JP2002031551A - Flow rate measurement device - Google Patents

Flow rate measurement device

Info

Publication number
JP2002031551A
JP2002031551A JP2000215527A JP2000215527A JP2002031551A JP 2002031551 A JP2002031551 A JP 2002031551A JP 2000215527 A JP2000215527 A JP 2000215527A JP 2000215527 A JP2000215527 A JP 2000215527A JP 2002031551 A JP2002031551 A JP 2002031551A
Authority
JP
Japan
Prior art keywords
flow rate
electromotive force
measurement
measuring
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000215527A
Other languages
Japanese (ja)
Inventor
Kazushi Kasahara
一志 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000215527A priority Critical patent/JP2002031551A/en
Priority to US09/904,545 priority patent/US6435036B1/en
Publication of JP2002031551A publication Critical patent/JP2002031551A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly accurate low-cost flow rate measurement device having a wide measurement range and complying with a wide flow rate condition. SOLUTION: In a measurement tube 1, through which conductive fluid flows, in the flow rate measurement device, a vortex generator 2 generating a Karman vortex 3 in the fluid is provided, while a pair of measurement electrodes 4a and 4b detecting a change in induced electromotive force generated by passage of the Karman vortex 3 through a magnetic field, a magnetic field generating device 8 generating a magnetic field, and a detection circuit 5 electrically connected to a pair of measurement electrodes 4a, 4b and detecting the induced electromotive force for finding a flow rate of the fluid are arranged on the downstream side beyond the vortex generator 2. On the upstream side and the downstream side of a pair of measurement electrodes 4a and 4b, reference potential measurement electrodes 6a and 6b electrically connected to the detection circuit 5 for measuring a potential difference between the upstream side and the downstream side are arranged each.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定管内を流れる
気体や液体(以下、流体)の流量を測定する流量測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of a gas or a liquid (hereinafter referred to as "fluid") flowing in a measuring tube.

【0002】[0002]

【従来の技術】従来、測定管内を流れる流体の流量を測
定する流量測定装置としてカルマン渦流量測定装置がよ
く知られている。このカルマン渦流量測定装置は、例え
ば特開昭60−40914号公報に記載されているよう
に、流動する流体中にカルマン渦を発生させ、このカル
マン渦の発生数(以下、周波数)をカウントし、この周
波数から流量を算出するものである。これはカルマン渦
の周波数が流量に比例するという現象を利用したもので
ある。このためカルマン渦流量測定装置はカルマン渦の
周波数をカウントしなければならないが、従来は特開昭
60−40914号公報に記載されているように、超音
波や振動等を用いて周波数を検知している。カルマン渦
が流下するとき、これに向けて入射された超音波や振動
等が周波数や位相に変化を生じさせることを利用したも
のである。
2. Description of the Related Art Hitherto, a Karman vortex flow rate measuring apparatus has been well known as a flow rate measuring apparatus for measuring a flow rate of a fluid flowing in a measuring pipe. This Karman vortex flow rate measuring device generates Karman vortices in a flowing fluid and counts the number of generated Karman vortices (hereinafter referred to as frequency) as described in, for example, Japanese Patent Application Laid-Open No. 60-40914. The flow rate is calculated from this frequency. This utilizes the phenomenon that the frequency of the Karman vortex is proportional to the flow rate. For this reason, the Karman vortex flow rate measurement device must count the frequency of Karman vortices. However, conventionally, as described in Japanese Patent Application Laid-Open No. 60-40914, the frequency is detected using ultrasonic waves or vibration. ing. When the Karman vortex flows down, it utilizes the fact that ultrasonic waves, vibrations, and the like incident thereon cause a change in frequency and phase.

【0003】しかし、超音波や振動等の変化を検知する
には、管路自体の大きさはそれほどでもないのに、大型
で複雑、且つ高価な検知装置が必要になるという問題を
有していた。しかも、これだけ高価な検知装置を装備し
ても、流量の精度は一次的にはカルマン渦の発生メカニ
ズムに依存し、温度やその他の外乱によってカルマン渦
の発生に影響が出ると、直ちに測定精度が悪化するもの
であった。
However, in order to detect changes in ultrasonic waves, vibrations, and the like, there is a problem that a large, complicated, and expensive detecting device is required, although the size of the conduit itself is not so large. Was. Moreover, even with such expensive detectors, the accuracy of the flow rate depends primarily on the Karman vortex generation mechanism, and if the temperature or other disturbances affect the Karman vortex generation, the measurement accuracy is immediately increased. It was worse.

【0004】そこで、このような問題を解決するため、
例えば特開平5−172598号公報で開示されたよう
に、磁界を用いてカルマン渦の周波数を検知することが
提案されている。
Therefore, in order to solve such a problem,
For example, as disclosed in JP-A-5-172598, it has been proposed to detect the frequency of Karman vortices using a magnetic field.

【0005】そこで、このような従来の流量測定装置に
ついて説明する。図2は従来の流量測定装置の構成を示
す断面図である。
Therefore, such a conventional flow measuring device will be described. FIG. 2 is a cross-sectional view showing a configuration of a conventional flow measurement device.

【0006】図2に示すように、1は導電性を有する流
体を流す測定管、2は測定管1内に設けられた渦発生体
である。3は渦発生体2によって発生するカルマン渦、
4a,4bは測定電極である。流れの中に置かれた渦発
生体2の下流側には、渦発生体2の代表寸法に比例した
周波数で、交互に回転方向が反転する一対のカルマン渦
列が生成される。測定電極4bは渦発生体2の下流側に
設けられるが、測定電極4aは測定電極4bの対極とし
て測定電極4bの上流側、そして同時に渦発生体2より
は下流に設けられる。ただ、図2に記載された測定電極
4aは渦発生体2と一体となっている。
As shown in FIG. 2, reference numeral 1 denotes a measuring tube through which a fluid having conductivity flows, and 2 denotes a vortex generator provided in the measuring tube 1. 3 is a Karman vortex generated by the vortex generator 2,
4a and 4b are measurement electrodes. On the downstream side of the vortex generator 2 placed in the flow, a pair of Karman vortex streets whose rotation directions are alternately reversed are generated at a frequency proportional to the representative dimension of the vortex generator 2. The measurement electrode 4b is provided on the downstream side of the vortex generator 2, while the measurement electrode 4a is provided on the upstream side of the measurement electrode 4b as a counter electrode of the measurement electrode 4b, and at the same time, on the downstream side of the vortex generator 2. However, the measurement electrode 4 a shown in FIG. 2 is integrated with the vortex generator 2.

