JP2002090191A - Flow measuring device - Google Patents

Flow measuring device

Info

Publication number
JP2002090191A
JP2002090191A JP2000276006A JP2000276006A JP2002090191A JP 2002090191 A JP2002090191 A JP 2002090191A JP 2000276006 A JP2000276006 A JP 2000276006A JP 2000276006 A JP2000276006 A JP 2000276006A JP 2002090191 A JP2002090191 A JP 2002090191A
Authority
JP
Japan
Prior art keywords
electromotive force
measuring
flow
magnetic field
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000276006A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsuda
利彦 松田
Motohiko Matsukuma
元彦 松隈
Kazushi Kasahara
一志 笠原
Masashi Yamaguchi
雅司 山口
Takashi Ebara
高志 江原
Yasumasa Fukami
泰正 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000276006A priority Critical patent/JP2002090191A/en
Priority to US09/904,545 priority patent/US6435036B1/en
Publication of JP2002090191A publication Critical patent/JP2002090191A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost and highly accurate flow measuring device having a wide measuring range and easily applicable to a wide range of flow conditions. SOLUTION: The flow measuring device comprises a vortex generator 2, a pair of electromotive force measuring electrodes 4a and 4b provided at a downstream side of the vortex generator 2 for detecting the change of an induced electromotive force generated by the change of magnetic field when a Karman vortex 3 passes in the magnetic field, a magnetic field generating device 8 for generating the magnetic field, a detecting circuit 5 electrically connected with the pair of electromotive force measuring electrodes 4a and 4b for detecting the induced electromotive force to calculate a flow rate of fluid, and a reference potential measuring electrodes 6a and 6b each provided at both upstream and downstream sides of the pair of electromotive force measuring electrodes 4a and 4b and electrically connected with the detecting circuit 5 for allowing detection of the potential at each location, wherein uniform projections an recesses are provided on the inner wall of a measuring tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定管内を流れる
気体や液体(以下、流体)の流量を測定する流量測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a gas or a liquid (hereinafter referred to as "fluid") flowing in a measuring tube.

【0002】[0002]

【従来の技術】従来、測定管内を流れる流体の流量を測
定する流量測定装置としてカルマン渦流量測定装置がよ
く知られている。このカルマン渦流量測定装置は、例え
ば特開昭60−40914号公報に記載されているよう
に、流動する流体中にカルマン渦を発生させ、このカル
マン渦の発生数(以下、周波数)をカウントし、この周
波数から流量を算出するものである。これはカルマン渦
の周波数が流量に比例するという現象を利用したもので
ある。このためカルマン渦流量測定装置はカルマン渦の
周波数をカウントしなければならないが、従来は特開昭
60−40914号公報に記載されているように、超音
波や振動等を用いて周波数を検知している。カルマン渦
が流下するとき、これに向けて入射された超音波や振動
等が周波数や位相に変化を生じさせることを利用したも
のである。
2. Description of the Related Art Conventionally, a Karman vortex flow rate measuring device is well known as a flow rate measuring device for measuring a flow rate of a fluid flowing in a measuring pipe. This Karman vortex flow rate measuring device generates Karman vortices in a flowing fluid and counts the number of generated Karman vortices (hereinafter referred to as frequency) as described in, for example, Japanese Patent Application Laid-Open No. 60-40914. The flow rate is calculated from the frequency. This utilizes the phenomenon that the frequency of the Karman vortex is proportional to the flow rate. For this reason, the Karman vortex flow rate measurement device must count the frequency of Karman vortices. However, conventionally, as described in Japanese Patent Application Laid-Open No. 60-40914, the frequency is detected using ultrasonic waves or vibration. ing. When the Karman vortex flows down, it utilizes the fact that ultrasonic waves, vibrations, and the like incident thereon cause changes in frequency and phase.

【0003】しかし、超音波や振動等の変化を検知する
には、管路自体の大きさはそれほどでもないのに、大型
で複雑、且つ高価な検知装置が必要になるという問題を
有していた。しかも、これだけ高価な検知装置を装備し
ても、流量の精度は一次的にはカルマン渦の発生メカニ
ズムに依存し、温度やその他の外乱によってカルマン渦
の発生に影響が出ると、直ちに測定精度が悪化するもの
であった。
However, in order to detect changes in ultrasonic waves, vibrations, and the like, there is a problem that a large, complicated, and expensive detecting device is required, although the size of the conduit itself is not so large. Was. Moreover, even with such expensive detectors, the accuracy of the flow rate depends primarily on the Karman vortex generation mechanism. It was worse.

【0004】そこで、このような問題を解決するため、
例えば特開平5−172598号公報で開示されたよう
に、磁界を用いてカルマン渦の周波数を検知することが
提案されている。
Therefore, in order to solve such a problem,
For example, as disclosed in JP-A-5-172598, it has been proposed to detect the frequency of Karman vortices using a magnetic field.

【0005】そこで、このような従来の流量測定装置に
ついて説明する。図2は従来の流量測定装置の構成を示
す断面図である。
Therefore, such a conventional flow measuring device will be described. FIG. 2 is a cross-sectional view showing a configuration of a conventional flow measurement device.

