JP2002088439A - Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method - Google Patents

Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method

Info

Publication number
JP2002088439A
JP2002088439A JP2000275324A JP2000275324A JP2002088439A JP 2002088439 A JP2002088439 A JP 2002088439A JP 2000275324 A JP2000275324 A JP 2000275324A JP 2000275324 A JP2000275324 A JP 2000275324A JP 2002088439 A JP2002088439 A JP 2002088439A
Authority
JP
Japan
Prior art keywords
steel
cycle fatigue
low cycle
energy absorption
absorption performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000275324A
Other languages
Japanese (ja)
Inventor
Yoichi Kayamori
陽一 萱森
Tadashi Ishikawa
忠 石川
Shuji Aihara
周二 粟飯原
Atsushi Watanabe
厚 渡辺
Eiichiro Saeki
英一郎 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000275324A priority Critical patent/JP2002088439A/en
Publication of JP2002088439A publication Critical patent/JP2002088439A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce steel for damping building materials excellent in low cycle fatigue characteristics to wind and earthquakes and energy absorging performance and to provide its production method. SOLUTION: This steel for damping building materials excellent in low cycle fatigue characteristics and energy absorbing performance has a structure composed of ferrite and a hard second phase of 10 to 40% by area ratio, the grain size number of the ferritic crystal grains is >=7, the hardness of the hard second phase is >=180 Hv, further, yield strength is 200 to 350 MPa, and also the work hardening exponent is 0.2 to 0.25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、風や地震等の塑性
変形を伴う繰り返し荷重に対する低サイクル疲労特性お
よびエネルギー吸収性能に優れ、アンボンドブレース、
制振壁、制振パネル等に用いられる制振建材用鋼および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unbonded brace having excellent low cycle fatigue characteristics and energy absorption performance against repeated loads accompanied by plastic deformation such as wind and earthquake.
The present invention relates to a damping building material steel used for a damping wall, a damping panel, and the like, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】風および地震に対して、柱、梁などの建
物主体骨組の応答を低減させるため、エネルギーを吸収
させる部材・装置を導入する種々の技術が実用化されて
いる。アンボンドブレース、制振壁、制振パネル等の制
振建材がその一つである。
2. Description of the Related Art Various techniques for introducing energy absorbing members and devices have been put to practical use in order to reduce the response of a building-based framework such as columns and beams to wind and earthquake. Damping construction materials such as unbonded braces, damping walls, and damping panels are one of them.

【0003】制振建材用鋼に要求される特性として、次
の2点が特に要求される。 低サイクル疲労特性に優れること、すなわち、繰り返
しの塑性変形に対する破断寿命が長いこと。 エネルギー吸収性能に優れること、すなわち、主体骨
組部材よりも制振建材が先行して塑性変形するよう制振
建材用鋼の降伏強度は低く、かつ、制振建材の単位体積
当たりのエネルギー吸収量が大きいこと。
[0003] The following two characteristics are particularly required as characteristics required for steel for vibration damping building materials. Excellent low cycle fatigue characteristics, that is, long rupture life against repeated plastic deformation. Excellent in energy absorption performance, that is, the yield strength of the damping construction steel is low so that the damping building material is plastically deformed before the main frame member, and the amount of energy absorption per unit volume of the damping building material is low. Be big.

【0004】現用の制振建材用鋼は、(a)強化元素の
低減、(b)フェライト単相組織、(c)比較的大きな
結晶粒径の許容を特徴とした極軟鋼が主である。極軟鋼
とすることで、極低降伏強度および高延性により前記
の達成を狙っている。例えば、特開平11−3605
1号公報では、固溶強化元素であるCを0.003%以
下、Nを0.004%以下に制限し、かつTiを微量添
加することでCとNの固溶量を減らし、さらに、Bを微
量添加することで粒界強化による靭性改善を図り、フェ
ライト単相組織で平均粒径150μm以下であることを
特徴とする鋼材とその製造方法を開示している。
[0004] The current steels for vibration damping building materials are mainly ultra-mild steels characterized by (a) reduction of strengthening elements, (b) ferrite single phase structure, and (c) tolerance of relatively large crystal grain size. The use of extremely mild steel aims at achieving the above due to extremely low yield strength and high ductility. For example, JP-A-11-3605
In Japanese Patent No. 1, the solid solution strengthening element C is limited to 0.003% or less, N is limited to 0.004% or less, and the amount of C and N dissolved is reduced by adding a small amount of Ti. A steel material characterized by improving the toughness by grain boundary strengthening by adding a small amount of B and having a ferrite single phase structure with an average grain size of 150 μm or less and a method for producing the same are disclosed.

【0005】ところで、極軟鋼の低サイクル疲労特性と
エネルギー吸収性能については、日本建築学会構造系論
文集の第472号139頁および第473号159頁に
より以下の点が明らかになっている。 ・極軟鋼の低サイクル疲労特性は、普通鋼のそれと同程
度である。 ・極軟鋼のエネルギー吸収性能は、歪の変動範囲(以
後、歪範囲と称す)が0.7%より低い場合は普通鋼の
それよりも優れるが、歪範囲が0.8%よりも大きくな
ると普通鋼のそれよりも優れるとは言えない。そこで、
低サイクル疲労特性とエネルギー吸収性能の両方に優れ
る制振建材用鋼の使用が期待されている。
[0005] The following points have been made clear regarding the low cycle fatigue characteristics and energy absorption performance of ultra-mild steel in the Journal of the Architectural Institute of Japan, 472, 139 and 473, 159. -Low cycle fatigue properties of extremely mild steel are comparable to those of ordinary steel. -The energy absorption performance of extremely mild steel is superior to that of ordinary steel when the variation range of strain (hereinafter referred to as strain range) is lower than 0.7%, but is higher when the strain range is higher than 0.8%. It is not better than that of ordinary steel. Therefore,
The use of steel for vibration damping building materials, which is excellent in both low cycle fatigue characteristics and energy absorption performance, is expected.

【0006】[0006]

【発明の解決しようとする課題】しかしながら、上記の
特開平11−36051号公報では、平均粒径を150
μmに制御し部材の均一な変形能を確保することで疲労
特性の低下を防止するよう述べているが、普通鋼と比較
して低サイクル疲労特性を著しく向上させる技術は何ら
開示していない。また、この発明例では100MPa 程度
以下の低降伏強度を達成したことは示されているが、エ
ネルギー吸収性能自体は何ら示されていないため、エネ
ルギー吸収性能が優れるのか否かは不明である。
However, in the above-mentioned Japanese Patent Application Laid-Open No. 11-36051, the average particle size is 150
Although it is stated that the deterioration in fatigue characteristics is prevented by controlling the thickness to μm to ensure uniform deformability of the members, no technique for significantly improving the low cycle fatigue characteristics as compared with ordinary steel is disclosed. Further, in this example of the invention, it is shown that a low yield strength of about 100 MPa or less has been achieved, but it is unclear whether or not the energy absorption performance is excellent because no energy absorption performance itself is shown.

