JP2002075357A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2002075357A
JP2002075357A JP2000253833A JP2000253833A JP2002075357A JP 2002075357 A JP2002075357 A JP 2002075357A JP 2000253833 A JP2000253833 A JP 2000253833A JP 2000253833 A JP2000253833 A JP 2000253833A JP 2002075357 A JP2002075357 A JP 2002075357A
Authority
JP
Japan
Prior art keywords
resin
amino
phenol resin
type phenol
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000253833A
Other languages
Japanese (ja)
Other versions
JP2002075357A5 (en
Inventor
Kunio Mori
邦夫 森
Tadayuki Inoue
唯之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2000253833A priority Critical patent/JP2002075357A/en
Publication of JP2002075357A publication Critical patent/JP2002075357A/en
Publication of JP2002075357A5 publication Critical patent/JP2002075357A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having a large charge- discharge capacity. SOLUTION: The negative electrode of this lithium ion secondary battery consists of a carbon material obtained through a heat treatment of two resin materials; (a) amino-resin denatured resol type phenol resin prepared by mixing and/or reaction of a resol type phenol resin and amino-resin with each other and/or (b) amino-denatured resol type phenol resin prepared by leaving phenols, amino compounds, and formaldehyde to reactions under existence of an alkaline catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高容量のリチウムイオン
二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、リチウムを用いた有機電解質二次
電池は高エネルギー密度を有し、機器の小型化や軽量化
に大きな役割を演じている。しかしながら、機器のいっ
そうの小型化、軽量化の要求が強く、より高容量の二次
電池が求められている。
2. Description of the Related Art In recent years, an organic electrolyte secondary battery using lithium has a high energy density and plays a major role in reducing the size and weight of equipment. However, there is a strong demand for further downsizing and weight reduction of devices, and a higher capacity secondary battery is required.

【0003】現在のリチウムイオン二次電池は、通常、
炭素質材料を負極に、リチウム含有化合物を正極に使用
し、正極と負極の間でリチウムイオンを移動させること
により充放電を行う。リチウムイオン二次電池の特性
は、負極材料の特性に大きく依存しており、黒鉛のよう
な高結晶性の炭素を使用すると出力電圧がほぼ一定で充
放電の可逆性に優れた電池となる。しかし、C6Liの理
論容量以上の充電は困難であるといわれている。一方、
層状構造の未発達な炭素を用いると、C6Liの理論容量
以上の充電が可能となるが、十分な放電容量が得られて
いない。そこで石炭または石油系ピッチ、熱硬化性樹
脂、炭素繊維などを原料とした炭素負極材料の開発が試
みられている。例えば、特開平3−245458号公報
にはホウ素を0.1〜0.2重量%含有する炭素材を負
極材とする方法が、特開平6−119923号公報には
グラファイト結晶部と非晶質部とを有する炭素材にリチ
ウムイオンを注入して負極材とする方法が、特開平6−
333559号公報には気相成長炭素繊維にカーボンブ
ラックを1〜30重量%含有させた組成物を負極材とす
る方法が開示されている。しかしながら、いずれにおい
ても十分な放電容量を有する負極材は開発されていない
のが現状である。
[0003] Current lithium ion secondary batteries are usually
Using a carbonaceous material for the negative electrode and a lithium-containing compound for the positive electrode, charge and discharge are performed by moving lithium ions between the positive electrode and the negative electrode. The characteristics of a lithium ion secondary battery greatly depend on the characteristics of a negative electrode material. If a highly crystalline carbon such as graphite is used, the output voltage is almost constant and the battery has excellent reversibility of charge and discharge. However, it is said that charging beyond the theoretical capacity of C 6 Li is difficult. on the other hand,
When undeveloped carbon having a layered structure is used, charging at or above the theoretical capacity of C 6 Li is possible, but sufficient discharge capacity has not been obtained. Therefore, development of a carbon anode material using coal or petroleum pitch, thermosetting resin, carbon fiber, or the like as a raw material has been attempted. For example, JP-A-3-245458 discloses a method in which a carbon material containing 0.1 to 0.2% by weight of boron is used as a negative electrode material. JP-A-6-119923 discloses a method in which a graphite crystal part and an amorphous material are used. Japanese Patent Application Laid-Open No.
JP-A-333559 discloses a method of using a composition in which 1 to 30% by weight of carbon black is contained in a vapor-grown carbon fiber as a negative electrode material. However, in any case, a negative electrode material having a sufficient discharge capacity has not been developed at present.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
問題点を解決するため、大きな充放電容量を有するリチ
ウムイオン二次電池を提供することである。
An object of the present invention is to provide a lithium ion secondary battery having a large charge / discharge capacity in order to solve the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】本発明者等は、鋭意研究
した結果、レゾール型フェノール樹脂とアミノ樹脂とを
混合および/または反応させてなるアミノ樹脂変性レゾ
ール型フェノール樹脂(a)、および/または、フェノ
ール類とアミノ化合物とホルムアルデヒドとをアルカリ
性触媒下で反応させたアミノ変性レゾール型フェノール
樹脂(b)を熱処理して得られる炭素を負極として用い
ることにより大きな充放電容量を有するリチウムイオン
二次電池が得られること等を見い出し、本発明を完成す
るに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that an amino resin-modified resol phenol resin (a) obtained by mixing and / or reacting a resol phenol resin and an amino resin, and / or Alternatively, a lithium ion secondary battery having a large charge / discharge capacity can be obtained by using, as a negative electrode, carbon obtained by heat-treating an amino-modified resol type phenol resin (b) obtained by reacting a phenol, an amino compound and formaldehyde under an alkaline catalyst. They found that a battery could be obtained, and completed the present invention.

