the display unit 104 may display an image of light in the currently irradiated wavelength band.

このように、被写体の表面に散布する色素の吸収率が第1の所定値以上の第1波長帯域の光と、該色素の吸収率が第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを切り替えて被写体に照射するようにしたので、色素を被写体に散布した状態で、血管を可視化した画像を撮像することができる。また、被写体の表面の凹凸を可視化した第1画像と、血管を可視化した第2画像とを略同時に撮像することができる。また、撮影して観察したい方の画像を即座に撮像することができる。なお、所定のプログラムを実行することによって、CPU等の情報処理装置を撮像装置100として機能させるようにしてもよい。   As described above, the light having the first wavelength band in which the absorption rate of the dye dispersed on the surface of the subject is equal to or higher than the first predetermined value, the absorption rate of the dye being equal to or lower than the first predetermined value, and the absorption of blood. Since the subject is switched to the light of the second wavelength band whose rate is equal to or higher than the second predetermined value, the subject is irradiated, so that an image in which the blood vessel is visualized can be taken in a state where the pigment is dispersed on the subject. In addition, the first image that visualizes the unevenness of the surface of the subject and the second image that visualizes the blood vessel can be captured substantially simultaneously. In addition, it is possible to immediately take an image of a person who wants to take and observe. Note that an information processing apparatus such as a CPU may function as the imaging apparatus 100 by executing a predetermined program.

上記実施の形態は、以下のように変形してもよい。
(1)上記実施の形態では、照射部103に回転フィルタ108を設け、第1波長帯域の光と、第2波長帯域の光とを照射するようにしたが、回転フィルタ108を撮像部112に設けるようにして、照射部103は、白色光を被写体に照射するようにしてもよい。
The above embodiment may be modified as follows.
(1) In the above-described embodiment, the rotation unit 108 is provided in the irradiation unit 103 so as to irradiate the light in the first wavelength band and the light in the second wavelength band. As described above, the irradiation unit 103 may irradiate the subject with white light.

図7は、変形例(1)の撮像部112の一例を示す。撮像部112は、レンズ131、回転フィルタ108、及びCCD160を有する。CCD160は、レンズ131を通過した光のうち、回転フィルタ108を透過した光を撮像する。ここで、撮像部112は、回転フィルタ108を、軸143を中心に回転させることにより、レンズ131とCCD160の光路上に、第1フィルタ141及び第2フィルタ142の何れかのフィルタをセットすることができる。つまり、回転フィルタ108を、軸143を中心に回転させることにより、照射部103が照射した白色光の戻り光のうち、CCD160に投影させる光の波長帯域を、第1波長帯域と、第2波長帯域とに切り替える。光路上に第1フィルタ141がセットされている場合は、CCD160は、第1波長帯域の光を撮像することができ、第2フィルタ142がセットされている場合は、CCD160は、第2波長帯域の光を撮像することができる。これにより、色素を被写体の表面に散布した状態で、観察部位である被写体の表面の凹凸を可視化した第1画像と、血管を可視化した第2画像とを略同時に撮像することができる。   FIG. 7 shows an example of the imaging unit 112 of Modification Example (1). The imaging unit 112 includes a lens 131, a rotation filter 108, and a CCD 160. The CCD 160 images light that has passed through the rotary filter 108 out of the light that has passed through the lens 131. Here, the imaging unit 112 sets one of the first filter 141 and the second filter 142 on the optical path of the lens 131 and the CCD 160 by rotating the rotary filter 108 about the axis 143. Can do. That is, by rotating the rotary filter 108 around the axis 143, the wavelength band of the light projected on the CCD 160 out of the return light of the white light irradiated by the irradiation unit 103 is set to the first wavelength band and the second wavelength. Switch to band. When the first filter 141 is set on the optical path, the CCD 160 can image light in the first wavelength band. When the second filter 142 is set, the CCD 160 has the second wavelength band. Can be imaged. As a result, in a state where the pigment is dispersed on the surface of the subject, the first image that visualizes the unevenness of the surface of the subject that is the observation site and the second image that visualizes the blood vessel can be captured almost simultaneously.