【0007】本発明の実施例に示す通り、極軟鋼の低サ
イクル疲労特性およびエネルギー吸収性能が普通鋼のそ
れよりも優れているとは必ずしも言えない。そこで、低
サイクル疲労特性とエネルギー吸収性能の両方に優れる
制振建材用鋼の開発が強く望まれている。本発明は上記
課題を解決し、アンボンドブレース、制振壁、制振パネ
ル等に用いられる制振建材用鋼およびその製造方法を提
供することを課題とする。
[0007] As shown in the examples of the present invention, the low cycle fatigue characteristics and energy absorption performance of ultra mild steel are not necessarily superior to those of ordinary steel. Therefore, there is a strong demand for the development of steels for vibration damping building materials that are excellent in both low cycle fatigue characteristics and energy absorption performance. An object of the present invention is to solve the above problems and to provide a steel for vibration damping building materials used for unbonded braces, vibration damping walls, vibration damping panels, and the like, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】発明者らは、低サイクル
疲労特性とエネルギー吸収性能を両立できる鋼材の具備
すべき組織、組成などの諸条件を特定するに至り本発明
を完成させたもので、その要旨とするところは以下の通
りである。 (1) フェライトと面積率で10〜40%の硬質第二
相からなる組織を有し、フェライト結晶粒の粒度番号が
7以上、硬質第二相の硬度がHv180以上であり、さ
らに、降伏強度が200〜350MPa で、かつ、加工硬
化指数が0.2〜0.25であることを特徴とする低サ
イクル疲労特性とエネルギー吸収性能に優れた制振建材
用鋼。 (2) 質量%で、C:0.05〜0.4%、Si:
0.05〜1.5%、Mn:0.5〜2%、P:0.0
3%以下、S:0.02%以下を含有し、残部がFeお
よび不可避不純物からなることを特徴とする前記(1)
に記載の低サイクル疲労特性とエネルギー吸収性能に優
れた制振建材用鋼。 (3) 質量%で、Cu:0.05〜2%、Ni:0.
05〜2%、Cr:0.05〜2%、Mo:0.05〜
0.5%、Nb:0.005〜0.2%、V:0.00
5〜0.2%、Ca:0.0005〜0.006%、希
土類元素(REM):0.0005〜0.01%の1種
または2種以上を、さらに含有することを特徴とする前
記(2)に記載の低サイクル疲労特性とエネルギー吸収
性能に優れた制振建材用鋼。 (4) 質量%で、Al:0.005〜0.06%、T
i:0.005〜0.05%の1種または2種と、N:
0.001〜0.006%を、さらに含有することを特
徴とする前記(2)または(3)に記載の低サイクル疲
労特性に優れた制振建材用鋼。 (5) 前記(1)〜(4)のいずれか1項に記載の鋼
の製造にあたり、スラブをAc3 〜1250℃の温度範
囲に加熱して、再結晶温度域で累積圧下率10%以上の
熱間圧延をした後、1℃/sec以下の冷却速度で冷却する
ことを特徴とする低サイクル疲労特性とエネルギー吸収
性能に優れた制振建材用鋼の製造方法。 (6) 再結晶域温度で熱間圧延をした後、引き続き、
未再結晶温度域で累積圧下率40%以上の熱間圧延をし
て、さらに1℃/sec以下の冷却速度で冷却することを特
徴とする前記(5)に記載の低サイクル疲労特性とエネ
ルギー吸収性能に優れた制振建材用鋼の製造方法。 (7) 1℃/sec以下の冷却速度で冷却後、Ac1
(Ac3 −50)℃に加熱して水焼入れ処理することを
特徴とする前記(5)または(6)に記載の低サイクル
疲労特性とエネルギー吸収性能に優れた制振建材用鋼の
製造方法。 (8) Ac1 〜(Ac3 −50)℃に加熱して水焼入
れ処理をした後、さらに、200℃〜Ac1 に加熱して
焼き戻し処理することを特徴とする前記(7)に記載の
低サイクル疲労特性とエネルギー吸収性能に優れた制振
建材用鋼の製造方法。
Means for Solving the Problems The inventors of the present invention have specified various conditions such as the structure and composition of a steel material capable of achieving both low cycle fatigue characteristics and energy absorption performance, and completed the present invention. The summary is as follows. (1) It has a structure composed of ferrite and a hard second phase having an area ratio of 10 to 40%, the ferrite crystal grains have a grain size number of 7 or more, the hardness of the hard second phase is Hv 180 or more, and a yield strength. Is 200 to 350 MPa, and has a work hardening index of 0.2 to 0.25. (2) In mass%, C: 0.05 to 0.4%, Si:
0.05 to 1.5%, Mn: 0.5 to 2%, P: 0.0
(1) characterized in that it contains not more than 3% and not more than 0.02% of S, and the balance consists of Fe and unavoidable impurities.
Steel for vibration damping building materials excellent in low cycle fatigue characteristics and energy absorption performance as described in (1). (3) Cu: 0.05 to 2%, Ni: 0.
05-2%, Cr: 0.05-2%, Mo: 0.05-
0.5%, Nb: 0.005 to 0.2%, V: 0.00
5 to 0.2%, Ca: 0.0005 to 0.006%, and rare earth element (REM): 0.0005 to 0.01%. (2) Steel for vibration damping building materials excellent in low cycle fatigue characteristics and energy absorption performance according to (2). (4) In mass%, Al: 0.005 to 0.06%, T
i: one or two of 0.005 to 0.05%, and N:
The steel for vibration damping building materials having excellent low cycle fatigue characteristics according to the above (2) or (3), further comprising 0.001 to 0.006%. (5) In producing the steel according to any one of the above (1) to (4), the slab is heated to a temperature range of Ac 3 to 1250 ° C., and a cumulative reduction ratio is 10% or more in a recrystallization temperature range. And then cooling at a cooling rate of 1 ° C./sec or less, the method for producing a damping building steel excellent in low cycle fatigue characteristics and energy absorption performance. (6) After hot rolling at the recrystallization zone temperature,
The low-cycle fatigue characteristics and energy according to the above (5), wherein hot rolling is performed at a cumulative rolling reduction of 40% or more in a non-recrystallization temperature range, and further cooling is performed at a cooling rate of 1 ° C / sec or less. Manufacturing method of steel for vibration damping construction materials with excellent absorption performance. (7) After cooling at a cooling rate of 1 ° C./sec or less, Ac 1 to
(Ac 3 -50) process for producing low-cycle fatigue characteristics and energy absorbing performance superior damping for construction steel according to (5) or (6) heating to characterized by water quenching process ℃ . (8) The method as described in (7) above, wherein after heating to Ac 1 to (Ac 3 -50) ° C. to perform a water quenching treatment, further to 200 ° C. to Ac 1 to perform a tempering treatment. Method for manufacturing steel for vibration damping building materials with excellent low cycle fatigue characteristics and energy absorption performance.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。建築制振部材に用いられ柱・梁部材よりも低強度
な鋼材では、低サイクル疲労破壊のプロセスは、一般に
次のようなものと考えられている。 (F1)結晶粒内の特定のすべり面に沿ってすべりが繰
り返され、すべり帯が形成される。 (F2)鋼材表面のすべり帯が突き出しと入り込みを形
成し、粒内の微小表面き裂が発生する。 (F3)粒内の微小表面き裂は粒界を貫通してそれ自身
が伝播したり、隣接する他のき裂と合体して長大き裂へ
と変化し、ついには部材の破断に至る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. For steel materials used for building damping members and having lower strength than column and beam members, the process of low cycle fatigue fracture is generally considered to be as follows. (F1) Slip is repeated along a specific slip plane in the crystal grain, and a slip band is formed. (F2) A slip band on the surface of the steel material protrudes and penetrates, and a fine surface crack in the grain is generated. (F3) The minute surface crack in the grain penetrates through the grain boundary and propagates itself, or merges with another adjacent crack to change into a long crack, eventually leading to fracture of the member.