【0007】5は測定電極4a,4bと電気的に接続さ
れ、測定電極4a,4b間の電圧を検出して測定管1内
を流れる流体の流量を算出するための検出回路、8は測
定管1の周囲に設けられた磁界発生装置であって、測定
管1を挟んで2つの磁石をそれぞれS極とN極を対向さ
せて配設したものである。そして、磁界発生装置8は、
N極からS極に向かう磁界の向きが渦発生体2の軸心方
向と測定電極4a,4bに垂直になるように設けられて
いる。
A detection circuit 5 is electrically connected to the measurement electrodes 4a and 4b, detects a voltage between the measurement electrodes 4a and 4b, and calculates a flow rate of a fluid flowing in the measurement tube 1. Reference numeral 8 denotes a measurement tube. 1 is a magnetic field generating device provided around 1, wherein two magnets are disposed with a S-pole and an N-pole facing each other with a measurement tube 1 interposed therebetween. And the magnetic field generator 8
The magnetic field is provided so that the direction of the magnetic field from the north pole to the south pole is perpendicular to the axial direction of the vortex generator 2 and the measurement electrodes 4a and 4b.

【0008】この従来の流量測定装置によれば、渦発生
体2によって生成されたカルマン渦3が流れに乗って流
下していくと、流れの流速に渦の速度分だけ変化が生
じ、これによって磁界発生装置8が加えた磁界に磁束変
化が生じる。この磁束変化が測定電極4a,4b間に誘
導起電力を発生させるため、これを検出回路5で検出す
れば、電圧変化の回数がカルマン渦3に比例し、検出回
路5で検出される電圧変化の回数をカウントすれば流量
が算出できるものである。
According to the conventional flow rate measuring device, when the Karman vortex 3 generated by the vortex generator 2 flows down along with the flow, the flow velocity of the flow changes by the vortex velocity. Magnetic flux changes in the magnetic field applied by the magnetic field generator 8. Since this magnetic flux change causes an induced electromotive force between the measurement electrodes 4a and 4b, if this is detected by the detection circuit 5, the number of voltage changes is proportional to the Karman vortex 3, and the voltage change detected by the detection circuit 5 By counting the number of times, the flow rate can be calculated.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の流量測定装置では、流体の導電率が変化す
ると測定電極4a,4b間に発生する起電力に変化を生
じるし、流れや磁界にそれぞれ外乱が加わると測定する
磁界にノイズが加わり、正確な流量を算出することが難
しくなるものであった。そして、低導電率の流体は、も
ともと誘導起電力が低く信号レベルが低いため、正確な
流量検知が困難なものであった。
However, in the above-mentioned conventional flow rate measuring device, when the conductivity of the fluid changes, the electromotive force generated between the measuring electrodes 4a and 4b changes, and the flow and the magnetic field change. When a disturbance is applied, noise is added to the magnetic field to be measured, and it is difficult to calculate an accurate flow rate. The low conductivity fluid originally has low induced electromotive force and low signal level, so that accurate flow rate detection has been difficult.

【0010】また、測定に最適な流量から流量が変化す
ると、流量の変化と比例してカルマン渦3の周波数が変
化せず、比例関係が崩れて検知精度が低下したり、流量
増大に伴って流れが乱れ、この乱れがノイズを増加させ
るので測定精度が低下する。
When the flow rate changes from the optimum flow rate for the measurement, the frequency of the Karman vortex 3 does not change in proportion to the change in the flow rate, and the proportional relationship is lost, so that the detection accuracy is reduced or the flow rate is increased. The flow is disturbed, and this disturbance increases the noise, thus reducing the measurement accuracy.

【0011】さらに、磁界発生装置8として永久磁石を
用いている場合、磁石が経時変化を起こし性能低下する
し、電極に発生する分極が誘導起電力の低下をもたら
し、これによって信号レベルが低下して、正確な流量検
知が困難になるものであった。
Further, when a permanent magnet is used as the magnetic field generator 8, the performance of the magnet deteriorates due to aging, and the polarization generated at the electrode causes a reduction in the induced electromotive force, thereby lowering the signal level. Therefore, accurate flow rate detection becomes difficult.

【0012】このように、従来の流量測定装置は測定条
件がさまざまに変化した場合、その変化を検出して対応
することが必要であるが、さまざまの測定条件にすべて
対応するのは難しく、また対策用の機器、例えばノイズ
対策を行うためのフィルター回路等を組み込むと、装置
全体の構造が複雑になったり、高コストになったりし、
二次的な問題も生じるものであった。
As described above, the conventional flow rate measuring device needs to detect and respond to various changes in the measurement conditions, but it is difficult to respond to all of the various measurement conditions. If a countermeasure device such as a filter circuit for noise suppression is incorporated, the overall structure of the device becomes complicated or the cost increases,
Secondary problems also occurred.

【0013】そこで、このような従来の問題を解決する
ために本発明は、広い測定範囲をもち、幅広い流量条件
に対応でき、低コストで、高精度の流量測定装置を提供
することを目的とする。
Accordingly, in order to solve such a conventional problem, an object of the present invention is to provide a low-cost, high-precision flow measuring device which has a wide measuring range, can cope with a wide range of flow conditions, and has a low cost. I do.

【0014】[0014]

【課題を解決するための手段】このような問題を解決す
るために本発明の流量測定装置は、一対の起電力測定用
電極の上流側と下流側には、検出回路と電気的に接続さ
れてこの上流側と下流側の電位差を測定するための基準
電位測定用電極がそれぞれ1つ設けられ、検出回路が前
記誘導起電力から電位差を引いて流量を算出することを
特徴とする。
In order to solve such a problem, a flow rate measuring apparatus according to the present invention is electrically connected to a detection circuit on the upstream and downstream sides of a pair of electrodes for measuring electromotive force. One reference potential measuring electrode for measuring the potential difference between the upstream side and the downstream side is provided, and the detection circuit calculates the flow rate by subtracting the potential difference from the induced electromotive force.

