JP2002082014A - Device and method of accurately measuring non- stationary aerodynamic - Google Patents

Device and method of accurately measuring non- stationary aerodynamic

Info

Publication number
JP2002082014A
JP2002082014A JP2001188717A JP2001188717A JP2002082014A JP 2002082014 A JP2002082014 A JP 2002082014A JP 2001188717 A JP2001188717 A JP 2001188717A JP 2001188717 A JP2001188717 A JP 2001188717A JP 2002082014 A JP2002082014 A JP 2002082014A
Authority
JP
Japan
Prior art keywords
model
vibration
connection point
aerodynamic force
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001188717A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kubo
喜延 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAKIYUUSHIYUU TECHNO CENTER KK
KITAKIYUUSHIYUU TECHNO CT KK
Original Assignee
KITAKIYUUSHIYUU TECHNO CENTER KK
KITAKIYUUSHIYUU TECHNO CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAKIYUUSHIYUU TECHNO CENTER KK, KITAKIYUUSHIYUU TECHNO CT KK filed Critical KITAKIYUUSHIYUU TECHNO CENTER KK
Priority to JP2001188717A priority Critical patent/JP2002082014A/en
Publication of JP2002082014A publication Critical patent/JP2002082014A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure non-stationary aerodynamic force in a wind tunnel test of a model of a various construction member or the like, by removing influence of extremely large inertial forces acting simultaneously. SOLUTION: This measuring device comprises a support bar of the model, an exciting part for vibrating the model through the support bar, and a counter weight mounted on the support bar opposite against a model of a connecting point with the exciting part, and a measuring part using a strain gauge mounted near the connecting point as a sensor. In this measuring method, strain near the connecting point is detected while the model is vibrated through the support bar, and one or both of a mass and a mounting position of the counter weight is adjusted so as to balance a moment acting on the connecting point with the inertial force of the counter weight generated by the vibration with a moment acting on the connecting point with the inertial force of the model generated by the vibration. A hinge structure is introduced into the support bar to remove influence of rigidity of the model.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高精度非定常空気
力測定装置および該装置を用いた非定常空気力の測定方
法、特に各種構造部材などの模型の風洞試験において、
模型に作用する非定常空気力を強制振動法により高精度
に測定する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-precision unsteady aerodynamic force measuring device and a method of measuring unsteady aerodynamic force using the device, and particularly to a wind tunnel test of a model such as various structural members.
The present invention relates to a technique for measuring unsteady aerodynamic forces acting on a model with high accuracy by a forced vibration method.

【0002】[0002]

【従来の技術】模型に作用する動的な空気力である非定
常空気力を測定する方法の代表的なものとして、強制振
動法と自由振動法が挙げられる。これら方法は、「構造
物の耐風工学」(日本鋼構造協会編、東京電機大学出版
局発行)の99頁および587頁に記載されている。強
制振動法は、送風時に模型を強制加振させ、模型に作用
する力を測定することにより非定常空気力を測定する方
法である。
2. Description of the Related Art A representative method for measuring unsteady aerodynamic force, which is a dynamic aerodynamic force acting on a model, includes a forced vibration method and a free vibration method. These methods are described on pages 99 and 587 of “Wind Engineering of Structures” (edited by the Japan Steel Structure Association, published by Tokyo Denki University Press). The forced vibration method is a method of measuring a non-stationary aerodynamic force by forcibly exciting a model at the time of blowing air and measuring a force acting on the model.

【0003】強制振動法による従来の非定常空気力測定
装置の例を図8に示す。また、その原理図を図9に示
す。図8のように、風洞1内に測定対象の模型4を入
れ、風洞外の両側に設けた支持台14に接続している支
持棒5を、風洞壁2の孔から風洞内に突出させて模型4
を支持する。支持台14はアーム11で加振器12に連
結して強制加振する。加振は、たとえば電動機の回転を
Vベルトで偏心板に伝えて回転運動を上下運動に変える
方法などにより行われる。
FIG. 8 shows an example of a conventional unsteady aerodynamic force measuring device using the forced vibration method. FIG. 9 shows the principle diagram. As shown in FIG. 8, the model 4 to be measured is placed in the wind tunnel 1, and the support rods 5 connected to the supports 14 provided on both sides outside the wind tunnel are projected from the holes of the wind tunnel wall 2 into the wind tunnel. Model 4
I support. The support table 14 is connected to the vibrator 12 by the arm 11 to forcibly vibrate. The vibration is performed by, for example, a method in which the rotation of the electric motor is transmitted to the eccentric plate by a V-belt to change the rotational motion into a vertical motion.

【0004】風洞1内にて、図8のように模型4に風3
を送りつつ、加振器12によって模型4を一定振幅かつ
一定振動数で振動させ、模型4に作用する動的な空気力
である非定常空気力Fa を、支持棒5を介して歪ゲージ
9により検出していた。歪ゲージ9は、図9のように支
持台14から出ている支持棒5の付け根に貼付し、模型
4に働く力によって生じる支持棒5の歪を、歪ゲージ9
を介して電気信号に変換して検出する。
[0004] In the wind tunnel 1, as shown in FIG.
While the model 4 is vibrated at a constant amplitude and a constant frequency by the vibrator 12, the unsteady aerodynamic force Fa acting as a dynamic aerodynamic force acting on the model 4 is applied to the strain gauge 9 via the support rod 5. Was detected. The strain gauge 9 is attached to the base of the support rod 5 protruding from the support base 14 as shown in FIG.
The signal is converted into an electric signal and detected.

