JP2002076772A - Crystal oscillator with temperature compensation - Google Patents

Crystal oscillator with temperature compensation

Info

Publication number
JP2002076772A
JP2002076772A JP2000256099A JP2000256099A JP2002076772A JP 2002076772 A JP2002076772 A JP 2002076772A JP 2000256099 A JP2000256099 A JP 2000256099A JP 2000256099 A JP2000256099 A JP 2000256099A JP 2002076772 A JP2002076772 A JP 2002076772A
Authority
JP
Japan
Prior art keywords
temperature
crystal oscillator
frequency
circuit
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256099A
Other languages
Japanese (ja)
Inventor
Hiroaki Mizumura
浩明 水村
Hirokatsu Tanaka
啓勝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2000256099A priority Critical patent/JP2002076772A/en
Publication of JP2002076772A publication Critical patent/JP2002076772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a miniaturized temperature compensated oscillator having enhanced noise characteristic with remarkably small in plan shape suitable for surface mounting. SOLUTION: A temperature compensated crystal oscillator is constituted of; a crystal oscillator 5 having a crystal vibrator element 4 and an oscillation circuit excluding the crystal vibration element; a frequency regulation mechanism 16 for regulating oscillation frequency of the above mentioned crystal oscillator; and a temperature compensation circuit 2 having a temperature compensation element including temperature sensitive resistance element of which resistance value varies with temperature so as to flatten the frequency temperature characteristic of the crystal oscillator. A voltage variable capacitance element 3 is inserted in an oscillation closed-loop of the crystal oscillator. At least the temperature compensation circuit, the oscillation circuit excluding the crystal vibration element, and the frequency regulation mechanism are integrated into a signal IC chip. The frequency regulation mechanism is configured with a memory circuit 20, and a frequency regulation voltage generator 19. The oscillation frequency is regulated by applying to the voltage variable capacitance element a frequency regulation voltage generated by the frequency regulation voltage generator based on a signal from the memory circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度に依存して抵
抗値の変化する感温抵抗素子を温度検出手段とした表面
実装用の温度補償水晶発振器(以下、温度補償発振器と
する)を産業上の技術分野とし、特に雑音特性を良好と
して小型化に適した温度補償発振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensated crystal oscillator for surface mounting (hereinafter referred to as a temperature-compensated oscillator) using a temperature-sensitive resistance element whose resistance value changes depending on temperature as temperature detecting means. The present invention relates to the above technical field, particularly to a temperature-compensated oscillator suitable for downsizing with good noise characteristics.

【0002】[0002]

【従来の技術】(発明の背景)温度補償発振器は、温度
によって変化する発振周波数を補償して安定にすること
から、特に移動無線機器等の動的環境下で使用される電
子機器に広く採用されている。そして、近年の携帯電話
に代表されるように電子機器の小型化に基づき、発振回
路及び温度補償回路を集積化した1チップIC(LS
I)と水晶片とを容器に収容して表面実装用とした温度
補償発振器がある。
2. Description of the Related Art Temperature-compensated oscillators are widely used in electronic devices used in dynamic environments, such as mobile radio devices, because they compensate for the oscillation frequency that changes with temperature and stabilize them. Have been. Then, based on the miniaturization of electronic equipment as represented by recent mobile phones, a one-chip IC (LS) in which an oscillation circuit and a temperature compensation circuit are integrated
There is a temperature-compensated oscillator in which I) and a crystal blank are housed in a container and used for surface mounting.

【0003】(従来技術の一例)第11図は従来例を説
明する温度補償発振器の概略したブロック回路図であ
る。温度補償発振器は電圧制御発振器1と温度補償回路
2からなる。電圧制御発振器1は水晶発振器の発振閉ル
ープ内に電圧可変容量素子3を挿入してなる。水晶発振
器は水晶振動子4及びこれを除く帰還増幅器等(未図
示)を含む発振回路5からなる。そして、周波数温度特
性を水晶振動子(ここではATカット)の切断角度に起
因して、低温側に極大値を、常温に変曲点を、高温側に
極大値を有する三次曲線とする(第12図の曲線イ)。
(Example of Prior Art) FIG. 11 is a schematic block circuit diagram of a temperature compensated oscillator for explaining a conventional example. The temperature compensation oscillator includes a voltage control oscillator 1 and a temperature compensation circuit 2. The voltage controlled oscillator 1 has a voltage variable capacitance element 3 inserted in an oscillation closed loop of a crystal oscillator. The crystal oscillator includes an oscillator circuit 5 including a crystal oscillator 4 and a feedback amplifier (not shown) other than the crystal oscillator 4. Then, the frequency temperature characteristic is defined as a cubic curve having a local maximum value on the low temperature side, an inflection point at normal temperature, and a local maximum value on the high temperature side due to the cutting angle of the crystal oscillator (here, AT cut) (No. Curve a in FIG. 12).

【0004】温度補償回路は、概ね、三次関数電圧発生
回路6、記憶回路7及び温度センサ8からなる。概略す
ると、三次関数電圧発生回路6は、前述した水晶発振器
の周波数温度特性に応答した補償電圧Vs(T)を発生す
る。補償電圧Vs(T)は例えば下式(1)によって設定さ
れる。各次数の係数α、β及びγは水晶発振器の周波数
温度特性を実測後の温度補償データによって決定され
る。但し、T0は変曲点温度(約27℃)、Tは周囲温度
である。 Vs(T)=α(T−T0)3+β(T−T0)+γ…(1)
The temperature compensating circuit generally includes a cubic function voltage generating circuit 6, a storage circuit 7, and a temperature sensor 8. Briefly, the cubic function voltage generation circuit 6 generates a compensation voltage Vs (T) responsive to the frequency temperature characteristic of the crystal oscillator described above. The compensation voltage Vs (T) is set by, for example, the following equation (1). The coefficients α, β, and γ of the respective orders are determined by temperature compensation data after actually measuring the frequency temperature characteristics of the crystal oscillator. Here, T0 is the inflection point temperature (about 27 ° C.), and T is the ambient temperature. Vs (T) = α (T−T0) 3 + β (T−T0) + γ (1)

【0005】記憶回路7は例えばPROMとして温度補
償データを保持する。温度補償データは制御端子を含む
書込端子a〜nからデジタル的に書き込まれる。温度セ
ンサ8は例えばICチップ内部に設けたPN接合領域に
おける順方向降下電圧の温度特性を利用し、周囲温度に
応答した検出電圧(温度検出信号)を発生する。
[0005] The storage circuit 7 stores temperature compensation data, for example, as a PROM. The temperature compensation data is digitally written from the write terminals a to n including the control terminals. The temperature sensor 8 generates a detection voltage (temperature detection signal) in response to an ambient temperature by using the temperature characteristics of a forward drop voltage in a PN junction region provided inside an IC chip, for example.

