JP2002072266A - Optical functionai, element using ferroelectric polarization inversion of lithium tantalate - Google Patents

Optical functionai, element using ferroelectric polarization inversion of lithium tantalate

Info

Publication number
JP2002072266A
JP2002072266A JP2000255102A JP2000255102A JP2002072266A JP 2002072266 A JP2002072266 A JP 2002072266A JP 2000255102 A JP2000255102 A JP 2000255102A JP 2000255102 A JP2000255102 A JP 2000255102A JP 2002072266 A JP2002072266 A JP 2002072266A
Authority
JP
Japan
Prior art keywords
single crystal
optical
crystal
polarization
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000255102A
Other languages
Japanese (ja)
Other versions
JP3424125B2 (en
Inventor
Yasunori Furukawa
保典 古川
Kenji Kitamura
健二 北村
Shunji Takegawa
俊二 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000255102A priority Critical patent/JP3424125B2/en
Publication of JP2002072266A publication Critical patent/JP2002072266A/en
Application granted granted Critical
Publication of JP3424125B2 publication Critical patent/JP3424125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical functional element in which the controllability of a polarization inversion structure is improved and the resistance against optical damage is further improved. SOLUTION: The following optical elements (1) to (3) or the like can be realized by using a single crystal of lithium tantalate having nearly a stoichiometric composition with excess Li and 0.500 to 0.505 mole fraction of Li2O/(Ta2O5+Li2O) for the substrate. The elements are (1) an optical functional element which converts the wavelength of incident laser light having the wavelength in the visible to near IR region into shorter or longer wavelength by periodically reversing the polarization structure of the lithium tantalite single crystal, (2) an optical memory element or optical circuit element to record various kinds of information in the single crystal by forming polarization reversal in a minute region in the lithium tantalate single crystal in a single polarization state, and (3) an optical element which controls the laser light incident to the single crystal by using the electro-optical effect of the single crystal and which deviates, focuses or switches the light by using the large change in the refractive index in the reversal structure of the ferroelectric polarization of the lithium tantalite single crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を利用し
た光情報処理、光加工技術、光化学反応技術、光計測制
御等々の分野で利用するタンタル酸リチウム(LiTaO3
(以下LTと略記する)単結晶からなる光機能素子に関
し、特に、LT単結晶の分極を周期的に反転させ、レー
ザ光の基本波長を短波長化あるいは長波長化する波長変
換素子、および、分極反転構造の大きな屈折率変化を利
用する光の偏向、焦点、スイッチングを行う素子、およ
びLT単結晶の微少領域の分極を反転させることを記録
に用いる光記憶素子および光回路素子に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lithium tantalate (LiTaO 3 ) used in fields such as optical information processing using laser light, optical processing technology, photochemical reaction technology, optical measurement control and the like.
More specifically, the present invention relates to an optical functional device made of a single crystal (hereinafter abbreviated as LT), and particularly to a wavelength conversion device that periodically or periodically reverses the polarization of the LT single crystal to shorten or lengthen the fundamental wavelength of laser light, and The present invention relates to an element for deflecting, focusing, and switching light utilizing a large change in the refractive index of a domain-inverted structure, and an optical storage element and an optical circuit element for recording by inverting the polarization of a minute region of an LT single crystal. .

【0002】[0002]

【従来の技術】LT単結晶は、主に、表面弾性波素子や
光変調器の基板として使用されている強誘電体である
が、可視から赤外の広い波長域で透明であり、電圧を印
加することで周期的な分極構造を作成でき、ある程度実
用的な光学的非線形性と電気光学特性を有し、さらに、
大口径で組成均質性の高い単結晶が比較的安価で供給可
能なことから、近年、波長変換素子などの機能素子の基
板としても注目されている。
2. Description of the Related Art An LT single crystal is a ferroelectric substance mainly used as a substrate of a surface acoustic wave device or an optical modulator, but is transparent in a wide wavelength range from visible to infrared. By applying it, a periodic polarization structure can be created, and to some extent practical optical non-linearity and electro-optical characteristics,
In recent years, a single crystal having a large diameter and high composition homogeneity can be supplied at a relatively low cost, and thus, in recent years, has attracted attention as a substrate for a functional element such as a wavelength conversion element.

【0003】特に、近赤外波長の半導体レーザを非線形
光学効果により半波長の青色光に変換する導波路型の光
第二高調波発生(SHG)素子の開発が期待されており、
なかでも、光ディスクの高密度記録・再生用光源とし
て、LN、LT、KTPなどの無機単結晶の分極構造を
周期的に反転した素子を用いたSHG素子は最も良く研究
されている。
In particular, the development of a waveguide type optical second harmonic generation (SHG) element for converting a semiconductor laser having a near-infrared wavelength into a half-wavelength blue light by a nonlinear optical effect is expected.
Above all, as a light source for high-density recording / reproducing of an optical disk, an SHG element using an element in which a polarization structure of an inorganic single crystal such as LN, LT, KTP or the like is periodically inverted is best studied.

【0004】このSHG素子は、疑似位相整合(Quasi Pha
se Matching;QPM)方式によるもので、基本波と高調波
の伝搬定数の差を周期構造で補償して位相整合をとる方
式である。この方式では高い変換効率が得られること、
出力光の平行ビーム化・回折限界集光が容易であるこ
と、適用できる材料や波長に制限がないことなど、多く
の優れた特徴を持っている。
This SHG element has a quasi phase matching (Quasi Phas
It is based on the se-matching (QPM) method, in which the difference between the propagation constants of the fundamental wave and the harmonics is compensated by a periodic structure to achieve phase matching. With this method, high conversion efficiency can be obtained,
It has many outstanding features, such as easy parallelization of output light and diffraction-limited focusing, and no limitations on applicable materials and wavelengths.

【0005】QPMのための周期構造としては、SHG係数
(d係数)の符号を周期的に反転した構造が高い効率を
得る上で最も有効であり、強誘電体結晶ではd係数の正
負は強誘電体分極の極性に対応するので、強誘電分極ド
メインの周期反転構造が利用されている。QPM-SHG方式
では、複屈折を利用した位相整合方式では使えない非線
形光学定数d22やd33等も使えるために高効率の波長変換
ができることは大きなメリットと考えられる。
As a periodic structure for QPM, a structure in which the sign of the SHG coefficient (d coefficient) is periodically inverted is the most effective in obtaining high efficiency. In a ferroelectric crystal, the sign of the d coefficient is strong. Since it corresponds to the polarity of dielectric polarization, a periodic inversion structure of a ferroelectric polarization domain is used. The QPM-SHG scheme, can be wavelength conversion with high efficiency to use also like nonlinear optical constant d 22 and d 33 can not be used in the phase matching method using the birefringence is considered to great advantage.

【0006】特に、LT単結晶は、LN単結晶と並ぶ大
きな非線形光学定数(d33が26pm/V)を持ち、LN単結
晶に比べて光損傷に強く、また、基礎吸収端が280nmま
で伸びており、短波長の波長変換材料として有望であ
る。
[0006] Particularly, LT single crystal, a large nonlinear optical constant alongside LN single crystal (d 33 is 26 pm/V) has a strong to light damage compared to LN single crystal, also extends fundamental absorption edge up to 280nm Therefore, it is promising as a short wavelength wavelength conversion material.

【0007】また、電気光学効果を利用した光学素子に
おいては、例えば、文献(M. Yamada et al., Appl.Phy
s.Lett., 69,p3659,1996)によると、強誘電体結晶中に
レンズやプリズム状の分極反転構造を形成し、これを通
過したレーザ光を電気光学効果を利用して偏向する光素
子やシリンドリカルレンズ、ビームスキャナー、スイッ
チなどが新しい光素子として注目され、LT単結晶も基
板材料として有望とされている。
For an optical element utilizing the electro-optic effect, see, for example, a document (M. Yamada et al., Appl. Phy.
According to s. Lett., 69, p3659, 1996), an optical element that forms a lens or prism-shaped domain-inverted structure in a ferroelectric crystal and deflects the laser beam passing through it using the electro-optic effect. , Cylindrical lenses, beam scanners, switches, and the like are attracting attention as new optical elements, and LT single crystals are also promising as substrate materials.

【0008】これまで市販されているLT単結晶は、融
点約1650℃、キュリー温度約600℃の強誘電体結晶で、
通常、若干の酸素を含む還元雰囲気中でイリジウムるつ
ぼ内で溶かした融液からチョクラルスキー法により育成
されている。LT単結晶の詳細な相図は報告されていな
いが、例えば、文献(S. Miyazawa et al. J. Crystal
Growth 10,p276,1971)に示された相図によると、LN
単結晶と同様に定比組成(化学量論組成)とコングルエ
ント組成(一致溶融組成)は一致しないことは良く知ら
れている。
[0008] The LT single crystal that has been commercially available is a ferroelectric crystal having a melting point of about 1650 ° C and a Curie temperature of about 600 ° C.
It is usually grown by a Czochralski method from a melt dissolved in an iridium crucible in a reducing atmosphere containing some oxygen. Although detailed phase diagrams of LT single crystals have not been reported, for example, literatures (S. Miyazawa et al. J. Crystal
Growth 10, p276, 1971) shows that LN
It is well known that the stoichiometric composition (stoichiometric composition) does not coincide with the congruent composition (identical melting composition) as in the case of a single crystal.

【0009】コングルエント組成のみが融液組成と結晶
組成とが一致し、結晶全体にわたって均一組成の結晶を
育成することが出来る組成であるため、現在、各種用途
に製造、使用されている結晶は、全てLi2O/(Ta2O5+Li2
O)のモル分率が0.4830〜0.4853のコングルエント組成の
結晶である。
[0009] Only the congruent composition is a composition in which the melt composition and the crystal composition match, and a crystal having a uniform composition can be grown over the entire crystal. Therefore, the crystals currently manufactured and used for various applications are: All Li 2 O / (Ta 2 O 5 + Li 2
It is a crystal having a congruent composition in which the molar fraction of O) is from 0.4830 to 0.4853.