【0006】即ち、本発明は、 1.レゾール型フェノール樹脂とアミノ樹脂とを混合お
よび/または反応させてなるアミノ樹脂変性レゾール型
フェノール樹脂(a)、および/または、フェノール類
とアミノ化合物とホルムアルデヒドとをアルカリ性触媒
下で反応させたアミノ変性レゾール型フェノール樹脂
(b)を熱処理して得られる炭素を、負極として用いて
なることを特徴とする、リチウムイオン二次電池、 2.アミノ樹脂変性レゾール型フェノール樹脂(a)が
レゾール型フェノール樹脂100重量部に対して、アミ
ノ樹脂を固形分重量比が1〜30重量部となる範囲で用
いて得られたものであり、アミノ変性レゾール型フェノ
ール樹脂(b)がフェノール類100重量部に対して、
アミノ化合物が1〜20重量部となる範囲で用いて得ら
れたものである、上記1記載のリチウムイオン二次電
池、 3.アミノ樹脂変性レゾール型フェノール樹脂(a)お
よびアミノ変性レゾール型フェノール樹脂(b)の数平
均分子量が、250〜500である、上記1または2記
載のリチウムイオン二次電池、 4.熱処理が、不活性雰囲気中または真空中で、800
〜1400での熱処理である、上記1、2または3記載
のリチウムイオン二次電池、および、 5.負極が、アミノ樹脂変性レゾール型フェノール樹脂
(a)および/またはアミノ変性レゾール型フェノール
樹脂(b)を熱処理して得られる炭素を、導電性箔上に
塗布してなるものである、上記1〜4のいずれか1つに
記載のリチウムイオン二次電池、を提供するものであ
る。
That is, the present invention provides: Amino resin-modified resole-type phenolic resin (a) obtained by mixing and / or reacting a resole-type phenolic resin with an amino resin, and / or amino-modified by reacting a phenol with an amino compound and formaldehyde under an alkaline catalyst 1. A lithium ion secondary battery, characterized in that carbon obtained by heat-treating a resol-type phenol resin (b) is used as a negative electrode. Amino resin-modified resol type phenol resin (a) is obtained by using an amino resin in a range of 1 to 30 parts by weight of solid content with respect to 100 parts by weight of resol type phenol resin. The resole type phenol resin (b) is based on 100 parts by weight of phenols.
2. The lithium ion secondary battery according to the above 1, wherein the lithium compound is obtained using the amino compound in a range of 1 to 20 parts by weight. 3. The lithium ion secondary battery according to the above 1 or 2, wherein the amino resin-modified resol-type phenol resin (a) and the amino-modified resol-type phenol resin (b) have a number average molecular weight of 250 to 500. The heat treatment is performed in an inert atmosphere or in a vacuum at 800
4. The lithium ion secondary battery according to the above 1, 2, or 3, wherein the heat treatment is performed at 1400. The negative electrode is obtained by applying carbon obtained by heat-treating an amino resin-modified resol-type phenol resin (a) and / or an amino-modified resol-type phenol resin (b) onto a conductive foil. 4. A lithium ion secondary battery according to any one of 4.

