JP2002039820A - Mixing ratio measuring device and fluid mixing device equipped therewith - Google Patents

Mixing ratio measuring device and fluid mixing device equipped therewith

Info

Publication number
JP2002039820A
JP2002039820A JP2000220449A JP2000220449A JP2002039820A JP 2002039820 A JP2002039820 A JP 2002039820A JP 2000220449 A JP2000220449 A JP 2000220449A JP 2000220449 A JP2000220449 A JP 2000220449A JP 2002039820 A JP2002039820 A JP 2002039820A
Authority
JP
Japan
Prior art keywords
fluid
mixing ratio
measuring
mixing
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000220449A
Other languages
Japanese (ja)
Inventor
Kazushi Kasahara
一志 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000220449A priority Critical patent/JP2002039820A/en
Publication of JP2002039820A publication Critical patent/JP2002039820A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the mixing ratio of the mixture fluid of conductive fluid and insulating fluid at low cost and with high accuracy over the wide flow conditions. SOLUTION: This mixing ratio measuring device is equipped with a vortex generator generating Karman vortex 3; a pair of measuring electrodes 4a, 4b installed in positions downstream than the vortex generator and detecting the change of induced electromotive force generating when the Karman vortex 3 passes through a magnetic field; a pair of reference potential measuring electrodes 6a, 6b for measuring the potential difference which is an upstream reference and a downstream reference; a detecting circuit 5 for measuring a frequency output signal of the Karman vortex 3 by contracting the potential difference from the induced electromotive force; and in addition a mixing ratio computing part 11 for computing the mixing ratio by comparing a frequency output signal of the Karman vortex 3 measured when only the conductive fluid is made to flow as the fluid with a frequency output signal of the Karman vortex 3 measured when the mixture fluid of the conductive fluid and the insulating fluid 9 is made to flow as the fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定管内を流れる
導電性流体と絶縁性流体の混合流体の混合比率を測定す
る混合比率測定装置、及びこれを用いて導電性流体と絶
縁性流体の混合比率を所定の混合比率に制御する流体混
合装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixing ratio measuring device for measuring a mixing ratio of a mixed fluid of a conductive fluid and an insulating fluid flowing in a measuring tube, and a mixing of the conductive fluid and the insulating fluid using the same. The present invention relates to a fluid mixing device that controls a ratio to a predetermined mixing ratio.

【0002】[0002]

【従来の技術】従来、測定管内を流れる第1の流体に第
2の流体を所定の混合比率で混合する場合、第1の流体
の流量が変動しているようなときには、第1の流体の流
量を流量計で測定してこの測定結果に基づいて第2の流
体の流量を算出して混合するものであった。しかし、こ
の方法は実際に混合した流体の混合比率を測定するもの
ではなく、混合前の流量に基づいた予測値にすぎないた
め、フィードバック制御等を行うことはできないもので
あった。そして、実際の混合比率を測定するためには、
混合されている2成分のそれぞれを測定しなければなら
ず、これをそれぞれ別々に測定するのはきわめて難し
く、事実上混合比率を測定する測定装置は断念されてい
た。
2. Description of the Related Art Conventionally, when a first fluid flowing in a measuring tube is mixed with a second fluid at a predetermined mixing ratio, when the flow rate of the first fluid is fluctuating, the first fluid is mixed. The flow rate was measured by a flow meter, and the flow rate of the second fluid was calculated and mixed based on the measurement result. However, this method does not measure the mixing ratio of the actually mixed fluids, but is merely a predicted value based on the flow rate before mixing, so that feedback control or the like cannot be performed. And to measure the actual mixing ratio,
Each of the two components being mixed has to be measured, and it is extremely difficult to measure each separately, and in effect the measuring device for measuring the mixing ratio has been abandoned.

【0003】しかし、本発明者は、混合流体でも導電性
流体と絶縁性流体の場合は、混合比率で誘導起電力に差
が出てくることを発見、着目した。この導電性流体は水
または電解質を含んだ液や酸、アルカリ等の導電性のあ
る液であればでよく、絶縁性流体は気体または油などの
導電性のない流体のことである。このような流体であれ
ば誘導起電力の変化量を測定すれば、検量線を利用し混
合比率を知ることが可能になる。
However, the present inventor has discovered and noticed that a difference in induced electromotive force appears depending on the mixing ratio in the case of a conductive fluid and an insulating fluid even in a mixed fluid. The conductive fluid may be a liquid containing water or an electrolyte, or a conductive liquid such as an acid or an alkali, and the insulating fluid is a non-conductive fluid such as gas or oil. With such a fluid, if the amount of change in the induced electromotive force is measured, the mixing ratio can be known using a calibration curve.

【0004】ただ、このような混合流体の誘導起電力を
測定して混合比率を算出することができたとしても、比
率だけでは実用的な流体混合装置としては精度が悪く役
に立たない。やはり混合比率のほか、流量の絶対量を測
定できるものでなければならない。流量を測定するため
の装置として流量測定装置を用いる必要があるが、従来
どのような流量測定装置があったか、以下説明する。
However, even if the mixing ratio can be calculated by measuring the induced electromotive force of such a mixed fluid, the accuracy of the practical fluid mixing apparatus is poor with the ratio alone, and is not useful. Again, it must be able to measure the absolute amount of flow as well as the mixing ratio. It is necessary to use a flow measuring device as a device for measuring the flow rate, and what kind of flow measuring device has been conventionally used will be described below.

【0005】従来の測定管内を流れる流体の流量を測定
する流量測定装置としてカルマン渦流量測定装置がよく
知られている。このカルマン渦流量測定装置は、例えば
特開昭60−40914号公報に記載されているよう
に、流動する流体中にカルマン渦を発生させ、このカル
マン渦の発生数(以下、周波数)をカウントし、この周
波数から流量を算出するものである。これはカルマン渦
の周波数が流量に比例するという現象を利用したもので
ある。このためカルマン渦流量測定装置はカルマン渦の
周波数をカウントしなければならないが、従来は特開昭
60−40914号公報に記載されているように、超音
波や振動等を用いて周波数を検知している。カルマン渦
が流下するとき、これに向けて入射された超音波や振動
等が周波数や位相に変化を生じさせることを利用したも
のである。
[0005] As a conventional flow rate measuring device for measuring the flow rate of a fluid flowing in a measuring tube, a Karman vortex flow rate measuring device is well known. This Karman vortex flow rate measuring device generates Karman vortices in a flowing fluid and counts the number of generated Karman vortices (hereinafter referred to as frequency) as described in, for example, Japanese Patent Application Laid-Open No. 60-40914. The flow rate is calculated from this frequency. This utilizes the phenomenon that the frequency of the Karman vortex is proportional to the flow rate. For this reason, the Karman vortex flow rate measurement device must count the frequency of Karman vortices. However, conventionally, as described in Japanese Patent Application Laid-Open No. 60-40914, the frequency is detected using ultrasonic waves or vibration. ing. When the Karman vortex flows down, it utilizes the fact that ultrasonic waves, vibrations, and the like incident thereon cause a change in frequency and phase.

【0006】しかし、超音波や振動等の変化を検知する
には、管路自体の大きさはそれほどでもないのに、大型
で複雑、且つ高価な検知装置が必要になるという問題を
有していた。しかも、これだけ高価な検知装置を装備し
ても、流量の精度は一次的にはカルマン渦の発生メカニ
ズムに依存し、温度やその他の外乱によってカルマン渦
の発生に影響が出ると、直ちに測定精度が悪化するもの
であった。そして、このカルマン渦流量測定装置を用い
ると、流量は測定できるが、あわせて別の混合比率を測
定する装置が必要になり、さらに大型化してしまうもの
であった。
However, in order to detect changes in ultrasonic waves, vibrations, and the like, there is a problem that a large, complicated, and expensive detecting device is required although the size of the conduit itself is not so large. Was. Moreover, even with such expensive detectors, the accuracy of the flow rate depends primarily on the Karman vortex generation mechanism, and if the temperature or other disturbances affect the Karman vortex generation, the measurement accuracy is immediately increased. It was worse. When the Karman vortex flow rate measuring device is used, the flow rate can be measured, but a device for measuring a different mixing ratio is required, and the size is further increased.