【0010】ここで、結晶粒界は(F3)においてき裂
伝播の抵抗となり得るが、粒径を150μm以下とする
ことで低サイクル疲労特性が著しく向上する根拠は何も
ない。さらに、フェライト単相とすることで低サイクル
疲労特性が著しく向上する根拠もない。
[0010] Here, the crystal grain boundary can be a crack propagation resistance in (F3), but there is no basis for remarkably improving the low cycle fatigue characteristics by setting the grain size to 150 µm or less. Furthermore, there is no basis for significantly improving the low cycle fatigue properties by using a ferrite single phase.

【0011】また、鋼材のエネルギー吸収性能は公称応
力と公称歪によるヒステリシスループで囲まれる面積
(ヒステリシスエネルギー)で示され、一般に次のよう
なものと考えられている。 (E1)ヒステリシスエネルギーは、降伏強度と加工硬
化指数で決まる。 (E2)繰り返し数の増加とともに、鋼材は硬化もしく
は軟化挙動を示し、ヒステリシスエネルギーは変化す
る。
The energy absorption performance of a steel material is indicated by an area (hysteresis energy) surrounded by a hysteresis loop caused by a nominal stress and a nominal strain, and is generally considered as follows. (E1) The hysteresis energy is determined by the yield strength and the work hardening index. (E2) As the number of repetitions increases, the steel material shows a hardening or softening behavior, and the hysteresis energy changes.

【0012】発明者らは、低サイクル疲労特性とエネル
ギー吸収性能の支配因子を詳細に検討した結果、以下の
知見を得た。 1)繰り返しの比較的初期に(F1)と(F2)のプロ
セスが完了するため、低サイクル疲労寿命は(F3)の
プロセスに支配される。
The present inventors have studied in detail the controlling factors of low cycle fatigue characteristics and energy absorption performance, and have obtained the following findings. 1) Since the processes (F1) and (F2) are completed relatively early in the repetition, the low cycle fatigue life is dominated by the process (F3).

【0013】2)結晶粒の細粒化は、(F3)のプロセ
スにおいて粒内の微小表面き裂の伝播を遅延させるのに
有効であり、その効果は図1に示すようにJIS G
0552に準拠する粒度測定による粒度番号7以上で著
しい。
2) Refinement of crystal grains is effective in delaying the propagation of microscopic surface cracks in the grains in the process (F3), and the effect is as shown in FIG.
It is remarkable at a particle size number of 7 or more by a particle size measurement based on 0552.

【0014】3)フェライトと硬質第二相からなる混合
組織では、(F3)のプロセスにおいて、フェライトで
発生した粒内の微小表面き裂は硬質第二相に当たると停
留や迂回をするため、き裂の伝播速度は遅くなり、低サ
イクル疲労寿命が長寿命に改善される。一方、フェライ
ト単相組織では、(F3)のプロセスにおいて粒内の微
小表面き裂の粒界貫通と隣接き裂との合体が容易となる
ため、き裂の伝播速度は速く、低サイクル疲労寿命の改
善をもたらさない。
3) In the mixed structure composed of ferrite and the hard second phase, in the process (F3), the microscopic surface cracks in the grains generated by the ferrite stop or detour when hitting the hard second phase. Crack propagation speed is slowed and low cycle fatigue life is improved to longer life. On the other hand, in the ferrite single phase structure, in the process of (F3), the intergranular penetration of the small surface crack in the grain and the coalescence of the adjacent crack become easy, so that the crack propagation speed is high and the low cycle fatigue life is low. Does not bring any improvement.

【0015】4)低サイクル疲労寿命の改善に有効な硬
質第二相は、パーライト、ベイナイト、マルテンサイ
ト、およびそれらの混合である。ただし、図2に示すよ
うに、硬質第二相がJIS Z 2244に準拠するビ
ッカース硬度測定で180より小さい場合は、フェライ
トで発生した微小表面き裂は容易に硬質第二相を貫通す
るので、低サイクル疲労寿命は改善されない。よって、
硬質第二相の硬度は180以上でなければならない。ま
た、図3に示すように、硬質第二相の面積率が10%よ
り小さいと、フェライトで発生した微小表面き裂は硬質
第二相に当たりにくいので容易に伝播し、やはり低サイ
クル疲労寿命は改善されない。よって、硬質第二相の面
積率は10%以上でなければならない。しかし、硬質第
二相の面積率が40%より大きいと、すべり変形を生じ
てエネルギーの吸収に寄与するフェライトの割合が小さ
いため、制振建材のエネルギー吸収性能は極端に低下す
る。よって、硬質第二相の面積率は40%以下でなけれ
ばならない。
4) Hard secondary phases that are effective in improving low cycle fatigue life are pearlite, bainite, martensite, and mixtures thereof. However, as shown in FIG. 2, when the hard second phase is smaller than 180 in the Vickers hardness measurement based on JIS Z 2244, the small surface crack generated by the ferrite easily penetrates the hard second phase. Low cycle fatigue life is not improved. Therefore,
The hardness of the hard second phase must be 180 or more. Further, as shown in FIG. 3, when the area ratio of the hard second phase is less than 10%, the small surface cracks generated by ferrite hardly hit the hard second phase and thus easily propagated. Not improved. Therefore, the area ratio of the hard second phase must be 10% or more. However, if the area ratio of the hard second phase is greater than 40%, the proportion of ferrite that causes slip deformation and contributes to energy absorption is small, and the energy absorption performance of the vibration damping building material is extremely reduced. Therefore, the area ratio of the hard second phase must be 40% or less.