【0006】図2に示すように、1は導電性を有する流
体を流す測定管、2は測定管1内に設けられた渦発生体
である。3は渦発生体2によって発生するカルマン渦、
4a,4bは起電力測定用電極である。流れの中に置か
れた渦発生体2の下流側には、渦発生体2の代表寸法に
比例した周波数で、交互に回転方向が反転する一対のカ
ルマン渦列が生成される。起電力測定用電極4bは渦発
生体2の下流側に設けられるが、起電力測定用電極4a
は起電力測定用電極4bの対極として起電力測定用電極
4bの上流側、そして同時に渦発生体2よりは下流に設
けられる。ただ、図2に記載された起電力測定用電極4
aは渦発生体2と一体となっている。
As shown in FIG. 2, reference numeral 1 denotes a measuring tube through which a fluid having conductivity flows, and 2 denotes a vortex generator provided in the measuring tube 1. 3 is a Karman vortex generated by the vortex generator 2,
4a and 4b are electromotive force measuring electrodes. On the downstream side of the vortex generator 2 placed in the flow, a pair of Karman vortex streets whose rotation directions are alternately reversed are generated at a frequency proportional to the representative dimension of the vortex generator 2. The electromotive force measurement electrode 4b is provided on the downstream side of the vortex generator 2, but the electromotive force measurement electrode 4a
Is provided on the upstream side of the electromotive force measurement electrode 4b as a counter electrode of the electromotive force measurement electrode 4b, and at the same time, on the downstream side of the vortex generator 2. However, the electromotive force measurement electrode 4 shown in FIG.
a is integrated with the vortex generator 2.

【0007】5は起電力測定用電極4a,4bと電気的
に接続され、起電力測定用電極4a,4b間の電圧を検
出して測定管1内を流れる流体の流量を算出するための
検出回路、8は測定管1の周囲に設けられた磁界発生装
置であって、測定管1を挟んで2つの磁石をそれぞれS
極とN極を対向させて配設したものである。そして、磁
界発生装置8は、N極からS極に向かう磁界の向きが渦
発生体2の軸心方向と起電力測定用電極4a,4bに垂
直になるように設けられている。
Reference numeral 5 is electrically connected to the electromotive force measuring electrodes 4a and 4b, and detects the voltage between the electromotive force measuring electrodes 4a and 4b to calculate the flow rate of the fluid flowing through the measuring tube 1. A circuit 8 is a magnetic field generator provided around the measuring tube 1, and two magnets are sandwiched between the measuring tube 1 and the magnets, respectively.
The pole and the N pole are arranged facing each other. The magnetic field generator 8 is provided such that the direction of the magnetic field from the north pole to the south pole is perpendicular to the axial direction of the vortex generator 2 and the electromotive force measuring electrodes 4a and 4b.

【0008】この従来の流量測定装置によれば、渦発生
体2によって生成されたカルマン渦3が流れに乗って流
下していくと、流れの流速に渦の速度分だけ変化が生
じ、これによって磁界発生装置8が加えた磁界に磁束変
化が生じる。この磁束変化が起電力測定用電極4a,4
b間に誘導起電力を発生させるため、これを検出回路5
で検出すれば、電圧変化の回数がカルマン渦3に比例
し、検出回路5で検出される電圧変化の回数をカウント
すれば流量が算出できるものである。
According to the conventional flow rate measuring device, when the Karman vortex 3 generated by the vortex generator 2 flows down along with the flow, the flow velocity of the flow changes by the vortex velocity. Magnetic flux changes in the magnetic field applied by the magnetic field generator 8. This change in magnetic flux is caused by the electromotive force measurement electrodes 4a, 4
b to generate an induced electromotive force between
The number of voltage changes is proportional to the Karman vortex 3, and the flow rate can be calculated by counting the number of voltage changes detected by the detection circuit 5.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の流量測定装置では、流体の導電率が変化し
たり電極の分極の具合で起電力測定用電極4a,4b間
に発生する起電力に変化を生じるし、流れや磁界にそれ
ぞれ外乱が加わると測定する磁界にノイズが加わり、正
確な流量を算出することが難しくなるものであった。と
くに、起電力測定用電極4a,4bに発生する起電力
は、0.数mV〜数mVという低電圧のため、入力イン
ピーダンスを数MΩと高く設定しなければならず、これ
により僅かなノイズでも拾ってしまうため外乱の影響は
大きく、測定条件が変化すれば測定値も変わり、正確な
流量検知が困難なものであった。しかも、低導電率の流
体は、もともと誘導起電力が低く信号レベルが低く正確
な流量検知が困難であった。
However, in the above-mentioned conventional flow rate measuring device, the electromotive force generated between the electromotive force measuring electrodes 4a and 4b due to a change in the conductivity of the fluid or the degree of polarization of the electrodes. When a disturbance is applied to the flow or the magnetic field, noise is added to the magnetic field to be measured, and it is difficult to calculate an accurate flow rate. In particular, the electromotive force generated at the electromotive force measuring electrodes 4a and 4b is equal to 0. Since the voltage is as low as several mV to several mV, the input impedance must be set as high as several MΩ, and even a small amount of noise is picked up. Instead, it was difficult to accurately detect the flow rate. In addition, a fluid having a low conductivity originally has a low induced electromotive force and a low signal level, which makes it difficult to accurately detect a flow rate.