【0007】[0007]

【発明の実施の形態】本発明で用いるアミノ樹脂変性レ
ゾール型フェノール樹脂(a)としては、レゾール型フ
ェノール樹脂とアミノ樹脂とを混合および/または反応
させたものであればよく、特に限定されない。ここで用
いるレゾール型フェノール樹脂としては、フェノール類
とホルムアルデヒドとをアルカリ性触媒下で反応させて
なるものが挙げられ、アミノ樹脂としては、例えば、メ
ラミン樹脂、ベンゾグアナミン樹脂、ジシアンジアミド
樹脂、尿素樹脂等が挙げられる。また、レゾール型フェ
ノール樹脂とアミノ樹脂とを反応させる方法は、特に限
定されないが、通常は加熱により反応させる方法が採用
される。
BEST MODE FOR CARRYING OUT THE INVENTION The amino resin-modified resol type phenol resin (a) used in the present invention is not particularly limited as long as it is a mixture of a resole type phenol resin and an amino resin and / or a reaction. Examples of the resol type phenol resin used herein include those obtained by reacting phenols and formaldehyde under an alkaline catalyst, and examples of the amino resin include melamine resin, benzoguanamine resin, dicyandiamide resin, and urea resin. Can be The method of reacting the resole type phenol resin with the amino resin is not particularly limited, but a method of reacting by heating is usually employed.

【0008】アミノ樹脂変性レゾール型フェノール樹脂
(a)におけるレゾール型フェノール樹脂とアミノ樹脂
の使用割合としては、レゾール型フェノール樹脂100
重量部に対して、アミノ樹脂を固形分重量比が1〜30
重量部となる範囲で用いることが好ましく、なかでも大
きな充放電容量を有するリチウムイオン二次電池が得ら
れることから5〜16重量部となる範囲が特に好まし
い。
In the amino resin-modified resol type phenol resin (a), the ratio of the resole type phenol resin to the amino resin used is 100 resole type phenol resin.
The amino resin has a solid content weight ratio of 1 to 30 parts by weight.
It is preferably used in an amount of 5 parts by weight, particularly preferably 5 to 16 parts by weight, since a lithium ion secondary battery having a large charge / discharge capacity can be obtained.

【0009】上記レゾール型フェノール樹脂を製造する
のに用いるフェノール類としては、例えば、フェノー
ル、クレゾール、キシレノール、レゾルシン、ビスフェ
ノールA等の化合物が挙げられ、2種類以上の併用であ
っても構わないが、特にフェノールが望ましい。フェノ
ール類とフォルムアルデヒドの比率は、特に規定される
ものではない。アルカリ性触媒としては、例えば、アル
カリ金属の水酸化物、アルカリ土類金属の水酸化物や酸
化物、アルカノールアミン、アルキルアミン、アンモニ
ア等の化合物が挙げられる。また、レゾール型フェノー
ル樹脂の製造方法は公知の方法が適応でき、特に限定す
るものではない。
Examples of the phenols used for producing the above resole type phenol resin include compounds such as phenol, cresol, xylenol, resorcin, bisphenol A, etc., and two or more compounds may be used in combination. Particularly, phenol is desirable. The ratio of phenols to formaldehyde is not particularly limited. Examples of the alkaline catalyst include hydroxides of alkali metals, hydroxides and oxides of alkaline earth metals, and compounds such as alkanolamines, alkylamines, and ammonia. In addition, a known method can be applied to the method for producing the resol-type phenol resin, and the method is not particularly limited.

【0010】本発明で用いるアミノ変性レゾール型フェ
ノール樹脂(b)としては、フェノール類とアミノ化合
物とホルムアルデヒドとをアルカリ性触媒下で反応させ
たものであればよく、特に限定されない。ここで用いる
フェノール類とアルカリ性触媒としては、上記レゾール
型フェノール樹脂を製造するのに用いるフェノール類と
アルカリ性触媒がいずれもに使用できる。フェノール類
とフォルムアルデヒドの比率は、特に規定されるもので
はない。アミノ化合物としては、例えば、メラミン、ベ
ンゾグアナミン、ジシアンジアミド、尿素等が挙げられ
る。また、製造方法は公知の方法が適応でき、特に限定
されるものではない。
The amino-modified resol type phenol resin (b) used in the present invention is not particularly limited as long as it is obtained by reacting a phenol, an amino compound and formaldehyde under an alkaline catalyst. As the phenols and the alkaline catalyst used herein, any of the phenols and the alkaline catalyst used for producing the above-mentioned resol-type phenol resin can be used. The ratio of phenols to formaldehyde is not particularly limited. Examples of the amino compound include melamine, benzoguanamine, dicyandiamide, urea and the like. In addition, a known method can be applied to the production method, and is not particularly limited.

【0011】アミノ変性レゾール型フェノール樹脂
(b)におけるフェノール類とアミノ化合物の使用割合
としては、フェノール類100重量部に対して、アミノ
化合物が1〜20重量部となる範囲で用いることが好ま
しく、なかでも大きな充放電容量を有するリチウムイオ
ン二次電池が得られることから5〜10重量部となる範
囲が特に好ましい。
The use ratio of the phenol and the amino compound in the amino-modified resol type phenol resin (b) is preferably in the range of 1 to 20 parts by weight of the amino compound with respect to 100 parts by weight of the phenol. Above all, a range of 5 to 10 parts by weight is particularly preferable since a lithium ion secondary battery having a large charge / discharge capacity can be obtained.