【0006】これらのものでは、温度センサ8による温
度検出信号によって周囲温度に依存した補償電圧Vs(T)
を発生し、電圧制御発振器1の電圧可変容量素子3に印
加する。電圧可変容量素子3は補償電圧Vs(T)によって
端子間容量が変化する。したがって、水晶振動子4から
見た回路側の直列等価容量(所謂負荷容量)が変化する
ので、温度に応答して発振周波数も変化し(第12図の
曲線ロ)、結局、温度補償される。
In these devices, the compensation voltage Vs (T) depending on the ambient temperature is obtained by the temperature detection signal from the temperature sensor 8.
Is generated and applied to the voltage variable capacitance element 3 of the voltage controlled oscillator 1. The capacitance between terminals of the voltage variable capacitance element 3 changes according to the compensation voltage Vs (T). Therefore, since the series equivalent capacitance (so-called load capacitance) on the circuit side as viewed from the crystal unit 4 changes, the oscillation frequency also changes in response to the temperature (curve B in FIG. 12), and the temperature is eventually compensated. .

【0007】なお、(1)式の係数(定数項)γは常温
時(厳格には変曲点温度)の発振周波数を制御する。ま
た、図中の符号9は高周波阻止抵抗、Vccは電源、Vo
utは発振出力である。
The coefficient (constant term) γ in equation (1) controls the oscillation frequency at normal temperature (strictly, the inflection point temperature). In the figure, reference numeral 9 is a high-frequency blocking resistor, Vcc is a power supply, Vo
ut is an oscillation output.

【0008】このような温度補償発振器では、水晶振動
子4を除く電圧制御発振器1及び温度補償回路2が一点
鎖線で示すICチップ10に集積化される。したがっ
て、温度補償発振器は、基本的に、水晶振動子4とIC
チップ10の2素子になる。これにより、大幅な小型化
を達成できる。
In such a temperature-compensated oscillator, the voltage-controlled oscillator 1 except for the crystal oscillator 4 and the temperature-compensating circuit 2 are integrated on an IC chip 10 indicated by a chain line. Therefore, the temperature compensated oscillator is basically composed of the crystal oscillator 4 and the IC
The chip 10 has two elements. Thereby, a significant size reduction can be achieved.

【0009】一般には、積層セラミックからなる表面実
装容器11の一方の凹部底面に導電性接着剤12によっ
て水晶振動子4を形成する水晶片4aの一端部を固着
(保持)し、例えばシーム溶接によりカバー13を接合
して密閉封入する。そして、他方の凹部底面に超音波熱
圧着によってICチップ10をフェースダウンボンディ
ングする(第13図)。あるいは、表面実装容器11の
凹部底面にICチップ10を、段部に水晶片4aを保持
して密閉封入した構成とする(第14図)。
Generally, one end of a crystal piece 4a forming the crystal unit 4 is fixed (held) by a conductive adhesive 12 to the bottom surface of one concave portion of a surface mount container 11 made of a laminated ceramic, and is subjected to, for example, seam welding. The cover 13 is joined and hermetically sealed. Then, the IC chip 10 is face-down bonded to the bottom of the other concave portion by ultrasonic thermocompression bonding (FIG. 13). Alternatively, the IC chip 10 is held on the bottom surface of the concave portion of the surface mount container 11 and the crystal blank 4a is held and sealed in a stepped manner (FIG. 14).

【0010】なお、図中の符号14はシーム溶接用の金
属リング、同15は保護用の充填材である。なお、スペ
ース及び必要に応じて、電源とアース間のバイパスコン
デンサ等のIC化が困難な大容量のコンデンサが収容さ
れる。
Reference numeral 14 in the figure denotes a metal ring for seam welding, and reference numeral 15 denotes a filler for protection. A large-capacity capacitor, such as a bypass capacitor between the power supply and the ground, which is difficult to make into an IC, is accommodated as necessary.

【0011】[0011]

【発明が解決しようとする課題】(従来技術の問題点)
しかしながら、上記構成の温度補償発振器では、温度補
償回路の温度検出手段として、前述のようにICチップ
内部に設けたPN接合領域における順方向降下電圧の温
度特性を利用する。すなわち、温度に対して電圧変化の
少ない温度特性を利用して、温度検出信号を形成する。
したがって、ICチップの内部に生ずるノイズ成分が検
出信号に対して相対的に大きくなって、雑音特性が劣化
する。また、微弱な検出信号を増幅して制御するので消
費電流が増える等の問題があった。
[Problems to be Solved by the Invention]
However, in the temperature compensated oscillator having the above configuration, the temperature characteristic of the forward drop voltage in the PN junction region provided inside the IC chip as described above is used as the temperature detecting means of the temperature compensation circuit. That is, the temperature detection signal is formed by using the temperature characteristic with a small voltage change with respect to the temperature.
Therefore, the noise component generated inside the IC chip becomes relatively large with respect to the detection signal, and the noise characteristics are degraded. In addition, there is a problem that current consumption increases because a weak detection signal is amplified and controlled.

【0012】(発明の目的)本発明は、雑音特性に優れ
て、表面実装用とした特に平面外形を小さくした小型な
温度補償発振器を提供することを目的とする。
(Object of the Invention) It is an object of the present invention to provide a small temperature-compensated oscillator which is excellent in noise characteristics and has a small planar outer shape, especially for surface mounting.

【0013】[0013]

【課題を解決するための手段】(着目点)本発明は、既
存の温度補償回路に採用される感温抵抗素子例えば温度
係数を負としたサーミスタを温度検出手段として、しか
も上記構成の一部を採用する点に即ち三次関数電圧発生
回路の定数項γによって発振周波数を調整する点に着目
した。
According to the present invention, a temperature-sensitive resistance element employed in an existing temperature compensating circuit, for example, a thermistor having a negative temperature coefficient is used as temperature detecting means. That is, attention is paid to the point that the oscillation frequency is adjusted by the constant term γ of the cubic function voltage generation circuit.