【0016】5)ある、歪範囲に対して、ヒステリシス
エネルギーを大きくするのに最適な降伏強度と加工硬化
指数が存在する。図4と図5に示すように、風や地震に
より制振建材に付与されるであろう歪範囲0.5〜5%
に対しては、降伏強度は200〜350MPa 、加工硬化
指数は0.2〜0.25とするとで、大きなヒステリシ
スエネルギーが得られる。降伏強度と加工硬化指数のい
ずれかが上記範囲外の場合、風や地震の歪に対する大き
なヒステリシスエネルギーは得られない。
5) There is an optimum yield strength and work hardening index for increasing the hysteresis energy in a certain strain range. As shown in FIGS. 4 and 5, a strain range of 0.5 to 5% that would be applied to the damping building material due to wind or an earthquake.
In contrast, when the yield strength is 200 to 350 MPa and the work hardening index is 0.2 to 0.25, a large hysteresis energy can be obtained. When either the yield strength or the work hardening index is out of the above range, a large hysteresis energy for wind or earthquake strain cannot be obtained.

【0017】6)繰り返し硬化あるいは軟化の挙動は、
破断寿命の1/2近傍の繰り返し数で飽和して定常状態
になるが、上記5)に示す範囲内の降伏強度および加工
硬化指数を有する鋼材は、繰り返し硬化あるいは軟化挙
動が定常となる前でも後でも高いエネルギー吸収性能を
示す。
6) The behavior of repeated hardening or softening is as follows:
The steel material having a yield strength and a work hardening index within the range shown in the above 5) is saturated at a repetition number near half of the rupture life and becomes a steady state, even before the repeated hardening or softening behavior becomes steady. High energy absorption performance even afterwards.

【0018】本発明は上記のように組織などの要件を満
たしておれば、成分や製造方法を特に限定するものでは
ないが、本発明の実施の形態として、具体的な成分や製
造方法の詳細を以下に記す。まず、成分については、各
元素を以下のように限定する。
The present invention does not particularly limit the components and the manufacturing method as long as the requirements such as the structure are satisfied as described above. However, as the embodiment of the present invention, specific components and details of the manufacturing method are described. Is described below. First, regarding the components, each element is limited as follows.

【0019】Cの下限0.05%は、硬質第二相の硬度
と面積率、および鋼材の降伏強度を確保するための最小
量である。しかし、C量が多すぎると、硬質第二相の面
積率や鋼材の降伏強度の上限を超えエネルギー吸収性能
が低下するとともに、溶接性、HAZ靭性が低下するの
で、上限を0.4%とした。
The lower limit of 0.05% of C is the minimum amount for securing the hardness and the area ratio of the hard second phase and the yield strength of the steel material. However, when the amount of C is too large, the energy absorption performance is reduced beyond the upper limit of the area ratio of the hard second phase and the yield strength of the steel material, and the weldability and the HAZ toughness are reduced. did.

【0020】Siは、降伏点の向上と脱酸に有効な成分
であり、0.05%以上添加することによりその効果が
現れる。しかし、多く添加すると降伏強度が上限を超え
エネルギー吸収性能が低下するとともに、溶接性、HA
Z靭性を劣化させるため、上限を1.5%とした。
Si is a component effective for improving the yield point and deoxidizing, and its effect is exhibited by adding 0.05% or more. However, when a large amount is added, the yield strength exceeds the upper limit, the energy absorption performance is reduced, and the weldability and HA
In order to deteriorate the Z toughness, the upper limit is set to 1.5%.

【0021】Mnは、強度、靭性を確保する上で不可欠
な元素であり、その下限は0.5%である。しかし、多
量に添加すると焼入れ性が増加して、溶接性、HAZ靭
性を劣化させるだけでなく、降伏強度が上限を超えエネ
ルギー吸収性能が低下するので、Mnの上限を2%とし
た。
Mn is an element indispensable for securing strength and toughness, and the lower limit is 0.5%. However, if added in a large amount, the hardenability increases and not only deteriorates the weldability and the HAZ toughness, but also causes the yield strength to exceed the upper limit and lower the energy absorption performance, so the upper limit of Mn was set to 2%.

【0022】本発明鋼において、不純物であるP,Sを
それぞれ0.03%,0.02%以下とした理由は、母
材、溶接部の靭性を一層向上させるためである。Pの低
減により粒界破壊を防止し、Sの低減により介在物Mn
Sの形成に起因する靭性劣化を防止する。そのために好
ましいP,S量は、0.01%,0.005%以下であ
る。
The reason why the impurities P and S in the steel of the present invention are set to 0.03% and 0.02% or less, respectively, is to further improve the toughness of the base metal and the welded portion. Prevention of grain boundary fracture by reducing P, inclusion Mn by reducing S
Prevents toughness degradation due to the formation of S. Therefore, the preferable P and S contents are 0.01% and 0.005% or less.

【0023】本発明鋼の基本成分は以上の通りであり、
十分に目的を達成できるが、基本成分に加えてCu,N
i,Cr,Mo,Nb,V,Ca,REMを適宜添加す
ることで、本発明鋼の優れた特徴を損なうことなく、溶
接性、母材・HAZ靭性の向上を図ることができる。し
たがって、その添加量は自ら制限される性質のものであ
る。
The basic components of the steel of the present invention are as described above,
Although the purpose can be sufficiently achieved, Cu, N
By appropriately adding i, Cr, Mo, Nb, V, Ca, and REM, the weldability and the base material / HAZ toughness can be improved without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is of a nature restricted by itself.

【0024】Cu,Ni,Cr,Mo,Nb,Vは、強
度、靭性の向上に効果を有し、その下限はCu,Ni,
Cr,Moで0.05%、Nb,Vで0.005%であ
る。しかし多量に添加すると、Cuは熱間圧延時にCu
割れが発生して製造が困難になり、Ni,Crは極めて
高価になり、Mo、Nb、VはHAZ靭性上好ましくな
く、かつ、いずれの元素も過剰な添加は鋼材の降伏点の
上限を超えさせエネルギー吸収性能が低下するため、上
限をCu,Ni,Crは2%、Moは0.5%、Nb,
Vは0.2%とした。
Cu, Ni, Cr, Mo, Nb, and V are effective in improving the strength and toughness.
It is 0.05% for Cr and Mo and 0.005% for Nb and V. However, when added in a large amount, Cu becomes Cu during hot rolling.
Cracks occur, making production difficult, Ni and Cr become extremely expensive, Mo, Nb, and V are not preferred in terms of HAZ toughness, and excessive addition of any element exceeds the upper limit of the yield point of steel. Energy absorption performance is reduced, so that the upper limit is 2% for Cu, Ni and Cr, 0.5% for Mo, 0.5% for Nb,
V was set to 0.2%.