【0007】そこで、このような問題を解決するため、
例えば特開平5−172598号公報で開示されたよう
に、磁界を用いてカルマン渦の周波数を検知することが
提案された。そこで、このような従来の磁界を用いた流
量測定装置について説明する。図5は従来の磁界を用い
た流量測定装置の構成を示す断面図である。
Therefore, in order to solve such a problem,
For example, as disclosed in JP-A-5-172598, it has been proposed to detect the frequency of Karman vortices using a magnetic field. Therefore, such a conventional flow rate measuring device using a magnetic field will be described. FIG. 5 is a cross-sectional view showing a configuration of a conventional flow rate measuring device using a magnetic field.

【0008】図5に示すように、1は導電性を有する流
体を流す測定管、2は測定管1内に設けられた渦発生体
である。3は渦発生体2によって発生するカルマン渦、
4a,4bは測定電極である。流れの中に置かれた渦発
生体2の下流側には、渦発生体2の代表寸法に比例した
周波数で、交互に回転方向が反転する一対のカルマン渦
列が生成される。測定電極4bは渦発生体2の下流側に
設けられるが、測定電極4aは測定電極4bの対極とし
て測定電極4bの上流側、そして同時に渦発生体2より
は下流に設けられる。ただ、図5に記載された測定電極
4aは渦発生体2と一体となっている。
As shown in FIG. 5, reference numeral 1 denotes a measuring tube through which a fluid having conductivity is passed, and 2 denotes a vortex generator provided in the measuring tube 1. 3 is a Karman vortex generated by the vortex generator 2,
4a and 4b are measurement electrodes. On the downstream side of the vortex generator 2 placed in the flow, a pair of Karman vortex streets whose rotation directions are alternately reversed are generated at a frequency proportional to the representative dimension of the vortex generator 2. The measurement electrode 4b is provided on the downstream side of the vortex generator 2, while the measurement electrode 4a is provided on the upstream side of the measurement electrode 4b as a counter electrode of the measurement electrode 4b, and at the same time, on the downstream side of the vortex generator 2. However, the measurement electrode 4 a shown in FIG. 5 is integrated with the vortex generator 2.

【0009】5は測定電極4a,4bと電気的に接続さ
れ、測定電極4a,4b間の電圧を検出して測定管1内
を流れる流体の流量を算出するための検出回路、8は測
定管1の周囲に設けられた磁界発生装置であって、測定
管1を挟んで2つの磁石をそれぞれS極とN極を対向さ
せて配設したものである。そして、磁界発生装置8は、
N極からS極に向かう磁界の向きが渦発生体2の軸心方
向と測定電極4a,4bに垂直になるように設けられて
いる。
Reference numeral 5 denotes a detection circuit which is electrically connected to the measurement electrodes 4a and 4b and detects a voltage between the measurement electrodes 4a and 4b to calculate a flow rate of a fluid flowing in the measurement tube 1. Reference numeral 8 denotes a measurement tube. 1 is a magnetic field generating device provided around 1, wherein two magnets are disposed with a S-pole and an N-pole facing each other with a measurement tube 1 interposed therebetween. And the magnetic field generator 8
The magnetic field is provided so that the direction of the magnetic field from the north pole to the south pole is perpendicular to the axial direction of the vortex generator 2 and the measurement electrodes 4a and 4b.

【0010】この従来の流量測定装置によれば、渦発生
体2によって生成されたカルマン渦が流れに乗って流下
していくと、流れの流速に渦の速度分だけ変化が生じ、
これによって磁界発生装置8が加えた磁界に磁束変化が
生じる。この磁束変化が測定電極4a,4b間に誘導起
電力を発生させるため、これを検出回路5で検出すれ
ば、電圧変化の回数がカルマン渦に比例し、検出回路5
で検出される電圧変化の回数をカウントすれば流量が算
出できるものである。
According to the conventional flow rate measuring device, when the Karman vortex generated by the vortex generator 2 flows down on the flow, the flow velocity of the flow changes by the velocity of the vortex,
This causes a change in magnetic flux in the magnetic field applied by the magnetic field generator 8. Since this magnetic flux change causes an induced electromotive force between the measurement electrodes 4a and 4b, if this is detected by the detection circuit 5, the number of voltage changes is proportional to the Karman vortex, and the detection circuit 5
The flow rate can be calculated by counting the number of times of voltage change detected in step (1).

【0011】この特開平5−172598号公報で開示
された流量測定装置は、誘導起電力を測定して流量を測
定するから、混合比率を測定する混合比率測定装置と、
それを用いた流体混合装置に応用するためにはもっとも
適した流量測定装置ということができる。
[0011] The flow rate measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 5-172598 measures the induced electromotive force to measure the flow rate.
It can be said that it is the most suitable flow rate measuring device to apply to a fluid mixing device using it.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の流量測定装置を用いると、流れや磁界にそ
れぞれ外乱が加わると測定する磁界にノイズが加わり、
正確な流量を算出することが難しくなるものであった。
そして、低導電率の流体(絶縁性流体)では、もともと
誘導起電力が低く信号レベルが低いため、正確な流量検
知が困難なものであった。従って、混合流体で絶縁性流
体の割合が増加すると、精度が落ちるものであった。
However, when the conventional flow rate measuring device as described above is used, when a disturbance is applied to the flow or the magnetic field, noise is added to the magnetic field to be measured.
It has been difficult to calculate an accurate flow rate.
In the case of a fluid having low electrical conductivity (insulating fluid), since the induced electromotive force is originally low and the signal level is low, it has been difficult to accurately detect the flow rate. Therefore, when the proportion of the insulating fluid in the mixed fluid increases, the accuracy decreases.

【0013】また、測定に最適な流量域から流量が変化
すると、流量の変化と比例してカルマン渦の周波数が変
化せず、理論式の精度がおちて比例関係が崩れ検知精度
が低下したり、流量増大に伴って流れが乱れ、この乱れ
がノイズを増加するため測定精度が低下する。
When the flow rate changes from the flow rate range optimal for measurement, the frequency of the Karman vortex does not change in proportion to the change in the flow rate, and the accuracy of the theoretical formula falls, the proportional relationship is broken, and the detection accuracy decreases. In addition, the flow is disturbed with an increase in the flow rate, and the turbulence increases noise, so that the measurement accuracy is reduced.

【0014】さらに、磁界発生装置として永久磁石を用
いている場合、磁石が経時変化を起こして性能低下する
し、電極に発生する分極が誘導起電力の低下をもたら
し、これによって信号レベルが低下して、正確な流量検
知が困難になるものであった。
Further, when a permanent magnet is used as the magnetic field generator, the performance of the magnet deteriorates due to the aging of the magnet, and the polarization generated at the electrodes causes a reduction in the induced electromotive force, thereby lowering the signal level. Therefore, accurate flow rate detection becomes difficult.