【0014】(解決手段)本発明は、水晶発振器の発振
閉ループに電圧可変容量素子を挿入するとともに、少な
くとも温度感温素子からなる温度補償回路と水晶振動子
とを除く発振回路と周波数調整機構部とをICチップに
集積化する。そして、周波数調整機構部を記憶回路と周
波数調整電圧発生回路とから形成し、記憶回路からの信
号に基づく周波数調整電圧発生回路からの周波数調整電
圧を電圧可変容量素子に印加して発振周波数を調整した
ことを第1の解決手段とする(請求項1)。
(Solution) According to the present invention, there is provided an oscillation circuit including a voltage variable capacitance element inserted into an oscillation closed loop of a crystal oscillator, and excluding at least a temperature compensation circuit including a temperature sensing element and a crystal resonator, and a frequency adjustment mechanism. Are integrated on an IC chip. The frequency adjustment mechanism is formed from a storage circuit and a frequency adjustment voltage generation circuit, and the oscillation frequency is adjusted by applying a frequency adjustment voltage from the frequency adjustment voltage generation circuit based on a signal from the storage circuit to the voltage variable capacitance element. This is defined as a first solution (claim 1).

【0015】また、水晶振動子を形成する水晶片と第1
解決手段のICチップを表面実装容器内に収容し、表面
実装容器の裏面に設けた切欠部に温度補償回路(温度補
償素子)を配置したことを第2の解決手段とする(請求
項4)。
[0015] Further, the crystal piece forming the crystal resonator and the first
A second solution is that the IC chip of the solution is housed in a surface mount container, and a temperature compensation circuit (temperature compensation element) is arranged in a cutout provided on the back surface of the surface mount container. .

【0016】[0016]

【作用】本発明では、温度補償回路の温度検出手段とし
て従前同様に感温抵抗素子を使用するので、ICチップ
の内部雑音に対して温度検出信号のレベルを相対的に大
きくする。そして、周波数調整機構をICチップ内に集
積化したので、調整用のコンデンサを不要にする(第1
の解決手段)。
In the present invention, a temperature-sensitive resistor is used as the temperature detecting means of the temperature compensating circuit as before, so that the level of the temperature detecting signal is relatively increased with respect to the internal noise of the IC chip. In addition, since the frequency adjustment mechanism is integrated in the IC chip, a capacitor for adjustment is not required (first example).
Solution).

【0017】また、温度補償素子を表面実装容器の裏面
に設けた切欠部に配置したので平面外形を小さくできる
(第2の解決手段)。以下、本発明の実施例を異なる二
つの補償方式(請求項2、請求項3)を例として説明す
る。
Further, since the temperature compensating element is arranged in the notch provided on the back surface of the surface mount container, the planar outer shape can be reduced (second solution). Hereinafter, embodiments of the present invention will be described by taking two different compensation systems (claims 2 and 3) as examples.

【0018】[0018]

【第1実施例】第1図は本発明の第1実施例を説明する
温度補償発振器の概略的なブロック回路図である。な
お、前従来例図と同一部分には同番号を付与してその説
明は簡略又は省略する。温度補償発振器は、電圧制御発
振器1と温度補償回路2と周波数調整機構部16からな
る。電圧制御発振器1は前述同様に水晶発振器の発振閉
ループ内に電圧可変容量素子3を挿入してなる。温度補
償回路2は感温抵抗素子からなる感温抵抗回路網からな
る。ここでの感温抵抗素子は、温度上昇とともに抵抗値
の減少する負の温度係数を有するサーミスタとする。
FIG. 1 is a schematic block circuit diagram of a temperature compensated oscillator for explaining a first embodiment of the present invention. The same parts as those in the prior art are denoted by the same reference numerals, and description thereof will be simplified or omitted. The temperature-compensated oscillator comprises a voltage-controlled oscillator 1, a temperature compensation circuit 2, and a frequency adjustment mechanism 16. The voltage controlled oscillator 1 is formed by inserting the voltage variable capacitance element 3 in the oscillation closed loop of the crystal oscillator as described above. The temperature compensating circuit 2 is composed of a temperature-sensitive resistance network composed of temperature-sensitive resistance elements. Here, the temperature-sensitive resistance element is a thermistor having a negative temperature coefficient whose resistance value decreases with increasing temperature.

【0019】感温抵抗回路網は、この例では第2図に示
したように水晶発振器の周波数温度特性に応答して極大
値以下の低温部、極大値から極小値間の常温を含む中温
部、及び極大値以上の高温部に応答して抵抗値の変化す
る3つのサーミスタ17(abc)からなる。そして、
周囲温度に応答する前述した補償電圧Vs(T)を発生し、
これを電圧可変容量素子3に印加する。符号18は特に
高温側の補償電圧を調整する高温補償調整抵抗である。
As shown in FIG. 2, in this example, the temperature-sensitive resistor network responds to the frequency-temperature characteristic of the crystal oscillator, and includes a low-temperature portion below a maximum value and a medium-temperature portion including a normal temperature between a maximum value and a minimum value. , And three thermistors 17 (abc) whose resistance values change in response to a high-temperature portion having a maximum value or more. And
Generates the aforementioned compensation voltage Vs (T) responsive to the ambient temperature,
This is applied to the voltage variable capacitance element 3. Reference numeral 18 denotes a high-temperature compensation adjusting resistor for adjusting a compensation voltage on the high-temperature side.

【0020】周波数調整機構部16は、周波数調整電圧
発生回路19と記憶回路20からなる。周波数調整電圧
発生回路16は記憶回路20からの信号によって調整電
圧を電圧可変容量素子3に印加し、発振周波数を調整す
る。記憶回路20は前述した(1)式の定数項γを決定
する周波数調整データを制御端子を含む書込端子a〜n
から書き込まれ、これを記憶して保持する。
The frequency adjusting mechanism 16 comprises a frequency adjusting voltage generating circuit 19 and a storage circuit 20. The frequency adjustment voltage generation circuit 16 applies an adjustment voltage to the voltage variable capacitance element 3 according to a signal from the storage circuit 20, and adjusts the oscillation frequency. The storage circuit 20 writes the frequency adjustment data for determining the constant term γ in the above-described equation (1) into the write terminals a to n including the control terminals.
And is stored and retained.