【0015】これにより、広い測定範囲をもち、幅広い
流量条件に対応でき、低コストで、高精度の流量測定を
することができる。
[0015] Thus, a wide measuring range can be met, a wide range of flow conditions can be met, and low-cost, high-precision flow measurement can be performed.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、導電性をもつ流体が流れる測定管内に設けられ、流
体にカルマン渦を発生させる渦発生体と、渦発生体より
下流側に設けられ、カルマン渦が磁界内を通過するとき
生じる磁界変化によって発生する誘導起電力の変化を検
出する一対の起電力測定用電極と、磁界を発生するため
の磁界発生装置と、一対の起電力測定用電極と電気的に
接続され、誘導起電力を検出して流体の流量を算出する
検出回路を備えた流量測定装置であって、一対の起電力
測定用電極の上流側と下流側には、検出回路と電気的に
接続されてこの上流側と下流側の電位差を測定するため
の基準電位測定用電極がそれぞれ1つ設けられ、検出回
路が誘導起電力から電位差を引いて流量を算出すること
を特徴とする流量測定装置であるから、測定条件が変化
するようなことがあっても変化分を相殺して測定できる
ため広い測定範囲で測定することが可能となり、広範囲
の流量域の流量測定が行え、ノイズを減らす機器が不要
となるため低コストで、高精度の流量測定をすることが
できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An invention according to claim 1 of the present invention is provided in a measuring pipe through which a conductive fluid flows, and generates a Karman vortex in the fluid, and a downstream side of the vortex generator. A pair of electromotive force measuring electrodes for detecting a change in induced electromotive force generated by a magnetic field change generated when the Karman vortex passes through the magnetic field, a magnetic field generator for generating a magnetic field, and a pair of electromotive force A flow measurement device that is electrically connected to a power measurement electrode and includes a detection circuit that detects an induced electromotive force and calculates a flow rate of a fluid, and includes an upstream side and a downstream side of a pair of electromotive force measurement electrodes. Is provided with one reference potential measurement electrode electrically connected to the detection circuit for measuring the potential difference between the upstream side and the downstream side, and the detection circuit calculates the flow rate by subtracting the potential difference from the induced electromotive force. Flow rate measurement Because it is a device, even if the measurement conditions change, the change can be canceled out and the measurement can be performed.Therefore, measurement can be performed in a wide measurement range. Since no equipment is required, high-precision flow measurement can be performed at low cost.

【0017】本発明の請求項2に記載の発明は、基準電
位測定用電極の直径が渦発生体幅の1/2以下であるこ
とを特徴とする請求項1記載の流量測定装置であるか
ら、基準電位測定用電極の直径が渦発生体の代表寸法の
1/2以下となり、レイノルズ数でみたとき1/2以下
となって、層流に近づき、これによってカルマン渦列の
流れをほとんど乱さず、しかも基準電位測定用電極自体
が発生する渦度成分は小さく、これによる流速変化は小
さく磁束変化は生じないため、高精度で流量測定をする
ことが可能になる。
According to a second aspect of the present invention, there is provided the flow rate measuring apparatus according to the first aspect, wherein the diameter of the reference potential measuring electrode is not more than 1/2 of the vortex generator width. The diameter of the reference potential measuring electrode is less than 1/2 of the representative dimension of the vortex generator, and is less than 1/2 in Reynolds number, approaching laminar flow, which almost disturbs the flow of Karman vortex street. In addition, since the vorticity component generated by the reference potential measuring electrode itself is small, and the change in flow velocity due to this is small and no change in magnetic flux occurs, the flow rate can be measured with high accuracy.

【0018】本発明の請求項3に記載の発明は、起電力
測定用電極の直径が渦発生体幅の1/2以下であること
を特徴とする請求項1または2に記載された流量測定装
置であるから、起電力測定用電極の直径を渦発生体の代
表寸法の1/2以下となり、レイノルズ数でみたとき1
/2以下となって、付近の流れは層流に近づき、流れを
ほとんど乱さず、カルマン渦列の流れを破壊することが
なく、高精度の流量測定をすることが可能になる。
According to a third aspect of the present invention, the diameter of the electrode for measuring the electromotive force is not more than 1/2 of the width of the vortex generator. Because it is a device, the diameter of the electrode for measuring electromotive force is less than half of the typical size of the vortex generator, and when viewed in Reynolds number, it is 1
/ 2 or less, the nearby flow approaches a laminar flow, hardly disturbs the flow, does not destroy the flow of the Karman vortex street, and enables high-precision flow measurement.

【0019】本発明の請求項4に記載の発明は、起電力
測定用電極の直径が同一であることを特徴とする請求項
1〜3のいずれかに記載された流量測定装置であるか
ら、一対の起電力測定用電極で発生するノイズは検出回
路で相殺して低下させることができるため、ノイズレベ
ルを低減し、高い精度で流量測定をすることができる。
According to a fourth aspect of the present invention, there is provided the flow rate measuring apparatus according to any one of the first to third aspects, wherein the electrodes for measuring the electromotive force have the same diameter. Since noise generated by the pair of electrodes for measuring electromotive force can be canceled and reduced by the detection circuit, the noise level can be reduced and the flow rate can be measured with high accuracy.

【0020】本発明の請求項5に記載の発明は、起電力
測定用電極の管内長さが渦発生体幅の2〜2.5倍であ
ることを特徴とする請求項1〜4のいずれかに記載され
た流量測定装置であるから、発生した2列のカルマン渦
列の中心における誘導起電力変化のみを測定し、高い精
度で流量測定をすることが可能になる。
The invention according to claim 5 of the present invention is characterized in that the tube length of the electrode for measuring electromotive force is 2 to 2.5 times the width of the vortex generator. Since the flow measurement device described in (1) or (2) above, it is possible to measure only the induced electromotive force change at the center of the two generated Karman vortex streets and perform flow measurement with high accuracy.