【0010】特に、工業的な面から安価で大口径のLT
結晶を供給するためには、精密に管理されたコングルエ
ント組成融液から育成することが重要であるため、組成
に敏感な結晶のキュリー温度を、例えば、601℃に対し
て1℃以内に管理することで、LT単結晶のコングルエ
ント組成は結晶育成の全行程において、Li2O/(Ta2O5+L
i2O)=0.4830〜0.4853の間で精密に決められている。
[0010] In particular, a low-cost large-diameter LT from an industrial point of view.
In order to supply crystals, it is important to grow from a precisely controlled congruent composition melt, so the Curie temperature of a composition-sensitive crystal should be controlled within 1 ° C for 601 ° C, for example. Thus, the congruent composition of the LT single crystal is Li 2 O / (Ta 2 O 5 + L
It is precisely determined between i 2 O) = 0.4830 and 0.4853.

【0011】しかし、従来のコングルエント組成LT単
結晶はTa成分が過剰であるため、数%に達するTaイオン
がLiイオンを置き換えているし(アンチサイト欠陥)、
Liイオンサイトにも数%の空位欠陥をもたらしている。
この影響は表面弾性波素子応用としては深刻でないとし
ても、光機能素子応用には無視することはできない。
However, the conventional congruent composition LT single crystal has an excess of Ta component, so that Ta ions reaching several percent replace Li ions (anti-site defects).
Li ions sites also have a few percent vacancy defects.
Although this effect is not serious for surface acoustic wave device applications, it cannot be ignored for optical functional device applications.

【0012】このため、光機能素子応用への基板とし
て、定比に近い組成を持つ結晶の開発が望まれていた。
文献(S. Miyazawa et al. J. Crystal Growth 10,p27
6,1971)に示された相図からわかるように、Li濃度が定
比よりも高い組成の融液から定比に近い組成の結晶が析
出できる。
For this reason, there has been a demand for the development of a crystal having a composition close to the stoichiometric ratio as a substrate for application to optical functional devices.
Literature (S. Miyazawa et al. J. Crystal Growth 10, p27
As can be seen from the phase diagram shown in US Pat. No. 6,1971), crystals having a composition close to the stoichiometric ratio can be precipitated from a melt having a composition in which the Li concentration is higher than the stoichiometric ratio.

【0013】しかし、従来から大口径のLT結晶を工業
的に大量生産する手段として使用されているチョクラル
スキー法を用いて定比組成結晶を育成しようとした場合
には、結晶の析出に伴ってLi成分の過剰分が坩堝内に残
されることになり、融液のLiとTaの組成比が徐々に変化
するため、育成開始後すぐに融液組成比は共晶点に至っ
てしまう。このため、結晶の固化率はわずか10%程度
に制限され、析出した結晶の品質も光機能素子応用に使
用できるものではない。
[0013] However, when an attempt is made to grow a stoichiometric crystal using the Czochralski method, which has conventionally been used as a means for industrially mass-producing large-diameter LT crystals, the precipitation of crystals is accompanied by the precipitation of crystals. As a result, an excessive amount of the Li component is left in the crucible, and the composition ratio of Li and Ta in the melt gradually changes, so that the composition ratio of the melt reaches the eutectic point immediately after the start of growth. For this reason, the solidification rate of the crystal is limited to only about 10%, and the quality of the precipitated crystal cannot be used for optical functional device applications.

【0014】本発明者らは、従来の市販されているコン
グルエント組成のLT結晶と異なる新規物質として、コ
ングルエント組成の不定比欠陥濃度を大幅に低減したLi
2O/(Ta2O5+Li2O)のモル分率が0.495〜0.50のTa過剰の
定比組成に近いタンタル酸リチウム単結晶の発明をな
し、特許出願した(特開平11-35393号公報)。また、こ
の新規結晶に関して下記のように文献報告した。
The present inventors have proposed a novel substance different from the conventional commercially available LT crystal having a congruent composition, in which the non-stoichiometric defect concentration of the congruent composition is greatly reduced.
An invention of a single crystal of lithium tantalate having a molar ratio of 2 O / (Ta 2 O 5 + Li 2 O) of 0.495 to 0.50 and close to a stoichiometric composition of excess Ta was made, and a patent application was filed (Japanese Patent Laid-Open No. 11-35393). ). In addition, the literature was reported on the new crystal as follows.

【0015】この不定比欠陥を低減して高品質結晶を開
発する手段として、本発明者らは、原料を連続的に供給
しながら育成する方法(以後連続供給法と略記する)を
提案した(例えば、Y. Furukawa et al. J. Crystal Gr
owth 197,p889,1999)。具体的には、育成融液のLi2O/
(Ta2O5+Li2O)のモル分率をLi成分の過剰の0.58
00〜0.5900とし、るつぼを二重構造にして内側
のるつぼから定比組成に近いLT結晶を引き上げ、引き
上げている結晶の重量を随時測定することで成長レート
を求め、そのレートで結晶と同じ定比組成の成分の原料
粉末を外るつぼと内るつぼの間に連続的に供給するとい
う方法である。
As a means for reducing the non-stoichiometric defects and developing high quality crystals, the present inventors have proposed a method of growing while continuously supplying raw materials (hereinafter abbreviated as a continuous supply method) ( For example, Y. Furukawa et al. J. Crystal Gr
owth 197, p889, 1999). Specifically, Li 2 O /
(Ta 2 O 5 + Li 2 O) mole fraction of 0.58
With the crucible having a double structure, the LT crystal having a stoichiometric composition is pulled up from the inner crucible, and the weight of the pulled crystal is measured as needed to obtain a growth rate. In this method, the raw material powder having the same stoichiometric composition is continuously supplied between the outer crucible and the inner crucible.

【0016】この方法を用いることで、長尺の結晶育成
が可能となり、原料供給量に対して100%の結晶固化
率を実現している。この方法で育成された結晶は、キュ
リー温度が675〜685℃と、従来のコングルエント
組成結晶のキュリー温度の601よりはるかに高温度に
あり、Ta過剰の定比組成に近いタンタル酸リチウム単結
晶が得られたことが報告されている。
By using this method, a long crystal can be grown, and a solidification rate of 100% with respect to the raw material supply amount is realized. The crystal grown by this method has a Curie temperature of 675 to 685 ° C., which is much higher than the Curie temperature of the conventional congruent composition crystal of 601. A Ta-excess lithium tantalate single crystal close to a stoichiometric composition is obtained. It is reported that it was obtained.

【0017】さらに、最近、本発明者らは、上記のTa過
剰の定比組成に近い結晶では、分極反転に要する印加電
圧が従来の10分の1程度で済むことを報告した(K. K
itamura et al. Appl. Phys.Lett. 73,p3073,1998や古
川保典他、第43回人工結晶討論会講演要旨集1A12、第23
頁、1998年)。すなわち、従来のコングルエント組成結
晶における数%の不定比欠陥(アンチサイト欠陥や空位
欠陥〉の存在が、LT結晶が本来有する光学特性や、周
期的な分極構造を作成するのに必要な印加電圧を高くし
ている可能性があることを報告している。
Furthermore, recently, the present inventors have reported that the applied voltage required for polarization reversal can be reduced to about one-tenth of that of a conventional crystal having a Ta excess stoichiometric composition (K. K.
itamura et al. Appl.Phys. Lett. 73, p3073, 1998, Yasunori Furukawa et al., Proceedings of the 43rd Symposium on Artificial Crystals 1A12, 23rd
P. 1998). That is, the existence of several percent of non-stoichiometric defects (anti-site defects and vacancy defects) in the conventional congruent composition crystal depends on the optical characteristics inherent in the LT crystal and the applied voltage necessary to create a periodic polarization structure. Reports that it may be higher.

【0018】また、コングルエント組成LT単結晶で
は、結晶毎による耐光損傷閾値が数桁以上もばらつくこ
とが知られているが、Ta過剰の定比組成に近いタンタル
酸リチウム単結晶では、従来のコングルエント組成に較
べると、波長532nmの緑色光レーザ照射に対して耐光損
傷閾値が向上し、結晶毎のばらつきも若干小さくなるこ
とが報告されている(例えば、古川保典他、第60回応用
物理学会学術講演会講演予稿集2p-ZB-1,第3分冊,1001
頁,2000年)。
It is known that the light damage threshold for each crystal of the congruent composition LT single crystal varies by several orders of magnitude or more. However, in the case of the lithium tantalate single crystal having a Ta excess stoichiometric composition, the conventional congruent Compared with the composition, it has been reported that the light damage threshold value is improved and the variation for each crystal is slightly reduced when irradiated with a green light laser having a wavelength of 532 nm (for example, Yasunori Furukawa et al., The 60th Japan Society of Applied Physics) Proceedings of Lecture Meeting 2p-ZB-1, Volume 3, 1001
P., 2000).

【0019】さらに、波長532nmの緑色光レーザ照射に
対して、MgOを添加した定比組成に近いLT単結晶は、
従来のコングルエント組成よりも優れた耐光損傷閾値を
示すことが知られている(例えば、宮本晃男他、4回人
工結晶討論会講演要旨集27A、第75頁、1999年)。ま
た、いずれの組成でも、Ta過剰なLT単結晶の光損傷は
照射するレーザの波長が短くなると発生しやすくなり、
波長が400nm近傍での耐光損傷閾値は波長532nmでの耐光
損傷閾値よりも2桁以上も低下することが知られてい
る。
Further, when irradiated with a green light laser having a wavelength of 532 nm, an LT single crystal having a near stoichiometric composition to which MgO is added,
It is known to exhibit a light damage threshold superior to the conventional congruent composition (for example, Akio Miyamoto et al., Proceedings of the 4th Symposium on Artificial Crystals 27A, p. 75, 1999). Further, in any of the compositions, the optical damage of the Ta-excess LT single crystal is likely to occur when the wavelength of the laser to be irradiated becomes short,
It is known that the light damage threshold near the wavelength of 400 nm is two orders of magnitude lower than the light damage threshold at the wavelength of 532 nm.