【0005】しかし、ここで検出される力には、非定常
空気力Fa のほか、振動時の模型4に働く慣性力Fi も
含まれている。このため、従来はダミー模型を使用し、
風洞外にて無風状態で同条件の加振を行い、その慣性力
Fi のみを測定して、両者の差から非定常空気力Fa を
算出していた。ダミー模型は、測定対象の模型と同じ質
量をもち、非定常空気力が働かないように形成したもの
が採用される。測定対象の模型4は、風洞内にて風速を
変えながら、繰り返しFa +Fi を測定し、ダミー模型
で測定したFi を差し引くことで、風速毎の非定常空気
力Faが算出される。
However, the force detected here includes not only the unsteady aerodynamic force Fa but also the inertial force Fi acting on the model 4 during vibration. For this reason, conventionally a dummy model was used,
Excitation under the same conditions was performed outside the wind tunnel under no wind, only the inertial force Fi was measured, and the unsteady aerodynamic force Fa was calculated from the difference between the two. The dummy model has the same mass as the model to be measured and is formed so that unsteady aerodynamic force does not work. The model 4 to be measured repeatedly measures Fa + Fi while changing the wind speed in the wind tunnel, and subtracts Fi measured by the dummy model to calculate the unsteady aerodynamic force Fa for each wind speed.

【0006】[0006]

【発明が解決しようとする課題】図9に示すように、模
型4には非定常空気力Fa よりもはるかに大きな慣性力
Fi が働き、通常、Fa はFi より1桁ほども小さい。
したがって歪ゲージで検出される非定常空気力Fa の測
定精度を上げるため、検出時の電気信号を増幅すること
になるが、いくら増幅しても慣性力Fi に対する非定常
空気力Fa の比率は変わらないため、自ずと測定精度に
は限界が存在することになる。
As shown in FIG. 9, an inertial force Fi much larger than the unsteady aerodynamic force Fa acts on the model 4, and Fa is usually one order of magnitude smaller than Fi.
Therefore, in order to increase the measurement accuracy of the unsteady aerodynamic force Fa detected by the strain gauge, the electric signal at the time of detection is amplified, but the ratio of the unsteady aerodynamic force Fa to the inertial force Fi is changed no matter how much amplification is performed. Therefore, there is naturally a limit in the measurement accuracy.

【0007】また、慣性力Fi に対する非定常空気力F
a の比率は位相差によっても変わる。例えば、Fa がF
i の10%であるとき、Fa とFi の位相差が0°であ
ればFa はFi の10%のままであるが、位相差が90
°であればFa はFi の1%程度になってしまう。すな
わち、場合によっては誤差の測定となってしまうおそれ
がある。
The unsteady aerodynamic force F with respect to the inertial force Fi
The ratio of a also depends on the phase difference. For example, if Fa is F
At 10% of i, if the phase difference between Fa and Fi is 0 °, Fa remains 10% of Fi, but the phase difference is 90%.
°, Fa becomes about 1% of Fi. That is, in some cases, there is a possibility that an error will be measured.

【0008】そこで本発明が解決しようとする課題は、
各種構造部材などの模型の風洞試験において、模型に作
用する非定常空気力を強制振動法により測定するにあた
り、同時に作用する桁違いに大きな慣性力の影響を排除
して、高精度に測定するための非定常空気力測定装置お
よび該装置を用いた非定常空気力の測定方法を得ること
である。
The problem to be solved by the present invention is
In the wind tunnel test of models such as various structural members, when measuring the unsteady aerodynamic force acting on the model by the forced vibration method, it eliminates the effect of the extremely large inertia force acting simultaneously and measures with high accuracy And a method for measuring unsteady aerodynamic force using the device.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明装置は、風洞に設置された測定対象の模型を支
持する支持棒と、該支持棒を経て模型を振動させる加振
部と、該加振部との接続点の模型と反対側の支持棒に取
付けられたカウンターウェイトと、前記接続点の近傍に
取付けられた歪ゲージをセンサーとする測定部とで構成
されていることを特徴とする高精度非定常空気力測定装
置である。上記本発明装置において、加振部との接続点
よりも模型側の支持棒にヒンジ構造が導入されているの
が好ましい。
According to an embodiment of the present invention, there is provided an apparatus for supporting a model to be measured, which is installed in a wind tunnel, and a vibrating unit for vibrating the model via the supporting rod. A counterweight attached to a support bar on the opposite side of the model at the connection point with the vibrating section, and a measurement section having a strain gauge attached near the connection point as a sensor. It is a highly accurate unsteady aerodynamic force measurement device. In the above-described device of the present invention, it is preferable that a hinge structure is introduced to the support rod on the model side of the connection point with the vibration unit.

【0010】また上記課題を解決するための本発明法
は、風洞に設置された測定対象の模型を支持する支持棒
を加振部に接続し、該加振部との接続点の模型と反対側
の支持棒にカウンターウェイトを取付け、該支持棒を経
て模型を振動させ、該振動により生じる該カウンターウ
ェイトの慣性力によって前記接続点に作用するモーメン
トと、前記振動により生じる模型の慣性力によって前記
接続点に作用するモーメントとが釣り合うように、前記
カウンターウェイトの質量と取付け位置の一方または双
方を調整した状態で、前記接続点近傍の歪を検出するこ
とを特徴とする高精度非定常空気力測定方法である。上
記本発明法において、加振部との接続点よりも模型側の
支持棒にヒンジ構造を導入し、模型の剛性の影響を取り
除くのが好ましい。
According to the method of the present invention for solving the above-mentioned problems, a supporting rod for supporting a model to be measured, which is installed in a wind tunnel, is connected to a vibrating part, and a connecting point with the vibrating part is opposite to the model. A counterweight is attached to the support rod on the side, the model is vibrated through the support rod, the moment acting on the connection point by the inertia force of the counterweight generated by the vibration, and the inertia force of the model generated by the vibration. A high-precision unsteady aerodynamic force characterized by detecting distortion near the connection point in a state where one or both of the mass and the mounting position of the counterweight is adjusted so that the moment acting on the connection point is balanced. It is a measuring method. In the method of the present invention, it is preferable that a hinge structure is introduced to the support rod on the model side from the connection point with the vibrating section to eliminate the influence of the rigidity of the model.