【0021】本発明の請求項6に記載の発明は、起電力
測定用電極の管内長さが同一であることを特徴とする請
求項1〜5のいずれかに記載された流量装置であるか
ら、ノイズを検出回路で相殺してノイズレベルを低減で
き、高い精度で流量測定をすることが可能になる。
The invention according to claim 6 of the present invention is the flow device according to any one of claims 1 to 5, wherein the lengths of the electrodes for measuring the electromotive force are the same in the tube. The noise level can be reduced by canceling the noise by the detection circuit, and the flow rate can be measured with high accuracy.

【0022】本発明の請求項7に記載の発明は、起電力
測定用電極の設置間隔が渦発生体幅の2〜2.5倍であ
ることを特徴とする請求項1〜6のいずれかに記載され
た流量測定装置であるから、一対の起電力測定用電極の
間隔がカルマン渦列の渦と渦との間隔以下にでき、この
起電力測定用電極間に存在するカルマン渦を一個以下と
することで、ノイズとなるような流速変化,磁束変化は
生じないため、ノイズレベルを低減でき、周波数カウン
トを容易にし、高い精度で流量測定をすることが可能に
なる。
According to a seventh aspect of the present invention, the installation interval of the electrodes for measuring the electromotive force is 2 to 2.5 times the width of the vortex generator. The distance between the pair of electrodes for measuring electromotive force can be less than the distance between the vortex of the Karman vortex street and the number of Karman vortices existing between the electrodes for measuring electromotive force is less than one. By doing so, there is no change in the flow velocity or magnetic flux that causes noise, so that the noise level can be reduced, the frequency count can be easily performed, and the flow rate can be measured with high accuracy.

【0023】本発明の請求項8に記載の発明は、磁界発
生装置の管径方向幅が渦発生体幅の1.5〜2倍である
ことを特徴とする請求項1〜7のいずれかに記載された
流量測定装置であるから、測定管内に発生する磁界をカ
ルマン渦の発生する位置のみに集中させ、測定管側壁で
発生する渦成分によるノイズ成分を低減するという作用
を有する。
The invention according to claim 8 of the present invention is characterized in that the radial width of the magnetic field generator is 1.5 to 2 times the width of the vortex generator. Since the flow rate measuring device described in (1), the magnetic field generated in the measuring tube is concentrated only at the position where the Karman vortex is generated, and has an effect of reducing a noise component due to a vortex component generated on the side wall of the measuring tube.

【0024】(実施の形態)以下、本発明の一実施の形
態における流量測定装置について、図1を用いて説明す
る。なお、従来の流量測定装置と同一の部材には同一の
符号を付しており、重複した説明は省略する。図1は本
発明の一実施の形態である流量測定装置の構成を示す断
面図である。
(Embodiment) A flow rate measuring apparatus according to an embodiment of the present invention will be described below with reference to FIG. In addition, the same members as those of the conventional flow rate measuring device are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a sectional view showing a configuration of a flow measuring device according to an embodiment of the present invention.

【0025】図1に示すように、1は測定管、2は流体
中に設けられてカルマン渦を発生する渦発生体、3は渦
発生体2の代表寸法に比例した周波数で交互に回転方向
が反転して生成されるカルマン渦、4a,4bは起電力
の測定電極、5は誘導起電力を検出して流量を算出する
とともに、反転回路でノイズ成分の信号を反転させて相
殺できる検出回路、8は磁界発生装置である。この測定
管1の内径があまり小さいと、管壁の境界層の影響がカ
ルマン渦3列に及んでしまうし、大きすぎても流速が遅
くなりカルマン渦3列が発生しなくなる。適正な流速域
でのレイノルズ数は3,000〜100,000程度の
範囲である。また、渦発生体2の形状は本実施の形態に
おいては三角柱としているが、カルマン渦3列を発生さ
せる形状であればどのような形状であってもかまわな
い。そして、本実施の形態の渦発生体2は、三角柱の一
側面が流れに垂直に当たるように向けて測定管1に取り
付けられている。本実施の形態の流量測定装置の場合、
流量検知範囲を1L/min〜10L/minに設定す
るためφ7mmの内径を有す測定管1としたが、この条
件では幅2mm、高さ3mmの断面二等辺三角形の三角
柱で構成される渦発生体2を設けるのがもっとも効果的
であった。
As shown in FIG. 1, 1 is a measuring tube, 2 is a vortex generator which is provided in a fluid and generates Karman vortices, and 3 is a rotating direction alternately at a frequency proportional to a representative dimension of the vortex generator 2. 4a, 4b are electromotive force measuring electrodes, 5 is an induced electromotive force to calculate the flow rate, and a detection circuit that can invert and cancel the noise component signal by an inversion circuit. , 8 are magnetic field generators. If the inside diameter of the measuring tube 1 is too small, the influence of the boundary layer of the tube wall will affect the three rows of Karman vortices. If it is too large, the flow velocity will be slow and the three rows of Karman vortices will not be generated. The Reynolds number in an appropriate flow velocity range is in a range of about 3,000 to 100,000. Further, in the present embodiment, the shape of the vortex generator 2 is a triangular prism, but any shape may be used as long as it generates three rows of Karman vortices. The vortex generator 2 of the present embodiment is attached to the measurement tube 1 so that one side surface of the triangular prism is perpendicular to the flow. In the case of the flow measurement device of the present embodiment,
In order to set the flow rate detection range to 1 L / min to 10 L / min, the measuring tube 1 having an inner diameter of 7 mm was used. Under this condition, a vortex generated by a triangular prism having a width of 2 mm and a height of 3 mm and an isosceles triangular cross section was generated. Providing body 2 was most effective.

【0026】起電力の測定電極4a,4bは、渦発生体
2の下流側に渦発生体2の軸心と流れと直交するように
2本並べて平行に取り付けられる。このとき、測定電極
4aを通る流線を描くと、同時に必ず起電力の測定電極
4bも通る流線となる。この測定電極4a,4bを測定
管1の両側面から挟むように、磁界発生装置8を構成す
る永久磁石のN極とS極が対向して両側に設けられてい
る。流量検知範囲を1L/min〜10L/minに設
定したとき、磁界発生装置8は測定管1内の磁束密度を
高める必要があり、希土類の永久磁石を用い、渦発生体
幅の1.5倍の幅を持つ磁石としている。
Two electrodes 4a and 4b for measuring the electromotive force are attached to the downstream side of the vortex generator 2 side by side so as to be orthogonal to the axis of the vortex generator 2 and the flow. At this time, if a streamline passing through the measurement electrode 4a is drawn, the streamline always passes through the measurement electrode 4b of the electromotive force. N-poles and S-poles of permanent magnets constituting the magnetic field generator 8 are provided on both sides so as to sandwich the measurement electrodes 4a and 4b from both sides of the measurement tube 1. When the flow rate detection range is set to 1 L / min to 10 L / min, the magnetic field generator 8 needs to increase the magnetic flux density in the measuring tube 1 and uses a rare earth permanent magnet, and is 1.5 times the vortex generator width. The width of the magnet.