【0020】Ta過剰の定比組成に近いタンタル酸リチウ
ム単結晶、定比組成に近いLT単結晶(キュリー温度が
680〜685℃)を用いた疑似位相整合(Quasi-Phase-Matc
hing;QPM)素子としての近赤外域バルクOPO素子の研究
が報告されている(例えば、畑中孝明他、第60回応用物
理学会学術講演会講演予稿集2a-k-7,第3分冊,932頁,199
9年)。zカットの一致溶融組成のLT単結晶の片面に
周期電極を反対面に一様電極を設けて、この電極を通じ
て数KV/mm程度のパルス電圧を印加することで厚さ1〜
2mmの近赤外域バルクOPO素子が比較的容易に作成でき
ている。しかし、分極反転の均一化が困難であるため
に、素子作成は微少な面積における分極反転構造の形成
に限られ、大面積に亘り分極反転を形成できるまでには
至っていない。
Lithium tantalate single crystal close to stoichiometric composition with excess Ta, LT single crystal close to stoichiometric composition (Curie temperature
Quasi-Phase-Matc (680 ~ 685 ℃)
Research on bulk OPO devices in the near-infrared region as hing (QPM) devices has been reported (for example, Takaaki Hatanaka et al., Proceedings of the 60th Annual Meeting of the Japan Society of Applied Physics 2a-k-7, 3rd volume, 932) P., 199
9 years). A periodic electrode is provided on one side of an LT single crystal having a z-coincided molten composition and a uniform electrode is provided on the opposite side, and a pulse voltage of about several KV / mm is applied through this electrode to obtain a thickness of 1 to
A near-infrared 2 mm bulk OPO device can be relatively easily manufactured. However, since it is difficult to make the polarization inversion uniform, the device fabrication is limited to the formation of the domain-inverted structure in a small area, and the domain inversion has not yet been formed over a large area.

【0021】さらに、本発明者らが先に発明したTa過剰
の定比組成に近いLT単結晶を基板に用いて結晶基板厚
みが3mmのOPO素子の作成を検討した報告(中村孝一朗
他、第47回応用物理学会学術講演会講演予稿集30p-ZD-
3,第3分冊,1105頁,2000年)によると、分極反転制御は
より困難になり、これを基板に用いたバルクOPO素子は
得られていない。
Furthermore, the inventors of the present invention have reported on the study of the fabrication of an OPO device having a crystal substrate thickness of 3 mm by using an LT single crystal having a Ta-excess stoichiometric composition close to the stoichiometric composition (Koichiro Nakamura et al. Proceedings of the 47th Annual Conference of the Japan Society of Applied Physics 30p-ZD-
3, 3rd volume, p. 1105, 2000), the control of polarization inversion becomes more difficult, and no bulk OPO device using this as a substrate has been obtained.

【0022】[0022]

【発明が解決しようとする課題】強誘電体単結晶基板上
の分極反転構造を用いた波長変換光機能素子を実現する
上で最も重要な技術は、周期的分極反転構造を精度よく
生成する技術である。QPM構造を用いた波長変換素子で
は、QPM条件の許容度が大変厳しいために、形成された
素子の反転周期の不完全さがあると小型で高効率の素子
を実現できなくなってしまう。分極反転形成方法として
電圧印加法がよく知られており、一般的によく使用され
ているが、分極反転幅比を完全な1:1や1:3などに形成
するのは非常に難しく、プロセスの再現性にも問題があ
る。
The most important technique for realizing a wavelength conversion optical function device using a domain-inverted structure on a ferroelectric single crystal substrate is a technique for accurately generating a periodic domain-inverted structure. It is. In the wavelength conversion element using the QPM structure, the tolerance of the QPM condition is very strict, so that if the inversion cycle of the formed element is incomplete, a small and highly efficient element cannot be realized. The voltage application method is well known as a polarization inversion method, and is commonly used.However, it is very difficult to form a complete domain inversion width ratio of 1: 1 or 1: 3. There is also a problem in the reproducibility of.

【0023】例えば、電圧印加法ではzカットのLT単
結晶の片面に周期電極を反対面に一様電極を設けてこの
電極を通じてパルス電圧を印加することで周期電極直下
の部分をz軸方位に向けて分極反転させるが、反転分極
幅と電極幅は必ずしも一致するとは限らず、その作製誤
差も大きい。
For example, in the voltage application method, a periodic electrode is provided on one side of a z-cut LT single crystal, a uniform electrode is provided on the opposite side, and a pulse voltage is applied through this electrode, so that a portion immediately below the periodic electrode is oriented in the z-axis direction. Although the polarization is reversed, the width of the reversed polarization does not always match the width of the electrode, and the fabrication error is large.

【0024】特に、分極反転部の幅方向の拡大は、再現
性良く素子を作製する上で大きな問題とされていた。ま
た、反対面のz軸方向に分極反転が形成される途中で、
反転が途切れたり、分極反転幅がzカット結晶の両面で
異なるなどの問題も発生し、これまで、理想的な形での
QPM素子の実現には至っていない。特に、従来のコング
ルエント組成LT単結晶の場合には、分極反転に必要な
印加電圧は20kV/mm以上と高電圧が必要とされるため、
反転できる基板厚みも0.5mm以下と限られ、1mm以上のビ
ーム径の高出力レーザ素子への応用はきわめて困難とさ
れていた。
In particular, the enlargement of the domain-inverted portions in the width direction has been regarded as a major problem in producing a device with good reproducibility. Also, during the formation of polarization reversal in the z-axis direction on the opposite surface,
Problems such as interruption of the reversal and the difference of the polarization reversal width on both sides of the z-cut crystal also occurred.
QPM devices have not been realized yet. In particular, in the case of a conventional congruent composition LT single crystal, the applied voltage required for polarization reversal requires a high voltage of 20 kV / mm or more.
The thickness of the reversible substrate is also limited to 0.5 mm or less, and application to a high-power laser element having a beam diameter of 1 mm or more has been extremely difficult.

【0025】これに対し、本発明者らが先に発明した、
Ta過剰の定比組成に近いLT単結晶を基板に用いること
で、厚さ1〜3mmの近赤外域バルクOPO素子の作成が検討
されているが、分極反転の均一化が困難であるために、
素子作成は微少な面積における分極反転構造の形成に限
られ、大面積に亘り分極反転を形成できるまでには至っ
ていない。
On the other hand, the present inventors have invented earlier,
The use of an LT single crystal with a near-stoichiometric composition with excess Ta for the substrate has been studied to produce a bulk near-infrared region OPO device having a thickness of 1 to 3 mm, but it is difficult to make the polarization inversion uniform. ,
Fabrication of the device is limited to the formation of a domain-inverted structure in a very small area, and it has not yet been possible to form domain-inverted over a large area.

【0026】また、強誘電体単結晶の電気光学効果を利
用した光変調素子や、LT単結晶に形成されたレンズや
プリズム状の分極反転構造を作製し、これを通過したレ
ーザ光を電気光学効果を利用して偏向する光素子やシリ
ンドリカルレンズ、ビームスキャナー、スイッチなども
新しい光素子などを実現する上で重要なことは、小型で
高効率の素子を作製することである。分極反転構造によ
る屈折率の反転を形成した単結晶の電気光学効果を利用
した光素子の性能は、レンズやプリズム状の分極反転構
造の設計や分極反転構造の作製プロセスの精度、および
材料の持つ電気光学定数の大きさで決定される。
Further, a light modulation element utilizing the electro-optic effect of a ferroelectric single crystal, a lens formed in an LT single crystal, or a prism-shaped domain-inverted structure is manufactured. What is important in realizing a new optical element, such as an optical element that deflects using the effect, a cylindrical lens, a beam scanner, and a switch, is to manufacture a small and highly efficient element. The performance of an optical element that utilizes the electro-optic effect of a single crystal in which the refractive index is inverted by the domain-inverted structure depends on the precision of the design of the lens and prism-shaped domain-inverted structure, the manufacturing process of the domain-inverted structure, and the material It is determined by the magnitude of the electro-optic constant.

【0027】しかしながら、従来のコングルエント結晶
基板を用いた場合には、QPM素子を作製するのと同じ
ような自発分極の反転の制御が悪いという材料特性の問
題が依然として残されているため、精度の良いレンズや
プリズム状の分極反転構造の作製は実現されていなかっ
た。
However, when a conventional congruent crystal substrate is used, there is still a material property problem that control of reversal of spontaneous polarization is poor as in the case of manufacturing a QPM element. Fabrication of a good lens or a prism-shaped domain-inverted structure has not been realized.

【0028】また、一致溶融組成LT結晶は、LN単結
晶よりも耐光損傷性は大きいとされているが、使用する
光の波長や強度によっては、それでも、まだ、耐光損傷
性が十分ではない場合が多い。本発明者らは、Ta過剰の
定比組成に近いLT単結晶では、従来のコングルエント
組成に較べると、波長532nmの緑色光レーザ照射に対し
て耐光損傷閾値が向上することを報告した(古川保典
他、第60回応用物理学会学術講演会講演予稿集2p-ZB-1,
第3分冊,1001頁,2000年)が、依然として、結晶毎に耐
光損傷閾値は3桁以上もばらつきがあり、その原因は良
く解明されていなかった。
It is said that the LT crystal having the coincident melting composition has a higher light damage resistance than the LN single crystal. However, depending on the wavelength and intensity of the light used, the light damage resistance is still insufficient. There are many. The present inventors have reported that an LT single crystal having a Ta-excess stoichiometric composition has an improved light damage threshold against irradiation with a green light laser having a wavelength of 532 nm as compared with a conventional congruent composition (Furukawa Yasunori Proceedings of the 60th JSAP Academic Lecture Meeting 2p-ZB-1,
(Vol. 3, p. 1001, 2000), however, the light damage threshold for each crystal still varied by more than three orders of magnitude, and the cause was not well understood.

【0029】このために、これまでに若干のTa過剰成分
側(Li2O/(Ta2O5+Li2Oのモル分率が0.495〜0.50)にあ
る結晶では、安定して光損傷に強い結晶を提供するため
には、Mgなどの添加物を加えることが必要であった。し
かし、Mgを含んだLT単結晶の生産において、Mg元素を
結晶内に均一に分布させ、光学的品質を劣化させずに結
晶を育成するためには、無添加結晶の場合に較べて結晶
育成速度を遅くしなければならず、生産性が悪くなると
いう問題があった。また、MgOを添加した定比組成に近
いLT単結晶は、耐光損傷性に優れるものの、分極反転
の制御性がMgO濃度に依存するため、無添加の定比組成
に近いLT単結晶よりも分極反転構造を持つ光機能素子
を再現性よく作成するのが難しくなるという新たな問題
もでてきた。
For this reason, a crystal having a slight Ta excess component side (Li 2 O / (Ta 2 O 5 + Li 2 O mole fraction of 0.495 to 0.50)) is stable against light damage. In order to provide a crystal, it was necessary to add an additive such as Mg, but in the production of an LT single crystal containing Mg, the Mg element was uniformly distributed in the crystal to improve the optical quality. In order to grow crystals without deterioration, the crystal growth rate must be slower than in the case of non-added crystals, and there is a problem that productivity is deteriorated. Although an LT single crystal close to the composition has excellent light damage resistance, the controllability of the polarization reversal depends on the MgO concentration. A new problem has emerged that makes it difficult to create with good reproducibility.