【0011】[0011]

【発明の実施の形態】本発明装置は、図1に示す例のよ
うに、風洞1の測定洞に設置された模型4に作用する非
定常空気力を測定する装置であり、支持棒5と加振部と
カウンターウェイト8と測定部とで構成される。支持棒
5は、風洞壁2の孔を通して模型4を両側から支持し、
本例では両側とも風洞外にて二股に分かれている。分か
れた各支持棒5は、センサー枠6に保持されている歪検
出柱7に接続し、さらに歪検出柱7の外側すなわち模型
4の反対側にカウンターウェイト8が取付けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus according to the present invention measures unsteady aerodynamic force acting on a model 4 installed in a measuring tunnel of a wind tunnel 1 as shown in FIG. It is composed of a vibrating section, a counterweight 8 and a measuring section. The support rod 5 supports the model 4 from both sides through a hole in the wind tunnel wall 2,
In this example, both sides are bifurcated outside the wind tunnel. Each of the divided support rods 5 is connected to a strain detection column 7 held by a sensor frame 6, and a counter weight 8 is attached outside the strain detection column 7, that is, on the opposite side of the model 4.

【0012】センサー枠6は取付部10にてアーム11
により加振器12に連結し、取付部10とアーム11と
加振器12で加振部が構成されている。歪検出柱7に
は、図4の例のように歪ゲージ9が貼付され、センサー
枠6と歪検出柱7と歪ゲージ9と、図示しない結線およ
び計器等とにより測定部が構成される。
The sensor frame 6 is attached to an arm 11 at a mounting portion 10.
The mounting portion 10, the arm 11, and the vibrator 12 form a vibrating portion. A strain gauge 9 is attached to the strain detection column 7 as in the example of FIG. 4, and a measurement unit is configured by the sensor frame 6, the strain detection column 7, the strain gauge 9, a connection (not shown), an instrument, and the like.

【0013】本発明装置による測定原理を図2に示す。
模型4は両側の2点で支持棒5により支持されるが、図
2には片側のみを示している。歪検出柱7および支持棒
5を経て模型4を振動させると、模型4には非定常空気
力Fa と慣性力Fi が作用するが、カウンターウェイト
8にも慣性力Fi が作用する。支持棒5と歪検出柱7の
接続点には矢印で示すように、模型の慣性力FiM による
モーメントと、これと逆向きにカウンターウェイトの慣
性力FiC によるモーメントが生じ、さらに非定常空気力
Fa によるモーメントが生じる。
FIG. 2 shows the principle of measurement by the apparatus according to the present invention.
The model 4 is supported by the support bar 5 at two points on both sides, but FIG. 2 shows only one side. When the model 4 is vibrated through the strain detecting column 7 and the support rod 5, the unsteady aerodynamic force Fa and the inertia force Fi act on the model 4, but the inertia force Fi also acts on the counterweight 8. At the connection point between the support rod 5 and the strain detecting column 7, a moment due to the inertia force Fi M of the model and a moment due to the inertia force Fi C of the counterweight are generated in the opposite direction, as indicated by arrows, and the unsteady air A moment is generated by the force Fa.

【0014】本発明装置の原理は、図2のように、模型
4の慣性力FiM によるモーメントとカウンターウェイト
8の慣性力FiC によるモーメントとをバランスさせるこ
とにより、非定常空気力Fa によるモーメントのみを検
出して、慣性力Fi に比べて桁違いに小さなFa を高精
度に測定する。
The principle of the device of the present invention is as shown in FIG. 2 by balancing the moment due to the inertial force Fi M of the model 4 and the moment due to the inertial force Fi C of the counterweight 8 to obtain the moment due to the unsteady aerodynamic force Fa. Is detected and Fa, which is orders of magnitude smaller than the inertial force Fi, is measured with high accuracy.

【0015】その手順はつぎの通りである。 (1)まず、模型4と同一の質量を持ち、空気力が作用
しないダミー模型を取付ける。 (2)この状態で測定対象の模型4と同一条件で振動さ
せると、ダミー模型には模型4の慣性力FiM と同一の慣
性力が作用するので、慣性力FiM によるモーメントとカ
ウンターウェイト8の慣性力FiC によるモーメントがバ
ランスして、歪ゲージ9から曲げモーメントによる歪が
検出されない状態となるように、カウンターウェイト8
の質量と取付け位置の一方または双方を調整する。
The procedure is as follows. (1) First, a dummy model having the same mass as that of the model 4 and having no air force acting thereon is mounted. (2) to vibrate in a Model 4 the same conditions to be measured in this state, the inertia force Fi M and same inertia of the model 4 is the dummy model is applied, the moment due to the inertial force Fi M and counterweight 8 moment by the inertial force Fi C is in balance, as distortion due bending moment from the strain gauges 9 is a state of not being detected, the counterweight 8
Adjust one or both of the mass and mounting position.

【0016】(3)次にダミー模型を外して測定対象の
模型4を取付ける。 (4)この状態で同一条件で振動させる。すると模型4
の慣性力FiM はカウンターウェイト8の慣性力FiC によ
りキャンセルされ、歪ゲージ9からは非定常空気力Fa
による曲げモーメントのみが検出されるので、これを増
幅し非定常空気力Fa に変換する。この状態で風速を変
化させ、風速に対する非定常空気力Faを測定すること
もできる。
(3) Next, the dummy model is removed and the model 4 to be measured is mounted. (4) In this state, vibration is performed under the same conditions. Then model 4
Inertia force Fi M is canceled by the inertia force Fi C of the counterweight 8, and the unsteady aerodynamic force Fa is obtained from the strain gauge 9.
Is detected, and is amplified and converted into unsteady aerodynamic force Fa. In this state, the wind speed is changed, and the unsteady aerodynamic force Fa with respect to the wind speed can be measured.

【0017】センサー枠6の詳細を示すと、図3のよう
に、中央に開けられた回転中心13の両側に、歪検出柱
7が上端および下端を枠6に接続して取付けられてい
る。この歪検出柱7に支持棒5が接続し、歪検出柱7の
上端部および下端部に図4のように歪ゲージ9が貼付さ
れる。またセンサー枠6の両端には加振部への取付部1
0が設けてある。
The details of the sensor frame 6 are shown in FIG. 3. As shown in FIG. 3, on both sides of a center of rotation 13 opened in the center, strain detecting columns 7 are attached with their upper and lower ends connected to the frame 6. The support bar 5 is connected to the strain detecting column 7, and a strain gauge 9 is attached to the upper end and the lower end of the strain detecting column 7 as shown in FIG. At both ends of the sensor frame 6, mounting portions 1 for the vibrating portion are provided.
0 is provided.