(2)上記実施の形態では、照射部103に回転フィルタ108を設けるようにしたが、撮像部112に第1フィルタ141と第2フィルタ142とが同一平面状に配列されたフィルタ部を設けてもよい。CCD160は、第1フィルタ141を透過した第1波長帯域の光を受光する複数の第1受光素子、第2フィルタ142を透過した第2波長帯域の光を受光する複数の第2受光素子とを備える。つまり、CCD160には、第1フィルタを透過した第1波長帯域の光を受光する複数の第1受光素子と、第2フィルタを透過した第2波長帯域の光を受光する複数の第2受光素子とが同一平面状に配列されている。この場合は、照射部103は、白色光を被写体に照射する。   (2) In the above embodiment, the rotation filter 108 is provided in the irradiation unit 103. However, the imaging unit 112 is provided with a filter unit in which the first filter 141 and the second filter 142 are arranged in the same plane. Also good. The CCD 160 includes a plurality of first light receiving elements that receive light in the first wavelength band that has passed through the first filter 141, and a plurality of second light receiving elements that receive light in the second wavelength band that has passed through the second filter 142. Prepare. That is, the CCD 160 includes a plurality of first light receiving elements that receive light in the first wavelength band that has passed through the first filter, and a plurality of second light receiving elements that receive light in the second wavelength band that has passed through the second filter. Are arranged in the same plane. In this case, the irradiation unit 103 irradiates the subject with white light.

図8は、変形例(2)のフィルタ部170と、CCD160の対応関係の一例を示す。CCD160は、複数の第1受光素子161及び第2受光素子162を有する。フィルタ部170は、第1波長帯域の光を透過する第1フィルタ141と第2波長帯域の光を透過する第2フィルタ142とを複数有する。第1フィルタ141と第2フィルタ142とは、1受光素子間隔で、マトリクス状に同一平面状に配列されている。なお、第1フィルタ141と第2フィルタ142とをマトリクス状に配列しなくてもよく、一定の周期間隔で第1フィルタ141と第2フィルタとが配列されていればよい。それぞれの第1フィルタ141を透過した光は、CCD160の第1受光素子にそれぞれ受光される。また、それぞれの第2フィルタ142を透過した光は、CCD160の第2受光素子162にそれぞれ受光される。つまり、第1フィルタ141を透過した光は、該第1フィルタ141に対応する第1受光素子161で受光される。また、第2フィルタ142を透過した光は、該第2フィルタ142に対応する第2受光素子162で受光される。照射部103が白色光を照射してその戻り光のうち、第1波長帯域の光がフィルタ部170の第1フィルタ141を介して第1受光素子161に受光され、第2波長帯域の光がフィルタ部170の第2フィルタ142を介して第2受光素子に受光される。これにより、被写体の表面の凹凸を可視化した第1画像と、血管を可視化した第2画像とを同時に撮像することができる。   FIG. 8 shows an example of a correspondence relationship between the filter unit 170 and the CCD 160 according to the modification (2). The CCD 160 has a plurality of first light receiving elements 161 and second light receiving elements 162. The filter unit 170 includes a plurality of first filters 141 that transmit light in the first wavelength band and second filters 142 that transmit light in the second wavelength band. The first filter 141 and the second filter 142 are arranged in the same plane in a matrix at one light receiving element interval. Note that the first filter 141 and the second filter 142 do not have to be arranged in a matrix, and the first filter 141 and the second filter need only be arranged at a constant periodic interval. The light transmitted through each first filter 141 is received by the first light receiving element of the CCD 160. The light transmitted through each second filter 142 is received by each second light receiving element 162 of the CCD 160. That is, the light transmitted through the first filter 141 is received by the first light receiving element 161 corresponding to the first filter 141. The light transmitted through the second filter 142 is received by the second light receiving element 162 corresponding to the second filter 142. The irradiation unit 103 irradiates white light, and among the return light, light in the first wavelength band is received by the first light receiving element 161 through the first filter 141 of the filter unit 170, and light in the second wavelength band is received. The light is received by the second light receiving element via the second filter 142 of the filter unit 170. Thereby, the 1st image which visualized the unevenness | corrugation of the surface of a to-be-photographed object, and the 2nd image which visualized the blood vessel can be imaged simultaneously.