【0010】そして、測定管内の流れが層流である場
合、管路内の速度分布は管の中心を頂点とする放物線で
あるから、上記のような従来の流量測定装置では、起電
力測定用電極4a,4bの配置にわずかなずれが生じて
も、誤差を生じ正確な流量検知が困難となる。そのう
え、流れを表すパラメータであるレイノルズ数Re=U
L/υ(U:断面平均速度,L:代表長さ,υ:動粘性
係数)は流速が減少するにつれて小さくなって、流れは
乱流から層流に遷移するが、この遷移するレイノルズ数
は管路内壁の状態、例えば粗さや流入口の形状により変
化する。従って、層流より乱流の流れの中で測定するの
が望ましいが、測定に適した流量の範囲から測定流量が
変化すると、思わぬ誤差が入り、周波数の検知精度が低
くなり、測定精度が低下する。
When the flow in the measurement pipe is laminar, the velocity distribution in the pipe is a parabola having the center of the pipe as a vertex. Even if the arrangement of the electrodes 4a and 4b is slightly displaced, an error occurs and it is difficult to detect the flow rate accurately. In addition, the Reynolds number Re = U which is a parameter representing the flow
L / υ (U: mean sectional velocity, L: representative length, υ: kinematic viscosity) decreases as the flow velocity decreases, and the flow transitions from turbulent flow to laminar flow. It changes depending on the state of the inner wall of the pipe, for example, the roughness and the shape of the inflow port. Therefore, it is desirable to perform measurement in a turbulent flow rather than a laminar flow.However, if the measurement flow rate changes from the flow rate range suitable for measurement, an unexpected error occurs, the frequency detection accuracy decreases, and the measurement accuracy decreases. descend.

【0011】また、層流領域においては、カルマン渦の
発生が不安定であり、カルマン渦の発生周波数と流量の
比例関係が安定していないため、本来的に測定精度が低
くなる。
In the laminar flow region, the generation of Karman vortices is unstable, and the proportionality between the frequency of occurrence of Karman vortices and the flow rate is not stable, so that the measurement accuracy is inherently low.

【0012】このように、管路内壁の粗さ状態が層流か
ら乱流へ、乱流から層流への遷移に大きく影響し、これ
により測定可能な範囲が変動し、測定精度自体もこれに
よって大きな影響を受ける。しかし、従来の流量測定装
置においては、測定管路内壁の状態がカルマン渦測定に
与える影響を認識しておらず、むしろ流路抵抗を低減す
るために非常に滑らかな壁面にすることを行ってきた。
このため、層流から乱流に遷移するレイノルズ数は非常
に高くなり、精度良く測定できる流量の下限値が高くな
り、測定範囲が非常に狭くなるという問題があった。
As described above, the roughness state of the inner wall of the pipe greatly affects the transition from laminar flow to turbulent flow and from turbulent flow to laminar flow, thereby changing the measurable range and the measurement accuracy itself. Greatly affected by However, in the conventional flow measuring device, the influence of the condition of the inner wall of the measuring pipe on the Karman vortex measurement is not recognized, but rather, a very smooth wall is used to reduce the flow path resistance. Was.
For this reason, there is a problem that the Reynolds number at which transition from laminar flow to turbulent flow becomes very high, the lower limit of the flow rate that can be measured with high accuracy becomes high, and the measurement range becomes very narrow.

【0013】また、磁界発生装置として永久磁石を用い
ている場合、磁石が経時変化を起こし性能低下するし、
電極に発生する分極が誘導起電力の低下をもたらし、こ
れによって信号レベルが低下して、正確な流量検知が困
難になるものであった。
Further, when a permanent magnet is used as the magnetic field generator, the magnet may change with time and the performance may deteriorate.
The polarization generated in the electrodes causes a reduction in the induced electromotive force, which lowers the signal level and makes accurate flow rate detection difficult.

【0014】このように、従来の流量測定装置は測定範
囲が狭くなるもので、測定する流量が大きく変化するよ
うな場合、測定誤差を生じやすく、またさらなる精度を
望むと他の流量測定装置との組合せを必要とし、高コス
トになるという問題を有するものであった。また、外乱
を拾いやすいという問題を有すものでもあった。
As described above, the conventional flow rate measuring device has a narrow measuring range, and when the flow rate to be measured greatly changes, a measurement error is likely to occur. And the cost is high. In addition, there is a problem that disturbance is easily picked up.

【0015】そこで、このような従来の問題を解決する
ために本発明は、広い測定範囲をもち、耐ノイズ性に優
れ、低コストで、高精度の流量測定装置を提供すること
を目的とする。
Therefore, in order to solve such a conventional problem, an object of the present invention is to provide a low-cost, high-precision flow measuring device having a wide measuring range, excellent noise resistance, and low cost. .

【0016】[0016]

【課題を解決するための手段】このような問題を解決す
るために本発明の流量測定装置は、測定管の内壁面に均
一な凹凸が設けられたことを特徴とする。
In order to solve such a problem, a flow measuring device according to the present invention is characterized in that a uniform unevenness is provided on an inner wall surface of a measuring tube.