【0018】模型4に上下振動を付与する場合は、両端
の取付部10をアーム11により加振器12に連結す
る。回転振動を付与する場合は、どちらか一端の取付部
10をアーム11により加振器12に連結し、かつ回転
中心13を図示しない固定軸に回動自在に嵌合させる。
When vertically vibrating the model 4, the mounting portions 10 at both ends are connected to a vibrator 12 by arms 11. When applying rotational vibration, the mounting portion 10 at one end is connected to a vibrator 12 by an arm 11 and the center of rotation 13 is rotatably fitted to a fixed shaft (not shown).

【0019】歪検出柱7には、図4のように、歪ゲージ
9a と歪ゲージ9b を貼付し、歪ゲージ9a により上下
方向に働く空気力(揚力)を測定し、歪ゲージ9b によ
り支持棒5を軸として回転させようとする空気力(空気
モーメント)を測定することができる。本例では、回転
時の極慣性モーメントをキャンセルする場合のことを考
慮して、片側に2個の歪検出柱7を設け、それぞれにカ
ウンターウェイト8を取付けている。
As shown in FIG. 4, a strain gauge 9a and a strain gauge 9b are attached to the strain detecting column 7, and an aerodynamic force (lift) acting in a vertical direction is measured by the strain gauge 9a. The aerodynamic force (air moment) to be rotated about the axis 5 can be measured. In this example, in consideration of the case of canceling the polar moment of inertia during rotation, two strain detection columns 7 are provided on one side, and a counter weight 8 is attached to each of them.

【0020】図5に、本発明装置による測定原理のイメ
ージを弥次郎兵衛人形により示す。(a)の状態では、
両腕に作用する模型4の慣性力FiM とカウンターウェイ
ト8の慣性力FiC が均衡を保って人形は直立している。
模型4に非定常空気力Fa が作用すると、Fa が微小で
あっても、人形はこれを感知して(b)のようにバラン
スを崩した状態になる。そして、非定常空気力Fa の大
きさによって人形の傾き程度が変わるので、人形を支持
する歪検出柱7先端部の歪を検出することにより非定常
空気力Fa を測定することができる。
FIG. 5 shows an image of the principle of measurement by the apparatus of the present invention using a Yajirobei doll. In the state of (a),
The doll stands upright with the inertial force Fi M of the model 4 acting on both arms and the inertial force Fi C of the counterweight 8 being balanced.
When the unsteady aerodynamic force Fa acts on the model 4, even if the Fa is minute, the doll senses this and loses its balance as shown in FIG. Since the degree of inclination of the doll changes depending on the magnitude of the unsteady aerodynamic force Fa, the unsteady aerodynamic force Fa can be measured by detecting the strain at the tip of the strain detecting column 7 supporting the doll.

【0021】また本発明装置において、加振部との接続
部よりも模型側の支持棒にヒンジ構造が導入されている
のが好ましい。その例を図10に示す。本例は、支持棒
5が風洞外にて水平面内で二股に分かれ、分かれた支持
棒5のそれぞれが水平面内で支持方向にL形に曲げられ
て歪検出柱7と接続し、該曲げられた部位にヒンジ構造
15が設けてある。歪検出柱7はセンサー枠6を経て加
振部を構成する取付け部10に接続している。
Further, in the apparatus of the present invention, it is preferable that a hinge structure is introduced into the support rod on the model side with respect to the connection part with the vibration part. An example is shown in FIG. In this example, the support rod 5 is bifurcated outside the wind tunnel in a horizontal plane, and each of the divided support rods 5 is bent into an L-shape in the support direction in the horizontal plane, and is connected to the strain detection column 7. The hinge structure 15 is provided at the portion where the hinge structure is located. The strain detecting column 7 is connected via a sensor frame 6 to a mounting section 10 constituting a vibrating section.

【0022】このように、加振部との接続部よりも模型
4側の支持棒5にヒンジ構造15を導入したことによ
り、模型4の剛性の影響、すなわち測定中における模型
4の変形によるモーメント成分が取り除かれる。したが
って、歪検出柱7に取付けた歪ゲージ9a および9b に
より、非定常空気力によるモーメントをより精度よく取
出すことが可能となる。
As described above, by introducing the hinge structure 15 to the support rod 5 on the model 4 side from the connection with the vibrating section, the effect of the rigidity of the model 4, that is, the moment due to the deformation of the model 4 during the measurement is obtained. Ingredients are removed. Therefore, the strain gauges 9a and 9b attached to the strain detecting column 7 make it possible to more accurately extract the moment due to the unsteady aerodynamic force.

【0023】次に本発明法は上記本発明装置による非定
常空気力測定方法であり、図1の例のように、風洞1に
設置された模型4を支持する支持棒5を加振部に接続
し、該加振部との接続点の模型4と反対側の支持棒5に
カウンターウェイト8を取付ける。そして支持棒5を経
て模型4を振動させ、図2のように、振動によって生じ
るカウンターウェイト8の慣性力FiC により接続点に作
用するモーメントと、振動により生じる模型4の慣性力
FiM によって接続点に作用するモーメントとがバランス
するように、カウンターウェイト8の質量と取付け位置
の一方または双方を調整する。このように、模型4の慣
性力FiM がカウンターウェイト8の慣性力FiC によって
キャンセルされた状態で、非定常空気力Fa によるモー
メントのみでの接続点近傍の歪を検出し、非定常空気力
Fa を測定する。
Next, the method of the present invention is a method for measuring unsteady aerodynamic force by the above-mentioned apparatus of the present invention. As shown in FIG. 1, a support rod 5 for supporting a model 4 installed in a wind tunnel 1 is used as a vibrating part. The counterweight 8 is attached to the support bar 5 on the opposite side of the model 4 at the connection point with the vibration unit. Then, the model 4 is vibrated through the support rod 5, and as shown in FIG. 2, the moment acting on the connection point by the inertia force Fi C of the counterweight 8 generated by the vibration, and the inertia force of the model 4 generated by the vibration
One or both of the mass and the mounting position of the counterweight 8 is adjusted so that the moment acting on the connection point by Fi M is balanced. As described above, in a state where the inertia force Fi M of the model 4 is canceled by the inertia force Fi C of the counterweight 8, distortion near the connection point due to only the moment due to the unsteady aerodynamic force Fa is detected, and the unsteady aerodynamic force is detected. Measure Fa.