そして、画像生成部102は、CCD160が撮像した画像から第1波長帯域の光の第1画像と、第2波長帯域の光の第2画像とを生成する。つまり、画像生成部102は、第1波長帯域の光を受光した第1受光素子161の電荷蓄積量から第1画像を生成する。また、第2波長帯域の光を受光した第2受光素子162の電荷蓄積量から第2画像を生成する。そして、表示部104は、第1画像と第2画像とを表示させる。表示部104は、第1画像と第2画像とを同時に表示させてもよく、どちらか一方を表示させてもよい。   Then, the image generation unit 102 generates a first image of light in the first wavelength band and a second image of light in the second wavelength band from the image captured by the CCD 160. That is, the image generation unit 102 generates a first image from the charge accumulation amount of the first light receiving element 161 that has received light in the first wavelength band. Further, a second image is generated from the amount of charge accumulated in the second light receiving element 162 that has received light in the second wavelength band. Then, the display unit 104 displays the first image and the second image. The display unit 104 may display the first image and the second image at the same time, or may display either one of them.

(3)上記実施の形態では、照射部103に回転フィルタ108を設けるようにしたが、撮像部112に第1フィルタ141及び第2フィルタ142と、第1フィルタを透過した光を撮像する第1CCD、第2フィルタを透過した光を撮像する第2CCDを設けるようにしてもよい。なお、CCDに代えてCMOS等の撮像素子を設けてもよい。この場合は、照射部103は、白色光を被写体に照射する。   (3) In the above embodiment, the rotary filter 108 is provided in the irradiating unit 103. However, the first CCD 141 and the second filter 142 in the imaging unit 112 and the first CCD that images the light transmitted through the first filter. A second CCD that images the light transmitted through the second filter may be provided. An imaging element such as a CMOS may be provided instead of the CCD. In this case, the irradiation unit 103 irradiates the subject with white light.

図9は、変形例(3)の撮像部112の一例を示す。撮像部112は、レンズ131、ハーフミラー181、第1フィルタ141、第2フィルタ142、第1CCD163、及び第2CCD164を有する。ハーフミラー181は、レンズ131を通過した光を2つの光束に分割する。ハーフミラー181は、入射した光の一部を透過して、一部を反射することにより入射した光を2つの光束に分割する。第1フィルタ141は、ハーフミラー181を透過した光のうち、第1波長帯域の光を透過する。第1CCD163は、第1フィルタ141を透過した光を撮像する。第2フィルタ142は、ハーフミラー181を反射した光のうち、第2波長帯域の光を透過する。第2CCD164は、第2フィルタを透過した光を撮像する。   FIG. 9 shows an example of the imaging unit 112 of Modification Example (3). The imaging unit 112 includes a lens 131, a half mirror 181, a first filter 141, a second filter 142, a first CCD 163, and a second CCD 164. The half mirror 181 splits the light that has passed through the lens 131 into two light beams. The half mirror 181 splits the incident light into two light beams by transmitting a part of the incident light and reflecting a part of the incident light. The first filter 141 transmits light in the first wavelength band among the light transmitted through the half mirror 181. The first CCD 163 images the light transmitted through the first filter 141. The second filter 142 transmits light in the second wavelength band among the light reflected from the half mirror 181. The second CCD 164 images light that has passed through the second filter.

照射部103が白色光を照射してその戻り光のうち、第1波長帯域の光が第1CCD163で撮像され、第2波長帯域の光が第2CCD164で撮像される。これにより、被写体の表面の凹凸を可視化した第1画像と、血管を可視化した第2画像とを同時に撮像することができる。そして、表示部104は、第1CCD163が撮像した第1画像と、第2CCD164が撮像した第2画像とを表示させる。表示部104は、第1画像と第2画像とを同時に表示させてもよく、どちらか一方を表示させてもよい。   The irradiation unit 103 irradiates white light, and among the return light, light in the first wavelength band is imaged by the first CCD 163 and light in the second wavelength band is imaged by the second CCD 164. Thereby, the 1st image which visualized the unevenness | corrugation of the surface of a to-be-photographed object, and the 2nd image which visualized the blood vessel can be imaged simultaneously. The display unit 104 displays the first image captured by the first CCD 163 and the second image captured by the second CCD 164. The display unit 104 may display the first image and the second image at the same time, or may display either one of them.