【0030】さらに、耐光損傷性は、使用する光が青色
から紫外の短波長光域になると更に厳しい問題となる。
従来のLT単結晶の光損傷は、照射するレーザの波長が
短くなると発生しやすくなり、波長が400nm近傍での耐
光損傷閾値は、波長532nmでの耐光損傷閾値よりも2桁以
上も低下することは短波長への光機能素子応用上大きな
問題であった。
Further, the light damage resistance becomes a more severe problem when the light used is in a short wavelength region from blue to ultraviolet.
Conventional LT single crystal photo-damage is more likely to occur when the wavelength of the laser to be irradiated is shortened, and the photo-damage threshold near 400 nm is two orders of magnitude lower than the photo-damage threshold at 532 nm. Was a major problem in the application of optical functional devices to short wavelengths.

【0031】このようなことから、不定比欠陥を全く含
まない完全なLT単結晶を開発することが、これらの問
題を解決する手段として期待されるが、原料連続供給二
重るつぼ法を用いても、結晶全体や結晶ロット間のばら
つきなく完全結晶を育成することは難しく、歩留まりが
低下し、バルクの結晶を工業的に生産することは達成さ
れていない。
From the above, it is expected that a complete LT single crystal containing no non-stoichiometric defects is developed as a means for solving these problems. However, it is difficult to grow a complete crystal without variations in the whole crystal or between crystal lots, the yield is reduced, and industrial production of bulk crystal has not been achieved.

【0032】一方、薄膜または0.5mm程度の厚みの定比
組成結晶を開発手段としてコングルエント結晶基板上に
LPE処理を加える方法、またはコングルエント結晶基板
にVapor Transport Equilibration処理を加える方法
は、結晶組成をより定比組成に近づけやすい方法として
知られているが、これらの場合でも液相の組成やLPE温
度、あるいはVTE処理温度により結晶組成は変動し、や
はり、全く欠陥がない完全結晶を工業的に製造するには
問題がある。
On the other hand, a thin film or a stoichiometric crystal having a thickness of about 0.5 mm is used as a development tool on a congruent crystal substrate.
The method of adding the LPE treatment or the method of adding the Vapor Transport Equilibration treatment to the congruent crystal substrate is known as a method of making the crystal composition more close to the stoichiometric composition, but even in these cases, the composition of the liquid phase, the LPE temperature, Alternatively, the crystal composition fluctuates depending on the VTE processing temperature, and there is still a problem in industrially producing a complete crystal having no defect.

【0033】[0033]

【課題を解決するための手段】本発明者は、前記従来の
問題を解決するため、ストイキメトリ組成のLT結晶の
特性究明を鋭意継続していたところ、Li過剰のストイ
キメトリ組成のLT結晶が分極反転構造の制御性を向上
し、さらに耐光損傷性を向上するという光機能素子とし
て優れた特性を有することを見出した。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present inventors have intensively investigated the characteristics of LT crystals having a stoichiometric composition. It has been found that the optical functional device has excellent characteristics of improving the controllability of the domain-inverted structure and further improving the light damage resistance.

【0034】すなわち、本発明の光機能素子は、タンタ
ル酸リチウム単結晶の分極構造を周期的に反転させ、可
視から近赤外域の波長を持った入射レーザの波長を短波
長化あるいは長波長化させる光機能素子において、Li過
剰のストイキオメトリ組成に近いLi2O/(Ta2O5+Li2O)の
モル分率が0.500〜0.505であり、タンタル酸リチウム単
結晶を基板に用いたことを特徴とする。
That is, in the optical functional device of the present invention, the polarization structure of the lithium tantalate single crystal is periodically inverted to shorten or lengthen the wavelength of an incident laser having a wavelength in the visible to near infrared region. In the optical function device to be used, the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) close to the Li excess stoichiometric composition is 0.500 to 0.505, and the lithium tantalate single crystal is used for the substrate. It is characterized by.

【0035】また、本発明の光機能素子は、単一分域状
態にあるタンタル酸リチウム単結晶に微少領域で分極反
転を形成し、分極反転させることで種々の情報を単結晶
内に記録する光記憶素子あるいは光回路素子において、
Li過剰のストイキオメトリ組成に近いLi2O/(Ta2O5+Li2
O)のモル分率が0.500〜0.505でありタンタル酸リチウム
単結晶を基板に用いたことを特徴とする。
Further, in the optical functional device of the present invention, polarization inversion is formed in a minute region in a single domain lithium tantalate single crystal, and various information is recorded in the single crystal by performing polarization inversion. In optical storage elements or optical circuit elements,
Li 2 O / (Ta 2 O 5 + Li 2 close to Li excess stoichiometric composition
The mole fraction of O) is 0.500 to 0.505, and a single crystal of lithium tantalate is used for the substrate.

【0036】また、本発明の光機能素子は、単結晶の電
気光学効果を利用して単結晶内に入射されたレーザ光を
制御する光素子であって、タンタル酸リチウム単結晶の
強誘電分極を反転構造の大きな屈折率変化を利用して光
の偏向、焦点、スイッチングを行う光素子において、Li
過剰のストイキオメトリ組成に近いLi2O/(Ta2O5+Li2O)
のモル分率が0.500〜0.505でありタンタル酸リチウム単
結晶を基板に用いたことを特徴とする。
Further, the optical functional device of the present invention is an optical device for controlling a laser beam incident on a single crystal by utilizing the electro-optic effect of the single crystal, and comprises a ferroelectric polarization of a lithium tantalate single crystal. In an optical element that deflects, focuses, and switches light using the large refractive index change of the inversion structure, Li
Li 2 O / (Ta 2 O 5 + Li 2 O) close to excess stoichiometric composition
Has a mole fraction of 0.500 to 0.505, and a single crystal of lithium tantalate is used for the substrate.

【0037】また、前記光機能素子においては、基板と
なるタンタル酸リチウム単結晶のキュリー温度が686〜6
95℃の範囲であることが好ましい。
In the above-mentioned optical functional device, the Curie temperature of the lithium tantalate single crystal as a substrate is 686 to 6
Preferably it is in the range of 95 ° C.

【0038】前記光機能素子においては、タンタル酸リ
チウム単結晶基板の分極反転に必要とする印加電圧が3K
V/mm以下であることが好ましい。
In the optical functional device, the applied voltage required for reversing the polarization of the lithium tantalate single crystal substrate is 3K.
It is preferably at most V / mm.

【0039】また、前記光機能素子においては、タンタ
ル酸リチウム単結晶基板の耐光損傷閾値が、波長407nm
の連続発振レーザ照射に対して103KW/cm2以上であるこ
とが好ましい。
In the above-mentioned optical functional device, the light damage threshold of the lithium tantalate single crystal substrate is 407 nm.
Is preferably 10 3 KW / cm 2 or more for the continuous wave laser irradiation.

【0040】本発明者らは、LT単結晶を利用した光機
能素子における分極反転や光損傷制御の問題点は単結晶
基板の組成にあることを突き止めた。本発明は、LT結
晶の分極反転構造を利用した光機能素子用途として、あ
る組成範囲にあるLT結晶単結晶基板に着目した点にあ
る。Li2O/(Ta2O5+Li2O)のモル分率が0.50より大きくLi
成分が過剰な定比に近いLT単結晶が従来の特性と異な
り、優れた分極反転制御性を持つことが、本発明者らに
よって初めて見いだされた。
The present inventors have found that the problem of polarization inversion and optical damage control in an optical functional device using an LT single crystal lies in the composition of the single crystal substrate. The present invention focuses on an LT crystal single crystal substrate within a certain composition range as an optical functional device application utilizing a domain-inverted structure of an LT crystal. Li 2 O / (Ta 2 O 5 + Li 2 O) mole fraction greater than 0.50
The present inventors have found for the first time that the LT single crystal in which the components are excessively close to the stoichiometric ratio has excellent polarization reversal controllability different from the conventional characteristics.

【0041】さらに、LT結晶の組成を、Li2O/(Ta2O5
+Li2O)のモル分率が0.50より大きくLi成分過剰とする
ことで、光機能素子の耐光損傷特性を大幅に向上させる
ことが可能になった。これを利用することで、短波長光
に適用する光機能素子の特性も飛躍的に向上することが
明らかになった。
Further, the composition of the LT crystal was changed to Li 2 O / (Ta 2 O 5
By making the molar fraction of + Li 2 O) larger than 0.50 and making the Li component excessive, it was possible to greatly improve the light damage resistance characteristics of the optical functional device. It has been clarified that by using this, the characteristics of an optical functional element applied to short-wavelength light can be dramatically improved.

【0042】今回見いだされた分極反転特性や耐光損傷
特性についても、このモル分率を有するLT単結晶特有
の効果である。定比組成に近いLT単結晶は、原料連続
供給二重坩堝法によって、最近、ようやく、光学的に均
質な基板の作製が可能になった結晶であり、その光学特
性については、未だ総てが明らかにされていない。特
に、定比よりもLi成分過剰のLT結晶基板の光学特性に
ついては、本発明者らが初めて明らかにしたものであ
る。また、この特性を利用した光機能素子特性の大幅な
向上については、さらに未開拓な分野であった。
The polarization reversal characteristics and light damage resistance characteristics found this time are also effects peculiar to the LT single crystal having this mole fraction. The LT single crystal having a near stoichiometric composition is a crystal that has finally been able to produce an optically homogeneous substrate by a continuous raw material supply double crucible method. Not disclosed. In particular, the present inventors have clarified for the first time the optical characteristics of the LT crystal substrate in which the Li component is excessive relative to the stoichiometric ratio. In addition, the use of this characteristic to significantly improve the characteristics of an optical functional device has been an unexplored field.