【0017】これにより、広い測定範囲をもち、耐ノイ
ズ性に優れ、低コストで、高精度にすることができる。
As a result, it is possible to provide a wide measuring range, excellent noise resistance, low cost, and high accuracy.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に記載の発明
は、導電性をもつ流体が流れる測定管内に設けられ、流
体にカルマン渦を発生させる渦発生体と、渦発生体より
下流側に設けられ、カルマン渦が磁界内を通過するとき
生じる磁界変化によって発生する誘導起電力の変化を検
出する一対の起電力測定用電極と、磁界を発生するため
の磁界発生装置と、一対の起電力測定用電極と電気的に
接続され、誘導起電力を検出して流体の流量を算出する
検出回路と、一対の起電力測定用電極の上流側と下流側
に検出回路と電気的に接続されてそれぞれの位置の電位
を検出できる基準電極が1つずつ設けられた流量測定装
置であって、測定管の内壁面に均一な凹凸が設けられた
ことを特徴とする流量測定装置であるから、均一な凹凸
によりカルマン渦を安定的に発生させることができ、基
準電極でノイズ成分を消去するため耐ノイズ性に優れ、
広い測定範囲で測定可能にすることができ、低コスト、
高精度にすることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An invention according to claim 1 of the present invention is provided in a measuring pipe through which a conductive fluid flows, and generates a Karman vortex in the fluid, and a downstream side of the vortex generator. A pair of electromotive force measuring electrodes for detecting a change in induced electromotive force generated by a magnetic field change generated when the Karman vortex passes through the magnetic field, a magnetic field generator for generating a magnetic field, and a pair of electromotive force A detection circuit electrically connected to the power measurement electrode and detecting the induced electromotive force to calculate the flow rate of the fluid; and a detection circuit electrically connected to the upstream and downstream sides of the pair of electromotive force measurement electrodes. The flow measurement device is provided with one reference electrode capable of detecting the potential at each position, and the flow measurement device is characterized in that uniform unevenness is provided on the inner wall surface of the measurement tube, Karman vortex with uniform unevenness Can be generated in Joteki, good noise immunity for eliminating noise components in the reference electrode,
Measurement can be performed in a wide measurement range, low cost,
High accuracy can be achieved.

【0019】請求項2に記載された発明は、凹凸が前記
測定管の内壁面に装着される別部材に設けられているこ
とを特徴とする請求項1記載の流量測定装置であるか
ら、測定管を複雑化することがなく広い測定範囲で測定
可能にすることができ、製作が容易で、低コストの流量
測定装置をつくることができる。
According to a second aspect of the present invention, the unevenness is provided on a separate member attached to the inner wall surface of the measuring tube, so that the flow rate can be measured. The measurement can be performed in a wide measurement range without complicating the pipe, and it is possible to manufacture a low-cost flow measuring device which is easy to manufacture.

【0020】請求項3に記載された発明は、別部材が導
電性を有すとともに、基準電位測定用電極の一部に接触
するように設けられていることを特徴とする請求項1お
よび2記載の流量測定装置であるから、測定基準電極の
接水面積を大きくとることができ、耐ノイズ性を向上
し、流量を高精度で測定することが可能になる。
According to a third aspect of the present invention, the separate member has conductivity and is provided so as to be in contact with a part of the reference potential measuring electrode. Since the flow rate measuring device is described, the water contact area of the measurement reference electrode can be increased, the noise resistance can be improved, and the flow rate can be measured with high accuracy.

【0021】本発明の請求項4に記載発明は、別部材が
コイルばねであることを特徴とする請求項1〜3記載の
流量測定装置であるから、均一な凹凸を有する部材を低
コストで製作できる。
According to a fourth aspect of the present invention, since the flow rate measuring device according to the first to third aspects is characterized in that the separate member is a coil spring, a member having uniform unevenness can be manufactured at low cost. Can be manufactured.

【0022】本発明の請求項5に記載発明は、コイルば
ねの少なくとも一部には、基準電位測定用電極の直径以
下のピッチが形成され、該ピッチ間に前記基準電位測定
用電極が挿入されて前記コイルばねの密着力により接触
させたことを特徴とする請求項1〜4記載の流量測定装
置であるから、測定基準電極との接触を安定かつ強固に
保つことができるため、高精度の流量測定装置を安定し
て提供できる。
According to a fifth aspect of the present invention, at least a part of the coil spring has a pitch smaller than the diameter of the reference potential measuring electrode, and the reference potential measuring electrode is inserted between the pitches. The flow rate measuring device according to any one of claims 1 to 4, wherein the contact is made by the close contact force of the coil spring, so that the contact with the measurement reference electrode can be stably and firmly maintained. A flow measurement device can be stably provided.

【0023】(実施の形態)以下、本発明の一実施の形
態における流量測定装置について、図1を用いて説明す
る。なお、従来の流量測定装置と同一の部材には同一の
符号を付しており、重複した説明は省略する。図1は本
発明の一実施の形態である流量測定装置の構成を示す断
面図である。
(Embodiment) A flow rate measuring apparatus according to an embodiment of the present invention will be described below with reference to FIG. In addition, the same members as those of the conventional flow rate measuring device are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a sectional view showing a configuration of a flow measuring device according to an embodiment of the present invention.

【0024】図1に示すように、1は測定管、2は流体
中に設けられてカルマン渦を発生する渦発生体、3は渦
発生体2の代表寸法に比例した周波数で交互に回転方向
が反転して生成されるカルマン渦、4a,4bは起電力
測定用電極、5は誘導起電力を検出して流量を算出する
とともに、差動増幅回路をもちノイズ成分の信号を相殺
できる検出回路、6a,6bは基準電位測定用電極、8
は磁界発生装置、9a,9bは測定管1の管路と同一形
状で均一な凹凸を有する部材である。本実施の形態では
低コストで提供できるコイルばねを用いている。
As shown in FIG. 1, 1 is a measuring tube, 2 is a vortex generator which is provided in a fluid and generates Karman vortices, and 3 is a rotating direction alternately at a frequency proportional to a representative dimension of the vortex generator 2. 4a, 4b are electrodes for measuring an electromotive force, 5 is a detection circuit which detects an induced electromotive force and calculates a flow rate, and has a differential amplifier circuit and can cancel a signal of a noise component. , 6a and 6b are reference potential measuring electrodes, 8
Is a magnetic field generator, and 9a and 9b are members having the same shape and uniform asperities as the conduit of the measuring tube 1. In this embodiment, a coil spring that can be provided at low cost is used.