(4)上記実施の形態では、照射部103に回転フィルタ108を設けるようにしたが、撮像部112にエタロン等の可変分光素子を設けてよい。可変分光素子はレンズ131とCCD160との間に設け、エタロンを通過した光をCCD160が撮像する。この場合は、照射部103は、白色光を被写体に照射する。照射部103が照射した白色光の戻り光のうち、可変分光素子が第1波長帯域内にある波長の光及び第2波長帯域内にある波長の光のうちどちらか一方の光を通過させてCCD160に撮像させる。これにより、CCD160は、第1画像と第2画像とを選択的に撮像することができる。可変分光素子は、CCD160のフレームレート周期間隔で、第1波長帯域内の波長の光と、第2波長帯域内の波長の光とを交互に通過させてもよい。この場合は、第1波長帯域の光の第1画像と第2波長帯域の光の第2画像とが、交互に順次撮像されることになる。また、表示部104は、第1波長帯域の第1画像と第2波長帯域の第2画像とを同時に表示させてもよく、どちらか一方を表示させてもよい。   (4) In the above embodiment, the rotation filter 108 is provided in the irradiation unit 103, but a variable spectral element such as an etalon may be provided in the imaging unit 112. The variable spectroscopic element is provided between the lens 131 and the CCD 160, and the CCD 160 images the light that has passed through the etalon. In this case, the irradiation unit 103 irradiates the subject with white light. Among the return light of the white light irradiated by the irradiation unit 103, the variable spectroscopic element passes one of the light having the wavelength in the first wavelength band and the light having the wavelength in the second wavelength band. The CCD 160 is imaged. Thereby, the CCD 160 can selectively capture the first image and the second image. The variable spectroscopic element may alternately pass light having a wavelength in the first wavelength band and light having a wavelength in the second wavelength band at a frame rate period interval of the CCD 160. In this case, the first image of the light in the first wavelength band and the second image of the light in the second wavelength band are alternately and sequentially captured. The display unit 104 may display the first image in the first wavelength band and the second image in the second wavelength band at the same time, or may display either one of them.

また、可変分光素子は、所定の間隔で、例えば、10秒間隔で、第1波長帯域の光と第2波長帯域の光とを交互に切り替えて通過させてもよい。また、ユーザの切り替え指示にしたがって、可変分光素子は、第1波長帯域の光と第2波長帯域の光とを切り替えて通過させてもよい。そして、撮像部112は、第1波長帯域の光と第2波長帯域の光とを順次撮像する。表示部104は、第1画像と第2画像のどちらか一方を表示してもよい。また、表示部104は、現在照射している波長帯域の光の画像を表示させてもよい。これにより、色素が被写体の表面に散布されている状態であっても、表面の凹凸を可視化した第1画像と、血管を可視化した第2画像とを撮像することができる。また、略同時に、第1画像と第2画像とを撮像することができる。   In addition, the variable spectroscopic element may alternately switch and pass the light in the first wavelength band and the light in the second wavelength band at a predetermined interval, for example, at an interval of 10 seconds. Further, the variable spectral element may switch and pass the light in the first wavelength band and the light in the second wavelength band in accordance with a user switching instruction. The imaging unit 112 sequentially captures light in the first wavelength band and light in the second wavelength band. The display unit 104 may display either the first image or the second image. Further, the display unit 104 may display an image of light in the currently irradiated wavelength band. Thereby, even in a state where the pigment is scattered on the surface of the subject, it is possible to capture the first image in which the irregularities on the surface are visualized and the second image in which the blood vessels are visualized. Further, the first image and the second image can be taken substantially simultaneously.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

実施形態の撮像装置100を示す。1 illustrates an imaging apparatus 100 according to an embodiment. 回転フィルタ108の一例を示す。An example of the rotary filter 108 is shown. 光源107と、回転フィルタ108との対応関係の一例を示す。An example of the correspondence between the light source 107 and the rotation filter 108 is shown. それぞれの波長における光の吸収率のグラフを示す。The graph of the light absorptance in each wavelength is shown. クリスタルバイオレット色素の波長における吸収率を示す。The absorptance at the wavelength of the crystal violet dye is shown. メチレンブルー色素の波長における吸収率を示す。The absorptance at the wavelength of the methylene blue dye is shown. 変形例(1)の撮像部112の一例を示す。An example of the image pick-up part 112 of the modification (1) is shown. 変形例(2)のフィルタ部170と、CCD160の対応関係の一例を示す。An example of a correspondence relationship between the filter unit 170 and the CCD 160 in the modification example (2) is shown. 変形例(3)の撮像部112の一例を示す。An example of the image pick-up part 112 of the modification (3) is shown.