【0043】[0043]

【発明の実施の形態】本来、LT単結晶の理想組成は、
Li:Ta比が1:1であるが、従来から市販されてきたコン
グルエント組成LT単結晶基板は、単結晶育成技術の制
約から多量のTa成分過剰のものである(Li2O/(Ta2O5+L
i2O)のモル分率が約0.485)。一方、原料連続供給二重
坩堝法によって、Li成分過剰(例えば、Li2O/(Ta2O5+L
i2O)のモル分率が0.56〜0.60)の融液から開発された定
比組成に近い組成のLT結晶も、まだ若干Ta成分が過剰
な側(Li2O/(Ta2O5+Li2Oのモル分率が0.495〜0.50)に
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Originally, the ideal composition of an LT single crystal is
Although the Li: Ta ratio is 1: 1, conventionally commercially available LT single crystal substrates having a congruent composition have a large excess of the Ta component due to the restriction of the single crystal growth technology (Li 2 O / (Ta 2 O 5 + L
The molar fraction of i 2 O) is about 0.485). On the other hand, by the raw material continuous supply double crucible method, Li component excess (for example, Li 2 O / (Ta 2 O 5 + L
The LT crystal having a composition close to the stoichiometric composition developed from a melt having a molar fraction of (i 2 O) of 0.56 to 0.60) still has a slightly excessive Ta component (Li 2 O / (Ta 2 O 5 + Li). The molar fraction of 2 O is between 0.495 and 0.50).

【0044】本発明者らは、融液の組成を著しくLi成分
過剰(Li2O/(Ta2O5+Li2O)のモル分率が0.60〜0.67)に
した融液から結晶を育成すると、Li成分が過剰の定比組
成に近い(Li2O/(Ta2O5+Li2O)のモル分率が0.50より大
きい)LT単結晶が育成でき、Ta成分過剰による不定比
欠陥濃度を抑えた単結晶が光機能素子基板として優れた
特性を示すことをはじめて明らかにしたものである。
The inventors of the present invention intend to grow crystals from a melt in which the composition of the melt is remarkably excessive in the Li component (the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is 0.60 to 0.67). In addition, an LT single crystal in which the Li component is close to an excess stoichiometric composition (the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is larger than 0.50) can be grown, and the non-stoichiometric defect concentration due to the excess Ta component can be reduced. It has been clarified for the first time that the suppressed single crystal exhibits excellent characteristics as an optical functional element substrate.

【0045】すなわち、従来の結晶における過剰なTaに
より形成される多量の欠陥が、光機能素子応用にとって
大きな問題を引きおこすことを見い出した。この欠陥の
存在によって、分極反転に必要な印加電圧と自発分極の
関係を示すヒステリシス曲線は非対称的になり、しか
も、分極反転には数十kV/mmの高電圧が必要とされるこ
とがわかった。さらに、結晶内部で欠陥が不均一に分布
しており欠陥濃度が高いような箇所では分極反転がピン
ニングされやすいために、電圧印加法を用いても精度よ
く分極反転することが技術的に困難であるということが
明らかになった。
That is, it has been found that a large number of defects formed by excess Ta in the conventional crystal cause a great problem for optical functional device applications. Due to the existence of this defect, the hysteresis curve showing the relationship between the applied voltage required for polarization reversal and spontaneous polarization became asymmetric, and it was found that a high voltage of several tens of kV / mm was required for polarization reversal. Was. Furthermore, it is technically difficult to accurately perform polarization inversion even when a voltage application method is used because defects are unevenly distributed inside the crystal and polarization inversion is likely to be pinned in a portion where the defect concentration is high. It became clear that there was.

【0046】LT単結晶では、キュリー温度より高温の
常誘電相において、Li、Taイオンは電気的中性位置に配
置しているが、キュリー温度以下の強誘電相では、Liお
よびTaイオンが+zもしくは-z方向に少しずれる。このイ
オンのずれの方向によってドメインの正負の分極方向が
決定されている。分極反転構造を持つ光機能素子では、
高電界を加えることでこのイオンを低温で強制的に移動
させることが必要になる。
In the LT single crystal, in the paraelectric phase higher than the Curie temperature, Li and Ta ions are arranged in an electrically neutral position. In the ferroelectric phase lower than the Curie temperature, Li and Ta ions are + A slight shift in the z or -z direction. The direction of positive and negative polarization of the domain is determined by the direction of this ion shift. In an optical function device having a domain-inverted structure,
By applying a high electric field, it is necessary to force the ions to move at a low temperature.

【0047】一致溶融組成の不定比欠陥が多い場合に
は、空位を通じてLiイオンは拡散移動しやすいもののLi
サイトに入った過剰のTaを移動させることは容易ではな
いため、分極反転には大きな印加電圧が必要となる。こ
のことから、Ta過剰成分側(Li 2O/(Ta2O5+Li2Oのモル
分率が0.495〜0.50)にある結晶よりも、Ta成分過剰の不
定比欠陥を完全に排除したLi成分が過剰な定比組成に近
いLT単結晶(Li2O/(Ta 2O5+Li2O)のモル分率が0.500
〜0.505)が分極反転制御性に優れる。
When there are many nonstoichiometric defects of the coincident molten composition
Means that Li ions can easily diffuse and move through vacancies, but Li
It is not easy to move excess Ta entering the site
Therefore, a large applied voltage is required for polarization reversal. This
From the Ta excess component side (Li TwoO / (TaTwoOFive+ LiTwoO mole
Fraction with a Ta component excess of 0.495 to 0.50).
Li component completely eliminating stoichiometric defects is close to excessive stoichiometric composition
LT single crystal (LiTwoO / (Ta TwoOFive+ LiTwoO) molar fraction of 0.500
~ 0.505) is excellent in polarization inversion controllability.

【0048】本発明は、Li成分が過剰な定比組成に近い
LT単結晶として、キュリー温度が686〜695℃の範囲に
ある結晶は同じ特性を示すことを明らかにした。これ
は、結晶組成を精度良く評価するには高度に熟練した技
術による化学分析が必要で測定時間も長くかかる。これ
に対して、例えば結晶組成に特性が大きく依存する示唆
熱分析法によるキュリー温度測定は、結晶組成を簡便に
管理、評価する方法で有用である。
The present invention has clarified that crystals having a Curie temperature in the range of 686 to 695 ° C. show the same characteristics as LT single crystals having an excess Li component and close to the stoichiometric composition. This requires a highly-skilled chemical analysis to accurately evaluate the crystal composition, and the measurement time is long. On the other hand, for example, Curie temperature measurement by a suggestive thermal analysis method in which properties greatly depend on the crystal composition is useful in a method for easily managing and evaluating the crystal composition.

【0049】また、光損傷についても過剰な成分のTaが
問題を引き起こしていたことが明らかになった。Li成分
が過剰な定比組成に近いLT単結晶(Li2O/(Ta2O5+Li2
O)のモル分率が0.500〜0.505)に、あるいはキュリー温
度が686〜695℃の範囲にある種々のLT単結晶に、光強
度が103KW/cm2以上の532nmの連続発振緑色光レーザを照
射しても、全く光損傷は見られない。
It was also found that an excessive component of Ta caused a problem with respect to optical damage. LT single crystal (Li 2 O / (Ta 2 O 5 + Li 2
A 532 nm continuous-wave green light laser with a light intensity of 10 3 KW / cm 2 or more on various LT single crystals having a molar fraction of O) of 0.500 to 0.505) or a Curie temperature in the range of 686 to 695 ° C. Irradiation does not cause any optical damage.

【0050】さらに、従来未解決であったより短波長の
レーザ光入射に対しても耐光損傷閾値が向上しており、
光強度が103KW/cm2の波長407nmの連続発振レーザ照射に
対して全く光損傷は見られず、この結晶を基板に用いた
光素子も安定に動作できることが明らかになった。
Further, the threshold value against light damage is improved even when a laser beam having a shorter wavelength than before has been solved.
Quite light damage to the continuous wave laser radiation of a wavelength 407nm light intensity 10 3 KW / cm 2 was not observed, it can be also stably operate an optical device using the crystal substrate revealed.

【0051】次に、本発明の光機能素子として用いられ
るLT単結晶の製造方法と物性を示す。市販の高純度Li
2CO3、Ta2O5の原料粉末を準備し、 Li成分過剰原料とし
てLi 2CO3:Ta2O5の比が0.60:0.40、0.62:0.38、0.64:
0.36、0.66:0.34の割合で混合した。また、別に化学量
論比組成原料として、Li2CO3:Ta2O5=0.50:0.50の割合
で混合した。次に、1ton/cm2の静水圧でラバープレス
成形し、それぞれの組成比の原料を約1050℃の酸素中で
焼結し原料棒を作成した。また、連続供給用粉末原料と
して混合済みの化学量論比組成の連続供給用原料を約13
50℃の大気中で焼結して化学量論比組成原料も作成し
た。
Next, the optical functional device of the present invention is used.
The production method and physical properties of the LT single crystal are shown below. Commercially available high purity Li
TwoCOThree, TaTwoOFivePrepare raw material powder of
Li TwoCOThree: TaTwoOFiveOf 0.60: 0.40, 0.62: 0.38, 0.64:
They were mixed at a ratio of 0.36, 0.66: 0.34. Also, separate stoichiometry
Li as a stoichiometric composition raw materialTwoCOThree: TaTwoOFive= 0.50: 0.50 ratio
And mixed. Next, 1ton / cmTwoRubber press with hydrostatic pressure
The raw materials of each composition ratio are molded in oxygen at about 1050 ° C.
The raw material rod was sintered. In addition, powder material for continuous supply
About 13% of the stoichiometric composition
Sintering in the air at 50 ° C also creates a stoichiometric composition raw material
Was.