【0025】ところで、カルマン渦3を発生させる鍵と
なる渦発生体2の形状は、本実施の形態においては三角
柱としている。しかし、カルマン渦列が安定して発生で
きる形状であればどのような形状であってもかまわな
い。そして、渦発生体2は三角柱の一側面が流れに垂直
に当たるように向けて測定管1に取り付けられている。
また、渦発生体2の大きさであるが、本実施の形態の流
量測定装置の場合、流量検知範囲を1L/min〜10
L/minに設定するためφ7mmの内径を有す測定管
1を採用しているから、この条件では幅2mm、高さ3
mmの断面二等辺三角形の三角柱で構成される渦発生体
2がもっとも効果的であった。
Incidentally, the shape of the vortex generator 2 which is a key to generate the Karman vortex 3 is a triangular prism in the present embodiment. However, any shape may be used as long as the Karman vortex street can be generated stably. The vortex generator 2 is attached to the measuring tube 1 so that one side of the triangular prism is perpendicular to the flow.
In addition, in the case of the flow rate measuring device of the present embodiment, the flow rate detection range is 1 L / min to 10
In order to set L / min, a measuring tube 1 having an inner diameter of φ7 mm is employed.
The vortex generator 2 composed of a triangular prism having an isosceles triangular cross section of mm was the most effective.

【0026】次に、起電力測定の中心となる起電力測定
用電極4a,4bは、渦発生体2の下流側に渦発生体2
の軸心および流れの方向のいずれに対しても、直交する
ように2本並べて平行に取り付けられている。従って、
起電力測定用電極4aを通る流線を描くと、同時に必ず
起電力測定用電極4bも通る流線となる。この起電力測
定用電極4a,4bを測定管1の両側面から挟むよう
に、磁界発生装置8を構成する永久磁石のN極とS極が
対向して設けられている。誘導起電力の大きさは磁束密
度に比例するため磁界発生装置8の磁束密度を高める必
要があり、1L/min〜10L/minを流量検知範
囲とする本実施の形態では、希土類の永久磁石を採用
し、大きさも渦発生体2幅の1.5倍の幅を持つ磁石と
している。
Next, the electrodes 4a and 4b for measuring the electromotive force, which are the center of the electromotive force measurement, are provided on the downstream side of the vortex generator 2.
Are mounted parallel to each other so as to be orthogonal to both the axis and the direction of flow. Therefore,
When a streamline passing through the electromotive force measurement electrode 4a is drawn, the streamline always passes through the electromotive force measurement electrode 4b. N-poles and S-poles of the permanent magnets constituting the magnetic field generator 8 are provided so as to sandwich the electromotive force measuring electrodes 4a and 4b from both side surfaces of the measuring tube 1. Since the magnitude of the induced electromotive force is proportional to the magnetic flux density, it is necessary to increase the magnetic flux density of the magnetic field generator 8. In the present embodiment in which the flow rate detection range is 1 L / min to 10 L / min, the rare earth permanent magnet is used. A magnet having a width 1.5 times the width of the vortex generator 2 is adopted.

【0027】次に、基準電位測定用電極6a,6bは起
電力測定用電極4a,4bの上流側と下流側のそれぞれ
の電位を測定し、この上流側位置と下流側位置の電位差
を測定するものである。基準電位測定用電極6a,6b
は起電力測定用電極4a,4bと並べて4本平行に配設
される。このとき、基準電位測定用電極6a,6bを通
って描かれる流線は、必ず起電力測定用電極4a,4b
を通るようになる。従って4つの電極は完全に1つの流
れの上流、下流の位置関係を有するようになる。
Next, the reference potential measuring electrodes 6a and 6b measure the respective potentials on the upstream and downstream sides of the electromotive force measuring electrodes 4a and 4b, and measure the potential difference between the upstream position and the downstream position. Things. Reference potential measuring electrodes 6a, 6b
Are arranged in parallel with the electromotive force measuring electrodes 4a and 4b. At this time, the stream lines drawn through the reference potential measuring electrodes 6a, 6b always correspond to the electromotive force measuring electrodes 4a, 4b.
You will pass through. Therefore, the four electrodes completely have a positional relationship upstream and downstream of one flow.