【0024】また本発明法において、加振部との接続点
よりも模型側の支持棒にヒンジ構造を導入して模型の剛
性の影響を取り除くのが好ましく、図10の例による前
述のとおり、非定常空気力によるモーメントをより精度
よく取出すことが可能となる。
In the method of the present invention, it is preferable to remove the influence of the rigidity of the model by introducing a hinge structure to the support rod on the model side of the connection point with the vibrating section. It is possible to more accurately extract the moment due to the unsteady aerodynamic force.

【0025】図6に本発明法による測定例をブロック図
で示す。無風時および送風時に、模型を強制加振器によ
り一定振幅および一定振動数で振動させると、模型に働
いている非定常空気力を歪ゲージにより歪として検出す
ることができる。検出されたこの歪を動歪計で電気的に
増幅する。また非定常空気力は模型の振動変位との間の
位相差を持っているため、レーザー変位計により模型の
振動変位を同時に測定する。
FIG. 6 is a block diagram showing a measurement example according to the method of the present invention. When the model is vibrated at a constant amplitude and a constant frequency by a forced shaker at the time of no wind and at the time of blowing, the unsteady aerodynamic force acting on the model can be detected as strain by the strain gauge. The detected strain is electrically amplified by a dynamic strain meter. Since the unsteady aerodynamic force has a phase difference with the vibration displacement of the model, the vibration displacement of the model is simultaneously measured by the laser displacement meter.

【0026】測定された振動変位および上記増幅された
歪は、いずれもアナログ信号であるため、AD変換ボー
ドによりデジタル信号に変換してパーソナルコンピュー
ターに入力する。パーソナルコンピューターでは、歪を
非定常空気力に換算し、非定常空気力および振動変位を
デジタル化された時系列データとしてMOディスクに記
録する。一方、時系列データを高速フーリエ変換ソフト
を用いて解析し、強制加振を行った模型の振動変位に対
応する加振振動数成分について、非定常空気力の絶対値
と位相差を同じMOディスクに格納する。このMOディ
スクを用いて、データ解析など、その後の各種処理を行
うことができる。
Since the measured vibration displacement and the amplified distortion are both analog signals, they are converted into digital signals by an AD conversion board and input to a personal computer. The personal computer converts the distortion into unsteady aerodynamic force and records the unsteady aerodynamic force and vibration displacement on the MO disk as digitized time-series data. On the other hand, the time series data was analyzed using fast Fourier transform software, and the absolute value and the phase difference of the unsteady aerodynamic force were the same for the excitation frequency component corresponding to the vibration displacement of the model subjected to forced excitation. To be stored. Using this MO disk, various subsequent processes such as data analysis can be performed.

【0027】[0027]

【実施例】測定洞の断面が、幅1.1m、高さ1.8m
の風洞に平板模型を設置して実験を行った。非定常空気
力Fa の測定結果を図7に示す。強制振動の振幅は、片
振幅(振動をA sinωtと表したときのA)を1mm、2
mm、3mm、4mmとし、振動数は4Hzとした。なお振動
数を変えた場合もほぼ同様の傾向を示した。本発明例は
図1のような本発明装置により測定した。従来例1は、
風洞内にて平板を水平にしてバネで吊り、静止空気中で
自由振動させ、得られた自由減衰振動波形から測定し
た。従来例2は図8のような従来装置により測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The cross section of a measuring cavity is 1.1 m wide and 1.8 m high.
The experiment was conducted by installing a flat plate model in the wind tunnel. FIG. 7 shows the measurement result of the unsteady aerodynamic force Fa. The amplitude of the forced vibration is 1 mm, the half amplitude (A when the vibration is expressed as A sinωt) is 2 mm.
mm, 3 mm, and 4 mm, and the frequency was 4 Hz. It should be noted that almost the same tendency was exhibited when the frequency was changed. The present invention example was measured by the present invention apparatus as shown in FIG. Conventional example 1
In the wind tunnel, the flat plate was suspended horizontally by a spring, freely vibrated in still air, and measured from the obtained free-damping vibration waveform. Conventional Example 2 was measured by a conventional apparatus as shown in FIG.

【0028】強制振動法により測定した本発明例と従来
例2の測定結果は大きく異なり、従来例2が本発明例の
5倍程度高い値になっている。本発明例は、自由振動法
で測定した従来例1とほぼ等しい値である。このことよ
り、構造物などの動的挙動を把握する上で必要不可欠な
非定常空気力を高精度で測定するための本発明装置およ
び本発明法は非常に優れたものであることが分かる。
The measurement results of the present invention example and the conventional example 2 measured by the forced vibration method are greatly different, and the conventional example 2 is about five times higher than the present invention example. The value of the example of the present invention is almost equal to that of the conventional example 1 measured by the free vibration method. From this, it can be seen that the apparatus and the method of the present invention for measuring the unsteady aerodynamic force, which is indispensable for grasping the dynamic behavior of a structure or the like, with high accuracy are extremely excellent.

【0029】自由振動法による測定は、振動の減衰状態
を振動変位から求めており、振動空気力の振動速度比例
成分が正確に測られる。しかし、自由振動法では応答振
動数の空気力による微小な変化を測定することが難しい
ために、振動空気力の変位比例成分の測定は非常に困難
である。したがって、本発明法で測定された非定常空気
力のうち、振動速度比例成分の測定値が自由振動法での
測定値と近いことが、本発明法の精度の高さを意味する
ことになる。
In the measurement by the free vibration method, the damping state of the vibration is obtained from the vibration displacement, and the vibration velocity proportional component of the vibrating aerodynamic force is accurately measured. However, since it is difficult to measure a small change in response frequency due to aerodynamic force by the free vibration method, it is very difficult to measure a displacement proportional component of the oscillating aerodynamic force. Therefore, among the unsteady aerodynamic forces measured by the method of the present invention, the fact that the measured value of the vibration velocity proportional component is close to the measured value by the free vibration method means that the accuracy of the method of the present invention is high. .