【0027】6a,6bは基準電位測定用電極であっ
て、起電力の測定電極4a,4bの上流側と下流側のそ
れぞれの電位を測定し、この上流側位置と下流側位置の
電位差を測定できるものである。基準電位測定用電極6
a,6bは測定電極4a,4bと4本並んで平行に設け
られる。このとき、基準電位測定用電極6a,6bを通
って描かれる流線は、必ず起電力の測定電極4a,4b
を通るようになる。従って4つの電極は完全に1つの流
れの上流、下流の位置関係を有するようになる。
Reference numerals 6a and 6b denote reference potential measuring electrodes which measure the potentials of the electromotive force measuring electrodes 4a and 4b on the upstream and downstream sides, respectively, and measure the potential difference between the upstream position and the downstream position. You can do it. Reference potential measurement electrode 6
a and 6b are provided in parallel with four measurement electrodes 4a and 4b. At this time, the stream lines drawn through the reference potential measuring electrodes 6a, 6b are always the electromotive force measuring electrodes 4a, 4b.
You will pass through. Therefore, the four electrodes completely have a positional relationship upstream and downstream of one flow.

【0028】カルマン渦流量測定装置は、このような配
置におかれた各部材が、カルマン渦3を安定して生成す
るように、また、測定管1内に生じた乱れによってノイ
ズが生じないように、各部材の代表寸法や流体のレイノ
ルズ数等を注意深く選ぶ必要がある。
The Karman vortex flow rate measuring apparatus is designed so that each member arranged in such an arrangement stably generates the Karman vortex 3 and does not generate noise due to turbulence generated in the measuring tube 1. In addition, it is necessary to carefully select the representative dimensions of each member, the Reynolds number of the fluid, and the like.

【0029】図1において、各部材の寸法は、渦発生体
2の代表寸法にあたる幅がD、測定電極4a,4bの直
径がそれぞれda,db、基準電位測定用電極6a,6
bの直径がdc,dc、測定電極4a,4bの管内長さ
がh、測定電極4a,4bの間隔がL、磁界発生装置8
の管径方向幅がDmである。これらの寸法は、以下説明
するように、カルマン渦3の安定した生成とノイズ防止
のために、微妙なバランス関係の上に成り立っているも
のである。
In FIG. 1, the dimensions of each member are D, the width corresponding to the representative dimension of the vortex generator 2, the diameters of the measurement electrodes 4a, 4b are da, db, and the reference potential measurement electrodes 6a, 6 respectively.
b is dc, dc, the length of the measuring electrodes 4a, 4b in the tube is h, the distance between the measuring electrodes 4a, 4b is L, the magnetic field generator 8
Is Dm. As described below, these dimensions are based on a delicate balance relationship for stable generation of the Karman vortex 3 and prevention of noise.

【0030】例えば、基準電位測定用電極6a,6bの
直径dcは渦発生体2の代表寸法である幅Dの1/2以
下が選択される。これによって基準電位測定用電極6
a,6bの直径dcを考えたとき、レイノルズ数が1/
2以下となって付近では層流に近づき、カルマン渦3の
生成が乱されない。また、基準電位測定用電極6a,6
b自体が発生する渦度成分も小さくなる。この程度の流
速変化では測定電極4a,4bの間で磁束変化をほとん
ど発生させないため、測定精度をおとさず流量測定する
ことが可能になる。
For example, the diameter dc of the reference potential measuring electrodes 6 a and 6 b is selected to be 以下 or less of the width D which is a representative dimension of the vortex generator 2. Thereby, the reference potential measuring electrode 6
Considering the diameter dc of a and 6b, the Reynolds number is 1 /
In the vicinity of 2 or less, the flow approaches a laminar flow, and the generation of the Karman vortex 3 is not disturbed. Further, the reference potential measuring electrodes 6a, 6
The vorticity component generated by b itself also decreases. With such a change in the flow velocity, a change in the magnetic flux hardly occurs between the measurement electrodes 4a and 4b, so that the flow rate can be measured without reducing the measurement accuracy.

【0031】また、測定電極4a,4bの直径da,d
bも渦発生体幅Dの1/2以下を採用するのが好まし
い。というのはレイノルズ数が1/2以下となって、付
近の流れは層流に近づくから、カルマン渦3を発生させ
る流れをほとんど乱さず、カルマン渦列の流れを破壊す
ることがなくなるからである。そして、測定電極4a,
4bの直径da,dbを同一にすると起電力の測定電極
4a,4bで発生するノイズを小さくできる。すなわ
ち、測定電極4aによって乱された流れは、乱れが拡散
されながら流線上を流下し、測定電極4bに流入する
が、直径da,dbが異径の場合は両電極で流体抵抗や
剥離状況が異なり、周囲の流れも別々の複雑な流れとな
ってノイズも大きくなるが、同一径であるから比較的ノ
イズが抑えられる。しかも、本実施の形態では直径d
a,dbを同一にしてノイズ成分をほぼ同一にするとと
もに、検出回路5には反転回路が設けられており、一方
の電極からのノイズ成分信号を反転回路で反転した後、
処理後の両ノイズ成分信号を相殺することにより、信号
処理の面からもノイズレベルをさらに低減している。
The diameters da, d of the measuring electrodes 4a, 4b
It is preferable that b is also 1 / or less of the vortex generator width D. This is because the Reynolds number becomes 1 / or less, and the flow in the vicinity approaches laminar flow, so that the flow that generates the Karman vortex 3 is hardly disturbed, and the flow of the Karman vortex street is not destroyed. . Then, the measurement electrodes 4a,
When the diameters da and db of the electrodes 4b are the same, noise generated at the measurement electrodes 4a and 4b of the electromotive force can be reduced. That is, the flow disturbed by the measurement electrode 4a flows down the streamline while the turbulence is diffused, and flows into the measurement electrode 4b. However, when the diameters da and db have different diameters, the fluid resistance and the peeling state of both electrodes are reduced. In contrast, the surrounding flows become separate and complicated flows and the noise increases, but the noise is relatively suppressed because they have the same diameter. Moreover, in the present embodiment, the diameter d
a and db are made the same to make the noise components almost the same, and the detecting circuit 5 is provided with an inverting circuit. After the noise component signal from one electrode is inverted by the inverting circuit,
By canceling both the processed noise component signals, the noise level is further reduced from the viewpoint of signal processing.