【0028】以上説明したように、本実施の形態では流
量検知範囲を1L/min〜10L/minに設定する
ため、φ7mmの内径を有す測定管1を採用している。
安定してカルマン渦3が発生するためには、測定管1の
内径が流量と重要な関係をもつからである。この内径が
あまりに小さいと、管壁の境界層の影響がカルマン渦列
に及んでしまうし、大きすぎても流速が遅くなりカルマ
ン渦列が発生しなくなる。このように、カルマン渦3が
安定して発生し、カルマン渦3の発生周波数と流量に比
例関係が成り立つのは、測定する流体の流れが乱流の時
であり、このときの条件は次のレイノルズ数で表現する
ことができる。すなわち、適正な流速域でのレイノルズ
数は3,000〜100,000程度の範囲である。し
かし、この適正な流速域でのレイノルズ数は測定管1の
内壁の形状により変化する。とくに限界レイノルズ数
2,320〜レイノルズ数3,000近傍が、層流と乱
流の遷移域であるが、そのレイノルズ数領域において測
定を可能とするためには、渦発生体2上流の内壁面を均
一に粗し、安定して乱流を起こす必要がある。
As described above, in this embodiment, in order to set the flow rate detection range from 1 L / min to 10 L / min, the measuring tube 1 having an inner diameter of 7 mm is employed.
This is because the inner diameter of the measurement tube 1 has an important relationship with the flow rate in order to generate the Karman vortex 3 stably. If the inside diameter is too small, the influence of the boundary layer of the pipe wall affects the Karman vortex street, and if it is too large, the flow velocity becomes slow and the Karman vortex street does not occur. As described above, the Karman vortex 3 is generated stably, and the proportional relationship between the generation frequency of the Karman vortex 3 and the flow rate is established when the flow of the fluid to be measured is a turbulent flow. It can be expressed by Reynolds number. That is, the Reynolds number in an appropriate flow velocity range is in the range of about 3,000 to 100,000. However, the Reynolds number in this appropriate flow velocity region changes depending on the shape of the inner wall of the measurement tube 1. In particular, the vicinity of the critical Reynolds number of 2,320 to Reynolds number 3,000 is the transition region between laminar flow and turbulent flow. To enable measurement in that Reynolds number region, the inner wall surface upstream of the vortex generator 2 must be used. Must be uniformly roughened to generate turbulence stably.

【0029】このような理由から、本実施の形態におい
ては均一な凹凸を与えるため渦発生体2の上流側測定管
1内にコイルばね9aを配設し、下流側にもコイルばね
9bを配設している。コイルばね9a,9bは所定のピ
ッチで巻回されているから、均一な粗さを与えるために
もっとも優れた材料であり、組み立ても、製造もきわめ
て容易で、効果の予測性に優れている。このように測定
管1の内壁面に直接凹凸を形成するのでなく、測定管1
を別部材であるコイルばね9a,9bとするから管路構
成を複雑化することがなく、製造が容易で、低コストに
測定管1内壁面に粗さを与えることができる。
For this reason, in the present embodiment, a coil spring 9a is provided in the measurement tube 1 on the upstream side of the vortex generator 2 and a coil spring 9b is also provided on the downstream side in order to provide uniform unevenness. Has been established. Since the coil springs 9a and 9b are wound at a predetermined pitch, they are the most excellent materials for providing uniform roughness, and are extremely easy to assemble and manufacture, and have excellent predictability of the effect. In this manner, the unevenness is not directly formed on the inner wall surface of the measuring tube 1 but the measuring tube 1
Are formed as coil springs 9a and 9b, which are separate members, without complicating the configuration of the pipeline, facilitating manufacture, and providing roughness to the inner wall surface of the measurement tube 1 at low cost.

【0030】そして、コイルばね9a,9bは導電性材
料から作られており、基準電位測定用電極6a,6bに
接触して設けられている。この接触により基準電位測定
用電極6a,6bの基準電位測定用電極としての能力は
向上する。ここでコイルばね9a,9bのピッチの少な
くとも一部を、基準電位測定用電極6a,6bの直径よ
り短くしておけば、そのピッチ間に基準電位測定用電極
6a,6bを挿入し、ばねの密着力により、安定且つ強
固に接触させることができる。また、コイルばね9a,
9bに密着ばねを用いれば、同じばね長さでも接水面積
を稼ぐことができ効率的である。また、ばねの密着力に
より、基準電位測定用電極6a,6b、コイルばね9
a,9bが変形しないように、基準電位測定用電極6
a,6b、コイルばね9a,9bの材質および線径を基
準電位測定用電極6a,6bと同一にすることが望まし
い。
The coil springs 9a and 9b are made of a conductive material, and are provided in contact with the reference potential measuring electrodes 6a and 6b. This contact improves the performance of the reference potential measuring electrodes 6a and 6b as the reference potential measuring electrodes. If at least a part of the pitch of the coil springs 9a, 9b is shorter than the diameter of the reference potential measuring electrodes 6a, 6b, the reference potential measuring electrodes 6a, 6b are inserted between the pitches, and Due to the adhesion, stable and strong contact can be achieved. Also, the coil springs 9a,
If a close contact spring is used for 9b, the water contact area can be increased even with the same spring length, which is efficient. Further, the reference potential measurement electrodes 6a and 6b, the coil spring 9
a, 9b so that the reference potential measuring electrode 6 is not deformed.
It is desirable that the materials and wire diameters of the coil springs 9a and 9b and the coil springs 9a and 9b be the same as those of the reference potential measuring electrodes 6a and 6b.