【0030】特に本発明法のポイントは、模型の慣性力
を感知しない測定法であるために、空気力そのもののみ
を増幅して測定できることにより、振動変位との位相差
の測定精度を高くできていることである。特に、位相差
の挙動を知ることは、空気力生成のメカニズムを知る上
で重要であるために、強制振動法による非定常空気力の
測定は必要となる。
In particular, the point of the method of the present invention is that the measurement method does not sense the inertial force of the model, so that it is possible to amplify and measure only the aerodynamic force itself, thereby increasing the measurement accuracy of the phase difference from the vibration displacement. It is that you are. In particular, knowing the behavior of the phase difference is important in knowing the mechanism of aerodynamic force generation, so that measurement of unsteady aerodynamic force by the forced vibration method is necessary.

【0031】[0031]

【発明の効果】本発明によれば、気流中での振動が問題
となる長大橋梁の桁断面、航空機の翼断面、高層建築物
の断面、細長い構造用部材断面など、各種構造部材等の
模型の風洞試験において、模型に作用する非定常空気力
を強制振動法により測定するにあたり、同時に作用する
桁違いに大きな慣性力の影響が排除され、非定常空気力
が高精度に測定される。その結果、上記各種構造部材等
の気流中での動的挙動を高精度で把握することができ
る。
According to the present invention, models of various structural members such as girder cross sections of long bridges, wing cross sections of aircraft, cross sections of high-rise buildings, cross sections of slender structural members, and the like, in which vibration in the air flow is a problem. In the wind tunnel test, when measuring the unsteady aerodynamic force acting on the model by the forced vibration method, the effect of the unusually large inertia force acting simultaneously is eliminated, and the unsteady aerodynamic force is measured with high accuracy. As a result, the dynamic behavior of the various structural members and the like in the airflow can be grasped with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の構成例を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration example of a device of the present invention.

【図2】本発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the present invention.

【図3】本発明装置におけるセンサー例の詳細説明図で
ある。
FIG. 3 is a detailed explanatory diagram of an example of a sensor in the device of the present invention.

【図4】本発明装置における歪検出手段の例を示す説明
図である。
FIG. 4 is an explanatory diagram illustrating an example of a distortion detection unit in the device of the present invention.

【図5】(a),(b)は本発明の原理をイメージ的に
示す説明図である。
FIGS. 5A and 5B are explanatory views conceptually showing the principle of the present invention.

【図6】本発明法の例を示すブロック図である。FIG. 6 is a block diagram showing an example of the method of the present invention.

【図7】実施例のグラフである。FIG. 7 is a graph of an example.

【図8】従来装置の構成例を示す説明図である。FIG. 8 is an explanatory diagram showing a configuration example of a conventional device.

【図9】従来装置の原理を示す説明図である。FIG. 9 is an explanatory view showing the principle of a conventional device.

【図10】本発明の別の例を示す説明図である。FIG. 10 is an explanatory diagram showing another example of the present invention.

【符号の説明】[Explanation of symbols]

1:風洞 2:風洞壁 3:風 4:模型 5:支持棒 6:センサー枠 7:歪検出柱 8:カウンターウェイト 9:歪ゲージ 10:取付部 11:アーム 12:加振器 13:回転中心 14:支持台 15:ヒンジ構造 Fa :非定常空気力 Fi :慣性力 FiM :模型の慣性力 FiC :カウンターウェイトの
慣性力
1: Wind tunnel 2: Wind tunnel wall 3: Wind 4: Model 5: Support bar 6: Sensor frame 7: Strain detection column 8: Counter weight 9: Strain gauge 10: Mounting part 11: Arm 12: Exciter 13: Rotation center 14: support base 15: hinge structure Fa: unsteady aerodynamic force Fi: inertia force Fi M : model inertia force Fi C : counterweight inertia force

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 風洞に設置された測定対象の模型を支持
する支持棒と、該支持棒を経て模型を振動させる加振部
と、該加振部との接続点の模型と反対側の支持棒に取付
けられたカウンターウェイトと、前記接続点の近傍に取
付けられた歪ゲージをセンサーとする測定部とで構成さ
れていることを特徴とする高精度非定常空気力測定装
置。
1. A support bar for supporting a model to be measured, which is installed in a wind tunnel, a vibrating unit for vibrating the model via the support bar, and a support of a connection point with the vibrating unit on a side opposite to the model. A high-precision unsteady aerodynamic force measuring device, comprising: a counterweight attached to a rod; and a measuring unit using a strain gauge attached as a sensor near the connection point.
【請求項2】 加振部との接続点よりも模型側の支持棒
にヒンジ構造が導入されていることを特徴とする請求項
1記載の高精度非定常空気力測定装置。
2. The high-precision unsteady aerodynamic force measuring device according to claim 1, wherein a hinge structure is introduced into a support rod on a model side of a connection point with a vibration unit.
【請求項3】 風洞に設置された測定対象の模型を支持
する支持棒を加振部に接続し、該加振部との接続点の模
型と反対側の支持棒にカウンターウェイトを取付け、該
支持棒を経て模型を振動させ、該振動により生じる該カ
ウンターウェイトの慣性力によって前記接続点に作用す
るモーメントと、前記振動により生じる模型の慣性力に
よって前記接続点に作用するモーメントとが釣り合うよ
うに、前記カウンターウェイトの質量と取付け位置の一
方または双方を調整した状態で、前記接続点近傍の歪を
検出することを特徴とする高精度非定常空気力測定方
法。
3. A supporting rod for supporting a model to be measured, which is installed in a wind tunnel, is connected to the vibrating section, and a counterweight is attached to the supporting rod opposite to the model at a connection point with the vibrating section. The model is vibrated through the support rod, and the moment acting on the connection point by the inertia force of the counterweight generated by the vibration and the moment acting on the connection point by the inertia force of the model generated by the vibration are balanced. And detecting a strain near the connection point while adjusting one or both of the mass and the mounting position of the counterweight.
【請求項4】 加振部との接続点よりも模型側の支持棒
にヒンジ構造を導入し、模型の剛性の影響を取り除くこ
とを特徴とする請求項3記載の高精度非定常空気力測定
方法。
4. A high-precision unsteady aerodynamic force measurement according to claim 3, wherein a hinge structure is introduced to the support rod on the model side from the connection point with the vibrating part to remove the influence of the rigidity of the model. Method.
JP2001188717A 2000-06-26 2001-06-21 Device and method of accurately measuring non- stationary aerodynamic Pending JP2002082014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188717A JP2002082014A (en) 2000-06-26 2001-06-21 Device and method of accurately measuring non- stationary aerodynamic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000191244 2000-06-26
JP2000-191244 2000-06-26
JP2001188717A JP2002082014A (en) 2000-06-26 2001-06-21 Device and method of accurately measuring non- stationary aerodynamic