【0025】Caは、介在物MnSの形態を制御し、靭
性を向上させる効果があり、その下限は0.0005%
である。しかし、0.006%を超えるとCaO、Ca
Sが多量に生成して大型介在物となり、鋼の靭性のみな
らず清浄度も害し、溶接性にも悪影響を与えるので、C
a添加量の範囲を0.0005〜0.006%とした。
Ca has the effect of controlling the form of inclusions MnS and improving the toughness, and the lower limit is 0.0005%.
It is. However, if it exceeds 0.006%, CaO, Ca
Since a large amount of S is formed to form large inclusions, which impair not only the toughness of the steel but also the cleanliness, and also adversely affect the weldability.
The range of the addition amount of a was 0.0005 to 0.006%.

【0026】希土類元素(REM)はCaの場合と同様
にMnSの形態制御のために0.0005%以上添加す
ると効果があるが、0.01%を超えて添加すると清浄
度が損なわれ、溶接性が劣化するので、上限値を0.0
1%とした。
As in the case of Ca, rare earth elements (REM) are effective when added in an amount of 0.0005% or more to control the form of MnS. The upper limit is set to 0.0
1%.

【0027】さらに、以下に述べる元素を添加すると、
母材・HAZ靭性の向上に関して、いっそう好ましい結
果が得られる。Al、TiはNと結合してAlN、Ti
Nを形成し、再加熱時のγ粒粗大化を抑制し、圧延後の
組織を微細化する。これらの効果を得るための下限とし
て、Al、Tiは0.005%、Nは0.001%必要
である。しかし、Al、Ti、Nが多量になるとかえっ
てHAZ靭性が低下するので、上限をそれぞれ0.06
%,0.05%,0.006%とした。
Further, when the following elements are added,
With respect to the improvement of the base material and the HAZ toughness, more favorable results are obtained. Al and Ti combine with N to form AlN, Ti
N is formed, and coarsening of γ grains during reheating is suppressed, and the structure after rolling is refined. As lower limits for obtaining these effects, 0.005% for Al and Ti and 0.001% for N are required. However, when the amount of Al, Ti, and N becomes large, the HAZ toughness is rather lowered.
%, 0.05%, and 0.006%.

【0028】次に、前述のように結晶粒径、硬質第二
相、降伏強度、加工硬化指数を適切な範囲に制御するた
めには、以下に説明する製造方法が推奨される。まず、
いずれの製造方法でも、熱間圧延する前には、スラブを
100%オーステナイト(以下γと記載)化する必要が
ある。γ化するためにはAc3 以上に加熱すれば良い
が、1250℃を超えて加熱するとγ粒が著しく粗大化
し、圧延後のフェライト粒が細粒化されないため、低サ
イクル疲労寿命が向上しない。したがって、再加熱温度
はAc3 〜1250℃とする必要がある。
Next, in order to control the crystal grain size, the hard second phase, the yield strength, and the work hardening index in appropriate ranges as described above, the following production method is recommended. First,
In any of the manufacturing methods, it is necessary to convert the slab to 100% austenite (hereinafter referred to as γ) before hot rolling. In order to obtain γ, heating to Ac 3 or more may be performed. However, when heating exceeds 1250 ° C., γ grains are remarkably coarsened, and ferrite grains after rolling are not refined, so that low cycle fatigue life is not improved. Therefore, the reheating temperature needs to be Ac 3 to 1250 ° C.

【0029】また、スラブを加熱することにより、γ粒
径が非常に大きくなっているため、γ粒径を小さくでき
る再結晶温度域(約900〜1250℃)で熱間圧延を
行う。γ粒の微細化に有効な再結晶域累積圧下率((h
0 −h1 )×100/h0 、h0 :スラブ厚、h1 :再
結晶温度域での圧延後板厚)は10%以上のため、下限
を10%とした。
Since the slab is heated to have a very large γ grain size, hot rolling is performed in a recrystallization temperature range (about 900 to 1250 ° C.) where the γ grain size can be reduced. Cumulative rolling reduction in the recrystallization region effective for refining γ grains ((h
0- h 1 ) × 100 / h 0 , h 0 : slab thickness, h 1 : plate thickness after rolling in the recrystallization temperature range) is 10% or more, so the lower limit was set to 10%.

【0030】さらに、再結晶温度域で熱間圧延をした後
に鋼板を冷却する。このときの冷却速度は1℃/sec以下
でなければならない。その理由は、1℃/secよりも高速
で冷却すると、フェライト中の固溶C量が多くなり、フ
ェライトのすべり変形によるエネルギー吸収性能が低下
するからである。
Further, after hot rolling in the recrystallization temperature range, the steel sheet is cooled. The cooling rate at this time must be 1 ° C./sec or less. The reason is that when the cooling rate is higher than 1 ° C./sec, the amount of solid solution C in the ferrite increases, and the energy absorption performance due to the slip deformation of the ferrite decreases.

【0031】本発明鋼の基本製造方法は以上の通りであ
り、十分な鋼材特性を達成できるが、再結晶温度域圧延
の後、制御圧延(約750〜900℃の未再結晶温度域
での圧延)を施すことでさらに高靭性が得られる。この
場合には、γ粒内に圧延による変形帯を導入し、フェラ
イト生成核を増加させた後に、1℃/sec以下の冷却速度
で冷却することが有効である。変形帯を導入するために
は未再結晶域累積圧下率((h1 −h2 )×100/h
1 、h1 :再結晶温度域での圧延後板厚もしくは未再結
晶温度域での圧延前板厚、h2 :未再結晶温度域での圧
延後板厚)は40%以上のため、下限を40%とした。
The basic manufacturing method of the steel of the present invention is as described above, and sufficient steel material properties can be achieved. However, after rolling in the recrystallization temperature range, controlled rolling (in the non-recrystallization temperature range of about 750 to 900 ° C). Rolling) further increases the toughness. In this case, it is effective to introduce a deformation zone by rolling in the γ grains to increase the number of ferrite nuclei, and then cool at a cooling rate of 1 ° C./sec or less. In order to introduce a deformation zone, the cumulative rolling reduction in the non-recrystallized region ((h 1 −h 2 ) × 100 / h)
1 , h 1 : thickness after rolling in recrystallization temperature range or thickness before rolling in non-recrystallization temperature range, h 2 : thickness after rolling in non-recrystallization temperature range) is 40% or more. The lower limit was set to 40%.