符号の説明Explanation of symbols

100 撮像装置
101 内視鏡
102 画像生成部
103 照射部
104 表示部
105 記録部
106 鉗子
107 光源
108 回転フィルタ
111 鉗子口
112 撮像部
113 ライトガイド
121 先端部
130 先端面
131 レンズ
132 出射口
133 ノズル
141 第1フィルタ
142 第2フィルタ
143 軸
160 CCD
161 第1受光素子
162 第2受光素子
163 第1CCD
164 第2CCD
170 フィルタ部
181 ハーフミラー
DESCRIPTION OF SYMBOLS 100 Image pick-up apparatus 101 Endoscope 102 Image generation part 103 Irradiation part 104 Display part 105 Recording part 106 Forceps 107 Light source 108 Rotary filter 111 Forceps opening 112 Imaging part 113 Light guide 121 Front end part 130 Front end surface 131 Lens 132 Output port 133 Nozzle 141 First filter 142 Second filter 143 Axis 160 CCD
161 First light receiving element 162 Second light receiving element 163 First CCD
164 2nd CCD
170 Filter unit 181 Half mirror

Claims (8)

表面に色素が散布された被写体を撮像する撮像装置であって、
前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射部と、
前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像部と、
前記撮像部が撮像した前記第1波長帯域の光の第1画像を生成し、前記撮像部が撮像した前記第2波長帯域の光の第2画像を生成する画像生成部と
を備える撮像装置。
An imaging device for imaging a subject with a pigment dispersed on a surface,
Light in a first wavelength band having an absorption rate of the dye equal to or higher than a first predetermined value, an absorption rate of the dye being equal to or lower than the first predetermined value, and an absorption rate of blood being equal to or higher than a second predetermined value An irradiation unit that irradiates the subject with light of the second wavelength band of
An imaging unit that images each of the light in the first wavelength band of the return light from the subject and the light in the second wavelength band of the return light from the subject;
An imaging apparatus comprising: an image generation unit configured to generate a first image of light in the first wavelength band captured by the imaging unit and generate a second image of light in the second wavelength band captured by the imaging unit.
前記照射部は、
前記第1波長帯域の光と前記第2波長帯域の光とを切り替えて照射し、
前記撮像部は、
撮像素子を有し、
前記撮像素子は、
前記第1波長帯域の光と前記第2波長帯域の光とを順次撮像する
請求項1に記載の撮像装置。
The irradiation unit is
Switch and irradiate light of the first wavelength band and light of the second wavelength band,
The imaging unit
Having an image sensor,
The image sensor is
The imaging apparatus according to claim 1, wherein the first wavelength band light and the second wavelength band light are sequentially imaged.
前記照射部は、
前記第1波長帯域の光と前記第2波長帯域の光とを同時照射し、
前記撮像部は、
前記第1波長帯域の光と前記第2波長帯域の光とを切り替えて透過するフィルタ部と、
前記フィルタ部を透過した前記第1波長帯域の光と前記第2波長帯域の光とを順次撮像する撮像素子と
を有する請求項1に記載の撮像装置。
The irradiation unit is
Simultaneously irradiating light in the first wavelength band and light in the second wavelength band;
The imaging unit
A filter unit that switches between and transmits light in the first wavelength band and light in the second wavelength band;
The imaging device according to claim 1, further comprising: an imaging element that sequentially images the light in the first wavelength band and the light in the second wavelength band that have passed through the filter unit.
前記照射部は、
前記第1波長帯域の光と前記第2波長帯域の光とを同時照射し、
前記撮像部は、
前記第1波長帯域の光を透過する第1フィルタと、
前記第2波長帯域の光を透過する第2フィルタと
を有し、
前記第1フィルタを透過した前記第1波長帯域の光と、前記第2フィルタを透過した前記第2波長帯域の光とをそれぞれ撮像する
請求項1に記載の撮像装置。
The irradiation unit is
Simultaneously irradiating light in the first wavelength band and light in the second wavelength band;
The imaging unit
A first filter that transmits light in the first wavelength band;
A second filter that transmits light in the second wavelength band;
The imaging apparatus according to claim 1, wherein the first wavelength band light transmitted through the first filter and the second wavelength band light transmitted through the second filter are each imaged.
前記撮像部は、
複数の前記第1フィルタと複数の前記第2フィルタとが同一平面状に配列されたフィルタ部と、
前記第1フィルタを透過した前記第1波長帯域の光を受光する複数の第1受光素子と、前記第2フィルタを透過した前記第2波長帯域の光を受光する複数の第2受光素子とが同一平面状に配列された撮像素子と
を有する請求項4に記載の撮像装置。