【0021】このようなものでは、水晶振動子4に加え
て温度補償回路2をディスクリート部品で構成する。そ
して、一点鎖線で示したように、温度補償回路2及び水
晶振動子4を除く電圧制御発振器1及び周波数調整機構
部16をICチップ10に集積化する。そして、例えば
以下の構造とする。
In such a case, the temperature compensating circuit 2 in addition to the quartz oscillator 4 is constituted by discrete components. Then, as indicated by a dashed line, the voltage control oscillator 1 and the frequency adjustment mechanism section 16 excluding the temperature compensation circuit 2 and the crystal oscillator 4 are integrated on the IC chip 10. Then, for example, the following structure is adopted.

【0022】すなわち、第3図に示したように、表面実
装容器11の凹部底面にICチップ10を例えば超音波
熱圧着によるフェースダウンボンディングにより、水晶
片4aの一端部を導電性接着剤12によって段部に固着
する。そして、裏面の両端側に設けた切欠部21(a
b)に温度補償回路2を形成するチップ素子からなる3
つのサーミスタ17(abc)及び高温補償調整抵抗1
8を配置する。ここでは、各サーミスタ17(abc)
に対して直列及び並列に接続されて、それぞれの温度抵
抗特性を調整する個々の感度調整抵抗は使用せず、予め
設定された常温抵抗値及びB定数のサーミスタ17(a
bc)を選択する。
That is, as shown in FIG. 3, the IC chip 10 is face-down bonded by, for example, ultrasonic thermocompression bonding to the bottom surface of the concave portion of the surface mount container 11, and one end of the crystal blank 4 a is electrically conductive adhesive 12. Sticks to the step. Then, the notches 21 (a
b) 3 composed of chip elements forming the temperature compensation circuit 2
One thermistor 17 (abc) and high temperature compensation adjustment resistor 1
8 is arranged. Here, each thermistor 17 (abc)
Are connected in series and in parallel to each other, and individual sensitivity adjustment resistors for adjusting the respective temperature resistance characteristics are not used, and a thermistor 17 (a) having a preset normal temperature resistance value and a B constant is used.
Select bc).

【0023】表面実装容器11は、前述のように積層セ
ラミックからなり、この例では上枠11a、両端側に段
部を形成する中枠11b、及び両側に切欠部21(a
b)を有してエ字状とした底壁11cの三層構造とする
(第4図)。なお、切欠部21(ab)は両端側から段
部の下方に延出し、底壁の四隅裏面及び側面に実装電極
(未図示)が形成される。また、第5図は金属リングを
除く、表面実装容器の外観図である
The surface mount container 11 is made of a laminated ceramic as described above. In this example, the upper frame 11a, the middle frame 11b forming a step on both ends, and the notches 21 (a) on both sides.
The bottom wall 11c is formed into a three-layer structure having an E-shape having b) (FIG. 4). The notch 21 (ab) extends below the step from both ends, and mounting electrodes (not shown) are formed on the four corner back surfaces and side surfaces of the bottom wall. FIG. 5 is an external view of the surface mount container excluding the metal ring.

【0024】このような構成であれば、温度補償回路2
の温度検出手段としてサーミスタ17を使用するので、
前述したPN接合の順方向降下電圧を使用する場合に比
較し、温度に対する抵抗変化(検出電圧)を大きくでき
る。したがって、ICチップ10の内部に生ずるノイズ
(内部雑音)を相対的に小さくする。このことから、温
度補償発振器の雑音特性を良好にできる。そして、検出
電圧(温度検出信号)をそのまま使用して増幅する必要
もないので消費電流を抑えることができる。
With such a configuration, the temperature compensation circuit 2
Since the thermistor 17 is used as a temperature detecting means for
As compared with the case where the forward drop voltage of the PN junction is used, the resistance change (detection voltage) with respect to temperature can be increased. Therefore, noise (internal noise) generated inside the IC chip 10 is relatively reduced. From this, the noise characteristics of the temperature compensated oscillator can be improved. Further, since it is not necessary to use the detection voltage (temperature detection signal) as it is to amplify it, current consumption can be suppressed.

【0025】また、周波数調整機構16をICチップ1
0に集積化し、温度補償発振器の組立後に発振周波数を
書込信号によって、温度補償回路2とは別個に独立的に
調整する。したがって、周波数調整用のコンデンサを使
用する場合に比較し、小型化を促進する。なお、コンデ
ンサを使用することなく温度補償回路2からの補償電圧
Vs(T)によってのみ発振周波数をも調整する場合に比較
すると、温度補償回路2の設計(各素子値の選定)を容
易にする。
The frequency adjusting mechanism 16 is connected to the IC chip 1
After the temperature compensation oscillator is assembled, the oscillation frequency is adjusted independently of the temperature compensation circuit 2 by a write signal after the temperature compensation oscillator is assembled. Therefore, size reduction is promoted as compared with the case where a capacitor for frequency adjustment is used. In comparison with the case where the oscillation frequency is also adjusted only by the compensation voltage Vs (T) from the temperature compensation circuit 2 without using a capacitor, the design of the temperature compensation circuit 2 (selection of each element value) is facilitated. .

【0026】そして、この例では、素子値(常温抵抗値
及びB定数)が予め設定されたサーミスタ17(ab
c)を使用するので、個々の感度調整抵抗を不要にす
る。したがって、温度補償回路は低温、中温及び高温部
に応答した3つのサーミスタ17(abc)及び高温補
償調整抵抗18の4素子にでき、温度補償回路の温度補
償素子数を最小限にする。
In this example, the thermistor 17 (ab) in which element values (normal temperature resistance value and B constant) are set in advance.
Since c) is used, individual sensitivity adjustment resistors are not required. Therefore, the temperature compensating circuit can be composed of four thermistors 17 (abc) and the high-temperature compensating adjusting resistor 18 responding to the low temperature, the medium temperature and the high temperature, and minimize the number of temperature compensating elements of the temperature compensating circuit.

【0027】これらのことから、表面実装容器11の裏
面側に設けた切欠部21(ab)に温度補償素子を配置
できて、特に平面外形を小さくできる。また、この例で
は、切欠部21(ab)を段部の下方に位置する底壁1
1cの両端部に設けたので、セラミックの積層数を増や
すことなく、高さ寸法を従来例と同程度に小さく維持で
きる。
For these reasons, the temperature compensation element can be arranged in the notch 21 (ab) provided on the back surface side of the surface mount container 11, and the planar outer shape can be particularly reduced. Further, in this example, the notch 21 (ab) is formed in the bottom wall 1 located below the step.
Since it is provided at both ends of 1c, the height dimension can be maintained as small as the conventional example without increasing the number of ceramic layers.