【0032】以上の製造方法によると、硬質第二相は主
にパーライト、ベイナイト、およびそれらの混合となる
が、硬質第二相をマルテンサイト化することも低サイク
ル疲労寿命向上には有効である。そのためには、鋼材を
Ac1 〜(Ac3 −50)℃に加熱して水焼き入れする
必要がある。加熱温度は、Ac1 よりも低温では硬質第
二相となる部分すらγ化できず、硬質第二相の面積率が
低くなり、(Ac3 −50)℃よりも高温ではγ分率が
大きくなりすぎて、その結果硬質第二相の面積率が高く
なるため、範囲をAc1 〜(Ac3 −50)℃とした。
According to the above-mentioned production method, the hard second phase is mainly pearlite, bainite, and a mixture thereof, but it is also effective to convert the hard second phase into martensite to improve the low cycle fatigue life. . For that purpose, it is necessary to heat the steel material to Ac 1 to (Ac 3 -50) ° C. and quench it with water. When the heating temperature is lower than Ac 1 , even the portion that becomes the hard second phase cannot be converted to γ, the area ratio of the hard second phase decreases, and the γ fraction increases at a temperature higher than (Ac 3 -50) ° C. The range was set to Ac 1 to (Ac 3 -50) ° C. because the area ratio of the hard second phase was increased as a result.

【0033】さらに、鋼材の靭性改善や残留応力および
脱水素処理による寸法狂いを防止するために、焼き入れ
後の焼き戻し処理が製造上必要なことがある。焼き戻し
温度が200℃よりも低温ではこれらの防止が期待され
ず、Ac1 点を超える温度では変態が開始して強度が著
しく低下する。よって、焼き戻し温度は200℃〜Ac
1 点とした。
Further, in order to improve the toughness of the steel material and to prevent dimensional deviation due to residual stress and dehydrogenation treatment, tempering treatment after quenching may be necessary in production. If the tempering temperature is lower than 200 ° C., such prevention is not expected. If the tempering temperature exceeds the Ac 1 point, transformation starts and the strength is significantly reduced. Therefore, the tempering temperature is 200 ° C. to Ac
1 point.

【0034】なお、鋼材の成分や製造方法を限定して
も、製造された鋼材の組織、降伏強度、および加工硬化
指数のすべてが適切でなければ、低サイクル疲労特性と
エネルギー吸収性能は向上しない。本発明は低サイクル
疲労特性とエネルギー吸収性能を確実に向上させるもの
であり、本発明が提供する制振建材用鋼は、厚鋼板に限
らず、薄鋼板、形鋼、棒線、鋼管に対しても同様に適用
できる。
Even if the composition of the steel material and the manufacturing method are limited, the low cycle fatigue characteristics and the energy absorption performance are not improved unless the structure, the yield strength, and the work hardening index of the manufactured steel material are all appropriate. . The present invention is intended to reliably improve low cycle fatigue characteristics and energy absorption performance, and the steel for vibration damping building materials provided by the present invention is not limited to thick steel plates, but can be used for thin steel plates, shaped steel, rods, and steel pipes. The same can be applied.

【0035】[0035]

【実施例】転炉、連続鋳造、厚板工程により鋼板を製造
し、その金属組織、降伏点、加工硬化指数、低サイクル
疲労特性、エネルギー吸収性能などを調査した。表1の
1〜15に本発明鋼、16〜31に比較鋼の化学成分を
示す。表2に本発明鋼と比較鋼の鋼板製造条件とその機
械的性質を示す。表3に本発明鋼と比較鋼を用いた歪制
御低サイクル疲労試験の結果を示す。
EXAMPLE A steel plate was manufactured by a converter, continuous casting, and thick plate processes, and its metal structure, yield point, work hardening index, low cycle fatigue characteristics, energy absorption performance, and the like were investigated. Tables 1 to 15 show the chemical compositions of the steels of the present invention, and 16 to 31 show the chemical compositions of the comparative steels. Table 2 shows the steel sheet production conditions of the steel of the present invention and the comparative steel and their mechanical properties. Table 3 shows the results of the strain control low cycle fatigue test using the steel of the present invention and the comparative steel.

【0036】歪制御低サイクル疲労試験は以下の方法で
行った。それぞれの鋼板から全長150mm、平行部長さ
22mm、平行部直径10mmの丸棒疲労試験片を採取し
た。平行部にゲージ長21mmの伸び計を固定し、コンピ
ュータ制御の電気油圧式疲労試験機を用いて、平行部歪
範囲(最大歪−最小歪)を制御した低サイクル疲労試験
を実施した。歪波形は三角波、歪比(最小歪/最大歪)
−1、歪速度0.5%/secとし、歪範囲は代表的な条件
として0.5%(風振動相当)と5%(地震動相当)の
2種類とした。試験の最中は、随時、試験片平行部の公
称応力−歪の関係を記録し、試験片が破断するか試験中
の最大荷重が試験初期の最大荷重の75%まで減少した
ら試験片破断と見なした。
The strain control low cycle fatigue test was performed by the following method. A round bar fatigue test piece having a total length of 150 mm, a parallel portion length of 22 mm, and a parallel portion diameter of 10 mm was collected from each steel plate. An extensometer having a gauge length of 21 mm was fixed to the parallel portion, and a low cycle fatigue test in which the parallel portion strain range (maximum strain−minimum strain) was controlled was performed using a computer-controlled electrohydraulic fatigue tester. Distortion waveform is triangle wave, distortion ratio (minimum distortion / maximum distortion)
−1, the strain rate was 0.5% / sec, and two typical strain ranges were 0.5% (corresponding to wind vibration) and 5% (corresponding to earthquake motion). During the test, record the nominal stress-strain relationship of the parallel part of the test piece at any time, and if the test piece breaks or the maximum load during the test decreases to 75% of the maximum load at the beginning of the test, the test piece fracture Considered.

【0037】本発明鋼1〜15は、フェライト粒度、硬
質第二相の硬度と面積率、降伏強度、加工硬化指数が適
切範囲内となっており、低サイクル疲労寿命とエネルギ
ー吸収性能は優れている。
The steels 1 to 15 of the present invention have ferrite grain size, hardness and area ratio of hard second phase, yield strength and work hardening index within appropriate ranges, and have excellent low cycle fatigue life and excellent energy absorption performance. I have.