Publications (1)

Publication Number Publication Date
JP2002082014A true JP2002082014A (en) 2002-03-22

Family

ID=26594679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188717A Pending JP2002082014A (en) 2000-06-26 2001-06-21 Device and method of accurately measuring non- stationary aerodynamic

Country Status (1)

Country Link
JP (1) JP2002082014A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288381A (en) * 2011-05-05 2011-12-21 西北工业大学 Wing tip support device for wind tunnel test
KR101547849B1 (en) 2014-06-27 2015-08-27 서울대학교산학협력단 Adjustable Jig System for Two-Dimensional Wind Tunnel
CN106828970A (en) * 2015-11-30 2017-06-13 哈尔滨飞机工业集团有限责任公司 For the icing mnncl tcst empennage model of aircraft certification checking
CN107588923A (en) * 2017-07-28 2018-01-16 大连理工大学 A kind of large amplitude free torsional vibration flow tunnel testing device
CN107607286A (en) * 2017-08-25 2018-01-19 大连理工大学 A kind of bridge model force test in wind tunnel device for being easy to implement different angle of wind deflection and the wind angle of attack combinations
CN108844711A (en) * 2018-07-19 2018-11-20 中国空气动力研究与发展中心低速空气动力研究所 A kind of aerofoil profile two-freedom dynamic flow tunnel testing device
CN108844707A (en) * 2018-09-04 2018-11-20 中国空气动力研究与发展中心高速空气动力研究所 Wind-tunnel routine test model support sting vibration absorber
WO2019019246A1 (en) * 2017-07-28 2019-01-31 大连理工大学 Large vibration amplitude, vertically-free, and torsional-coupled vibrating wind tunnel test apparatus
CN109374245A (en) * 2018-09-19 2019-02-22 武汉理工大学 A kind of bridge power high precision testing device
CN110160736A (en) * 2019-03-20 2019-08-23 北京机电工程研究所 A kind of coupling Elastic mode unsteady aerodynamic force measuring device and method
CN110455489A (en) * 2019-08-09 2019-11-15 东南大学 A kind of flow tunnel testing device measuring bridge subsection model of vibration Pressures
CN110823431A (en) * 2019-10-18 2020-02-21 中国飞行试验研究院 Hinge moment measuring method of movable control surface driven by return connecting rod
RU199357U1 (en) * 2020-05-29 2020-08-28 Общество с ограниченной ответственностью «Бриз» SWING TORQUE MEASUREMENT SENSOR
CN112033636A (en) * 2020-08-06 2020-12-04 大连理工大学 Dimensionality reduction monitoring method for random multidimensional vibration of aircraft model
CN112345195A (en) * 2020-11-17 2021-02-09 中国航天空气动力技术研究院 Test device for high-speed wind tunnel ultra-large attack angle multi-frequency compound motion
CN112461494A (en) * 2020-11-09 2021-03-09 中国空气动力研究与发展中心 Pulse combustion wind tunnel model support-balance integrated force measuring device
CN112729761A (en) * 2021-02-01 2021-04-30 中国科学院力学研究所 Micro-force balance calibration device
CN113358310A (en) * 2021-06-03 2021-09-07 长沙理工大学 Vortex vibration testing device
CN113670560A (en) * 2021-10-21 2021-11-19 中国空气动力研究与发展中心低速空气动力研究所 Pneumatic load measuring device of horizontal tail
CN113701644A (en) * 2021-09-15 2021-11-26 南京航空航天大学 Displacement measurement system and displacement measurement method based on wind tunnel test high-speed camera shooting technology
CN114310734A (en) * 2022-03-14 2022-04-12 中国空气动力研究与发展中心低速空气动力研究所 Airplane model sinking and floating supporting device and four-degree-of-freedom supporting device
CN114537706A (en) * 2022-03-11 2022-05-27 西北工业大学 Supporting structure for sectional type mixed scaling airfoil