The imaging unit
A plurality of first filters and a plurality of second filters arranged in the same plane; and
A plurality of first light receiving elements that receive the light in the first wavelength band that has passed through the first filter, and a plurality of second light receiving elements that receive the light in the second wavelength band that has passed through the second filter. The imaging apparatus according to claim 4, further comprising imaging elements arranged in the same plane.
前記撮像部は、
前記第1フィルタを透過した前記第1波長帯域の光を撮像する第1撮像素子と、
前記第2フィルタを透過した前記第2波長帯域の光を撮像する第2撮像素子と
を有する
請求項4に記載の撮像装置。
The imaging unit
A first imaging device that images the light in the first wavelength band that has passed through the first filter;
The imaging apparatus according to claim 4, further comprising: a second imaging element that images the light in the second wavelength band that has passed through the second filter.
表面に色素が散布された被写体を撮像する方法であって、
前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射工程と、
前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像工程と、
撮像した前記第1波長帯域の光の第1画像、及び撮像した前記第2波長帯域の光の第2画像を生成する画像生成工程と
を備える方法。
A method for capturing an image of a subject having a pigment dispersed on the surface,
Light in a first wavelength band having an absorption rate of the dye equal to or higher than a first predetermined value, an absorption rate of the dye being equal to or lower than the first predetermined value, and an absorption rate of blood being equal to or higher than a second predetermined value Irradiating the subject with light in the second wavelength band of
An imaging step of imaging the light in the first wavelength band of the return light from the subject and the light in the second wavelength band of the return light from the subject;
A method comprising: an image generation step of generating a captured first image of the first wavelength band light and a captured second image of the second wavelength band light.
表面に色素が散布された被写体を撮像するコンピュータを実行させるプログラムであって、
前記コンピュータを、
前記色素の吸収率が第1の所定値以上の第1波長帯域の光と、前記色素の吸収率が前記第1の所定値以下であり、且つ、血液の吸収率が第2の所定値以上の第2波長帯域の光とを前記被写体に照射する照射部と、
前記被写体からの戻り光のうちの前記第1波長帯域の光と、前記被写体からの戻り光のうちの前記第2波長帯域の光とをそれぞれ撮像する撮像部と、
前記撮像部が撮像した前記第1波長帯域の光の第1画像を生成し、前記撮像部が撮像した前記第2波長帯域の光の第2画像を生成する画像生成部
として機能させるプログラム。
A program that executes a computer that captures an image of a subject on which a pigment is dispersed.
The computer,
Light in a first wavelength band having an absorption rate of the dye equal to or higher than a first predetermined value, an absorption rate of the dye being equal to or lower than the first predetermined value, and an absorption rate of blood being equal to or higher than a second predetermined value An irradiation unit that irradiates the subject with light of the second wavelength band of
An imaging unit that images each of the light in the first wavelength band of the return light from the subject and the light in the second wavelength band of the return light from the subject;
A program that generates a first image of light in the first wavelength band captured by the imaging unit and functions as an image generation unit that generates a second image of light in the second wavelength band captured by the imaging unit.
JP2008311319A 2008-12-05 2008-12-05 Imaging apparatus and program Active JP5282343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311319A JP5282343B2 (en) 2008-12-05 2008-12-05 Imaging apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311319A JP5282343B2 (en) 2008-12-05 2008-12-05 Imaging apparatus and program

Publications (2)

Publication Number Publication Date
JP2010131265A true JP2010131265A (en) 2010-06-17
JP5282343B2 JP5282343B2 (en) 2013-09-04

Family

ID=42343211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311319A Active JP5282343B2 (en) 2008-12-05 2008-12-05 Imaging apparatus and program

Country Status (1)