【0032】さらに、測定電極4a,4bの管内長さh
を渦発生体幅Dの2〜2.5倍にすると、測定管1の内
径として渦発生体幅Dの3〜4倍程度が流れと大きさの
バランスが適当で採用されるから、測定電極4a,4b
の先端付近がカルマン渦列をちょうど2列完全に囲った
最小高さになり、発生したカルマン渦列の中心における
誘導起電力変化のみを測定し、高い精度で流量測定をす
ることが可能になる。そして、測定電極4a,4bの管
内長さhを同一にすると、測定電極4a,4bの先端か
ら流出する渦など、カルマン渦3以外の乱れによるノイ
ズを検出回路5で相殺でき、ノイズレベルを低減でき、
高い精度で流量測定をすることができる。
Further, the length h in the tube of the measuring electrodes 4a, 4b
Is set to 2 to 2.5 times the vortex generator width D, the flow and size balance is appropriately adopted as the inner diameter of the measurement tube 1 to about 3 to 4 times the vortex generator width D. 4a, 4b
Near the tip of the Karman vortex street is the minimum height that completely surrounds the two Karman vortex streets. Only the induced electromotive force change at the center of the generated Karman vortex street can be measured, and the flow rate can be measured with high accuracy. . When the lengths h of the measuring electrodes 4a and 4b are the same, noise caused by disturbances other than the Karman vortex 3, such as vortices flowing out from the tips of the measuring electrodes 4a and 4b, can be canceled by the detection circuit 5, thereby reducing the noise level. Can,
The flow rate can be measured with high accuracy.

【0033】測定電極4a,4bの設置間隔Lを渦発生
体幅Dの2〜2.5倍にとると、一対の測定電極4a,
4bの間隔Lがカルマン渦列のカルマン渦3とカルマン
渦3との間隔以下にでき、この測定電極4a,4b間に
存在するカルマン渦3を一個か、それ以下、すなわち存
在しない、のどちらかにすることができ、ノイズレベル
を低減し、カルマン渦3の1つを検出信号(パルス)1
つに対応させることができて、周波数カウントが容易と
なり、高精度の流量測定をすることができる。
When the installation interval L of the measurement electrodes 4a and 4b is set to be 2 to 2.5 times the width D of the vortex generator, a pair of measurement electrodes 4a and 4b
The distance L between the Karman vortices 3 of the Karman vortex street and the Karman vortex 3 can be made smaller than the distance between the measurement electrodes 4a and 4b. The noise level is reduced, and one of the Karman vortices 3 is detected as a detection signal (pulse) 1
The frequency can be easily counted, and the flow rate can be measured with high accuracy.

【0034】また、磁界発生装置8の管径方向幅Dmを
渦発生体幅Dの1.5〜2倍にすると、測定管1内に発
生する磁界をカルマン渦3の発生する位置のみに集中さ
せ、測定管1側壁で発生する渦度成分によるノイズ成分
が低減できる。上述したように本実施の形態の流量測定
装置では1.5倍を採用している。
When the width Dm of the magnetic field generator 8 in the radial direction of the tube is set to 1.5 to 2 times the width D of the vortex generator, the magnetic field generated in the measuring tube 1 is concentrated only at the position where the Karman vortex 3 is generated. As a result, a noise component due to a vorticity component generated on the side wall of the measurement tube 1 can be reduced. As described above, the flow rate measuring device of the present embodiment employs 1.5 times.

【0035】以上説明した配置の流量測定装置にするこ
とで、カルマン渦列が測定電極4a,4bで囲まれた部
分を通る磁束を横切るとき、磁界変化が発生し、測定電
極4a,4bに規則的に誘導起電力がパルス状に発生す
る。そして、基準電位測定用電極6a,6bでこの付近
の電位差が測定されるから、この付近の測定条件(カル
マン渦3以外の直流成分や外乱ノイズ成分)を反映した
測定電極4a,4b間の基準電位差を測定することがで
き、この基準電位差信号を起電力信号と検出回路5内で
相殺することで、容易にノイズ成分やカルマン渦列以外
の信号を消去できる。
With the flow rate measuring apparatus having the above-described arrangement, when the Karman vortex street crosses the magnetic flux passing through the portion surrounded by the measurement electrodes 4a and 4b, a magnetic field change occurs, and the measurement electrodes 4a and 4b are regulated. The induced electromotive force is generated in a pulse form. Since the potential difference in the vicinity is measured by the reference potential measuring electrodes 6a and 6b, the reference potential between the measurement electrodes 4a and 4b reflecting the measurement conditions (DC components and disturbance noise components other than the Karman vortex 3) in the vicinity is measured. The potential difference can be measured, and by canceling this reference potential difference signal with the electromotive force signal in the detection circuit 5, noise components and signals other than the Karman vortex street can be easily eliminated.

【0036】続いて、このような構成を有する本実施の
形態における流量測定装置の動作について説明する。測
定管1内を流れる流体は、磁界発生装置8によって加え
られた磁界内を流下する。このとき、渦発生体2で発生
したカルマン渦列は、ストローハルの研究により知られ
ているように、カルマン渦3の周波数と流速の間に比例
関係が成立する。従って、カルマン渦3の周波数をカウ
ントすれば測定管1内を流れる流体の流量は算出できる
ことになる。
Next, the operation of the flow measuring device according to the present embodiment having such a configuration will be described. The fluid flowing in the measuring tube 1 flows down in the magnetic field applied by the magnetic field generator 8. At this time, the Karman vortex street generated in the vortex generator 2 has a proportional relationship between the frequency of the Karman vortex 3 and the flow velocity, as is known from the study of Strouhal. Therefore, if the frequency of the Karman vortex 3 is counted, the flow rate of the fluid flowing in the measurement tube 1 can be calculated.