【0012】アミノ樹脂変性レゾール型フェノール樹脂
(a)および/またはアミノ変性レゾール型フェノール
樹脂(b)は、樹脂溶液として使用することができ、溶
媒としては、特に限定はなく、例えば、水;メタノー
ル、エタノール、イソプロプルアルコールで代表される
アルコール類;アセトン、メチルエチルケトンのような
ケトン類などが挙げられる。
The amino resin-modified resol type phenol resin (a) and / or the amino-modified resol type phenol resin (b) can be used as a resin solution, and the solvent is not particularly limited. , Ethanol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone.

【0013】アミノ樹脂変性レゾール型フェノール樹脂
(a)および/またはアミノ変性レゾール型フェノール
樹脂(b)の数平均分子量としては、電池特性に優れる
ものが得られることから、250〜500であることが
好ましい。
The number-average molecular weight of the amino-resin-modified resol-type phenolic resin (a) and / or the amino-modified resol-type phenolic resin (b) is preferably from 250 to 500 in order to obtain a battery having excellent battery characteristics. preferable.

【0014】上記のようにして得られたアミノ樹脂変性
レゾール型フェノール樹脂(a)および/またはアミノ
変性レゾール型フェノール樹脂(b)を炭素化する方法
としては、例えば、不活性雰囲気中または真空中で80
0〜1400℃で熱処理する方法が、炭素化が十分に進
み、炭素以外の元素の残存が少なく、このために電気伝
導度が十分で電池特性に優れるものが得られることから
好ましい
The method for carbonizing the amino-resin-modified resol-type phenol resin (a) and / or the amino-modified resol-type phenol resin (b) obtained as described above includes, for example, an inert atmosphere or a vacuum. At 80
The method of performing heat treatment at 0 to 1400 ° C. is preferable because carbonization proceeds sufficiently, the remaining of elements other than carbon is small, and a substance having sufficient electric conductivity and excellent battery characteristics is obtained.

【0015】以上のようにして得られた炭素を電極とし
て利用する場合には適当なバインダーと混合して導電性
箔上に塗布することが望ましい。導電性箔としてはいろ
いろなものを用いることが可能であるが、なかでも金属
箔、例えば銅箔が好ましい。このようにして得られた電
極はリチウムイオン二次電池の負極として最適である。
When the carbon obtained as described above is used as an electrode, it is desirable to mix it with an appropriate binder and apply it on a conductive foil. Various conductive foils can be used. Among them, a metal foil, for example, a copper foil is preferable. The electrode thus obtained is most suitable as a negative electrode of a lithium ion secondary battery.

【0016】[0016]

【実施例】以下に実施例および比較例を示して本発明の
実施の形態を具体的に説明するが、もちろん本発明はこ
れらの限定されるものではない。なお、例中の%は重量
基準である。
The present invention will now be described in detail with reference to Examples and Comparative Examples, but it should be understood that the present invention is by no means restricted to such specific Examples. The percentages in the examples are on a weight basis.

【0017】また、以下の実施例および比較例では本来
負極として用いる本発明の炭素材料を正極として用い、
負極として金属リチウムを用いる。これはリチウムイオ
ンの供給源として金属リチウムを用いることにより炭素
材料へのリチウムの挿入と脱離を単純化し、より明白に
本発明の炭素材料の特性を証明することを意図したもの
である。そして、本発明の実施例における構成が本来の
目的であるリチウムイオン電池における負極としての有
用性が証明されることは当業者には明白である。
In the following Examples and Comparative Examples, the carbon material of the present invention, which is originally used as a negative electrode, is used as a positive electrode.
Metal lithium is used as the negative electrode. This is intended to simplify the insertion and desorption of lithium into the carbon material by using metallic lithium as a source of lithium ions, and to more clearly prove the properties of the carbon material of the present invention. It is apparent to those skilled in the art that the configuration of the embodiment of the present invention proves usefulness as a negative electrode in a lithium ion battery, which is the original purpose.