【0015】そして、もっとも大きな課題は、流体の混
合比率が変わると、導電率が変化し測定電極4a,4b
間に発生する起電力に変化を生じるが、その検量線を用
意したり、そのほかの起電力から混合比率への換算法が
ないと、混合比率を測定する混合比率測定装置とそれを
用いた流体混合装置の実現は困難である。とくに、混合
比率測定装置は、コンパクトで安価でなければ実用性に
支障が出るし、精度が高くなければフィードバック制御
などには到底用いることはできない。
The biggest problem is that when the mixing ratio of the fluid changes, the conductivity changes and the measuring electrodes 4a, 4b
A change in the electromotive force that occurs between them, but if there is no calibration curve or other conversion method from the electromotive force to the mixing ratio, a mixing ratio measuring device that measures the mixing ratio and a fluid that uses it Realizing a mixing device is difficult. In particular, the mixing ratio measuring device is not practical unless it is compact and inexpensive, and it cannot be used for feedback control or the like at all unless the accuracy is high.

【0016】このように、従来の流量測定装置を用いて
流体混合装置を作ろうとすると、さまざまの測定条件に
対応するのは難しく、混合比率を測定するための起電力
から混合比率に換算する高精度、安価な手法は今のとこ
ろ未発見である。
As described above, if it is attempted to manufacture a fluid mixing device using a conventional flow rate measuring device, it is difficult to cope with various measurement conditions, and a high level of conversion from the electromotive force for measuring the mixing ratio to the mixing ratio is required. Accuracy and inexpensive methods have not been discovered yet.

【0017】そこで、このような従来の問題を解決する
ために本発明は、広い測定範囲をもち、幅広い流量条件
に対応でき、低コストかつ高精度で、導電性流体と絶縁
性流体からなる混合流体の混合比率を測定できる混合比
率測定装置を提供することを目的とする。
Therefore, in order to solve such a conventional problem, the present invention has a wide measuring range, can cope with a wide range of flow conditions, is low in cost and high in accuracy, and can mix a conductive fluid and an insulating fluid. An object of the present invention is to provide a mixing ratio measuring device capable of measuring a mixing ratio of a fluid.

【0018】さらに本発明は、広い測定範囲をもち、幅
広い流量条件に対応でき、低コストかつ高精度で、導電
性流体と絶縁性流体からなる混合流体の混合比率を測定
でき、一方の流体を他方の流体に混合して所定混合比率
の混合流体をえることができる流体混合装置を提供する
ことを目的とする。
Further, the present invention has a wide measuring range, can cope with a wide range of flow conditions, can measure the mixing ratio of a mixed fluid composed of a conductive fluid and an insulating fluid at low cost and with high accuracy, and can measure one fluid. It is an object of the present invention to provide a fluid mixing device that can obtain a mixed fluid having a predetermined mixing ratio by mixing with another fluid.

【0019】[0019]

【課題を解決するための手段】このような問題を解決す
るために本発明の混合比率測定装置は、測定管内に設け
られ、測定管を流れる流体にカルマン渦を発生させる渦
発生体と、渦発生体より下流側に設けられ、カルマン渦
が磁界内を通過するとき生じる磁界変化によって発生す
る誘導起電力の変化を検出する一対の起電力測定用電極
と、一対の起電力測定用電極の上流側と下流側にそれぞ
れ1つずつ設けられ、この上流側と下流側の電位差を測
定するための一対の基準電位測定用電極と、磁界を発生
するための磁界発生装置と、一対の起電力測定用電極お
よび一対の基準電位測定用電極とにそれぞれ電気的に接
続され、誘導起電力から電位差を引いてカルマン渦の周
波数出力信号を測定する検出回路を備え、流体として導
電性流体だけを流したとき測定されるカルマン渦の周波
数出力信号と、流体として導電性流体と絶縁性流体を混
合して流したときのカルマン渦の周波数出力信号を比較
して混合比率を算出する混合比率演算部を備えたことを
特徴とする。
In order to solve such a problem, a mixing ratio measuring apparatus according to the present invention is provided in a measuring tube, and a vortex generator for generating Karman vortices in a fluid flowing through the measuring tube; A pair of electromotive force measuring electrodes provided downstream of the generator and detecting a change in induced electromotive force generated by a magnetic field change generated when the Karman vortex passes through the magnetic field, and an upstream of the pair of electromotive force measuring electrodes A pair of reference potential measurement electrodes for measuring the potential difference between the upstream side and the downstream side, a magnetic field generator for generating a magnetic field, and a pair of electromotive force measurements And a pair of reference potential measurement electrodes, each of which is electrically connected to a corresponding one of the reference potential measurement electrodes, and detects a potential difference from the induced electromotive force to measure the frequency output signal of the Karman vortex. A mixing ratio calculation unit that calculates a mixing ratio by comparing the frequency output signal of the Karman vortex measured at the time of mixing with the frequency output signal of the Karman vortex when a conductive fluid and an insulating fluid are mixed and flowed as a fluid. It is characterized by having.

【0020】これにより、広い測定範囲をもち、幅広い
流量条件に対応でき、低コストかつ高精度で、導電性流
体と絶縁性流体の混合流体の混合比率を測定できる。
Thus, the mixing ratio of the mixed fluid of the conductive fluid and the insulating fluid can be measured at a low cost and with high accuracy, having a wide measuring range, capable of responding to a wide range of flow conditions.

【0021】または本発明の流体混合装置は、前記混合
比率測定装置を備えた流体混合装置であって、測定管に
は、該測定管を流す導電性流体に絶縁性流体を混合する
ための導入部が設けられたことを特徴とする。
Alternatively, a fluid mixing device according to the present invention is a fluid mixing device provided with the mixing ratio measuring device, wherein a measuring pipe is provided for mixing an insulating fluid with a conductive fluid flowing through the measuring pipe. A part is provided.

【0022】これにより、広い測定範囲をもち、幅広い
流量条件に対応でき、低コストかつ高精度で、導電性流
体と絶縁性流体の混合流体の混合比率を測定でき、一方
の流体を他方の流体に混合して所定混合比率の混合流体
をえることができる。
[0022] Thus, the mixing ratio of the mixed fluid of the conductive fluid and the insulating fluid can be measured at a low cost and with high accuracy, having a wide measurement range, capable of coping with a wide range of flow conditions, and allowing one fluid to be replaced by the other fluid. To obtain a mixed fluid having a predetermined mixing ratio.

【0023】[0023]

【発明の実施の形態】本発明の請求項1に記載の発明
は、測定管内に設けられ、測定管を流れる流体にカルマ
ン渦を発生させる渦発生体と、渦発生体より下流側に設
けられ、カルマン渦が磁界内を通過するとき生じる磁界
変化によって発生する誘導起電力の変化を検出する一対
の起電力測定用電極と、一対の起電力測定用電極の上流
側と下流側にそれぞれ1つずつ設けられ、この上流側と
下流側の電位差を測定するための一対の基準電位測定用
電極と、磁界を発生するための磁界発生装置と、一対の
起電力測定用電極および一対の基準電位測定用電極とに
それぞれ電気的に接続され、誘導起電力から電位差を引
いてカルマン渦の周波数出力信号を測定する検出回路を
備え、流体として導電性流体だけを流したとき測定され
るカルマン渦の周波数出力信号と、流体として導電性流
体と絶縁性流体を混合して流したときのカルマン渦の周
波数出力信号を比較して混合比率を算出する混合比率演
算部を備えた混合比率測定装置であるから、測定条件が
変化するようなことがあっても基準電位測定用電極を用
いて変化分を相殺して起電力を測定できるため、広い測
定範囲で測定することが可能となり、広範囲の流量域の
混合流体と導電性流体の流量測定が行えるし、ノイズを
減らすための機器が不要となるため低コストで、高精度
で流量測定をすることができ、混合流体ではカルマン渦
の周波数出力信号が欠損しているか否かで混合比率を簡
単に算出することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is provided in a measuring tube, a vortex generator for generating Karman vortices in a fluid flowing through the measuring tube, and a vortex generator provided downstream of the vortex generator. A pair of electromotive force measuring electrodes for detecting a change in induced electromotive force generated by a magnetic field change generated when the Karman vortex passes through the magnetic field, and one pair on each of the upstream and downstream sides of the pair of electromotive force measuring electrodes A pair of reference potential measurement electrodes for measuring the potential difference between the upstream side and the downstream side, a magnetic field generator for generating a magnetic field, a pair of electromotive force measurement electrodes and a pair of reference potential measurements And a detection circuit that is electrically connected to the electrodes for measurement and measures the frequency output signal of the Karman vortex by subtracting the potential difference from the induced electromotive force, and the frequency of the Karman vortex measured when only a conductive fluid flows as the fluid. It is a mixing ratio measuring device including a mixing ratio calculating unit that calculates a mixing ratio by comparing an output signal and a frequency output signal of Karman vortex when a conductive fluid and an insulating fluid are mixed and flowed as a fluid. Even if the measurement conditions change, the change can be canceled out using the reference potential measurement electrode and the electromotive force can be measured. The flow rate of the mixed fluid and the conductive fluid can be measured, and the equipment for reducing noise is not required, so the flow rate can be measured at low cost and with high accuracy. The mixing ratio can be easily calculated based on whether or not the mixing is performed.