【0052】次に、原料連続供給型二重坩堝法を用いて
定比組成に近いLi過剰のLT単結晶の育成を行った。二
重るつぼ内のLi成分過剰組成の融液(例えば、Li2O/(Ta
2O5+Li2O)のモル分率で0.60、0.62、0.64、0.66)に種
結晶をつけ、引き上げ速度0.5mm/h、結晶回転数20rpmで
定比組成に近い、すなわち、不定比欠陥濃度を極力抑え
た単結晶を得た。不定比欠陥の密度や構造を精密に制御
するために、結晶化した成長量に見合った量のLi2O/(Ta
2O5+Li2O)のモル分率が0.50の化学量論組成比の連続供
給用原料を外側坩堝に自動的に供給しながら結晶を育成
した。
Next, a Li-excess LT single crystal close to a stoichiometric composition was grown by using the double crucible method of continuously supplying raw materials. Melt with excess Li component in double crucible (eg, Li 2 O / (Ta
A seed crystal is placed at 0.60, 0.62, 0.64, 0.66) with a molar fraction of 2 O 5 + Li 2 O), with a pulling rate of 0.5 mm / h and a crystal rotation speed of 20 rpm, which is close to the stoichiometric composition. Was obtained as much as possible. In order to precisely control the density and structure of nonstoichiometric defects, the amount of Li 2 O / (Ta
The crystal was grown while a raw material for continuous supply having a stoichiometric composition ratio of 0.50 (2O 5 + Li 2 O) was automatically supplied to the outer crucible.

【0053】ここで、育成に用いた坩堝はイリジウムで
できており、外側るつぼは、直径125mm高さ70mm、内側
るつぼは、直径85mm高さ90mmとした。この場合にも融液
組成を均一化させるために、育成に際して坩堝を4rpmの
速度で種結晶と反対方向に回転させた。育成条件は結晶
回転速度を20rpm、引き上げ速度は0.5mm/hで一定とし、
育成雰囲気を0.05%酸素を含む窒素中とした。
Here, the crucible used for growing was made of iridium, the outer crucible was 125 mm in diameter and 70 mm in height, and the inner crucible was 85 mm in diameter and 90 mm in height. Also in this case, in order to homogenize the melt composition, the crucible was rotated at a speed of 4 rpm in the direction opposite to the seed crystal during growth. The growth conditions were a constant crystal rotation speed of 20 rpm and a constant pulling speed of 0.5 mm / h.
The growth atmosphere was in nitrogen containing 0.05% oxygen.

【0054】育成のプロセスにおいては、通常の光学用
コングルエントLT単結晶の育成と同じように、光損傷
を誘起する一要因と考えられている鉄やクロム等の遷移
金属不純物はできるだけ入らないように注意を払った。
約1週間の育成により直径約55mm、長さ約70mmの大き
さで、クラックのない無色透明のLT単結晶体を得た。
得られたアズグロウン結晶の内部の分域状態は多分域状
態であった。
In the growth process, as in the growth of a congruent LT single crystal for optical use, transition metal impurities such as iron and chromium, which are considered to be one factor that induces optical damage, should be minimized. Paid attention.
By growing for about one week, a colorless and transparent LT single crystal having a diameter of about 55 mm and a length of about 70 mm was obtained without cracks.
The domain state inside the obtained as-grown crystal was a multi-domain state.

【0055】そこで、ポーリングに先立ち、得られたL
T単結晶のキュリー温度を示唆熱分析法により求めた。
予め、定比組成に調合し1500℃で焼結した定比組成の標
準焼結試料を準備し、そのキュリー温度は694℃である
ことを確認した。
Therefore, prior to polling, the obtained L
The Curie temperature of the T single crystal was determined by suggestive thermal analysis.
A standard sintered sample of a stoichiometric composition prepared in advance to a stoichiometric composition and sintered at 1500 ° C. was prepared, and it was confirmed that the Curie temperature was 694 ° C.

【0056】次に、二重るつぼ内のLi成分過剰組成の融
液(例えば、Li2O/(Ta2O5+Li2O)のモル分率で0.60、0.
62、0.64、0.66)組成から得られたそれぞれのLT単結
晶のキュリー温度を測定した。それぞれの結晶のキュリ
ー温度は686〜695℃の範囲にあり、この温度は、これま
でに報告されている定比組成に近い組成のLT単結晶の
キュリー温度の675〜685℃よりもさらに高温で、しか
も、定比組成の標準焼結試料のキュリー温度に近いこと
がわかった。
Next, in the double crucible, the melt ratio of the Li component excess composition (for example, Li 2 O / (Ta 2 O 5 + Li 2 O) mole fraction of 0.60, 0.
62, 0.64, 0.66) The Curie temperature of each LT single crystal obtained from the composition was measured. The Curie temperature of each crystal is in the range of 686 to 695 ° C, which is higher than the Curie temperature of LT single crystal of a composition close to the stoichiometric composition reported so far, which is 675 to 685 ° C. In addition, it was found that the temperature was close to the Curie temperature of a standard sintered sample having a stoichiometric composition.

【0057】さらに、ここで得られた一本の結晶から切
り出した試料のキュリー温度は、試料の切り出し位置に
依らず測定誤差内で一定で、結晶組成の均質性は極めて
良いことも確認された。また、育成された結晶のキュリ
ー温度は標準焼結試料のキュリー温度の694℃よりも大
幅に高くなることはなかった。
Further, the Curie temperature of the sample cut out from one of the obtained crystals was constant within the measurement error regardless of the cut-out position of the sample, and it was confirmed that the homogeneity of the crystal composition was extremely good. . In addition, the Curie temperature of the grown crystal did not become much higher than the Curie temperature of the standard sintered sample of 694 ° C.

【0058】二重るつぼ内の融液組成をLi2O/(Ta2O5+L
i2O)のモル分率で0.60よりも少しずつ、Li過剰にしてい
くと、得られた結晶のキュリー温度は徐々に低下してい
く傾向が見られた。このことは、LT単結晶のキュリー
温度が完全な定比組成結晶で最大値をとることを意味し
ている。得られた結晶のキュリー温度の最大値695℃が
定比組成の標準焼結試料のキュリー温度の694℃より高
温度にあるのは、示唆熱分析法で求めるキュリー温度の
測定誤差によるものと考えられる。これらのことから、
育成された結晶は完全な定比組成かあるいはLi成分が定
比組成よりも過剰である可能性が考えられる。
The composition of the melt in the double crucible was Li 2 O / (Ta 2 O 5 + L
As the molar fraction of i 2 O) was gradually increased to an excess of Li less than 0.60, the Curie temperature of the obtained crystals tended to gradually decrease. This means that the Curie temperature of the LT single crystal has the maximum value in a perfect stoichiometric crystal. The reason that the maximum value of the Curie temperature of the obtained crystal, 695 ° C, is higher than the Curie temperature of the stoichiometric standard sintered sample, 694 ° C, is thought to be due to the measurement error of the Curie temperature determined by the suggested thermal analysis method. Can be from these things,
It is conceivable that the grown crystal has a perfect stoichiometric composition or that the Li component is in excess of the stoichiometric composition.

【0059】そこで、化学分析法により直接組成を分析
した。化学分析では組成比の絶対値を精度良く求めるこ
とは難しく、LT結晶の場合Li2O/(Ta2O5+Li2O)のモ
ル分率で約0.001〜0.005程度の誤差を含んでいる。そこ
で、定比に近い組成のLT結晶については非常に慎重に
組成を分析した。同一試料について数カ所の異なる分析
装置を用いて評価し、その平均値を求めた。その結果、
二重るつぼ内のLi成分過剰組成の融液(例えば、Li2O/
(Ta2O5+Li2O)のモル分率で0.60、0.62、0.64、0.66)
組成から得られたそれぞれのLT単結晶の場合、Li2O/
(Ta2O5+Li2O)のモル分率の値は0.500〜0.505の範囲
にあり、Li成分が過剰な定比組成に極めて近いLT単結
晶であることがわかった。
Therefore, the composition was directly analyzed by a chemical analysis method. In chemical analysis, it is difficult to accurately determine the absolute value of the composition ratio. In the case of LT crystal, the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) includes an error of about 0.001 to 0.005. Therefore, the composition of the LT crystal having a composition close to the stoichiometric ratio was analyzed very carefully. The same sample was evaluated using several different analyzers, and the average was determined. as a result,
Melt with excess Li component in double crucible (eg, Li 2 O /
0.60, 0.62, 0.64, 0.66 in molar fraction of (Ta 2 O 5 + Li 2 O)
For each LT single crystal obtained from the composition, Li 2 O /
The value of the molar fraction of (Ta 2 O 5 + Li 2 O) was in the range of 0.500 to 0.505, and it was found that the LT single crystal was extremely close to the excess stoichiometric composition in which the Li component was excessive.

【0060】次に、得られたそれぞれの結晶をキュリー
温度以上の約750℃に加熱した後、結晶のZ軸方向から約
5〜10V/cmの電圧を印加し、室温まで冷却することで単
一分域化した。単一分域化されたLT単結晶から大きさ
が35mm×35mm×50mmのブロック状試料を切り出し、メカ
ノケミカル研磨により表面研磨を行った。試料の光学的
均質性をマッハツエンダー干渉法により評価したとこ
ろ、マクロな欠陥や光学的に不均一な部分は見られず、
試料内の屈折率変化は1×10-5以下が得られ、光学的均
質性に優れていることが確認された。
Next, each of the obtained crystals is heated to about 750 ° C., which is equal to or higher than the Curie temperature, and then, about
A single domain was obtained by applying a voltage of 5 to 10 V / cm and cooling to room temperature. A block sample having a size of 35 mm × 35 mm × 50 mm was cut out from a single-domain LT single crystal, and the surface was polished by mechanochemical polishing. When the optical homogeneity of the sample was evaluated by Mach-Zehnder interferometry, no macro defects or optically non-uniform parts were found.
A change in the refractive index in the sample of 1 × 10 −5 or less was obtained, and it was confirmed that the sample had excellent optical homogeneity.

【0061】このように、Li2O/(Ta2O5+Li2O)のモル分
率が0.500〜0.505の範囲にあるLi成分が過剰な定比組成
に近いLT単結晶あるいは前述のキュリー温度が686〜6
95℃の範囲にあるLT単結晶基板は、光学的均質性に優
れている。
As described above, the Li single component in which the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is in the range of 0.500 to 0.505 is excessively close to the stoichiometric composition of the LT single crystal or the aforementioned Curie temperature. Is 686 ~ 6
LT single crystal substrates in the range of 95 ° C. have excellent optical homogeneity.