【0031】続いて、このような構成を有する本実施の
形態における流量測定装置の動作について説明する。測
定管1に通水した測定対象の流体がコイルばね9aによ
り流れを乱され、乱流となり、この状態で渦発生体2に
より流速に比例したカルマン渦列が安定して発生する。
カルマン渦列が起電力測定用電極4a,4bで囲まれた
部分を通る磁束を横切るとき、磁界変化が発生し、起電
力測定用電極4a,4bに規則的に誘導起電力がパルス
状に発生する。そして、コイルばね9a,9bが接触し
ている基準電位測定用電極6a,6bでこの付近の電位
差が測定されるから、この付近の測定条件(カルマン渦
以外の直流成分や外乱ノイズ成分)を反映した起電力測
定用電極4a,4b間の基準電位差を測定することがで
き、この基準電位差信号を起電力信号と検出回路5内で
相殺することで、容易にノイズ成分やカルマン渦列以外
の信号を消去できる。
Next, the operation of the flow measuring device according to the present embodiment having such a configuration will be described. The fluid to be measured flowing through the measuring tube 1 is disturbed by the coil spring 9a and becomes turbulent. In this state, a Karman vortex street proportional to the flow velocity is stably generated by the vortex generator 2.
When the Karman vortex street crosses the magnetic flux passing through the portion surrounded by the electromotive force measuring electrodes 4a and 4b, a magnetic field change occurs, and the induced electromotive force is regularly generated in the electromotive force measuring electrodes 4a and 4b in a pulse shape. I do. Since the potential difference in the vicinity is measured by the reference potential measurement electrodes 6a and 6b with which the coil springs 9a and 9b are in contact, the measurement conditions (DC components other than Karman vortex and disturbance noise components) are reflected. The reference potential difference between the electromotive force measuring electrodes 4a and 4b can be measured. By canceling the reference potential difference signal and the electromotive force signal in the detection circuit 5, signals other than noise components and Karman vortex streets can be easily obtained. Can be deleted.

【0032】このように、本実施の形態では測定管の内
壁面に均一な凹凸を形成するコイルばね9a,9bを設
けているので、カルマン渦3が安定して発生し、これに
より測定範囲を広げ、耐ノイズ性に優れ、別部材で装着
するので低コストに製造することができる。
As described above, in this embodiment, since the coil springs 9a and 9b for forming uniform irregularities on the inner wall surface of the measuring tube are provided, the Karman vortex 3 is generated stably, thereby increasing the measuring range. It can be manufactured at low cost because it is spread, has excellent noise resistance, and is mounted with a separate member.

【0033】[0033]

【発明の効果】以上説明したように本発明の流量測定装
置は、流体が流れる測定管路内の内壁面に均一な粗さの
凹凸を設け、基準電極を備えているから、均一な凹凸に
よりカルマン渦を安定的に発生させることができ、基準
電極でノイズ成分を消去するため耐ノイズ性に優れ、広
い測定範囲で測定可能にすることができ、低コスト、高
精度にすることができる。
As described above, the flow rate measuring device of the present invention is provided with unevenness of uniform roughness on the inner wall surface in the measuring pipe through which the fluid flows, and is provided with the reference electrode. A Karman vortex can be stably generated, and noise components are eliminated by the reference electrode, so that it has excellent noise resistance, can be measured in a wide measurement range, and can be made low-cost and highly accurate.

【0034】また、本発明の流量測定装置は、凹凸が測
定管の内壁面に装着される別部材に設けられているか
ら、測定管を複雑化することなく、低コストで製造でき
る。
Further, since the unevenness is provided on a separate member mounted on the inner wall surface of the measuring tube, the flow measuring device of the present invention can be manufactured at low cost without complicating the measuring tube.

【0035】本発明の流量測定装置は、別部材が導電性
を有するとともに、基準電位測定用電極の一部に接触す
るように設けられているから、測定基準電極の接水面積
を大きくとることができ、耐ノイズ性を向上し、流量を
高精度で測定することが可能になる。
In the flow rate measuring apparatus of the present invention, the separate member has conductivity and is provided so as to be in contact with a part of the reference potential measuring electrode. This makes it possible to improve the noise resistance and measure the flow rate with high accuracy.

【0036】また、本発明の流量測定装置は、別部材が
コイルばねであるから、均一な凹凸を有する部材を低コ
ストで製造できる。
Further, in the flow rate measuring device of the present invention, since the separate member is a coil spring, a member having uniform unevenness can be manufactured at low cost.

【0037】さらに、本発明の流量測定装置は、コイル
ばねに基準電位測定用電極の直径以下のピッチが形成さ
れ、基準電位測定用電極が挿入されてコイルばねの密着
力により接触させたから、測定基準電極との接触を安定
かつ強固に保つことができるため、高精度の流量測定装
置を安定して実現できる。
Further, in the flow rate measuring device of the present invention, the pitch is formed to be smaller than the diameter of the reference potential measuring electrode in the coil spring, and the reference potential measuring electrode is inserted and brought into contact by the adhesion force of the coil spring. Since the contact with the reference electrode can be kept stable and strong, a high-accuracy flow measurement device can be stably realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である流量測定装置の構
成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a flow measurement device according to an embodiment of the present invention.

【図2】従来の流量測定装置の構成を示す断面図FIG. 2 is a cross-sectional view showing a configuration of a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

1 測定管 2 渦発生体 3 カルマン渦 4a,4b 起電力測定用電極 5 検出回路 6a,6b 基準電位測定用電極 8 磁界発生装置 9a,9b コイルばね DESCRIPTION OF SYMBOLS 1 Measurement tube 2 Vortex generator 3 Karman vortex 4a, 4b Electromotive force measurement electrode 5 Detection circuit 6a, 6b Reference potential measurement electrode 8 Magnetic field generator 9a, 9b Coil spring