【0024】本発明の請求項2に記載の発明は、請求項
1記載の混合比率測定装置を備えた流体混合装置であっ
て、前記測定管には、該測定管を流す導電性流体に絶縁
性流体を混合するための導入部が設けられたことを特徴
とする流体混合装置であるから測定条件が変化するよう
なことがあっても基準電位測定用電極を用いて変化分を
相殺して起電力を測定できるため、広い測定範囲で測定
することが可能となり、広範囲の流量域の混合流体と導
電性流体の流量測定が行えるし、ノイズを減らすための
機器が不要となるため低コストで、高精度で流量測定を
することができ、カルマン渦の周波数出力信号が欠損し
ているか否かで混合比率を簡単に算出することができ、
絶縁性流体を導電性流体に混合して所定混合比率の混合
流体をえることができる。
According to a second aspect of the present invention, there is provided a fluid mixing device provided with the mixing ratio measuring device according to the first aspect, wherein the measuring pipe is insulated from a conductive fluid flowing through the measuring pipe. Since the fluid mixing device is provided with an introduction part for mixing the anaerobic fluid, even if the measurement conditions change, the change is canceled using the reference potential measurement electrode. Since the electromotive force can be measured, it is possible to measure over a wide measurement range, and it is possible to measure the flow rate of the mixed fluid and the conductive fluid over a wide range of flow rates. The flow rate can be measured with high accuracy, and the mixing ratio can be easily calculated based on whether or not the frequency output signal of the Karman vortex is missing.
By mixing the insulating fluid with the conductive fluid, a mixed fluid having a predetermined mixing ratio can be obtained.

【0025】本発明の請求項3に記載の発明は、導入部
には混合調整弁が設けられ、混合比率演算部で算出され
た混合比率に従って混合比率演算部が混合調整弁を制御
することを特徴とする請求項2記載の流体混合装置であ
るから、算出した混合比率に従って混合調整弁を制御す
ることができ、混合比率をフィードバック制御でき、所
定混合比率の混合流体をえることができる。
According to a third aspect of the present invention, a mixing adjustment valve is provided in the introduction section, and the mixing ratio calculation section controls the mixing adjustment valve in accordance with the mixing ratio calculated by the mixing ratio calculation section. According to the fluid mixing device of the second aspect, the mixing adjustment valve can be controlled in accordance with the calculated mixing ratio, the mixing ratio can be feedback-controlled, and a mixed fluid having a predetermined mixing ratio can be obtained.

【0026】本発明の請求項4に記載の発明は、測定管
が一対の基準電位測定用電極の上流側で流路断面を縮小
されるとともに、導入部が接続されていることを特徴と
する請求項3記載の流体混合装置であるから、エジェク
ター作用により無動力で絶縁性流体を導電性流体に混合
することができる。
The invention according to a fourth aspect of the present invention is characterized in that the measuring tube has a reduced flow channel cross section upstream of the pair of reference potential measuring electrodes, and the introduction portion is connected. According to the fluid mixing device of the third aspect, the insulating fluid can be mixed with the conductive fluid without power by the ejector action.

【0027】(実施の形態1)以下、本発明の実施の形
態1における混合比率測定装置について、図1を用いて
説明する。なお、混合比率測定装置ではないが、流量測
定を行える構成を備えており、従来の流量測定装置と共
通の部材には同一の符号を付しており、重複した説明は
省略する。図1は本発明の実施の形態1である混合比率
測定装置の構成を示す断面図、図2は本発明の実施の形
態1における混合比率測定装置で導電性流体を測定した
ときの検出回路での出力図、図3は本発明の実施の形態
1における混合比率測定装置で導電性流体と絶縁性流体
の混合流体を測定したときの検出回路での出力図であ
る。
(Embodiment 1) A mixing ratio measuring apparatus according to Embodiment 1 of the present invention will be described below with reference to FIG. Although it is not a mixing ratio measuring device, it is provided with a structure capable of measuring a flow rate, and the same members as those of the conventional flow measuring device are denoted by the same reference numerals, and redundant description will be omitted. FIG. 1 is a sectional view showing a configuration of a mixing ratio measuring device according to the first embodiment of the present invention, and FIG. 2 is a detection circuit when a conductive fluid is measured by the mixing ratio measuring device according to the first embodiment of the present invention. FIG. 3 is an output diagram of a detection circuit when a mixed fluid of a conductive fluid and an insulating fluid is measured by the mixing ratio measuring device according to the first embodiment of the present invention.

【0028】図1に示すように、1は測定管、2は流体
中に設けられてカルマン渦を発生する渦発生体、3は渦
発生体2の代表寸法に比例した周波数で交互に回転方向
が反転して生成されるカルマン渦、4a,4bは測定電
極、5は誘導起電力を検出してカルマン渦3の周波数を
測定するとともに、反転回路でノイズ成分の信号を反転
させて相殺できる検出回路、8は磁界発生装置、9は絶
縁性流体、11は混合比率演算部である。混合比率演算
部11は、導電性流体だけを流したとき測定されるカル
マン渦の周波数と、導電性流体と絶縁性流体を混合して
流したときのカルマン渦の周波数を比較して、欠損パル
スの割合から混合比率を算出するものである。混合比率
演算部11は演算結果を表示する表示部を備えており、
混合比率を表示できる。
As shown in FIG. 1, 1 is a measuring tube, 2 is a vortex generator which is provided in a fluid and generates Karman vortices, and 3 is a rotating direction alternately at a frequency proportional to a representative dimension of the vortex generator 2. Vortex 4a and 4b are measurement electrodes, and the induced electromotive force is detected to measure the frequency of the Karman vortex 3. In addition, the inversion circuit inverts the signal of the noise component and cancels it. The circuit, 8 is a magnetic field generator, 9 is an insulating fluid, and 11 is a mixing ratio calculation unit. The mixing ratio calculation unit 11 compares the frequency of the Karman vortex measured when only the conductive fluid is flown with the frequency of the Karman vortex when the conductive fluid and the insulating fluid are mixed and flows, and determines the missing pulse. Is calculated from the ratio. The mixture ratio calculation unit 11 includes a display unit that displays a calculation result,
The mixing ratio can be displayed.