【0038】これに対し、比較鋼16はC量が不足し、
硬質第二相の面積率が低いため、低サイクル疲労寿命が
改善されない。逆に、比較鋼17はC量が過剰で、硬質
第二相の面積率が大きすぎるため、低サイクル疲労寿命
は改善されるが、エネルギー吸収性能が改善されない。
比較鋼18〜24は特定元素量が過剰なため、降伏強度
が350MPa を超え、かつ、加工硬化指数が0.20よ
り小さくなっており、その結果、エネルギー吸収性能が
改善されない。比較鋼25はフェライト粒度が7に達し
ないため低サイクル疲労寿命が改善されないことに加
え、V量が過剰なことにより降伏硬度が超過し加工硬化
指数が不足しているため、エネルギー吸収性能が改善さ
れない。比較鋼26はスラブの再加熱温度が高すぎるた
め、比較鋼27は再結晶温度域圧延の累積圧下率が小さ
いため、フェライト粒度が7に到達せず低サイクル疲労
寿命が改善されない。さらに、比較鋼27は降伏硬度が
超過し加工硬化指数が不足しているため、エネルギー吸
収性能も改善されない。比較鋼28は熱間圧延後の冷却
速度が速いため、降伏硬度が超過し加工硬化指数が不足
して、エネルギー吸収性能は改善されない。比較鋼29
は焼き入れ温度が低いため、硬質第二相の面積率が低す
ぎ、低サイクル疲労寿命が改善されない。逆に、比較鋼
30は焼き入れ温度が高いため、硬質第二相の面積率が
大きすぎ、降伏硬度が超過し加工硬化指数が不足して、
エネルギー吸収性能が改善されない。比較鋼31はC量
が不足していることに加え、再加熱温度が高すぎ、粗大
なフェライト単一組織となっている。その結果、低サイ
クル疲労寿命とエネルギー吸収性能のいずれも改善され
ない。
On the other hand, the comparative steel 16 has a shortage of C,
Since the area ratio of the hard second phase is low, the low cycle fatigue life is not improved. Conversely, the comparative steel 17 has an excessive C content and an excessively large area ratio of the hard second phase, so that the low cycle fatigue life is improved, but the energy absorption performance is not improved.
In Comparative Steels 18 to 24, the yield strength exceeds 350 MPa and the work hardening index is less than 0.20 due to the excess of the specific elements, and as a result, the energy absorption performance is not improved. In Comparative Steel 25, the ferrite grain size did not reach 7, so that the low cycle fatigue life was not improved. In addition, since the V content was too large, the yield hardness was too large and the work hardening index was insufficient, so that the energy absorption performance was improved. Not done. In Comparative Steel 26, the reheating temperature of the slab is too high, and in Comparative Steel 27, the cumulative rolling reduction in the recrystallization temperature range rolling is small, so that the ferrite grain size does not reach 7, and the low cycle fatigue life is not improved. Further, the energy absorption performance of the comparative steel 27 is not improved because the yield hardness is excessive and the work hardening index is insufficient. Since the cooling rate of the comparative steel 28 after the hot rolling is high, the yield hardness is excessive, the work hardening index is insufficient, and the energy absorption performance is not improved. Comparative steel 29
Since the quenching temperature is low, the area ratio of the hard second phase is too low, and the low cycle fatigue life is not improved. On the other hand, since the comparative steel 30 has a high quenching temperature, the area ratio of the hard second phase is too large, the yield hardness is excessive, and the work hardening index is insufficient,
Energy absorption performance is not improved. The comparative steel 31 has a coarse ferrite single structure because the reheating temperature is too high in addition to the lack of the C content. As a result, neither low cycle fatigue life nor energy absorption performance is improved.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】以上の実施例からも明らかなように、本
発明により低サイクル疲労特性とエネルギー吸収性能が
良好な制振建材用鋼を提供することができる。従って、
本発明の産業上の価値は極めて高いといえる。
As is clear from the above embodiments, the present invention can provide a steel for vibration damping building materials having good low cycle fatigue characteristics and good energy absorption performance. Therefore,
The industrial value of the present invention can be said to be extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼材のフェライト粒度番号と低サイクル疲労寿
命の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the ferrite grain size number of a steel material and low cycle fatigue life.

【図2】鋼材の硬質第二相の硬度と低サイクル疲労寿命
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the hardness of a hard second phase of steel and low cycle fatigue life.

【図3】鋼材の硬質第二相の面積率と低サイクル疲労寿
命の関係を示す図である。
FIG. 3 is a diagram showing a relationship between the area ratio of a hard second phase of a steel material and a low cycle fatigue life.

【図4】鋼材の降伏強度とエネルギー吸収性能の関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the yield strength of steel and energy absorption performance.