【0062】本発明者らは、前述のTa成分過剰による不
定比欠陥濃度を抑えた単結晶は、従来の結晶における過
剰なTaにより形成される多量の欠陥の存在によって、分
極反転に必要な印加電圧と自発分極の関係を示すヒステ
リシス曲線は非対称的になり、しかも、分極反転には数
十kV/mmの高電圧が必要とされるという問題や、結晶内
部の不均一に分布する欠陥濃度が高いような箇所では分
極反転がピンニングされやすいために、電圧印加法を用
いても精度よく分極反転することが技術的に困難である
という問題を解決して、光機能素子の高精度な分極反転
の形成が図れることを明らかにした。
The present inventors have found that the above-mentioned single crystal in which the non-stoichiometric defect concentration due to the excess of the Ta component is suppressed has a large amount of defects formed by excess Ta in the conventional crystal, and the single crystal required for polarization reversal is applied. The hysteresis curve showing the relationship between voltage and spontaneous polarization becomes asymmetrical.Moreover, high voltage of several tens of kV / mm is required for polarization reversal, and the defect concentration which is unevenly distributed inside the crystal increases. High-precision polarization inversion of optical functional devices is solved by solving the problem that polarization inversion is easily pinned in high places, and it is technically difficult to accurately perform polarization inversion even by using a voltage application method. It was clarified that the formation of was possible.

【0063】次に、育成した種々の単結晶から30mm×
30mmで厚みが0.5〜3.0mmのzカット試料を切り出し
た。両z面に電極を形成した後、電圧を印加し、電流値
の変化から分極反転電圧を測定した。その結果、図1に
示すように、従来の一致溶融組成LT単結晶では分極反
転に必要な印加電圧が25kV/mm程度(反転電圧の21kV
/mmより数kV/mm程度高い値を加える)必要であるのに対
して、定比組成に近づくと2〜4kV/mm程度の印加電圧で
分極が反転することを確認した。
Next, 30 mm ×
A z-cut sample having a thickness of 30 mm and a thickness of 0.5 to 3.0 mm was cut out. After electrodes were formed on both z-planes, a voltage was applied, and a polarization reversal voltage was measured from a change in current value. As a result, as shown in FIG. 1, the applied voltage required for the polarization inversion is about 25 kV / mm (21 kV of the inversion voltage of 21 kV / mm) in the conventional matched melt composition LT single crystal.
It is necessary to add a value several kV / mm higher than / kV / mm), whereas it is confirmed that the polarization is reversed at an applied voltage of about 2 to 4 kV / mm as the composition approaches the stoichiometric composition.

【0064】この結果は、本発明者らが先に報告した結
果と一致している。本発明者らは、さらに、Li2O/(Ta2O
5+Li2O)のモル分率が0.500〜0.505の範囲にあるLi成分
が過剰な定比組成に近いLT単結晶試料では、分極反転
に必要な印加電圧がさらに少なくて済み、印加電圧が0.
5〜1kV/mm程度でも分極反転が形成できる試料も得られ
た。さらに、自発分極-印加電圧のヒステリシスは、完
全な対称性を示し、内部電場は測定誤差内で0kV/mmであ
った。このため、分極反転のプロセスは極めて可逆的で
あり、分極反転プロセスの制御性が優れていることも明
らかになった。
This result is consistent with the result previously reported by the present inventors. The present inventors have further found that Li 2 O / (Ta 2 O
In the case of an LT single crystal sample in which the molar fraction of ( 5 + Li 2 O) is in the range of 0.500 to 0.505 and the Li component is close to the stoichiometric composition, the applied voltage required for polarization reversal is further reduced, and the applied voltage is 0. .
A sample capable of forming polarization inversion even at about 5 to 1 kV / mm was obtained. Furthermore, the hysteresis of spontaneous polarization-applied voltage showed perfect symmetry, and the internal electric field was 0 kV / mm within the measurement error. For this reason, it became clear that the domain inversion process was extremely reversible, and the controllability of the domain inversion process was excellent.

【0065】このように、同じ定比組成に近いLT単結
晶であっても、若干のTa過剰成分側(Li2O /(Ta2O5+Li
2Oのモル分率が0.495〜0.50)にある結晶よりも、Ta成分
過剰の不定比欠陥を完全に排除したLi2O/(Ta2O5+Li2O)
のモル分率が0.500〜0.505の範囲にあるLi成分が過剰な
定比組成に近いLT単結晶において分極反転制御性の大
幅な向上が確認できた。
As described above, even if the LT single crystal has the same stoichiometric composition, a slight Ta excess component side (Li 2 O / (Ta 2 O 5 + Li)
Li 2 O / (Ta 2 O 5 + Li 2 O) in which the Ta component excess non-stoichiometric defects are completely eliminated, compared to a crystal in which the molar fraction of 2 O is in the range of 0.495 to 0.50).
In the LT single crystal in which the molar fraction of is in the range of 0.500 to 0.505 and the Li component is excessively close to the stoichiometric composition, a significant improvement in the polarization inversion controllability was confirmed.

【0066】また、本発明者らは、光損傷についても過
剰な成分のTaが問題を引き起こしていることに着目し
た。Li2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505の範
囲にあるLi成分が過剰な定比組成に近いLT単結晶、あ
るいはキュリー温度が686〜695℃の範囲にある種々のL
T単結晶に、波長532nmの連続発振緑色光(コヒーレン
ト社製Verdi)および波長407nmの連続発振青紫光(コヒ
ーレント社製、クリプトンレーザInova)を入射して光
損傷の有無を調べた。
The present inventors have also paid attention to the fact that an excessive component Ta causes a problem with respect to optical damage. An LT single crystal in which the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is in the range of 0.500 to 0.505 and the Li component is excessively close to the stoichiometric composition, or the Curie temperature is in the range of 686 to 695 ° C. Some L
Continuous oscillation green light of 532 nm wavelength (Verdi, manufactured by Coherent) and continuous oscillation blue-violet light of 407 nm (Krypton laser, Innova, manufactured by Coherent) were incident on the T single crystal, and the presence or absence of optical damage was examined.

【0067】種々の組成の結晶から、約5mm3角の立方体
試料を切り出し、x,y,z両面を光学研摩し評価用試
料を準備した。結晶のy軸、およびx軸方位から上記レ
ーザ光をレンズで絞って光強度を10-3〜103KW/cm2の範
囲で強度を少しずつ変えて入射して、結晶を通過したレ
ーザ光のビームプロファイルをフィルターを通してビー
ムプロファイラー(浜松フォトニクス社製)で観察し
た。レーザの偏光方向は結晶のz軸方向と平行とした。
From the crystals having various compositions, cubes of about 5 mm 3 were cut out, and both sides x, y and z were optically polished to prepare evaluation samples. The above laser light is narrowed down with a lens from the y-axis and x-axis directions of the crystal, and the light intensity is changed little by little in the range of 10 -3 to 10 3 KW / cm 2 , and the laser light is transmitted through the crystal. Was observed with a beam profiler (Hamamatsu Photonics) through a filter. The polarization direction of the laser was parallel to the z-axis direction of the crystal.

【0068】光損傷が起きると結晶のz軸方向にビーム
が広がり形状がゆがむ(ビームファンニング)ので、10
分間の照射中にビームファンニングが発生して観測され
た場合、その入射光強度を光損傷閾値として定義した。
図2に示すように、若干のTa過剰成分側(Li2O /(Ta2O5
+Li2Oのモル分率が0.495〜0.50) にある結晶では、試
料によって耐光損傷閾値は2桁以上大きく変動してい
た。この耐光損傷閾値は結晶の熱処理状態に大きく依存
していた。
When optical damage occurs, the beam spreads in the z-axis direction of the crystal and the shape is distorted (beam fanning).
When beam fanning occurred and was observed during irradiation for one minute, the incident light intensity was defined as an optical damage threshold.
As shown in FIG. 2, a slight excess of Ta (Li 2 O / (Ta 2 O 5
In a crystal in which the molar fraction of + Li 2 O is 0.495 to 0.50), the light damage threshold greatly fluctuated by more than two orders depending on the sample. This light damage threshold greatly depends on the heat treatment state of the crystal.

【0069】すなわち、Liイオンサイトを置換する過剰
なTaイオンが還元された状態で誘起されるポラロンに起
因した光吸収が耐光損傷閾値を低下させる一因であると
考えられた。これに対して、Li2O/(Ta2O5+Li2O)のモル
分率が0.500〜0.505の範囲にあるLi成分が過剰な定比組
成に近いLT単結晶では、いずれの結晶の場合にも入射
光強度が103KW/cm2としても損傷は全く見られず、この
結晶を基板に用いた光素子の安定な動作が期待できるこ
とが明らかになった。この場合には、Liイオンサイトを
置換する過剰なTaイオンが存在しないため、還元された
状態でもポラロンは誘起されないためであると考えられ
る。
That is, it was considered that the light absorption caused by the polaron induced in a state where the excess Ta ion replacing the Li ion site was reduced was one of the causes of lowering the light damage threshold. On the other hand, in the case of the LT single crystal in which the Li component in which the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is in the range of 0.500 to 0.505 is close to an excess stoichiometric composition, any of the crystals Even when the incident light intensity was 10 3 KW / cm 2 , no damage was observed, and it was clarified that stable operation of an optical device using this crystal as a substrate could be expected. In this case, it is considered that polaron is not induced even in the reduced state because there is no excess Ta ion for substituting the Li ion site.

【0070】なお、これまでに若干のTa過剰成分側(Li
2O/(Ta2O5+Li2Oのモル分率が0.495〜0.50)にある結晶
では、安定して光損傷に強い結晶を提供するためにはMg
などの添加物を加えることが必要であった。これに対し
て、Li成分過剰なタンタル酸リチウム単結晶では、Mgな
どの添加物を加えなくても耐光損傷閾値が高いというこ
とは、実用上大きな利点である。
It should be noted that there has been some Ta excess component side (Li
In a crystal having a molar fraction of 2 O / (Ta 2 O 5 + Li 2 O of 0.495 to 0.50), in order to stably provide a crystal resistant to photodamage, Mg
It was necessary to add additives such as On the other hand, in the case of lithium tantalate single crystal having an excess of Li component, the fact that the threshold value against light damage is high without adding an additive such as Mg is a great advantage in practical use.