【0028】[0028]

【第2実施例】第6図は本発明の第2実施例を説明する
温度補償発振器の概略的なブロック回路図である。な
お、第1実施例と同一部分の説明は省略する。すなわ
ち、第1実施例では従来例と同様に補償電圧Vs(T)を電
圧制御発振器1(電圧可変容量素子3)に印加して温度
補償する所謂間接法に適用した例を示したが、第2実施
例ではサーミスタとコンデンサの並列回路からなり、並
列回路の端子間容量(等価直列容量)の変化を利用した
所謂直接法に適用した例を示す。
FIG. 6 is a schematic block circuit diagram of a temperature compensated oscillator for explaining a second embodiment of the present invention. The description of the same parts as in the first embodiment is omitted. That is, the first embodiment shows an example in which the compensation voltage Vs (T) is applied to the voltage controlled oscillator 1 (the voltage variable capacitance element 3) and the temperature is compensated in a so-called indirect method as in the conventional example. In the second embodiment, an example is shown in which a so-called direct method is used, which comprises a parallel circuit of a thermistor and a capacitor, and uses a change in capacitance between terminals (equivalent series capacitance) of the parallel circuit.

【0029】温度補償発振器は、前述同様に電圧制御発
振器1と温度補償回路2と周波数調整機構部16からな
る。そして、温度補償回路2と水晶振動子4をディスク
リート部品とし、少なくとも温度補償回路2及び水晶振
動子4を除く電圧制御発振器1と周波数調整機構部16
をICチップに集積化する。
The temperature-compensated oscillator comprises the voltage-controlled oscillator 1, the temperature-compensating circuit 2, and the frequency adjusting mechanism 16 as described above. The temperature compensation circuit 2 and the crystal unit 4 are discrete components, and the voltage control oscillator 1 and the frequency adjustment mechanism unit 16 excluding at least the temperature compensation circuit 2 and the crystal unit 4
Are integrated on an IC chip.

【0030】温度補償回路2は水晶振動子4に直列に接
続して、電圧制御発振器1の発振閉ループ内に挿入され
る。ここでは、第7図に示したように、それぞれがサー
ミスタ17H、17Lとコンデンサ22H、22Lの並列回
路からなる高温補償回路23Hと低温補償回路23Lを直
列接続して構成される。そして、水晶振動子4(水晶発
振器)の周波数温度特性は常温付近に変曲点を有する単
調増加の三次曲線に選択される。高温及び低温補償回路
はそれぞれが常温を基準とした高温及び低温領域の周波
数温度特性を独立的に温度補償する。
The temperature compensation circuit 2 is connected in series with the crystal oscillator 4 and inserted into the oscillation closed loop of the voltage controlled oscillator 1. Here, as shown in FIG. 7, the high temperature compensating circuit 23H and the low temperature compensating circuit 23L each composed of a parallel circuit of the thermistors 17H and 17L and capacitors 22H and 22L are connected in series. The frequency temperature characteristic of the crystal unit 4 (crystal oscillator) is selected as a monotonically increasing cubic curve having an inflection point near room temperature. The high-temperature and low-temperature compensation circuits independently compensate for the frequency-temperature characteristics in the high-temperature and low-temperature regions with respect to the normal temperature.

【0031】すなわち、高温補償回路23Hは温度上昇
とともにサーミスタ17Hの抵抗値が低下して端子間容
量が増加するので、発振周波数を矢印Aで示すように低
下させる。また、低温補償回路23Lは温度低下ととも
にサーミスタ17Lの抵抗値が増加して端子間容量が減
少するので、発振周波数を矢印Bで示すように高める方
向に作用する。したがって、水晶発振器の周波数温度特
性を平坦に補償する。なお、サーミスタ17Hの常温抵
抗値は高く、サーミスタ17Lの同抵抗値は小さくして
それぞれの動作を独立的にする。
That is, the high-temperature compensation circuit 23H lowers the oscillation frequency as indicated by the arrow A because the resistance value of the thermistor 17H decreases as the temperature rises and the inter-terminal capacitance increases. Further, the low-temperature compensation circuit 23L acts to increase the oscillation frequency as indicated by the arrow B because the resistance value of the thermistor 17L increases and the inter-terminal capacitance decreases as the temperature decreases. Therefore, the frequency-temperature characteristics of the crystal oscillator are flatly compensated. The normal temperature resistance value of the thermistor 17H is high, and the resistance value of the thermistor 17L is low, so that each operation is independent.

【0032】そして、これらのものでは、前述したと同
様に表面実装容器11の凹部底面にICチップ10を固
着し、水晶片4aを段部に保持する。そして、裏面の切
欠部21(ab)に高温及び低温補償回路のサーミスタ
17H、17L及びコンデンサ22H、22Lを一組ずつ配
置する。サーミスタ17H、17Lは前述同様に予め設定
された素子値のものが選択され、感度調整抵抗は使用し
ない。
In these devices, the IC chip 10 is fixed to the bottom surface of the concave portion of the surface mount container 11 as described above, and the crystal blank 4a is held on the step. Then, the thermistors 17H and 17L and the capacitors 22H and 22L of the high-temperature and low-temperature compensation circuit are arranged in a pair in the notch 21 (ab) on the back surface. As the thermistors 17H and 17L, elements having preset element values are selected as described above, and the sensitivity adjustment resistors are not used.

【0033】このような構成であれば、第1実施例と同
様に温度検出手段としてサーミスタ17を使用するので
温度に対する抵抗変化を大きくして、ICチップ10の
内部に生ずるノイズを相対的に小さくし、温度補償発振
器の雑音特性を良好にして消費電流を抑えられる。
With such a configuration, since the thermistor 17 is used as the temperature detecting means as in the first embodiment, the resistance change with respect to the temperature is increased, and the noise generated inside the IC chip 10 is relatively reduced. However, the noise characteristics of the temperature-compensated oscillator can be improved to reduce the current consumption.

【0034】また、周波数調整機構16をICチップ1
0に集積化して、発振周波数を書込信号によって調整す
る。したがって、例えば温度補償回路に接続した周波数
調整用のコンデンサを不要にして、小型化を促進する。
The frequency adjustment mechanism 16 is connected to the IC chip 1
0, and the oscillation frequency is adjusted by the write signal. Therefore, for example, a capacitor for frequency adjustment connected to the temperature compensation circuit is not required, and the miniaturization is promoted.