【0018】実施例における充放電特性の測定は次の手
法により行った。炭素粉末3gを、ポリフッ化ビニリデ
ンをN−メチルピロリドンに10%溶解したバインダー
3gに混合し、厚さ20μmの銅箔上に塗布、乾燥して
電極板を得た。また、エチレンカーボネートと炭酸ジエ
チルを1:1の体積比で混合した有機溶媒に、LiPF6
を1モル/リットルの割合で溶解して電解液を作製し
た。炭素電極と対極として金属リチウムを用い、両者の
間に電解液を多孔質ポリプロピレンに含侵させたものを
はさみ込み、これらを2016タイプのコインケース内
に入れ、プレス封口を行なって評価用のコイン電池を作
製した。このようにして得られた電池について、0.2
mAの定電流で電位が0Vになるまで充電を行い、さら
に0Vの電位を保って電流が10mAとなった時点で充
電を終了した。つぎに、0.2mAの定電流で電位が
1.5Vになるまで放電を行なった。
The charging / discharging characteristics in the examples were measured by the following method. 3 g of carbon powder was mixed with 3 g of a binder obtained by dissolving 10% of polyvinylidene fluoride in N-methylpyrrolidone, applied on a copper foil having a thickness of 20 μm, and dried to obtain an electrode plate. Also, LiPF 6 was added to an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1.
Was dissolved at a rate of 1 mol / liter to prepare an electrolytic solution. Metallic lithium is used as a carbon electrode and a counter electrode. A porous polypropylene impregnated with an electrolytic solution is sandwiched between the two, and these are placed in a 2016 type coin case, and press-sealing is performed. A battery was manufactured. For the battery obtained in this way, 0.2
Charging was performed at a constant current of mA until the potential became 0 V, and the charging was terminated when the current became 10 mA while maintaining the potential of 0 V. Next, discharging was performed at a constant current of 0.2 mA until the potential became 1.5 V.

【0019】実施例1〜4および比較例1 フェノール940gと37%フォルマリン940gをガ
ラス製2リットルフラスコに仕込み、48%水酸化ナト
リウム水溶液28.2gを添加し、加熱して80℃にて
3時間反応させ、有効成分55%、数平均分子量400
のレゾール型フェノール樹脂を得た。得られたレゾール
型フェノール樹脂1000gに、メラミン樹脂〔大日本
インキ化学工業(株)製ベッカミンPM−N〕40g、
100g、200g、300gを、それぞれ添加、混合
してして、メラミン樹脂変性レゾール型フェノール樹脂
を得た。
Examples 1-4 and Comparative Example 1 940 g of phenol and 940 g of 37% formalin were charged into a 2 liter glass flask, 28.2 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was heated and heated at 80 ° C. for 3 hours. Reaction time, active ingredient 55%, number average molecular weight 400
Was obtained. To 1000 g of the obtained resol-type phenol resin, 40 g of a melamine resin [Beckamine PM-N manufactured by Dainippon Ink and Chemicals, Inc.]
100 g, 200 g, and 300 g were respectively added and mixed to obtain a melamine resin-modified resol-type phenol resin.

【0020】得られたメラミン樹脂変性レゾール型フェ
ノール樹脂と、未変性のレゾール型フェノール樹脂のそ
れぞれを、遊星ボールミルにて平均粒径が10μmにな
るように粉砕を行った後、アルゴン雰囲気中で1000
℃、1時間の熱処理を行い、それぞれの炭素粉末を得
た。これらの炭素粉末の放電容量と不可逆容量の測定を
行った結果を表1に示す。表1に示すようにメラミン樹
脂の添加による変性で放電容量の増加が見られた。
The obtained melamine resin-modified resol-type phenol resin and the unmodified resol-type phenol resin are each pulverized by a planetary ball mill so that the average particle diameter becomes 10 μm, and then 1000 μm in an argon atmosphere.
C. for 1 hour to obtain carbon powders. Table 1 shows the results of measuring the discharge capacity and irreversible capacity of these carbon powders. As shown in Table 1, an increase in the discharge capacity was observed due to the modification by the addition of the melamine resin.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例5 フェノール940gとメラミン94gと37%フォルマ
リン1034gをガラス製2リットルフラスコに仕込
み、48%水酸化ナトリウム水溶液18.8gを添加
し、加熱して80℃にて3時間反応させ、有効成分53
%、数平均分子量390のメラミン変性レゾール型フェ
ノール樹脂を得た。得られたメラミン変性レゾール型フ
ェノール樹脂を、実施例1と同様の手法により粉砕、熱
処理して、炭素粉末を得た。この炭素粉末の放電容量と
不可逆容量の測定を行ったところ、放電容量633mA
h/g、不可逆容量200mAh/gであった。実施例
1のメラミン樹脂変性レゾール型フェノール樹脂のう
ち、メラミンを添加しなかったものと比較して電池特性
の改善が見られた。
Example 5 940 g of phenol, 94 g of melamine and 1034 g of 37% formalin were charged into a 2 liter glass flask, 18.8 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was heated and reacted at 80 ° C. for 3 hours. , Active ingredient 53
%, A melamine-modified resol type phenol resin having a number average molecular weight of 390 was obtained. The obtained melamine-modified resol-type phenol resin was pulverized and heat-treated in the same manner as in Example 1 to obtain a carbon powder. When the discharge capacity and the irreversible capacity of this carbon powder were measured, the discharge capacity was 633 mA.
h / g, and the irreversible capacity was 200 mAh / g. Among the melamine resin-modified resol-type phenol resins of Example 1, the battery characteristics were improved as compared with those in which melamine was not added.