【0037】[0037]

【発明の効果】以上説明したように本発明の請求項1記
載の流量測定装置は、起電力測定用電極の上流側と下流
側に基準電位測定用電極がそれぞれ1つ設けられ、前記
誘導起電力から前記電位差を引いて流量を算出するか
ら、測定条件が変化するようなことがあっても変化分を
除いて測定できるため広い測定範囲で測定することが可
能となり、広範囲の流量域で測定することができ、ノイ
ズを減らすフィルター回路等の機器が不要となるため低
コストで、高精度の流量測定をすることができる。
As described above, in the flow rate measuring apparatus according to the first aspect of the present invention, one reference potential measuring electrode is provided on each of the upstream and downstream sides of the electromotive force measuring electrode, and Since the flow rate is calculated by subtracting the potential difference from the electric power, even if the measurement conditions change, the measurement can be performed without the change, so that the measurement can be performed in a wide measurement range, and the measurement can be performed in a wide flow rate range. Since no equipment such as a filter circuit for reducing noise is required, low-cost, high-precision flow measurement can be performed.

【0038】請求項2に記載の流量測定装置は、基準電
位測定用電極の直径が渦発生体幅の1/2以下であるか
ら、カルマン渦列をほとんど乱さず、基準電位測定用電
極によって発生する渦度成分は小さく、高精度で流量測
定をすることができる。
In the flow rate measuring device according to the second aspect, since the diameter of the reference potential measuring electrode is not more than half the width of the vortex generator, the Karman vortex street is hardly disturbed and generated by the reference potential measuring electrode. The vorticity component is small, and the flow rate can be measured with high accuracy.

【0039】請求項3に記載の流量測定装置は、起電力
測定用電極の直径が渦発生体幅の1/2以下であるか
ら、付近の流れは層流流れとなって発生するカルマン渦
の流れをほとんど乱さず、カルマン渦を破壊することが
なく、高精度で流量測定をすることができる。
In the flow rate measuring device according to the third aspect, since the diameter of the electrode for measuring electromotive force is not more than 1/2 of the width of the vortex generator, the flow in the vicinity is a laminar flow of Karman vortices generated. The flow rate can be measured with high accuracy without substantially disturbing the flow and without destroying the Karman vortex.

【0040】請求項4に記載の流量測定装置は、起電力
測定用電極の直径が同一であるから、一対の起電力測定
用電極で発生するノイズは検出回路で相殺して低下させ
ることができるため、ノイズレベルを低減し、高い精度
で流量測定をすることができる。
In the flow rate measuring device according to the fourth aspect, since the diameters of the electrodes for measuring the electromotive force are the same, the noise generated at the pair of electrodes for measuring the electromotive force can be canceled out by the detection circuit and reduced. Therefore, the noise level can be reduced and the flow rate can be measured with high accuracy.

【0041】請求項5に記載の流量測定装置は、起電力
測定用電極の管内長さが渦発生体幅の2〜2.5倍であ
るから、発生した2列のカルマン渦列の中心における誘
導起電力変化のみを測定し、高い精度で流量測定をする
ことができる。
In the flow rate measuring device according to the fifth aspect, since the length of the electrode for measuring the electromotive force is 2 to 2.5 times the width of the vortex generator, the center of the two generated Karman vortex rows is generated. The flow rate can be measured with high accuracy by measuring only the induced electromotive force change.

【0042】請求項6に記載の流量測定装置は、起電力
測定用電極の管内長さが同一であるから、ノイズを検出
回路で相殺してノイズレベルを低減でき、高い精度で流
量測定をすることが可能になる。
In the flow rate measuring apparatus according to the sixth aspect, since the lengths of the electrodes for measuring the electromotive force are the same, noise can be canceled by the detection circuit to reduce the noise level, and the flow rate can be measured with high accuracy. It becomes possible.

【0043】請求項7に記載の流量測定装置は、起電力
測定用電極の設置間隔が渦発生体幅の2〜2.5倍であ
るから、一対の起電力測定用電極の間隔がカルマン渦列
の渦と渦との間隔以下にでき、この起電力測定用電極間
に存在するカルマン渦を一個以下とすることで、ノイズ
となるような流速変化,磁束変化は生じないためノイズ
レベルを低減でき、1カルマン渦を1パルスとして周波
数カウントを容易にし、高い精度で流量測定を行うこと
ができる。
In the flow rate measuring device according to the seventh aspect, the interval between the electrodes for measuring the electromotive force is 2 to 2.5 times the width of the vortex generator. It is possible to reduce the noise level by reducing the Karman vortex that exists between the electrodes for measuring the electromotive force to less than one space between the vortices in the row. In addition, the frequency count can be easily performed with one Kalman vortex as one pulse, and the flow rate can be measured with high accuracy.

【0044】請求項8に記載の流量測定装置は、磁界発
生装置の管径方向幅が渦発生体幅の1.5〜2倍である
あるから、測定管内に発生する磁界をカルマン渦の発生
する位置のみに集中させ、測定管側壁で発生する渦によ
るノイズ成分を低減できる。
In the flow rate measuring device according to the eighth aspect, since the width of the magnetic field generator in the radial direction of the tube is 1.5 to 2 times the width of the vortex generator, the magnetic field generated in the measurement tube generates Karman vortices. Noise components due to vortices generated on the side wall of the measurement tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である流量測定装置の構
成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a flow measurement device according to an embodiment of the present invention.