【0035】そして、この例でも、サーミスタ17H、
17Lは、感度調整抵抗を使用しないので最小限の素子
数とする(参照:特開平11-284436号公報)。これらの
ことから、表面実装容器11の裏面側に設けた切欠部2
1(ab)に温度補償素子を配置できて、特に平面外形
を小さくできる。
In this example, the thermistor 17H,
17L does not use a sensitivity adjusting resistor, and therefore has a minimum number of elements (see Japanese Patent Application Laid-Open No. 11-284436). From these facts, the notch 2 provided on the back side of the surface mount container 11
The temperature compensating element can be arranged in 1 (ab), and the planar outer shape can be particularly reduced.

【0036】[0036]

【他の事項】上記各実施例では、サーミスタ17はチッ
プ素子としたが、例えば薄板上の電極間に印刷によって
サーミスタ母材を形成したものでもよい。この場合、サ
ーミスタ母材を切除して常温抵抗値を調整してもよい
(参照:前特開平11-284436号公報)。なお、切欠部1
6(ab)のスペース及び必要に応じて感度調整抵抗を
接続してもよい。
Others In each of the above embodiments, the thermistor 17 is a chip element. However, a thermistor base material may be formed by printing between electrodes on a thin plate. In this case, the normal temperature resistance value may be adjusted by cutting off the thermistor base material (see Japanese Patent Application Laid-Open No. H11-284436). Notch 1
A space for 6 (ab) and a sensitivity adjusting resistor may be connected if necessary.

【0037】また、切欠部21(ab)は底壁11cの
長さ方向の両端側に設けたが、幅方向の両側に中間枠1
1bの枠幅を越えない範囲で設けてもよい(未図示)。
また、例えば平板とした底壁に下枠を設けて凹部を形成
し、感度調整抵抗を含むサーミスタ17(abc)等の
温度補償素子を配置してもよい(第9図)。また、サー
ミスタ母材24(abc)及び感度調整抵抗25(ab
c)が印刷によって形成された薄板26を配置し、サー
ミスタ17の調整範囲を広げてももよい。但し、積層数
が増えて高さが大きくなるので上記実施例の方が有利で
ある。
The notches 21 (ab) are provided at both ends in the longitudinal direction of the bottom wall 11c, but the intermediate frames 1 (ab) are provided on both sides in the width direction.
It may be provided in a range not exceeding the frame width of 1b (not shown).
Further, for example, a lower frame may be provided on a flat bottom wall to form a concave portion, and a temperature compensating element such as a thermistor 17 (abc) including a sensitivity adjusting resistor may be arranged (FIG. 9). The thermistor base material 24 (abc) and the sensitivity adjustment resistor 25 (ab
c) The thin plate 26 formed by printing may be arranged to widen the adjustment range of the thermistor 17. However, since the number of layers increases and the height increases, the above embodiment is more advantageous.

【0038】また、ICチップ10には温度補償回路2
及び水晶振動子4を除く電圧制御発振器1と周波数調整
機構部16を集積化したが、電圧制御発振器1の電圧可
変容量素子3は別個(ディスクリート)にして表面実装
発振器11の凹部底面に配置してもよい。なお、こうす
ることで、電圧可変容量素子3を容易に変えることがで
き、電圧可変容量素子3の電圧−容量特性の選択の自由
度を上げることができる。
The IC chip 10 has a temperature compensation circuit 2
In addition, the voltage controlled oscillator 1 and the frequency adjustment mechanism section 16 except for the crystal resonator 4 are integrated, but the voltage variable capacitance element 3 of the voltage controlled oscillator 1 is separated (discrete) and disposed on the bottom of the concave portion of the surface mount oscillator 11. You may. In this way, the voltage variable capacitance element 3 can be easily changed, and the degree of freedom in selecting the voltage-capacity characteristics of the voltage variable capacitance element 3 can be increased.

【0039】また、これとは逆に、例えばAFC(周波
数自動制御)機構をICチップ10内に集積化してAF
C電圧を電圧可変容量素子3に印加するようにしてもよ
く、これらのICチップ10への集積化は本発明の趣旨
を逸脱しない範囲で必要に応じて選択できる。
On the contrary, for example, an AFC (Automatic Frequency Control) mechanism is integrated in the IC chip 10 and the AF
The C voltage may be applied to the voltage variable capacitance element 3. The integration of these into the IC chip 10 can be selected as needed without departing from the spirit of the present invention.

【0040】また、表面実装容器11の底壁11cは、
切欠部21に配置されるチップ素子の高さ寸法等に応じ
て複数層としてもよい。これは、焼成前のセラミックシ
ートの厚みに制約があること等に起因する。また、切欠
部21が段部の内端に接近する場合は接合面の強度が低
下して亀裂等を生じるおそれがある。この場合には、例
えば底壁11cを上下層に分割し、上層は平板として下
層をエ字状とすればよい。但し、上層は下層に対して極
力薄くして(例えば1/3以下)高さ寸法を抑える。
The bottom wall 11c of the surface mount container 11 is
A plurality of layers may be provided according to the height dimension of the chip element arranged in the cutout 21. This is because the thickness of the ceramic sheet before firing is limited. Further, when the notch 21 approaches the inner end of the step, the strength of the joint surface may be reduced, and a crack or the like may occur. In this case, for example, the bottom wall 11c may be divided into upper and lower layers, the upper layer may be a flat plate, and the lower layer may have an E-shape. However, the upper layer is made as thin as possible (for example, 1/3 or less) with respect to the lower layer to suppress the height dimension.

【0041】また、表面実装容器11のカバーはシーム
溶接としたが、樹脂やガラスによる封止としてもよい。
また、感温抵抗素子は負の温度係数を有するサーミスタ
としたが、正の温度係数を有するポジスタであっても構
成できる。また、第1実施例での高温補償調整抵抗18
は水晶発振器の周波数温度特性等に応じて省略できる。
Although the cover of the surface mount container 11 is seam-welded, it may be sealed with resin or glass.
Although the temperature-sensitive resistance element is a thermistor having a negative temperature coefficient, it may be a positive thermistor having a positive temperature coefficient. Further, the high-temperature compensation adjusting resistor 18 in the first embodiment is used.
Can be omitted according to the frequency temperature characteristics of the crystal oscillator.