フロントページの続き (72)発明者 笠原 一志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 雅司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 江原 高志 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 深見 泰正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (72) Inventor Kazushi Kasahara 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Person Takashi Ehara 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yasumasa Fukami 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】導電性をもつ流体が流れる測定管内に設け
られ、前記流体にカルマン渦を発生させる渦発生体と、 前記渦発生体より下流側に設けられ、前記カルマン渦が
磁界内を通過するとき生じる磁界変化によって発生する
誘導起電力の変化を検出する一対の起電力測定用電極
と、 前記磁界を発生するための磁界発生装置と、 前記一対の起電力測定用電極と電気的に接続され、前記
誘導起電力を検出して前記流体の流量を算出する検出回
路と、 前記一対の起電力測定用電極の上流側と下流側に前記検
出回路と電気的に接続されてそれぞれの位置の電位を検
出できる基準電極が1つずつ設けられた流量測定装置で
あって、 前記測定管の内壁面に均一な凹凸が設けられたことを特
徴とする流量測定装置。
1. A vortex generator which is provided in a measurement tube through which a fluid having conductivity flows and generates a Karman vortex in the fluid; and a vortex generator provided downstream of the vortex generator, wherein the Karman vortex passes through a magnetic field. A pair of electromotive force measurement electrodes for detecting a change in induced electromotive force generated by a magnetic field change occurring when the magnetic field is generated, a magnetic field generator for generating the magnetic field, and electrically connected to the pair of electromotive force measurement electrodes A detection circuit that detects the induced electromotive force and calculates the flow rate of the fluid, and is electrically connected to the detection circuit on the upstream side and the downstream side of the pair of electrodes for measuring the electromotive force. What is claimed is: 1. A flow measuring device provided with one reference electrode capable of detecting a potential, wherein uniform unevenness is provided on an inner wall surface of the measuring tube.
【請求項2】前記凹凸が前記測定管の内壁面に装着され
る別部材に設けられていることを特徴とする請求項1記
載の流量測定装置。
2. The flow measuring device according to claim 1, wherein the unevenness is provided on a separate member mounted on an inner wall surface of the measuring tube.
【請求項3】前記別部材が導電性を有すとともに、前記
基準電位測定用電極の一部に接触するように設けられて
いることを特徴とする請求項1および2記載の流量測定
装置。
3. The flow rate measuring device according to claim 1, wherein the separate member has conductivity and is provided so as to be in contact with a part of the reference potential measuring electrode.
【請求項4】前記別部材がコイルばねであることを特徴
とする請求項1〜3記載の流量測定装置。
4. The flow measuring device according to claim 1, wherein said separate member is a coil spring.
【請求項5】前記コイルばねの少なくとも一部には、前
記基準電位測定用電極の直径以下のピッチが形成され、
該ピッチ間に前記基準電位測定用電極が挿入されて前記
コイルばねの密着力により接触させたことを特徴とする
請求項1〜4記載の流量測定装置。
5. A pitch not exceeding the diameter of the reference potential measuring electrode is formed on at least a part of the coil spring.
5. The flow rate measuring device according to claim 1, wherein the reference potential measuring electrode is inserted between the pitches and brought into contact by the adhesion force of the coil spring.
JP2000276006A 2000-07-17 2000-09-12 Flow measuring device Withdrawn JP2002090191A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000276006A JP2002090191A (en) 2000-09-12 2000-09-12 Flow measuring device
US09/904,545 US6435036B1 (en) 2000-07-17 2001-07-16 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000276006A JP2002090191A (en) 2000-09-12 2000-09-12 Flow measuring device

Publications (1)

Publication Number Publication Date
JP2002090191A true JP2002090191A (en) 2002-03-27

Family

ID=18761542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276006A Withdrawn JP2002090191A (en) 2000-07-17 2000-09-12 Flow measuring device

Country Status (1)

Country Link
JP (1) JP2002090191A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008677A (en) * 2007-06-27 2009-01-15 Asml Holding Nv Improvement of pressure sensitivity of gas gauge using surface roughness of nozzle surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008677A (en) * 2007-06-27 2009-01-15 Asml Holding Nv Improvement of pressure sensitivity of gas gauge using surface roughness of nozzle surface

Similar Documents

Publication Publication Date Title
US3878715A (en) Vortex-type flowmeter
US6435036B1 (en) Vortex flow meter
JP2929158B2 (en) Area type flow meter
US4005604A (en) Non-contact sensor for vortex-type flowmeter
JP3119782B2 (en) Flowmeter
JP2002090191A (en) Flow measuring device
JP3113946B2 (en) Vortex flow meter
US20060144160A1 (en) Inductive flow meter for electrically conductive liquids
CN2839978Y (en) Vortex type electromagnetic flowmeter
JP2000241211A (en) Flow rate measuring apparatus
JP2003065816A (en) Electromagnetic flowmeter
JP2002031551A (en) Flow rate measurement device
JP2002098565A (en) Flow rate measuring device
JP2002071406A (en) Flow measurement apparatus
JP3736139B2 (en) Flow measuring device
JP2002098566A (en) Flow rate measuring device
US5728945A (en) Electromagnetic flowmeter with internally placed, laminar flow supporting, grounding electrodes
JP2001272257A (en) Flow-rate measuring apparatus
RU2811675C1 (en) Ball flow meter for electrically conductive liquid
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
JP2002350201A (en) Flow measuring device
JPS62245922A (en) Karman's vortex street flow meter
JPS62245921A (en) Karman's vortex street flow meter
JPH11281421A (en) Ring vortex flow meter
JP3763225B2 (en) Ion drift type flow meter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091225