【0029】この測定管1の内径は、これがあまり小さ
いと管壁の境界層の影響がカルマン渦列に及んでしまう
し、大きすぎても流速が遅くなりカルマン渦列が発生し
なくなる。適正な流速域でのレイノルズ数は3,000
〜100,000程度の範囲である。また、渦発生体2
の形状は本実施の形態においては三角柱としているが、
カルマン渦列を発生させる形状であればどのような形状
であってもかまわない。そして、本実施の形態の渦発生
体2は、三角柱の一側面が流れに垂直に当たるように向
けて測定管1に取り付けられている。本実施の形態の流
量測定装置の場合、流量検知範囲を1L/min〜10
L/minに設定するためφ7mmの内径を有す測定管
1としたが、この条件では幅2mm、高さ3mmの断面
二等辺三角形の三角柱で構成される渦発生体2を設ける
のがもっとも効果的であった。
If the inside diameter of the measuring tube 1 is too small, the influence of the boundary layer of the tube wall affects the Karman vortex street, and if it is too large, the flow velocity becomes slow and the Karman vortex street does not occur. Reynolds number in proper flow velocity range is 3,000
It is in the range of about 100,000. In addition, the vortex generator 2
Is a triangular prism in the present embodiment,
Any shape may be used as long as it generates a Karman vortex street. The vortex generator 2 of the present embodiment is attached to the measurement tube 1 so that one side surface of the triangular prism is perpendicular to the flow. In the case of the flow measurement device according to the present embodiment, the flow detection range is set to 1 L / min to 10
In order to set L / min, the measuring tube 1 having an inner diameter of φ7 mm was used. Under this condition, it is most effective to provide a vortex generator 2 composed of a triangular prism having a width of 2 mm and a height of 3 mm and an isosceles triangular cross section. It was a target.

【0030】測定電極4a,4bは、渦発生体2の下流
側に渦発生体2の軸心と流れと直交するように2本並べ
て平行に取り付けられる。このとき、測定電極4aを通
る流線を描くと、同時に必ず測定電極4bも通る流線と
なる。この測定電極4a,4bを測定管1の両側面から
挟むように、磁界発生装置8を構成する永久磁石のN極
とS極が対向して両側に設けられている。流量検知範囲
を1L/min〜10L/minに設定したとき、磁界
発生装置8は測定管1内の磁束密度を高める必要があ
り、希土類の永久磁石を用い、渦発生体2幅の1.5倍
の幅を持つ磁石としている。
The two measuring electrodes 4a and 4b are mounted in parallel on the downstream side of the vortex generator 2 so as to be orthogonal to the axis of the vortex generator 2 and the flow. At this time, if a streamline passing through the measurement electrode 4a is drawn, the streamline always passes through the measurement electrode 4b. N-poles and S-poles of permanent magnets constituting the magnetic field generator 8 are provided on both sides so as to sandwich the measurement electrodes 4a and 4b from both sides of the measurement tube 1. When the flow rate detection range is set to 1 L / min to 10 L / min, the magnetic field generator 8 needs to increase the magnetic flux density in the measuring tube 1, and uses a rare-earth permanent magnet and uses 1.5 times the width of the vortex generator 2. The magnet has twice the width.

【0031】6a,6bは基準電位測定電極であって、
測定電極4a,4bの上流側と下流側のそれぞれの電位
を測定し、この上流側位置と下流側位置の電位差を測定
できるものである。基準電位測定電極6a,6bは測定
電極4a,4bと4本並んで平行に設けられる。このと
き、基準電位測定電極6a,6bを通って描かれる流線
は、必ず測定電極4a,4bを通るようになる。従って
4つの電極は完全に1つの流れの上流、下流の位置関係
を有するようになる。
6a and 6b are reference potential measuring electrodes,
The potential of each of the upstream and downstream sides of the measurement electrodes 4a and 4b is measured, and the potential difference between the upstream position and the downstream position can be measured. The four reference potential measuring electrodes 6a and 6b are provided in parallel with the measuring electrodes 4a and 4b. At this time, streamlines drawn through the reference potential measurement electrodes 6a and 6b always pass through the measurement electrodes 4a and 4b. Therefore, the four electrodes completely have a positional relationship upstream and downstream of one flow.

【0032】カルマン渦流量測定装置は、このような配
置におかれた各部材が、カルマン渦3を安定して生成す
るように、また、測定管1内に生じた乱れによってノイ
ズが生じないように、各部材の代表寸法や流体のレイノ
ルズ数等を注意深く選ぶ必要がある。
The Karman vortex flow rate measuring device is designed so that each member arranged in such an arrangement stably generates the Karman vortex 3 and does not generate noise due to turbulence generated in the measuring tube 1. In addition, it is necessary to carefully select the representative dimensions of each member, the Reynolds number of the fluid, and the like.

【0033】図1において、各部材の寸法は、以下説明
するようにカルマン渦3の安定した生成とノイズ防止の
ために、微妙なバランス関係の上に成り立っている。例
えば、基準電位測定電極6a,6bの直径は渦発生体2
の代表寸法である幅Dの1/2以下が選択される。これ
によって基準電位測定電極6a,6bの直径を考えたと
き、レイノルズ数が1/2以下となって層流に近づき、
カルマン渦3の生成が乱されない。また、基準電位測定
電極6a,6b自体が発生する渦度成分も小さくなる。
この過度成分程度の流速変化では測定電極4a,4bの
間で磁束変化をほとんど発生させないため、測定精度を
おとさず流量測定することが可能になる。
In FIG. 1, the dimensions of each member are based on a delicate balance relationship for stable generation of Karman vortices 3 and prevention of noise as described below. For example, the diameter of the reference potential measuring electrodes 6a and 6b is
Of the width D, which is the representative dimension of, is selected. Thus, when considering the diameters of the reference potential measurement electrodes 6a and 6b, the Reynolds number becomes 1/2 or less and approaches a laminar flow,
The generation of the Karman vortex 3 is not disturbed. Further, the vorticity components generated by the reference potential measurement electrodes 6a and 6b themselves are also reduced.
Since a magnetic flux change is hardly generated between the measurement electrodes 4a and 4b with a flow velocity change of about the transient component, the flow rate can be measured without reducing the measurement accuracy.

【0034】また、測定電極4a,4bの直径も渦発生
体2幅の1/2以下を採用するのが好ましい。というの
はレイノルズ数が1/2以下となって、付近の流れは層
流に近づくから、カルマン渦3を発生させる流れをほと
んど乱さず、カルマン渦列の流れを破壊することがなく
なるからである。そして、測定電極4a,4bの直径を
同一にすると測定電極4a,4bで発生するノイズを小
さくできる。すなわち、測定電極4aによって乱された
流れは、乱れが拡散されながら流線上を流下し、測定電
極4bに流入するが、直径が異径の場合は両測定電極4
a,4bで流体抵抗や剥離状況が異なり、周囲の流れも
別々の複雑な流れとなってノイズも大きくなるが、同一
径であるから比較的ノイズが抑えられる。しかも、本実
施の形態では直径を同一にしてノイズ成分をほぼ同一に
するとともに、検出回路5には反転回路が設けられてお
り、一方の電極からのノイズ成分信号を反転回路で反転
した後、処理後の両ノイズ成分信号を相殺することによ
り、信号処理の面からもノイズレベルをさらに低減して
いる。
Also, it is preferable that the diameter of the measuring electrodes 4a and 4b is not more than 1/2 of the width of the vortex generator 2. This is because the Reynolds number becomes 1 / or less, and the flow in the vicinity approaches laminar flow, so that the flow that generates the Karman vortex 3 is hardly disturbed, and the flow of the Karman vortex street is not destroyed. . When the diameters of the measurement electrodes 4a and 4b are made equal, noise generated at the measurement electrodes 4a and 4b can be reduced. That is, the flow disturbed by the measuring electrode 4a flows down the streamline while the turbulence is diffused, and flows into the measuring electrode 4b.
Fluid resistance and peeling conditions are different between a and 4b, and the surrounding flow is also a separate and complicated flow to increase noise, but the noise is relatively suppressed because of the same diameter. Moreover, in the present embodiment, the diameter is the same and the noise components are made substantially the same, and the detection circuit 5 is provided with an inversion circuit. After the noise component signal from one electrode is inverted by the inversion circuit, By canceling both the processed noise component signals, the noise level is further reduced from the viewpoint of signal processing.