Country Link
JP (1) JP5282343B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102727162A (en) * 2011-03-31 2012-10-17 富士胶片株式会社 Electronic endoscope and electronic endoscope system
WO2015145814A1 (en) * 2014-03-28 2015-10-01 オリンパス株式会社 In vivo observation system
EP3081144A1 (en) 2015-04-13 2016-10-19 Fujifilm Corporation Light source unit for endoscope and endoscopy system
WO2017216883A1 (en) * 2016-06-14 2017-12-21 オリンパス株式会社 Endoscope device
WO2017216878A1 (en) * 2016-06-14 2017-12-21 オリンパス株式会社 Endoscope device
WO2018105020A1 (en) * 2016-12-05 2018-06-14 オリンパス株式会社 Endoscope device
JP2021509831A (en) * 2017-12-28 2021-04-08 エシコン エルエルシーEthicon LLC Determining Backscattered Light Characteristics Using Laser Light and Red-Green-Blue Coloring
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11601371B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11648022B2 (en) 2017-10-30 2023-05-16 Cilag Gmbh International Surgical instrument systems comprising battery arrangements
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11969142B2 (en) 2018-12-04 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224635A (en) * 1988-11-02 1990-09-06 Olympus Optical Co Ltd Endoscope device
JPH0360628A (en) * 1989-07-28 1991-03-15 Olympus Optical Co Ltd Externally fitting tv camera for endoscope
JP2001170009A (en) * 1999-12-20 2001-06-26 Olympus Optical Co Ltd Subject observing instrument
JP2002000560A (en) * 2000-06-16 2002-01-08 Matsushita Electric Ind Co Ltd Photographing device
JP2002095635A (en) * 2000-07-21 2002-04-02 Olympus Optical Co Ltd Endoscope system
JP2004181096A (en) * 2002-12-05 2004-07-02 Olympus Corp Method for processing image
JP2006261861A (en) * 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd Imaging apparatus
JP2007097649A (en) * 2005-09-30 2007-04-19 Olympus Medical Systems Corp Endoscope apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224635A (en) * 1988-11-02 1990-09-06 Olympus Optical Co Ltd Endoscope device
JPH0360628A (en) * 1989-07-28 1991-03-15 Olympus Optical Co Ltd Externally fitting tv camera for endoscope
JP2001170009A (en) * 1999-12-20 2001-06-26 Olympus Optical Co Ltd Subject observing instrument
JP2002000560A (en) * 2000-06-16 2002-01-08 Matsushita Electric Ind Co Ltd Photographing device
JP2002095635A (en) * 2000-07-21 2002-04-02 Olympus Optical Co Ltd Endoscope system
JP2004181096A (en) * 2002-12-05 2004-07-02 Olympus Corp Method for processing image
JP2006261861A (en) * 2005-03-15 2006-09-28 Fuji Photo Film Co Ltd Imaging apparatus
JP2007097649A (en) * 2005-09-30 2007-04-19 Olympus Medical Systems Corp Endoscope apparatus