【0042】また、第1実施例では、感温抵抗網は低温
部、中温部及び高温部の3領域に分けてこれらに対応し
た3つのサーミスタから形成したが、これらは水晶振動
子(水晶発振器)の周波数温度特性や仕様規格温度に応
じて例えば低温部及び高温部の2領域に分けてこれに対
応した2つのサーミスタから形成してもよい。
In the first embodiment, the temperature-sensitive resistor network is formed of three thermistors corresponding to the three regions of a low-temperature portion, a medium-temperature portion and a high-temperature portion. For example, the thermistor may be divided into two regions of a low-temperature portion and a high-temperature portion in accordance with the frequency temperature characteristics and the specification temperature, and may be formed of two thermistors corresponding thereto.

【0043】[0043]

【発明の効果】本発明は、水晶発振器の発振閉ループに
電圧可変容量素子を挿入するとともに、少なくとも温度
感温素子からなる温度補償回路と水晶振動子とを除く発
振回路と周波数調整機構部とをICチップに集積化す
る。そして、周波数調整機構部を記憶回路と周波数調整
電圧発生回路とから形成し、記憶回路からの信号に基づ
く周波数調整電圧発生回路からの周波数調整電圧を電圧
可変容量素子に印加して発振周波数を調整する。また、
水晶振動子を形成する水晶片とICチップを表面実装容
器内に収容し、表面実装容器の裏面に設けた切欠部に温
度補償回路(温度補償素子)を配置したので、雑音特性
に優れて、表面実装用とした特に平面外形を小さくした
小型な温度補償発振器を提供できる。
According to the present invention, a voltage variable capacitance element is inserted into an oscillation closed loop of a crystal oscillator, and an oscillation circuit and a frequency adjustment mechanism excluding at least a temperature compensation circuit comprising a temperature sensitive element and a crystal resonator are provided. It is integrated on an IC chip. The frequency adjustment mechanism is formed from a storage circuit and a frequency adjustment voltage generation circuit, and the oscillation frequency is adjusted by applying a frequency adjustment voltage from the frequency adjustment voltage generation circuit based on a signal from the storage circuit to the voltage variable capacitance element. I do. Also,
The crystal chip and the IC chip that form the crystal unit are housed in a surface mount container, and a temperature compensation circuit (temperature compensating element) is arranged in the cutout provided on the back surface of the surface mount container. It is possible to provide a small temperature-compensated oscillator for surface mounting, particularly with a small planar outer shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を説明する温度補償発振器
(間接法)の概略的なブロック回路図である。
FIG. 1 is a schematic block circuit diagram of a temperature compensated oscillator (indirect method) for explaining a first embodiment of the present invention.

【図2】本発明の一実施例を説明する温度補償回路(補
償電圧発生回路)の図である。
FIG. 2 is a diagram of a temperature compensation circuit (compensation voltage generation circuit) for explaining an embodiment of the present invention.

【図3】本発明の一実施例に適用される温度補償発振器
の構造断面図である。
FIG. 3 is a structural sectional view of a temperature compensated oscillator applied to one embodiment of the present invention.

【図4】本発明の一実施例に適用される表面実装容器の
分解図である。
FIG. 4 is an exploded view of a surface mount container applied to one embodiment of the present invention.

【図5】本発明の一実施例に適用される表面実装容器の
外観図である。
FIG. 5 is an external view of a surface mount container applied to one embodiment of the present invention.

【図6】本発明の第2実施例を説明する温度補償発振器
(直接法)の概略的なブロック回路図である。
FIG. 6 is a schematic block circuit diagram of a temperature-compensated oscillator (direct method) illustrating a second embodiment of the present invention.

【図7】本発明の第2実施例を説明する温度補償回路の
回路図である。
FIG. 7 is a circuit diagram of a temperature compensation circuit for explaining a second embodiment of the present invention.

【図8】本発明の第2実施例に適用する水晶発振器の周
波数温度特性図である。
FIG. 8 is a frequency temperature characteristic diagram of the crystal oscillator applied to the second embodiment of the present invention.

【図9】本発明の各実施例に適用される温度補償発振器
の他の構造断面図である。
FIG. 9 is another structural sectional view of the temperature compensated oscillator applied to each embodiment of the present invention.

【図10】本発明の例えば第1実施例に適用される他の
例を示すサーミスタの図である。
FIG. 10 is a diagram of a thermistor showing another example applied to, for example, the first embodiment of the present invention.

【図11】従来例を説明する温度補償発振器の概略的な
ブロック回路図である。
FIG. 11 is a schematic block circuit diagram of a temperature compensated oscillator illustrating a conventional example.

【図12】従来例を説明する水晶発振器の周波数温度特
性図である。
FIG. 12 is a frequency temperature characteristic diagram of a crystal oscillator illustrating a conventional example.

【図13】従来例を説明する温度補償発振器の構造断面
図である。
FIG. 13 is a structural sectional view of a temperature-compensated oscillator explaining a conventional example.