【0035】さらに、測定電極4a,4bの管内長さを
渦発生体2幅の2〜2.5倍にすると、測定管1の内径
として渦発生体2幅の3〜4倍程度が流れと大きさのバ
ランスが適当で採用されるから、測定電極4a,4bの
先端付近がカルマン渦列をちょうど2列完全に囲った最
小高さになり、発生したカルマン渦列の中心における誘
導起電力変化のみを測定し、高い精度で流量測定をする
ことが可能になる。そして、測定電極4a,4bの管内
長さを同一にすると、測定電極4a,4bの先端から流
出する渦など、カルマン渦3以外の乱れによるノイズを
検出回路5で相殺でき、ノイズレベルを低減し、高い精
度で流量測定をすることができる。
Further, when the length of the measuring electrodes 4a and 4b in the tube is set to be 2 to 2.5 times the width of the vortex generator 2, the inner diameter of the measuring tube 1 is about 3 to 4 times the width of the vortex generator 2 and the flow. Since the size balance is appropriately adopted, the vicinity of the tip of the measurement electrodes 4a and 4b has the minimum height that completely surrounds exactly two Karman vortex streets, and the induced electromotive force change at the center of the generated Karman vortex streets Only the flow rate can be measured with high accuracy. If the lengths of the measuring electrodes 4a and 4b are the same, noise due to disturbances other than the Karman vortex 3, such as vortices flowing out from the tips of the measuring electrodes 4a and 4b, can be canceled by the detection circuit 5, and the noise level can be reduced. The flow rate can be measured with high accuracy.

【0036】さらに、測定電極4a,4bの設置間隔を
渦発生体2幅の2〜2.5倍にとると、一対の測定電極
4a,4bの間隔がカルマン渦列のカルマン渦3とカル
マン渦3との間隔以下にでき、この測定電極4a,4b
間に存在するカルマン渦3を一個か、それ以下、すなわ
ち存在しない、のどちらかにすることができ、ノイズレ
ベルを低減し、カルマン渦3の1つをパルス1つに対応
させることができて、周波数カウントが容易となり、高
精度の流量測定をすることができる。
Further, when the interval between the measurement electrodes 4a and 4b is set to be 2 to 2.5 times the width of the vortex generator 2, the interval between the pair of measurement electrodes 4a and 4b becomes the Karman vortex 3 of the Karman vortex train and the Karman vortex. 3, the measuring electrodes 4a, 4b
The number of the Karman vortices 3 existing therebetween can be one or less, that is, not present, and the noise level can be reduced, and one of the Karman vortices 3 can correspond to one pulse. In addition, frequency counting becomes easy, and high-precision flow measurement can be performed.

【0037】また、磁界発生装置8の管径方向幅を渦発
生体2幅の1.5〜2倍にすると、測定管1内に発生す
る磁界をカルマン渦3の発生する位置のみに集中させ、
測定管1側壁で発生する渦度成分によるノイズ成分が低
減できるものである。上述したように本実施の形態の流
量測定装置では1.5倍を採用している。
When the width of the magnetic field generator 8 in the radial direction is 1.5 to 2 times the width of the vortex generator 2, the magnetic field generated in the measuring tube 1 is concentrated only at the position where the Karman vortex 3 is generated. ,
The noise component due to the vorticity component generated on the side wall of the measurement tube 1 can be reduced. As described above, the flow rate measuring device of the present embodiment employs 1.5 times.

【0038】以上説明した構成の混合比率測定装置にす
ることで、カルマン渦列が測定電極4a,4bで囲まれ
た部分を通る磁束を横切るとき、磁界変化が発生し、測
定電極4a,4bに規則的に誘導起電力がパルス状に発
生する。そして、基準電位測定電極6a,6bでこの付
近の電位差が測定されるから、この付近の測定条件(カ
ルマン渦3以外の直流成分や外乱ノイズ成分)を反映し
た基準電位差を測定することができ、この基準電位差信
号を測定電極4a,4b間で発生した起電力信号と検出
回路5内で相殺することで、容易にノイズ成分やカルマ
ン渦列以外の信号を消去できる。
With the mixing ratio measuring apparatus having the above-described configuration, when the Karman vortex street crosses the magnetic flux passing through the portion surrounded by the measurement electrodes 4a and 4b, a magnetic field change occurs, and the measurement electrodes 4a and 4b The induced electromotive force is generated regularly in a pulsed manner. Since the potential difference in the vicinity is measured by the reference potential measurement electrodes 6a and 6b, the reference potential difference reflecting the measurement conditions (DC components and disturbance noise components other than the Karman vortex 3) in the vicinity can be measured. By canceling this reference potential difference signal in the detection circuit 5 from the electromotive force signal generated between the measurement electrodes 4a and 4b, signals other than noise components and Karman vortex streets can be easily eliminated.

【0039】本実施の形態1の混合比率測定装置は、導
電性流体だけを流したとき測定されるカルマン渦の周波
数出力信号と、導電性流体と絶縁性流体を混合して流し
たときのカルマン渦の周波数出力信号を比較して、欠損
周波数出力信号(パルス)の割合から混合比率を算出す
る混合比率演算部11を有している。本実施の形態1の
混合比率測定装置は、まず最初に導電性流体だけを流し
て検出回路からの導電性流体の100%周波数出力信号
をカウントする。これは、図2に示すように測定電極4
a,4b間で発生した起電力信号から基準電位差信号差
との差をとった出力信号は、欠損のないカルマン渦3の
周波数を示す出力信号となる。次いで、導電性流体と絶
縁性流体の混合流体を流して検出回路からの出力信号を
カウントする。起電力信号から基準電位差信号差との差
をとった出力信号は、図3に示すように、欠損パルスを
有する欠損周波数出力信号となる。
The mixing ratio measuring apparatus according to the first embodiment includes a Karman vortex frequency output signal measured when only a conductive fluid flows, and a Karman vortex frequency output signal measured when a conductive fluid and an insulating fluid are mixed and flowed. It has a mixture ratio calculation unit 11 that compares the frequency output signals of the vortices and calculates the mixture ratio from the ratio of the missing frequency output signal (pulse). The mixing ratio measuring apparatus according to the first embodiment first flows only the conductive fluid and counts the 100% frequency output signal of the conductive fluid from the detection circuit. This corresponds to the measurement electrode 4 as shown in FIG.
An output signal obtained by taking the difference between the electromotive force signal generated between a and 4b and the reference potential difference signal difference is an output signal indicating the frequency of the Karman vortex 3 without any loss. Next, a mixed fluid of a conductive fluid and an insulating fluid is allowed to flow, and the output signal from the detection circuit is counted. The output signal obtained by taking the difference between the electromotive force signal and the reference potential difference signal difference is a missing frequency output signal having a missing pulse as shown in FIG.