【図2】従来の流量測定装置の構成を示す断面図FIG. 2 is a cross-sectional view showing a configuration of a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

1 測定管 2 渦発生体 3 カルマン渦 4a,4b 測定電極 5 検出回路 6a,6b 基準電位測定用電極 8 磁界発生装置 D 渦発生体幅 Dm 磁界発生装置幅 da,db,dc 測定電極直径 h 測定電極管内長さ L 測定電極間隔 Reference Signs List 1 Measurement tube 2 Vortex generator 3 Karman vortex 4a, 4b Measurement electrode 5 Detection circuit 6a, 6b Reference potential measurement electrode 8 Magnetic field generator D Vortex generator width Dm Magnetic field generator width da, db, dc Measurement electrode diameter h Measurement Electrode tube length L Measurement electrode interval

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】導電性をもつ流体が流れる測定管内に設け
られ、前記流体にカルマン渦を発生させる渦発生体と、 前記渦発生体より下流側に設けられ、前記カルマン渦が
磁界内を通過するとき生じる磁界変化によって発生する
誘導起電力の変化を検出する一対の起電力測定用電極
と、 前記磁界を発生するための磁界発生装置と、 前記一対の起電力測定用電極と電気的に接続され、前記
誘導起電力を検出して前記流体の流量を算出する検出回
路を備えた流量測定装置であって、 前記一対の起電力測定用電極の上流側と下流側には、前
記検出回路と電気的に接続されてこの上流側と下流側の
電位差を測定するための基準電位測定用電極がそれぞれ
1つ設けられ、前記検出回路が前記誘導起電力から前記
電位差を引いて流量を算出することを特徴とする流量測
定装置。
1. A vortex generator which is provided in a measurement tube through which a fluid having conductivity flows and generates a Karman vortex in the fluid; and a vortex generator provided downstream of the vortex generator, wherein the Karman vortex passes through a magnetic field. A pair of electromotive force measurement electrodes for detecting a change in induced electromotive force generated by a magnetic field change occurring when the magnetic field is generated, a magnetic field generator for generating the magnetic field, and electrically connected to the pair of electromotive force measurement electrodes It is a flow rate measuring device provided with a detection circuit for detecting the induced electromotive force and calculating the flow rate of the fluid, wherein the upstream and downstream sides of the pair of electrodes for electromotive force measurement, the detection circuit, One reference potential measurement electrode for measuring the potential difference between the upstream side and the downstream side which is electrically connected is provided, and the detection circuit calculates the flow rate by subtracting the potential difference from the induced electromotive force. Features Flow measurement device.
【請求項2】基準電位測定用電極の直径が渦発生体幅の
1/2以下であることを特徴とする請求項1記載の流量
測定装置。
2. The flow rate measuring apparatus according to claim 1, wherein the diameter of the reference potential measuring electrode is not more than half the width of the vortex generator.
【請求項3】起電力測定用電極の直径が渦発生体幅の1
/2以下であることを特徴とする請求項1または2に記
載された流量測定装置。
3. The method according to claim 1, wherein the diameter of the electromotive force measuring electrode is one of the vortex generator width.
The flow rate measuring device according to claim 1 or 2, wherein the flow rate is equal to or less than / 2.
【請求項4】起電力測定用電極の直径が同一であること
を特徴とする請求項1〜3のいずれかに記載された流量
測定装置。
4. The flow measuring device according to claim 1, wherein the electrodes for measuring the electromotive force have the same diameter.
【請求項5】起電力測定用電極の管内長さが渦発生体幅
の2〜2.5倍であることを特徴とする請求項1〜4の
いずれかに記載された流量測定装置。
5. The flow rate measuring device according to claim 1, wherein the length of the tube for measuring the electromotive force is 2 to 2.5 times the width of the vortex generator.
【請求項6】起電力測定用電極の管内長さが同一である
ことを特徴とする請求項1〜5のいずれかに記載された
流量測定装置。
6. The flow rate measuring device according to claim 1, wherein the electrodes for measuring the electromotive force have the same length in the tube.
【請求項7】起電力測定用電極の設置間隔が渦発生体幅
の2〜2.5倍であることを特徴とする請求項1〜6の
いずれかに記載された流量測定装置。
7. The flow rate measuring device according to claim 1, wherein the interval between the electrodes for measuring the electromotive force is 2 to 2.5 times the width of the vortex generator.
【請求項8】磁界発生装置の管径方向幅が渦発生体幅の
1.5〜2倍であることを特徴とする請求項1〜7のい
ずれかに記載された流量測定装置。
8. The flow rate measuring device according to claim 1, wherein the width of the magnetic field generator in the radial direction of the tube is 1.5 to 2 times the width of the vortex generator.
JP2000215527A 2000-07-17 2000-07-17 Flow rate measurement device Withdrawn JP2002031551A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000215527A JP2002031551A (en) 2000-07-17 2000-07-17 Flow rate measurement device
US09/904,545 US6435036B1 (en) 2000-07-17 2001-07-16 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215527A JP2002031551A (en) 2000-07-17 2000-07-17 Flow rate measurement device

Publications (1)

Publication Number Publication Date
JP2002031551A true JP2002031551A (en) 2002-01-31

Family

ID=18710937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215527A Withdrawn JP2002031551A (en) 2000-07-17 2000-07-17 Flow rate measurement device

Country Status (1)

Country Link
JP (1) JP2002031551A (en)

Similar Documents

Publication Publication Date Title
JPH02103423A (en) Method and device for detecting passage of blade
US6435036B1 (en) Vortex flow meter
US3878715A (en) Vortex-type flowmeter
US3720104A (en) Flowmeters
JP3113946B2 (en) Vortex flow meter
JP2002031551A (en) Flow rate measurement device
JP2000241211A (en) Flow rate measuring apparatus
EP3770560A1 (en) Magnetic flowmeter assembly with glitch removing capability
JP2001272257A (en) Flow-rate measuring apparatus
JP2002071406A (en) Flow measurement apparatus
JP2002090191A (en) Flow measuring device
JP2003065816A (en) Electromagnetic flowmeter
RU2338207C1 (en) Velocity converter with electric jamming compensation
JP3736139B2 (en) Flow measuring device
JP2002098566A (en) Flow rate measuring device
JP2002039820A (en) Mixing ratio measuring device and fluid mixing device equipped therewith
JP2002098565A (en) Flow rate measuring device
JP2002071405A (en) Flow measurement apparatus
JP4438119B2 (en) Flow measuring device
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
JP2002350201A (en) Flow measuring device
RU2591277C1 (en) Magnetic flow meter of liquid metal
JPH11281421A (en) Ring vortex flow meter
JP2002071404A (en) Flow measurement apparatus
JP2000146641A (en) Flow rate measuring apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081225