【図14】従来例を説明する温度補償発振器の構造断面
図である。
FIG. 14 is a structural sectional view of a temperature-compensated oscillator explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 電圧制御発振器、2 温度補償回路、3 電圧可変
容量素子、4 水晶振動子、9 高周波阻止抵抗、10
ICチップ、11 表面実装容器、12 導電性接着
剤、13 カバー、14 金属リング、15 充填材、
16 周波数調整機構部、17 サーミスタ、18 高
温補償調整抵抗、21 切欠部、22コンデンサ、23
補償回路、24 サーミスタ母材、25 感度調整抵
抗、26 薄板.
REFERENCE SIGNS LIST 1 voltage controlled oscillator, 2 temperature compensation circuit, 3 voltage variable capacitance element, 4 crystal oscillator, 9 high frequency blocking resistance, 10
IC chip, 11 surface mount container, 12 conductive adhesive, 13 cover, 14 metal ring, 15 filler,
16 frequency adjustment mechanism section, 17 thermistor, 18 high temperature compensation adjustment resistor, 21 notch, 22 capacitor, 23
Compensation circuit, 24 thermistor base material, 25 sensitivity adjustment resistor, 26 thin plate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水晶振動子とこれを除く発振回路からなる
水晶発振器と、前記水晶発振器の発振周波数を調整する
周波数調整機構部と、温度に応答して抵抗値の変化する
感温抵抗素子を含む温度補償素子からなり前記水晶発振
器の周波数温度特性を平坦にする温度補償回路とを有す
る温度補償水晶発振器において、前記水晶発振器の発振
閉ループに電圧可変容量素子を挿入するとともに、少な
くとも前記温度補償回路と水晶振動子とを除く発振回路
と周波数調整機構部とをICチップに集積化し、前記周
波数調整機構部を記憶回路と周波数調整電圧発生回路と
から形成し、前記記憶回路からの信号に基づく前記周波
数調整電圧発生回路からの周波数調整電圧を前記電圧可
変容量素子に印加して発振周波数を調整することを特徴
とする温度補償水晶発振器。
1. A crystal oscillator comprising a crystal oscillator and an oscillation circuit other than the crystal oscillator, a frequency adjustment mechanism for adjusting the oscillation frequency of the crystal oscillator, and a temperature-sensitive resistance element whose resistance value changes in response to temperature. A temperature compensating element comprising a temperature compensating element including a temperature compensating circuit for flattening the frequency-temperature characteristic of the crystal oscillator, wherein a voltage variable capacitance element is inserted into an oscillation closed loop of the crystal oscillator, and at least the temperature compensating circuit is provided. An oscillation circuit and a frequency adjustment mechanism excluding a crystal oscillator and a frequency adjustment mechanism are integrated on an IC chip, the frequency adjustment mechanism is formed from a storage circuit and a frequency adjustment voltage generation circuit, and the frequency adjustment mechanism is based on a signal from the storage circuit. Temperature-compensated water, wherein an oscillation frequency is adjusted by applying a frequency adjustment voltage from a frequency adjustment voltage generation circuit to the voltage variable capacitance element. Oscillator.
【請求項2】前記温度補償回路は前記感温抵抗素子を主
とした感温抵抗網からなり、前記電圧可変容量素子に印
加して前記水晶発振器の周波数温度特性を平坦にする補
償電圧を発生する請求項1の温度補償水晶発振器。
2. The temperature compensating circuit comprises a temperature-sensitive resistance network mainly including the temperature-sensitive resistance element, and generates a compensation voltage applied to the voltage variable capacitance element to flatten frequency-temperature characteristics of the crystal oscillator. 2. The temperature compensated crystal oscillator according to claim 1, wherein:
【請求項3】前記温度補償回路は前記水晶発振器の発振
閉ループに挿入される前記感温抵抗素子とコンデンサの
並列回路からなり、温度に応答して前記並列回路の端子
間容量を変化して前記水晶発振器の周波数温度特性を平
坦にする請求項1の温度補償水晶発振器。
3. The temperature compensating circuit comprises a parallel circuit of the temperature-sensitive resistance element and a capacitor inserted in an oscillation closed loop of the crystal oscillator, and changes a capacitance between terminals of the parallel circuit in response to temperature. 2. The temperature compensated crystal oscillator according to claim 1, wherein a frequency temperature characteristic of the crystal oscillator is flattened.
【請求項4】請求項1において、前記水晶振動子を形成
する水晶片と前記ICチップを表面実装容器内に収容
し、前記表面実装容器の裏面に切欠部を設け、前記切欠
部に前記温度補償素子を配置したことを特徴とする温度
補償発振器。
4. The device according to claim 1, wherein the crystal piece forming the crystal unit and the IC chip are accommodated in a surface mounting container, a notch is provided on a back surface of the surface mounting container, and the temperature is provided in the notch. A temperature-compensated oscillator comprising a compensation element.
JP2000256099A 2000-08-25 2000-08-25 Crystal oscillator with temperature compensation Pending JP2002076772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256099A JP2002076772A (en) 2000-08-25 2000-08-25 Crystal oscillator with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256099A JP2002076772A (en) 2000-08-25 2000-08-25 Crystal oscillator with temperature compensation

Publications (1)

Publication Number Publication Date
JP2002076772A true JP2002076772A (en) 2002-03-15

Family

ID=18744764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256099A Pending JP2002076772A (en) 2000-08-25 2000-08-25 Crystal oscillator with temperature compensation

Country Status (1)

Country Link
JP (1) JP2002076772A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089437A (en) * 2009-01-13 2009-04-23 Kyocera Corp Surface-mounting piezoelectric oscillator
KR100965468B1 (en) * 2002-06-12 2010-06-24 니혼 뎀파 고교 가부시키가이샤 Temperature-compensated crystal oscillator
JP2013016918A (en) * 2011-06-30 2013-01-24 Kyocera Crystal Device Corp Piezoelectric device and semiconductor component for piezoelectric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100965468B1 (en) * 2002-06-12 2010-06-24 니혼 뎀파 고교 가부시키가이샤 Temperature-compensated crystal oscillator
JP2009089437A (en) * 2009-01-13 2009-04-23 Kyocera Corp Surface-mounting piezoelectric oscillator
JP2013016918A (en) * 2011-06-30 2013-01-24 Kyocera Crystal Device Corp Piezoelectric device and semiconductor component for piezoelectric device

Similar Documents

Publication Publication Date Title
US8085105B2 (en) Constant-temperature type crystal oscillator
EP0740421B1 (en) Temperature-compensated piezoelectric oscillator
JP5072418B2 (en) Temperature-compensated crystal oscillator for surface mounting
US20180278209A1 (en) Temperature compensated oscillator and electronic device
JP4072005B2 (en) Temperature compensated crystal oscillator
JP5159552B2 (en) Crystal oscillator
JP4713215B2 (en) Mounting method of surface mount crystal oscillator
JP5381162B2 (en) Temperature compensated oscillator
US20060081605A1 (en) Crystal oscillator and temperature-keeping method thereof
JP2009284372A (en) Constant temperature structure of crystal unit
JP2002076772A (en) Crystal oscillator with temperature compensation
JP2001308640A (en) Integrated temperature-compensated circuit board and temperature-compensated crystal oscillator
JP2009027451A (en) Surface-mounting type crystal oscillator
JP2004320417A (en) Temperature compensated piezoelectric oscillator
US11522496B2 (en) Oscillator
JP5100211B2 (en) Crystal oscillator for surface mounting
JP2002076775A (en) Crystal oscillator for surface mounting
JP5072266B2 (en) Temperature-compensated crystal oscillator for surface mounting
JP7272009B2 (en) Oscillators, electronic devices and moving bodies
JP6343487B2 (en) Crystal oscillator with thermostat and method for manufacturing the same
JP4259174B2 (en) Temperature compensated piezoelectric oscillator
US7239211B2 (en) Temperature-compensated crystal oscillator
JP2009278218A (en) Piezoelectric resonator
JP2001077627A (en) Temperature-compensating piezoelectric oscillator
JP2006074096A (en) Saw oscillator and electronic equipment