【0040】欠損周波数出力信号が発生する理由を説明
すると、絶縁性流体は渦の遠心力により流れが曲げられ
て、圧力の低いカルマン渦3列の中心に集まるからであ
る。カルマン渦3の周囲に集まった絶縁性流体の作用で
誘導起電力が低下し、測定電極4a,4b間にカルマン
渦3があっても周波数出力信号に欠損が出るものであ
る。混合比率演算部11は、導電性流体の100%周波
数出力信号13と欠損周波数出力信号14の比をとり、
この比に対応する混合比率を内部のメモリーに蓄積され
ているデータから読み出し、表示部で表示する。
The reason why the missing frequency output signal is generated is as follows. The flow of the insulating fluid is bent by the centrifugal force of the vortex, so that the insulating fluid gathers at the center of the three rows of low-pressure Karman vortices. The induced electromotive force is reduced by the action of the insulating fluid gathered around the Karman vortex 3, and even if the Karman vortex 3 exists between the measurement electrodes 4a and 4b, the frequency output signal has a defect. The mixing ratio calculator 11 calculates the ratio between the 100% frequency output signal 13 of the conductive fluid and the missing frequency output signal 14,
The mixture ratio corresponding to this ratio is read from the data stored in the internal memory and displayed on the display unit.

【0041】続いて、このような構成を有する本実施の
形態1における混合比率測定装置の動作について説明す
る。まず、導電性流体だけを測定管1内を流し、磁界発
生装置8が形成する磁界内を流下させる。このとき、渦
発生体2で発生したカルマン渦列は、ストローハルの研
究により知られているように、カルマン渦3の周波数と
流速の間に比例関係が成立する。従って、このときのカ
ルマン渦3の周波数をカウントすれば測定管1内を流れ
る導電性流体の100%周波数出力信号13を算出でき
る。次いで、導電性流体と絶縁性流体の混合流体を測定
管1内に流し、磁界発生装置8によって加えられた磁界
内を流下させる。同じく、絶縁性流体で欠損した欠損周
波数出力信号14を算出できる。この欠損したパルスの
数こそ混合比率に対応するもので、両者の比をとり、対
応する混合比率を読み出して表示部に表示するものであ
る。
Next, the operation of the mixing ratio measuring device according to the first embodiment having such a configuration will be described. First, only the conductive fluid is caused to flow in the measurement tube 1 and is caused to flow down in the magnetic field formed by the magnetic field generator 8. At this time, the Karman vortex street generated in the vortex generator 2 has a proportional relationship between the frequency of the Karman vortex 3 and the flow velocity, as is known from the study of Strouhal. Therefore, if the frequency of the Karman vortex 3 at this time is counted, a 100% frequency output signal 13 of the conductive fluid flowing in the measurement tube 1 can be calculated. Next, a mixed fluid of a conductive fluid and an insulating fluid is caused to flow into the measurement tube 1, and is caused to flow down in the magnetic field applied by the magnetic field generator 8. Similarly, the missing frequency output signal 14 that is missing in the insulating fluid can be calculated. The number of the missing pulses corresponds to the mixing ratio. The ratio between the two is taken, and the corresponding mixing ratio is read out and displayed on the display unit.

【0042】(実施の形態2)以下、本発明の実施の形
態2における流量混合装置について、図4を用いて説明
する。なお、実施の形態1の混合比率測定装置と共通の
部材には同一の符号を付しており、重複した説明は省略
する。図4は本発明の実施の形態2である流体装置の構
成を示す断面図である。
(Embodiment 2) Hereinafter, a flow mixing device according to Embodiment 2 of the present invention will be described with reference to FIG. Note that the same members as those of the mixing ratio measuring device of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. FIG. 4 is a sectional view showing the configuration of the fluid device according to the second embodiment of the present invention.

【0043】図1に示すように、1は測定管、2は流体
中に設けられてカルマン渦を発生する渦発生体、3は渦
発生体2の代表寸法に比例した周波数で交互に回転方向
が反転して生成されるカルマン渦、4a,4bは測定電
極、5は検出回路、8は磁界発生装置、9は絶縁性流
体、11は混合比率演算部である。10は測定管1の流
路断面を縮小された部位に接続された導入管(導入部)
で、絶縁流体を導入するためのものである。12は導入
管10に設けられた混合調整弁であり、混合比率演算部
11は算出した混合比率と、目的とする混合比率に差が
生じたときには、この差をなくすように混合調整弁12
の開度を調整する。これにより、混合比率に変動が出た
ときにも偏差をこのフィードバック制御でなくすよう制
御することができる。また、測定管1は流路断面が縮小
され、圧力が低下するので、エジェクター作用が発生
し、導入管10から絶縁性流体9が無動力で吸引され
る。
As shown in FIG. 1, 1 is a measuring tube, 2 is a vortex generator which is provided in a fluid and generates Karman vortices, and 3 is a rotating direction alternately at a frequency proportional to a representative dimension of the vortex generator 2. 4a and 4b are measurement electrodes, 5 is a detection circuit, 8 is a magnetic field generator, 9 is an insulating fluid, and 11 is a mixing ratio calculation unit. Reference numeral 10 denotes an introduction pipe (introduction section) connected to a portion where the flow path cross section of the measurement pipe 1 is reduced.
And for introducing an insulating fluid. Reference numeral 12 denotes a mixing adjustment valve provided in the introduction pipe 10. The mixing ratio calculation unit 11 controls the mixing adjustment valve 12 so as to eliminate the difference when the calculated mixing ratio and the target mixing ratio are different.
Adjust the opening of. Thereby, even when the mixing ratio fluctuates, it is possible to control to eliminate the deviation by the feedback control. Further, since the cross section of the flow path of the measurement tube 1 is reduced and the pressure is reduced, an ejector action occurs, and the insulating fluid 9 is sucked from the introduction tube 10 without power.

【0044】[0044]

【発明の効果】以上説明したように本発明の請求項1に
記載の発明は、測定条件が変化するようなことがあって
も基準電位測定用電極を用いて変化分を相殺して起電力
を測定できるため、広い測定範囲で測定することが可能
となり、広範囲の流量域の混合流体と導電性流体の流量
測定が行え、ノイズを減らすための機器が不要となるた
め低コストで、高精度で流量測定をすることができ、カ
ルマン渦の周波数出力信号が欠損しているか否かで混合
比率を簡単に算出することができる。
As described above, according to the first aspect of the present invention, even when the measurement conditions change, the change is canceled by using the reference potential measurement electrode to generate the electromotive force. Measurement, it is possible to measure over a wide measurement range, and it is possible to measure the flow rate of mixed fluid and conductive fluid over a wide flow rate range, and no equipment is required to reduce noise. Thus, the mixing ratio can be easily calculated based on whether or not the frequency output signal of the Karman vortex is missing.

【0045】本発明の請求項2に記載の発明は、カルマ
ン渦の周波数出力信号が欠損しているか否かで混合比率
を簡単に算出することができ、絶縁性流体を導電性流体
に混合して所定混合比率の混合流体をえることができ
る。
According to the invention of claim 2 of the present invention, the mixing ratio can be easily calculated based on whether or not the frequency output signal of the Karman vortex is missing, and the insulating fluid is mixed with the conductive fluid. Thus, a mixed fluid having a predetermined mixing ratio can be obtained.

【0046】本発明の請求項3に記載の発明は、混合比
率に従って混合比率演算部が混合調整弁を制御するか
ら、算出した混合比率に従って混合調整弁を制御するこ
とができ、混合比率をフィードバック制御でき、所定混
合比率の混合流体をえることができる。
According to the third aspect of the present invention, since the mixing ratio calculating section controls the mixing adjusting valve according to the mixing ratio, the mixing adjusting valve can be controlled according to the calculated mixing ratio, and the mixing ratio is fed back. It is possible to control and obtain a mixed fluid of a predetermined mixing ratio.