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288381A (en) * 2011-05-05 2011-12-21 西北工业大学 Wing tip support device for wind tunnel test
KR101547849B1 (en) 2014-06-27 2015-08-27 서울대학교산학협력단 Adjustable Jig System for Two-Dimensional Wind Tunnel
CN106828970A (en) * 2015-11-30 2017-06-13 哈尔滨飞机工业集团有限责任公司 For the icing mnncl tcst empennage model of aircraft certification checking
CN106828970B (en) * 2015-11-30 2019-06-07 哈尔滨飞机工业集团有限责任公司 Icing mnncl tcst empennage model for aircraft certification verifying
CN107588923B (en) * 2017-07-28 2019-04-09 大连理工大学 A kind of large amplitude free torsional vibration flow tunnel testing device
WO2019019246A1 (en) * 2017-07-28 2019-01-31 大连理工大学 Large vibration amplitude, vertically-free, and torsional-coupled vibrating wind tunnel test apparatus
CN107588923A (en) * 2017-07-28 2018-01-16 大连理工大学 A kind of large amplitude free torsional vibration flow tunnel testing device
US10890508B2 (en) 2017-07-28 2021-01-12 Dalian University Of Technology Large-amplitude vertival-torsional coupled free vibration device for wind tunnel test
CN107607286A (en) * 2017-08-25 2018-01-19 大连理工大学 A kind of bridge model force test in wind tunnel device for being easy to implement different angle of wind deflection and the wind angle of attack combinations
CN107607286B (en) * 2017-08-25 2019-11-05 大连理工大学 A kind of bridge model wind tunnel force measurement device for realizing different windage yaw and the combination of the wind angle of attack
CN108844711A (en) * 2018-07-19 2018-11-20 中国空气动力研究与发展中心低速空气动力研究所 A kind of aerofoil profile two-freedom dynamic flow tunnel testing device
CN108844707A (en) * 2018-09-04 2018-11-20 中国空气动力研究与发展中心高速空气动力研究所 Wind-tunnel routine test model support sting vibration absorber
CN108844707B (en) * 2018-09-04 2024-04-19 中国空气动力研究与发展中心高速空气动力研究所 Tail strut vibration damper for wind tunnel conventional test model
CN109374245A (en) * 2018-09-19 2019-02-22 武汉理工大学 A kind of bridge power high precision testing device
CN110160736B (en) * 2019-03-20 2020-11-13 北京机电工程研究所 Coupling elastic modal unsteady aerodynamic force measuring device and method
CN110160736A (en) * 2019-03-20 2019-08-23 北京机电工程研究所 A kind of coupling Elastic mode unsteady aerodynamic force measuring device and method
CN110455489A (en) * 2019-08-09 2019-11-15 东南大学 A kind of flow tunnel testing device measuring bridge subsection model of vibration Pressures
CN110823431A (en) * 2019-10-18 2020-02-21 中国飞行试验研究院 Hinge moment measuring method of movable control surface driven by return connecting rod
RU199357U1 (en) * 2020-05-29 2020-08-28 Общество с ограниченной ответственностью «Бриз» SWING TORQUE MEASUREMENT SENSOR
CN112033636A (en) * 2020-08-06 2020-12-04 大连理工大学 Dimensionality reduction monitoring method for random multidimensional vibration of aircraft model
CN112033636B (en) * 2020-08-06 2021-06-18 大连理工大学 Dimensionality reduction monitoring method for random multidimensional vibration of aircraft model
CN112461494A (en) * 2020-11-09 2021-03-09 中国空气动力研究与发展中心 Pulse combustion wind tunnel model support-balance integrated force measuring device
CN112345195A (en) * 2020-11-17 2021-02-09 中国航天空气动力技术研究院 Test device for high-speed wind tunnel ultra-large attack angle multi-frequency compound motion
CN112729761A (en) * 2021-02-01 2021-04-30 中国科学院力学研究所 Micro-force balance calibration device
CN112729761B (en) * 2021-02-01 2021-11-02 中国科学院力学研究所 Micro-force balance calibration device
CN113358310A (en) * 2021-06-03 2021-09-07 长沙理工大学 Vortex vibration testing device
CN113358310B (en) * 2021-06-03 2022-07-29 长沙理工大学 Vortex vibration testing device
CN113701644A (en) * 2021-09-15 2021-11-26 南京航空航天大学 Displacement measurement system and displacement measurement method based on wind tunnel test high-speed camera shooting technology
CN113701644B (en) * 2021-09-15 2023-02-03 南京航空航天大学 Displacement measurement system and displacement measurement method based on wind tunnel test high-speed camera shooting technology
CN113670560B (en) * 2021-10-21 2022-02-11 中国空气动力研究与发展中心低速空气动力研究所 Pneumatic load measuring device of horizontal tail
CN113670560A (en) * 2021-10-21 2021-11-19 中国空气动力研究与发展中心低速空气动力研究所 Pneumatic load measuring device of horizontal tail
CN114537706A (en) * 2022-03-11 2022-05-27 西北工业大学 Supporting structure for sectional type mixed scaling airfoil
CN114537706B (en) * 2022-03-11 2024-03-29 西北工业大学 Support structure for sectional type mixed scaling wing section
CN114310734A (en) * 2022-03-14 2022-04-12 中国空气动力研究与发展中心低速空气动力研究所 Airplane model sinking and floating supporting device and four-degree-of-freedom supporting device

Similar Documents

Publication Publication Date Title
JP2002082014A (en) Device and method of accurately measuring non- stationary aerodynamic
CN102072806B (en) Device for testing dynamic characteristic parameters of fixed joint surface and testing method thereof
Edwards et al. Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down
US7503216B2 (en) Device and method for evaluating rigidity of bearing device, device and method for manufacturing bearing device, and bearing device
JP5110796B2 (en) Health monitoring system with calibration function
JP2001041846A (en) Method and device for supporting model for wind tunnel test
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
CN108645583A (en) One kind being fitted to each other face normal direction contact damping high-precision detection device and method
CN113740042B (en) Device and method for testing vibration contact characteristic of gas turbine blade damper system
JP2011027669A (en) Device and method for testing vibration
CN111766198B (en) Material dynamic friction force test method and device based on folding pendulum
JPH07113721A (en) Vibration testing device, vibration testing method, and vibration testing jig for structure
JPH0814874A (en) Measuring device
CN100387958C (en) Dynamic balance measuring instrument
Steckley et al. On the measurement of motion induced forces on models in turbulent shear flow
JPH0735646A (en) Apparatus for measuring characteristic of leaf spring
JP4236510B2 (en) Apparatus and method for measuring rotational balance of rotating body
CN2789746Y (en) Dynamic balance measuring instrument
JP3749416B2 (en) Sued test method and pseudo test apparatus
JPH0755630A (en) Earthquake-resistance experimental system
JP3385968B2 (en) Excitation force measuring device for vibration generator
JPH10132699A (en) Device and method for adjusting radius of gyration of object
Zhu et al. On a simple impact test method for accurate measurement of material properties
JP4142793B2 (en) Correction method of shaker time delay in structural vibration simulation
JP3802200B2 (en) Fruit ripeness measuring method and ripeness measuring device