【図5】鋼材の加工硬化指数とエネルギー吸収性能の関
係を示す図である。
FIG. 5 is a diagram showing a relationship between a work hardening index of a steel material and energy absorption performance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟飯原 周二 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 渡辺 厚 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 佐伯 英一郎 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA40 BA01 CA01 CA02 CA03 CB02 CC04 CD01 CF01 CF02 CF03  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shuji Awaiihara 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Atsushi Watanabe 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Eiichiro Saeki 2-6-3 Otemachi, Chiyoda-ku, Tokyo F-term within Nippon Steel Corporation (reference) 4K032 AA01 AA04 AA05 AA08 AA11 AA12 AA14 AA15 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA40 BA01 CA01 CA02 CA03 CB02 CC04 CD01 CF01 CF02 CF03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 フェライトと面積率で10〜40%の硬
質第二相からなる組織を有し、フェライト結晶粒の粒度
番号が7以上、硬質第二相の硬度がHv180以上であ
り、さらに、降伏強度が200〜350MPa で、かつ、
加工硬化指数が0.2〜0.25であることを特徴とす
る低サイクル疲労特性とエネルギー吸収性能に優れた制
振建材用鋼。
1. A structure comprising a ferrite and a hard second phase having an area ratio of 10 to 40%, wherein a grain size number of ferrite crystal grains is 7 or more, and a hardness of the hard second phase is Hv 180 or more. The yield strength is 200-350MPa, and
A vibration-damping building material steel having a low work cycle index of 0.2 to 0.25 and excellent in low cycle fatigue characteristics and energy absorption performance.
【請求項2】 質量%で、 C :0.05〜0.4%、 Si:0.05〜1.5%、 Mn:0.5〜2%、 P:0.03%以下、 S:0.02%以下を含有し、残部がFeおよび不可避
不純物からなることを特徴とする請求項1に記載の低サ
イクル疲労特性とエネルギー吸収性能に優れた制振建材
用鋼。
2. In mass%, C: 0.05 to 0.4%, Si: 0.05 to 1.5%, Mn: 0.5 to 2%, P: 0.03% or less, S: The steel for vibration damping building materials according to claim 1, wherein the steel contains 0.02% or less, and the balance consists of Fe and inevitable impurities.
【請求項3】 質量%で、 Cu:0.05〜2%、 Ni:0.05〜2%、 Cr:0.05〜2%、 Mo:0.05〜0.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ca:0.0005〜0.006%、 希土類元素(REM):0.0005〜0.01%の1
種または2種以上を、さらに含有することを特徴とする
請求項2に記載の低サイクル疲労特性とエネルギー吸収
性能に優れた制振建材用鋼。
3. In mass%, Cu: 0.05 to 2%, Ni: 0.05 to 2%, Cr: 0.05 to 2%, Mo: 0.05 to 0.5%, Nb: 0 0.005 to 0.2%, V: 0.005 to 0.2%, Ca: 0.0005 to 0.006%, Rare earth element (REM): 0.0005 to 0.01%
The steel for vibration-damping building materials excellent in low cycle fatigue characteristics and energy absorption performance according to claim 2, further comprising one or more types.
【請求項4】 質量%で、 Al:0.005〜0.06%、 Ti:0.005〜0.05%の1種または2種と、 N :0.001〜0.006%を、さらに含有するこ
とを特徴とする請求項2または3に記載の低サイクル疲
労特性とエネルギー吸収性能に優れた制振建材用鋼。
4. One or two kinds of Al: 0.005 to 0.06%, Ti: 0.005 to 0.05%, and N: 0.001 to 0.006% by mass%. The steel for vibration damping building materials having excellent low cycle fatigue characteristics and energy absorption performance according to claim 2 or 3, further containing.
【請求項5】 請求項1〜4のいずれか1項に記載の鋼
の製造にあたり、スラブをAc3 〜1250℃の温度範
囲に加熱して、再結晶温度域で累積圧下率10%以上の
熱間圧延をした後、1℃/sec以下の冷却速度で冷却する
ことを特徴とする低サイクル疲労特性とエネルギー吸収
性能に優れた制振建材用鋼の製造方法。
5. The steel according to claim 1, wherein the slab is heated to a temperature range of Ac 3 to 1250 ° C., and has a cumulative rolling reduction of 10% or more in a recrystallization temperature range. A method for producing a damping building material steel having excellent low cycle fatigue characteristics and energy absorption performance, wherein the steel is cooled at a cooling rate of 1 ° C./sec or less after hot rolling.
【請求項6】 再結晶域温度で熱間圧延をした後、引き
続き、未再結晶温度域で累積圧下率40%以上の熱間圧
延をして、さらに1℃/sec以下の冷却速度で冷却するこ
とを特徴とする請求項5に記載の低サイクル疲労特性と
エネルギー吸収性能に優れた制振建材用鋼の製造方法。
6. After hot rolling at a recrystallization temperature range, hot rolling is performed at a cumulative rolling reduction of 40% or more in a non-recrystallization temperature range, and further cooling at a cooling rate of 1 ° C./sec or less. The method for producing a steel for vibration damping building materials according to claim 5, which is excellent in low cycle fatigue characteristics and energy absorption performance.
【請求項7】 1℃/sec以下の冷却速度で冷却後、Ac
1 〜(Ac3 −50)℃に加熱して水焼入れ処理するこ
とを特徴とする請求項5または6に記載の低サイクル疲
労特性とエネルギー吸収性能に優れた制振建材用鋼の製
造方法。
7. After cooling at a cooling rate of 1 ° C./sec or less, Ac
1 ~ (Ac 3 -50) low cycle fatigue properties and a manufacturing method of the vibration damping building material steel excellent in energy absorption performance according to claim 5 or 6 heated, characterized in that water quenching process ° C..
【請求項8】 Ac1 〜(Ac3 −50)℃に加熱して
水焼入れ処理をした後、さらに、200℃〜Ac1 に加
熱して焼き戻し処理することを特徴とする請求項7に記
載の低サイクル疲労特性とエネルギー吸収性能に優れた
制振建材用鋼の製造方法。
8. The method according to claim 7, wherein after heating to Ac 1 to (Ac 3 -50) ° C. to perform a water quenching treatment, further heating to 200 ° C. to Ac 1 to perform a tempering treatment. A method for producing a damping building material steel having excellent low cycle fatigue characteristics and energy absorption performance as described above.
JP2000275324A 2000-09-11 2000-09-11 Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method Withdrawn JP2002088439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000275324A JP2002088439A (en) 2000-09-11 2000-09-11 Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000275324A JP2002088439A (en) 2000-09-11 2000-09-11 Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method

Publications (1)

Publication Number Publication Date
JP2002088439A true JP2002088439A (en) 2002-03-27

Family

ID=18760966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000275324A Withdrawn JP2002088439A (en) 2000-09-11 2000-09-11 Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method

Country Status (1)

Country Link
JP (1) JP2002088439A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
KR100994709B1 (en) 2008-06-17 2010-11-16 주식회사 우진 Vibration decrease alloy steel having excellent machinability and machined component and preparing method thereof
JP2016079476A (en) * 2014-10-20 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet excellent in flexure processability and impact abrasion resistance and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
JP4515427B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
KR100994709B1 (en) 2008-06-17 2010-11-16 주식회사 우진 Vibration decrease alloy steel having excellent machinability and machined component and preparing method thereof
JP2016079476A (en) * 2014-10-20 2016-05-16 Jfeスチール株式会社 Abrasion resistant steel sheet excellent in flexure processability and impact abrasion resistance and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6183573B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2001200334A (en) 60 kilo class high tensile strength steel excellent in weldability and toughness
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP5849676B2 (en) High-strength steel sheet for civil engineering and manufacturing method thereof
JP2020506293A (en) Thick steel plate with low yield ratio and high strength and high toughness and method for producing the same
JP2002256380A (en) Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP2003119543A (en) Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JP2002088439A (en) Steel for damping building material excellent in low cycle fatigue characteristic and energy absorbing performance and its production method
JP2002241891A (en) Structural steel having excellent brittle crack propagation stopping characteristic and fatigue crack propagation characteristic after plastic deformation and manufacturing method thereof
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP2001342520A (en) Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JP3475866B2 (en) Architectural steel with excellent earthquake resistance and method of manufacturing the same
JP2004339548A (en) 225 MPa OR 235 MPa CLASS LOW YIELD POINT STEEL HAVING EXCELLENT TOUGHNESS AND MATERIAL STABILITY, AND ITS PRODUCTION METHOD
JPH08283836A (en) Production of steel excellent in weldability and acoustic anisotropy
JP2000178644A (en) Production of low yield ratio high tensile strength steel small in difference in material in plate thickness direction
JP2000178677A (en) Low yield point steel excellent in toughness and small in strain rate dependency of yield point and its production
JP3526702B2 (en) Steel plate for high tensile welded structure excellent in fatigue strength of welded joint and method for producing the same
JP2001049385A (en) High tensile strength steel excellent in weld zone toughness and its production
JP2002105534A (en) Method for manufacturing high-tensile steel having excellent fracture resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204