【0047】本発明の請求項4に記載の発明は、測定管
が一対の基準電位測定用電極の上流側で流路断面を縮小
されて導入部が設けられるから、エジェクター作用によ
り無動力で絶縁性流体を導電性流体に混合することがで
きる。
In the invention according to claim 4 of the present invention, since the measuring tube is provided with the introduction section provided with the flow path cross-section reduced on the upstream side of the pair of reference potential measuring electrodes, it is insulated without power by the ejector action. The conductive fluid can be mixed with the conductive fluid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1である混合比率測定装置
の構成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a mixing ratio measuring device according to a first embodiment of the present invention.

【図2】本発明の実施の形態1における混合比率測定装
置で導電性流体を測定したときの検出回路での出力図
FIG. 2 is an output diagram of a detection circuit when a conductive fluid is measured by the mixing ratio measuring device according to the first embodiment of the present invention.

【図3】本発明の実施の形態1における混合比率測定装
置で導電性流体と絶縁性流体の混合流体を測定したとき
の検出回路での出力図
FIG. 3 is an output diagram of a detection circuit when a mixed fluid of a conductive fluid and an insulating fluid is measured by the mixture ratio measuring device according to the first embodiment of the present invention.

【図4】本発明の実施の形態2である流体混合装置の構
成を示す断面図
FIG. 4 is a sectional view showing a configuration of a fluid mixing device according to a second embodiment of the present invention.

【図5】従来の磁界を用いた流量測定装置の構成を示す
断面図
FIG. 5 is a cross-sectional view showing the configuration of a conventional flow measurement device using a magnetic field.

【符号の説明】 1 測定管 2 渦発生体 3 カルマン渦 4a,4b 測定電極 5 検出回路 6a,6b 基準電位測定電極 8 磁界発生装置 9 絶縁性流体 10 導入管(導入部) 11 混合比率演算部 12 混合調整弁 13 100%周波数出力信号 14 欠損周波数出力信号[Description of Signs] 1 Measurement tube 2 Vortex generator 3 Karman vortex 4a, 4b Measurement electrode 5 Detection circuit 6a, 6b Reference potential measurement electrode 8 Magnetic field generator 9 Insulating fluid 10 Introducing tube (introducing portion) 11 Mixing ratio calculating unit 12 Mixing adjustment valve 13 100% frequency output signal 14 Missing frequency output signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定管内に設けられ、前記測定管を流れる
流体にカルマン渦を発生させる渦発生体と、 前記渦発生体より下流側に設けられ、前記カルマン渦が
磁界内を通過するとき生じる磁界変化によって発生する
誘導起電力の変化を検出する一対の起電力測定用電極
と、 前記一対の起電力測定用電極の上流側と下流側にそれぞ
れ1つずつ設けられ、この上流側と下流側の電位差を測
定するための一対の基準電位測定用電極と、 前記磁界を発生するための磁界発生装置と、 前記一対の起電力測定用電極および前記一対の基準電位
測定用電極とにそれぞれ電気的に接続され、前記誘導起
電力から前記電位差を引いてカルマン渦の周波数出力信
号を測定する検出回路を備え、 前記流体として導電性流体だけを流したとき測定される
カルマン渦の周波数出力信号と、前記流体として導電性
流体と絶縁性流体を混合して流したときのカルマン渦の
周波数出力信号を比較して混合比率を算出する混合比率
演算部を備えたことを特徴とする混合比率測定装置。
1. A vortex generator provided in a measurement tube and generating a Karman vortex in a fluid flowing through the measurement tube; and a vortex generator provided downstream of the vortex generator and generated when the Karman vortex passes through a magnetic field. A pair of electromotive force measurement electrodes for detecting a change in induced electromotive force generated by a change in magnetic field; and a pair of electrodes respectively provided on the upstream side and the downstream side of the pair of electromotive force measurement electrodes. A pair of reference potential measurement electrodes for measuring the potential difference between the first and second electrodes, a magnetic field generator for generating the magnetic field, the pair of electromotive force measurement electrodes and the pair of reference potential measurement electrodes. A detection circuit for measuring the frequency output signal of the Karman vortex by subtracting the potential difference from the induced electromotive force, wherein the Karman vortex is measured when only a conductive fluid is flowed as the fluid. A wave number output signal, and a mixing ratio calculation unit that calculates a mixing ratio by comparing a frequency output signal of the Karman vortex when the conductive fluid and the insulating fluid are mixed and flowed as the fluid. Mixing ratio measuring device.
【請求項2】請求項1記載の混合比率測定装置を備えた
流体混合装置であって、前記測定管には、該測定管を流
す導電性流体に絶縁性流体を混合するための導入部が設
けられたことを特徴とする流体混合装置。
2. A fluid mixing device provided with a mixing ratio measuring device according to claim 1, wherein said measuring tube has an introduction portion for mixing an insulating fluid with a conductive fluid flowing through said measuring tube. A fluid mixing device provided.
【請求項3】前記導入部には混合調整弁が設けられ、前
記混合比率演算部で算出された混合比率に従って前記混
合比率演算部が前記混合調整弁を制御することを特徴と
する請求項2記載の流体混合装置。
3. The mixing unit according to claim 2, wherein the mixing unit is provided with a mixing control valve, and the mixing ratio calculating unit controls the mixing control valve according to the mixing ratio calculated by the mixing ratio calculating unit. A fluid mixing device as described.
【請求項4】前記測定管が前記一対の基準電位測定用電
極の上流側で流路断面を縮小されるとともに、前記導入
部が接続されていることを特徴とする請求項3記載の流
体混合装置。
4. The fluid mixing device according to claim 3, wherein said measuring tube has a reduced flow path cross section upstream of said pair of reference potential measuring electrodes, and said introduction portion is connected thereto. apparatus.
JP2000220449A 2000-07-21 2000-07-21 Mixing ratio measuring device and fluid mixing device equipped therewith Withdrawn JP2002039820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220449A JP2002039820A (en) 2000-07-21 2000-07-21 Mixing ratio measuring device and fluid mixing device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220449A JP2002039820A (en) 2000-07-21 2000-07-21 Mixing ratio measuring device and fluid mixing device equipped therewith

Publications (1)

Publication Number Publication Date
JP2002039820A true JP2002039820A (en) 2002-02-06

Family

ID=18715058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220449A Withdrawn JP2002039820A (en) 2000-07-21 2000-07-21 Mixing ratio measuring device and fluid mixing device equipped therewith

Country Status (1)

Country Link
JP (1) JP2002039820A (en)

Similar Documents

Publication Publication Date Title
JP4755382B2 (en) Magnetic induction flow measuring device
CN107179104A (en) A kind of magneto liquid metal vortex-shedding meter and its application
US6435036B1 (en) Vortex flow meter
CN114829883A (en) Method for operating a magnetically inductive flow meter
JP2002039820A (en) Mixing ratio measuring device and fluid mixing device equipped therewith
JP3113946B2 (en) Vortex flow meter
CN2839978Y (en) Vortex type electromagnetic flowmeter
JP2000241211A (en) Flow rate measuring apparatus
JP2003065816A (en) Electromagnetic flowmeter
RU2716601C2 (en) Electromagnetic method of measuring flow rate of liquid metal
JP3736139B2 (en) Flow measuring device
JP2000028408A (en) Electromagnetic flow meter
JP2002031551A (en) Flow rate measurement device
JPH10170320A (en) Flowmeter
JP2001272257A (en) Flow-rate measuring apparatus
JP3398251B2 (en) Flowmeter
JP4438119B2 (en) Flow measuring device
JP2002090191A (en) Flow measuring device
JP3237366B2 (en) Vibration type flow meter
JP2002071406A (en) Flow measurement apparatus
JP2002098565A (en) Flow rate measuring device
RU2489686C2 (en) Electromagnetic method of flow measurement
JPH05273015A (en) Weir type electromagnetic flowmeter
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
JPH11281421A (en) Ring vortex flow meter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081225