【0023】実施例6 フェノール940gと37%フォルマリン940gをガ
ラス製2リットルフラスコに仕込み、48%水酸化ナト
リウム水溶液28.2gを添加し、加熱して80℃にt
r3時間反応させ、有効成分55%、数平均分子量40
0のレゾール型フェノール樹脂を得た。得られたレゾー
ル型フェノール樹脂1000gに、メラミン樹脂〔大日
本インキ化学工業(株)製ベッカミンPM−N〕100
gを添加して、メラミン樹脂変性レゾール形フェノール
樹脂を得た。得られたメラミン樹脂変性レゾール型フェ
ノール樹脂を、実施例1と同様の手法により粉砕、熱処
理して、炭素粉末を得た。この炭素粉末の放電容量と不
可逆容量の測定を行ったところ、放電容量631mAh
/g、不可逆容量202mAh/gであった。
Example 6 940 g of phenol and 940 g of 37% formalin were charged into a 2 liter glass flask, 28.2 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was heated to 80.degree.
r3 hours reaction, 55% active ingredient, number average molecular weight 40
0 was obtained. Melamine resin [Beckamine PM-N manufactured by Dainippon Ink and Chemicals, Inc.] 100 g to 1000 g of the obtained resol-type phenol resin.
g was added to obtain a melamine resin-modified resol type phenol resin. The obtained melamine resin-modified resol type phenol resin was pulverized and heat-treated in the same manner as in Example 1 to obtain a carbon powder. When the discharge capacity and the irreversible capacity of this carbon powder were measured, the discharge capacity was 631 mAh.
/ G and an irreversible capacity of 202 mAh / g.

【0024】実施例7および比較例2 フェノール940gと37%フォルマリン868gをガ
ラス製2リットルフラスコに仕込み、アルカリ性触媒と
してトリエチルアミン37.6gを添加し、75℃で4
時間の反応を行うことで、有効成分52%、平均分子量
340のレゾール型フェノール樹脂を得た。このレゾー
ル型フェノール樹脂1000gに、メラミン樹脂〔大日
本インキ化学工業(株)製ベッカミンPM−N〕を20
0g加えて硬化させることでメラミン樹脂変性レゾール
形フェノール樹脂を得た。得られたメラミン樹脂変性レ
ゾール型フェノール樹脂と、未変性レゾール型フェノー
ル樹脂とを、それぞれ実施例1と同様の手法にて電池特
性の測定を行ったところ、メラミン樹脂で変性した場合
では放電容量が631mAh/gg、 不可逆容量が20
8mAh/gであった。一方、メラミン樹脂での変性を
行わなかった場合では放電容量598mAh/g、不可
逆容量201mAh/gであった。
Example 7 and Comparative Example 2 940 g of phenol and 868 g of 37% formalin were charged into a 2 liter glass flask, and 37.6 g of triethylamine was added as an alkaline catalyst.
By performing the reaction for a time, a resol type phenol resin having an active ingredient of 52% and an average molecular weight of 340 was obtained. To 1000 g of the resole type phenol resin, 20 parts of a melamine resin [Beckamine PM-N manufactured by Dainippon Ink and Chemicals, Inc.] was added.
By adding 0 g and curing, a melamine resin-modified resol type phenol resin was obtained. When the battery characteristics of the obtained melamine resin-modified resol-type phenol resin and the unmodified resol-type phenol resin were measured in the same manner as in Example 1, the discharge capacity was reduced when the melamine resin was modified. 631 mAh / gg, irreversible capacity is 20
It was 8 mAh / g. On the other hand, when the modification with the melamine resin was not performed, the discharge capacity was 598 mAh / g and the irreversible capacity was 201 mAh / g.

【0025】実施例8 メラミンの代わりにジシアンジアミドを用いた以外は実
施例5と同様にして、有効成分53%、平均分子量40
0のジシアンジアミド変性レゾール型フェノール樹脂を
得た。このジシアンジアミド変性レゾール型フェノール
樹脂を用い、実施例1と同様の手法で炭素粉末を作製し
て、電池特性を測定したところ、放電容量640mAh
/g、不可逆容量210mAh/gであった。メラミン
をジシアンジアミドに変更しても実施例5の場合と同様
に電池特性の改善が見られた。
Example 8 Except that dicyandiamide was used in place of melamine, the same procedure as in Example 5 was carried out to obtain an active ingredient of 53% and an average molecular weight of 40.
0 was obtained. Using this dicyandiamide-modified resol-type phenol resin, a carbon powder was prepared in the same manner as in Example 1, and the battery characteristics were measured. The discharge capacity was 640 mAh.
/ G, and the irreversible capacity was 210 mAh / g. Even when melamine was changed to dicyandiamide, battery characteristics were improved as in Example 5.