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102727162B (en) * 2011-03-31 2015-04-29 富士胶片株式会社 Electronic endoscope and electronic endoscope system
CN102727162A (en) * 2011-03-31 2012-10-17 富士胶片株式会社 Electronic endoscope and electronic endoscope system
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
WO2015145814A1 (en) * 2014-03-28 2015-10-01 オリンパス株式会社 In vivo observation system
JP5905170B2 (en) * 2014-03-28 2016-04-20 オリンパス株式会社 Living body observation system
CN105813538A (en) * 2014-03-28 2016-07-27 奥林巴斯株式会社 In vivo observation system
JPWO2015145814A1 (en) * 2014-03-28 2017-04-13 オリンパス株式会社 Living body observation system
EP3066974A4 (en) * 2014-03-28 2017-09-06 Olympus Corporation In vivo observation system
US9949624B2 (en) 2014-03-28 2018-04-24 Olympus Corporation Living body observation system with contrast enhancement processing
US10143365B2 (en) 2015-04-13 2018-12-04 Fujifilm Corporation Light source unit for endoscope and endoscopy system
EP3081144A1 (en) 2015-04-13 2016-10-19 Fujifilm Corporation Light source unit for endoscope and endoscopy system
JP2016198369A (en) * 2015-04-13 2016-12-01 富士フイルム株式会社 Endoscope light source device and endoscope system
US11399706B2 (en) 2016-06-14 2022-08-02 Olympus Corporation Endoscope apparatus for switching between one-substance observation mode and two-substance observation mode based on input of selection of desired observation mode
JPWO2017216883A1 (en) * 2016-06-14 2019-04-04 オリンパス株式会社 Endoscope device
JPWO2017216878A1 (en) * 2016-06-14 2019-04-11 オリンパス株式会社 Endoscope device
WO2017216878A1 (en) * 2016-06-14 2017-12-21 オリンパス株式会社 Endoscope device
WO2017216883A1 (en) * 2016-06-14 2017-12-21 オリンパス株式会社 Endoscope device
WO2018105020A1 (en) * 2016-12-05 2018-06-14 オリンパス株式会社 Endoscope device
US10863936B2 (en) 2016-12-05 2020-12-15 Olympus Corporation Endoscope apparatus
US11819231B2 (en) 2017-10-30 2023-11-21 Cilag Gmbh International Adaptive control programs for a surgical system comprising more than one type of cartridge
US11925373B2 (en) 2017-10-30 2024-03-12 Cilag Gmbh International Surgical suturing instrument comprising a non-circular needle
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11793537B2 (en) 2017-10-30 2023-10-24 Cilag Gmbh International Surgical instrument comprising an adaptive electrical system
US11759224B2 (en) 2017-10-30 2023-09-19 Cilag Gmbh International Surgical instrument systems comprising handle arrangements
US11648022B2 (en) 2017-10-30 2023-05-16 Cilag Gmbh International Surgical instrument systems comprising battery arrangements
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11696778B2 (en) 2017-10-30 2023-07-11 Cilag Gmbh International Surgical dissectors configured to apply mechanical and electrical energy
US11918302B2 (en) 2017-12-28 2024-03-05 Cilag Gmbh International Sterile field interactive control displays
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11712303B2 (en) 2017-12-28 2023-08-01 Cilag Gmbh International Surgical instrument comprising a control circuit
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
JP7234238B2 (en) 2017-12-28 2023-03-07 エシコン エルエルシー Characterization of backscattered light using laser light and red-green-blue coloration
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11601371B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11864845B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Sterile field interactive control displays
JP2021509831A (en) * 2017-12-28 2021-04-08 エシコン エルエルシーEthicon LLC Determining Backscattered Light Characteristics Using Laser Light and Red-Green-Blue Coloring
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11844545B2 (en) 2018-03-08 2023-12-19 Cilag Gmbh International Calcified vessel identification
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11678927B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Detection of large vessels during parenchymal dissection using a smart blade
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11969216B2 (en) 2018-11-06 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11969142B2 (en) 2018-12-04 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge

Also Published As

Publication number Publication date
JP5282343B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5282343B2 (en) Imaging apparatus and program
JP5502812B2 (en) Biological information acquisition system and method of operating biological information acquisition system
JP5274591B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP5496852B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP5468845B2 (en) Medical equipment
JP6505792B2 (en) LIGHT SOURCE DEVICE FOR ENDOSCOPE AND ENDOSCOPE SYSTEM
JP5634755B2 (en) Electronic endoscope system, processor device for electronic endoscope, and method for operating electronic endoscope system
JP5329593B2 (en) Biological information acquisition system and method of operating biological information acquisition system
JP6581984B2 (en) Endoscope system
EP2057935B1 (en) Image capturing system, image capturing method, and program
JP2012016545A (en) Endoscope apparatus
JP2008173290A (en) Fluorescence observation apparatus and method
JP2016049370A (en) Electronic endoscope system
JP7328432B2 (en) medical control device, medical observation system, control device and observation system
JP2007075445A (en) Image pickup system
JP5539840B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP2010094153A (en) Electron endoscopic system and observation image forming method
JP2009142415A (en) Endoscopic system
JP2012081048A (en) Electronic endoscope system, electronic endoscope, and excitation light irradiation method
JP2010094152A (en) Electron endoscopic system
JP5570352B2 (en) Imaging device
JP6277068B2 (en) Endoscope light source device and endoscope system
JP5525991B2 (en) Electronic endoscope system, processor device for electronic endoscope system, and method for operating electronic endoscope system
JP5483522B2 (en) Image acquisition device
JP6095531B2 (en) Imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5282343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250