【0026】[0026]

【発明の効果】本発明のリチウムイオン二次電池は、大
きな充放電容量を有するという利点がある。
The lithium ion secondary battery of the present invention has the advantage of having a large charge / discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 10/40 H01M 10/40 Z Fターム(参考) 4G046 CA04 CB09 CC01 CC02 CC08 4J033 CA02 CA11 CA44 CC02 CC07 FA01 FA04 FA05 FA06 FA11 HA02 HA13 5H029 AJ03 AK06 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ11 CJ22 CJ28 EJ12 HJ01 HJ11 HJ14 5H050 AA08 BA17 CB07 DA04 EA04 GA02 GA22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01M 10/40 H01M 10/40 Z F term (Reference) 4G046 CA04 CB09 CC01 CC02 CC08 4J033 CA02 CA11 CA44 CC02 CC07 FA01 FA04 FA05 FA06 FA11 HA02 HA13 5H029 AJ03 AK06 AL12 AM03 AM05 AM07 BJ03 CJ02 CJ11 CJ22 CJ28 EJ12 HJ01 HJ11 HJ14 5H050 AA08 BA17 CB07 DA04 EA04 GA02 GA22

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レゾール型フェノール樹脂とアミノ樹脂
とを混合および/または反応させてなるアミノ樹脂変性
レゾール型フェノール樹脂(a)、および/または、フ
ェノール類とアミノ化合物とホルムアルデヒドとをアル
カリ性触媒下で反応させたアミノ変性レゾール型フェノ
ール樹脂(b)を熱処理して得られる炭素を、負極とし
て用いてなることを特徴とする、リチウムイオン二次電
池。
1. An amino resin-modified resol type phenol resin (a) obtained by mixing and / or reacting a resol type phenol resin and an amino resin, and / or a phenol, an amino compound and formaldehyde under an alkaline catalyst. A lithium ion secondary battery characterized in that carbon obtained by heat-treating the reacted amino-modified resol-type phenol resin (b) is used as a negative electrode.
【請求項2】 アミノ樹脂変性レゾール型フェノール樹
脂(a)がレゾール型フェノール樹脂100重量部に対
して、アミノ樹脂を固形分重量比が1〜30重量部とな
る範囲で用いて得られたものであり、アミノ変性レゾー
ル型フェノール樹脂(b)がフェノール類100重量部
に対して、アミノ化合物が1〜20重量部となる範囲で
用いて得られたものである、請求項1記載のリチウムイ
オン二次電池。
2. An amino resin-modified resol type phenol resin (a) obtained by using an amino resin in a range of 1 to 30 parts by weight of a solid content relative to 100 parts by weight of a resol type phenol resin. The lithium ion according to claim 1, wherein the amino-modified resol-type phenol resin (b) is obtained by using the amino compound in an amount of 1 to 20 parts by weight based on 100 parts by weight of the phenol. Rechargeable battery.
【請求項3】 アミノ樹脂変性レゾール型フェノール樹
脂(a)およびアミノ変性レゾール型フェノール樹脂
(b)の数平均分子量が、250〜500である、請求
項1または2記載のリチウムイオン二次電池。
3. The lithium ion secondary battery according to claim 1, wherein the number average molecular weight of the amino resin-modified resol phenol resin (a) and the amino-modified resol phenol resin (b) is 250 to 500.
【請求項4】 熱処理が、不活性雰囲気中または真空中
で、800〜1400での熱処理である、請求項1、2
または3記載のリチウムイオン二次電池。
4. The heat treatment according to claim 1, wherein the heat treatment is a heat treatment at 800 to 1400 in an inert atmosphere or in a vacuum.
Or the lithium ion secondary battery according to 3.
【請求項5】 負極が、アミノ樹脂変性レゾール型フェ
ノール樹脂(a)および/またはアミノ変性レゾール型
フェノール樹脂(b)を熱処理して得られる炭素を、導
電性箔上に塗布してなるものである、請求項1〜4のい
ずれか1項に記載のリチウムイオン二次電池。
5. A negative electrode comprising a conductive foil coated with carbon obtained by heat-treating an amino resin-modified resol-type phenol resin (a) and / or an amino-modified resol-type phenol resin (b). The lithium ion secondary battery according to any one of claims 1 to 4.
JP2000253833A 2000-08-24 2000-08-24 Lithium ion secondary battery Pending JP2002075357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253833A JP2002075357A (en) 2000-08-24 2000-08-24 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253833A JP2002075357A (en) 2000-08-24 2000-08-24 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2002075357A true JP2002075357A (en) 2002-03-15
JP2002075357A5 JP2002075357A5 (en) 2007-10-11

Family

ID=18742868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253833A Pending JP2002075357A (en) 2000-08-24 2000-08-24 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2002075357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082645A1 (en) * 2009-01-16 2010-07-22 住友化学株式会社 Method for producing carbon material
JP2011225431A (en) * 2010-03-30 2011-11-10 Fujifilm Corp Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109525A (en) * 1981-12-24 1983-06-29 Sumitomo Deyurezu Kk Solid resol phenolic resin
JPS6155176A (en) * 1984-08-27 1986-03-19 Nippon Sheet Glass Co Ltd Binder for glass fiber
JPH0127199B2 (en) * 1982-02-06 1989-05-26 Arakawa Chem Ind
JPH0564989B2 (en) * 1986-06-04 1993-09-16 Toshiba Chem Prod
JPH07192759A (en) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd Nonaqueous system electrolyte battery
JPH11269340A (en) * 1998-03-20 1999-10-05 Sumitomo Durez Kk Phenol resin composition
JPH11354120A (en) * 1998-06-10 1999-12-24 Sumitomo Durez Kk Electrode material composition for lithium-ion secondary battery
JP2000001306A (en) * 1998-06-10 2000-01-07 Sumitomo Durez Co Ltd Nitrogen-containing carbon material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109525A (en) * 1981-12-24 1983-06-29 Sumitomo Deyurezu Kk Solid resol phenolic resin
JPH0127199B2 (en) * 1982-02-06 1989-05-26 Arakawa Chem Ind
JPS6155176A (en) * 1984-08-27 1986-03-19 Nippon Sheet Glass Co Ltd Binder for glass fiber
JPH0564989B2 (en) * 1986-06-04 1993-09-16 Toshiba Chem Prod
JPH07192759A (en) * 1993-12-24 1995-07-28 Sanyo Electric Co Ltd Nonaqueous system electrolyte battery
JPH11269340A (en) * 1998-03-20 1999-10-05 Sumitomo Durez Kk Phenol resin composition
JPH11354120A (en) * 1998-06-10 1999-12-24 Sumitomo Durez Kk Electrode material composition for lithium-ion secondary battery
JP2000001306A (en) * 1998-06-10 2000-01-07 Sumitomo Durez Co Ltd Nitrogen-containing carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082645A1 (en) * 2009-01-16 2010-07-22 住友化学株式会社 Method for producing carbon material
JP2011225431A (en) * 2010-03-30 2011-11-10 Fujifilm Corp Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same

Similar Documents

Publication Publication Date Title
Balach et al. Functional mesoporous carbon‐coated separator for long‐life, high‐energy lithium–sulfur batteries
JP2948205B1 (en) Method for producing negative electrode for secondary battery
JP6082395B2 (en) Structurally stable active materials for battery electrodes
JP3291260B2 (en) Lithium secondary battery
CN109004220B (en) Boric acid compound modified lithium ion battery silicon cathode and preparation method thereof
JP5949798B2 (en) Electrode material, method for producing electrode material, electrode and lithium ion battery
JP2008027664A (en) Negative electrode for lithium ion secondary battery, and negative electrode active material
KR101031920B1 (en) Anode active material for lithium secondary battery and Method for preparing thereof and Lithium secondary battery containing the same for anode
JPH06203836A (en) Secondary battery
JP3202249B2 (en) Anode material for non-aqueous secondary battery and non-aqueous secondary battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
EP3716389A1 (en) Sulfide solid electrolyte, precursor of sulfide solid electrolyte, all solid state battery and method for producing sulfide solid electrolyte
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
Kim et al. One‐step surface nitridation of CoO for high‐energy‐density lithium‐ion batteries
JP2013069567A (en) Electrode active material and method for manufacturing the same, and lithium ion battery
KR101065248B1 (en) Preparing Method of Anode Active Material For Lithium Secondary Battery And Lithium Secondary Battery Comprising Anode Active Material Formed Therefrom
JP2002075357A (en) Lithium ion secondary battery
JPH11322323A (en) Carbon compound and its production, and electrode for secondary battery
JP2920079B2 (en) Organic electrolyte battery
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP3427752B2 (en) Anode material for lithium ion secondary battery
JP2016136452A (en) Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode
KR100733753B1 (en) Additive to negative electrode material for lithium secondary battery, negative electrode material for lithium secondary battery and, using the negative electrode material for lithium secondary battery, negative electrode and lithium secondary battery
JP2001102046A (en) Electrode material for non-aqueous electrolyte secondary battery
JP3179434B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120119