【0071】この理由は、Mgを含んだLT単結晶の生産
において、Mg元素を結晶内に均一に分布させ光学的品質
を劣化させずに結晶を育成するためには、無添加結晶の
場合に較べて結晶育成速度を遅くしなければならず、生
産性が悪くなるという問題があった。さらに、Mgを含ん
だ結晶では分極反転特性が無添加結晶とは異なるため、
制御性が悪くなるという問題があったが、本発明により
これらの問題を解決することが可能となった。
The reason for this is that, in the production of an LT single crystal containing Mg, in order to grow the crystal without distributing the Mg element uniformly in the crystal and deteriorating the optical quality, it is necessary to use an additive-free crystal. In comparison, there was a problem that the crystal growth rate had to be slowed down, and the productivity was deteriorated. Furthermore, since the polarization reversal characteristics of the Mg-containing crystal are different from those of the non-added crystal,
Although there was a problem that controllability deteriorated, the present invention has made it possible to solve these problems.

【0072】[0072]

【実施例】以下実施例を用いて、本発明をさらに具体的
に説明する。 実施例1 上記の方法で作成したLT単結晶を用いる光機能素子の
一つとして、光波長変換素子に適用した場合の特性につ
いて説明する。図3は上述の方法で作成したところの組
成Li2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505の範囲
にあるLi成分が過剰な定比組成に近いLT単結晶晶、あ
るいはキュリー温度が686〜695℃の範囲にある種々のL
T単結晶を基板に用いて、基板上に周期的分極反転構造
を形成したQPMデバイスの概略構成図である。
The present invention will be described more specifically with reference to the following examples. Example 1 A description will be given of characteristics when applied to an optical wavelength conversion element as one of the optical functional elements using the LT single crystal prepared by the above method. FIG. 3 shows an LT single crystal having a composition of Li 2 O / (Ta 2 O 5 + Li 2 O) in which the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is in the range of 0.500 to 0.505 and the Li component is excessively close to the stoichiometric composition. Crystals or various L with Curie temperature in the range of 686-695 ° C
1 is a schematic configuration diagram of a QPM device in which a T domain is used as a substrate and a periodically poled structure is formed on the substrate.

【0073】両面光学研磨された厚み0.5mm〜3.0mmの基
板1の+z面に櫛形電極と平行電極をパターニングし
た。周期は約3.2μmで、波長850nmに対して擬似位相整
合するように設計された。―z面は、電極を全面に蒸着
した。櫛形電極と平行電極の間、および櫛形電極と―z
面の裏面電極に、それぞれ電圧を印加し、周期的分極反
転領域2を形成した。
A comb-shaped electrode and a parallel electrode were patterned on the + z plane of a substrate 1 having a thickness of 0.5 mm to 3.0 mm which had been optically polished on both sides. The period was about 3.2 μm, and it was designed to be quasi-phase matched to a wavelength of 850 nm. On the -z plane, an electrode was deposited on the entire surface. Between the comb electrode and the parallel electrode, and between the comb electrode and -z
A voltage was applied to each of the back electrodes of the surfaces to form periodic domain-inverted regions 2.

【0074】用いたLT結晶は、分極状態は予め非常に
均一化されている。結晶に周期状の分極反転を形成する
際にも、Li2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505
の範囲にあるLi成分が過剰な定比組成に近いLT単結
晶、あるいはキュリー温度が686〜695℃の範囲にある種
々のLT単結晶においては、結晶の均一性に優れている
ため、均一な分極反転構造の形成が可能になる。通常の
コングルエント組成のLT結晶では、結晶内に小さな分
極反転域(マイクロドメイン)が多数存在するため、微
細な分極反転構造を形成する場合、マイクロドメインに
よる分極反転形状の不均一性が生じる。さらに、本発明
のLT単結晶基板においては周期状分極反転構造の短周
期化が容易であるという特徴を有する。
The used LT crystal has a very uniform polarization state in advance. When a periodic polarization inversion is formed in the crystal, the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) is 0.500 to 0.505.
In the LT single crystal in which the Li component in the range is excessively close to the stoichiometric composition, or various LT single crystals in which the Curie temperature is in the range of 686 to 695 ° C., the uniformity of the crystal is excellent. It becomes possible to form a domain-inverted structure. In an LT crystal having a normal congruent composition, a large number of small domain-inverted regions (microdomains) exist in the crystal. Therefore, when a fine domain-inverted structure is formed, nonuniformity of the domain-inverted shape due to the microdomain occurs. Further, the LT single crystal substrate of the present invention is characterized in that the period of the periodically poled structure can be easily shortened.

【0075】従来のコングルエント組成LN結晶では、
分極反転に必要な印加電圧が25kV/mm程度(反転電圧の
21kV/mmより数kV/mm程度高い値を加える)と非常に大き
いため、絶縁破壊を避けるため電極間隔を0.5mm以
下に低減する必要があった。さらに、電極周辺部での電
界の発生によりマイクロドメインを介して分極反転部が
電極周辺部に拡大する傾向があり、短周期の分極反転構
造を形成するのが難しかった。短周期でも3μm程度の
反転構造を形成するのが難しかった。
In a conventional congruent composition LN crystal,
The applied voltage required for polarization inversion is about 25 kV / mm
(Add a value several kV / mm higher than 21 kV / mm), which is extremely large, so that it was necessary to reduce the electrode spacing to 0.5 mm or less to avoid dielectric breakdown. Furthermore, the generation of an electric field in the periphery of the electrode tends to expand the domain-inverted portion to the periphery of the electrode via the microdomain, making it difficult to form a short-period domain-inverted structure. It was difficult to form an inverted structure of about 3 μm even in a short cycle.

【0076】これに対し、上述の方法で作成したLi2O/
(Ta2O5+Li2O)のモル分率が0.500〜0.505の範囲にあるL
i成分が過剰な定比組成に近いLT単結晶は、反転に必
要な印加電界が0.5〜2kV/mm程度と従来の1/12〜1/25以
下となり、バルク素子としての基板厚みも拡大できた。
On the other hand, the Li 2 O /
L having a molar fraction of (Ta 2 O 5 + Li 2 O) in the range of 0.500 to 0.505
In the case of LT single crystal with i component that is close to the stoichiometric composition, the applied electric field required for reversal is about 0.5 to 2 kV / mm, which is 1/12 to 1/25 or less of the conventional, and the substrate thickness as a bulk element can be expanded. Was.

【0077】以上のように、上述の方法で作成したLT
単結晶は、結晶内の分極構造が非常に均一であり、マイ
クロドメインが非常に少ないため、電極周辺部への分極
反転の拡大が防止でき、従来は約3μmを越えていた
が、本発明では2μm以下の短周期分極反転構造の形成
も容易にできることがわかった。
As described above, the LT created by the above method
Since the single crystal has a very uniform polarization structure in the crystal and very few microdomains, it is possible to prevent the polarization reversal from spreading to the periphery of the electrode. Conventionally, the single crystal has a thickness exceeding about 3 μm. It has been found that a short-period domain-inverted structure of 2 μm or less can be easily formed.

【0078】分極反転格子を形成した後、結晶を取り外
し、側面となる結晶のy面を研摩、フッ酸・硝酸の混合
液でエッチングして、分極の反転の様子を調べた。周期
分極反転幅比およびその分極の形は印加電圧のパルス幅
や電流を最適化することで、試料全体にわたり周期分極
の分極反転幅比を理想的な1:1に精度よく作成すること
ができていることが確認された。
After forming the domain-inverted lattice, the crystal was removed, and the y-plane of the side face crystal was polished and etched with a mixed solution of hydrofluoric acid and nitric acid to examine the state of domain inversion. By optimizing the pulse width and current of the applied voltage, the periodic polarization inversion width ratio and the shape of the polarization can be accurately set to the ideal 1: 1 polarization inversion width ratio of the periodic polarization over the entire sample. It was confirmed that.

【0079】図3に示したQPM-SHG素子では、従来問題
とされていた分極幅が横方向に広がることも押さえられ
ていた。また、この周期分極反転構造の形成は厚み0.5m
mの試料のみならず、より厚い他の試料についても同様
に高精度に形成されており、これらの厚い試料は、例え
ば、内部共振器型の波長変換素子として最適であると考
えられる。次に、ウエハを切り出して端面研摩した試料
を作成した。
In the QPM-SHG element shown in FIG. 3, the polarization width, which has been a problem in the related art, was suppressed from expanding in the horizontal direction. Also, the formation of this periodically poled structure is 0.5 m thick.
Not only the m sample but also other thicker samples are similarly formed with high precision, and these thick samples are considered to be optimal as, for example, an internal resonator type wavelength conversion element. Next, a sample was cut out of the wafer and the end face was polished.

【0080】高効率な波長変換のために、QPM-SHG素子
は基本波となるレーザと共振器内に挿入するか、あるい
は光導波路を形成して基本波の半導体レーザを閉じ込め
る方式とし、これによって、素子長10mmの試料で約50%
の変換効率で安定したSHG出力の発生を確認した。QPM-S
HGデバイスの特性の評価は、基本波として、波長可変高
出力Tiサファイヤレーザ(波長850nm)4が用いられ
た。レンズ5を用いて光結合を行った。定比LT結晶は
コングルエント組成LT結晶に比べ1.2倍以上の非線
形光学定数を有し、基板の非線形光学定数が向上したた
め高効率の光波長変換素子が形成できた。
For high-efficiency wavelength conversion, the QPM-SHG element employs a method of inserting a laser serving as a fundamental wave and a resonator, or forming an optical waveguide to confine a fundamental-wave semiconductor laser. , Approximately 50% for a 10 mm long sample
It was confirmed that the SHG output was stable with the conversion efficiency. QPM-S
In the evaluation of the characteristics of the HG device, a tunable high-output Ti sapphire laser (wavelength 850 nm) 4 was used as a fundamental wave. Optical coupling was performed using the lens 5. The stoichiometric LT crystal has a nonlinear optical constant 1.2 times or more that of the congruent composition LT crystal, and the nonlinear optical constant of the substrate is improved, so that a highly efficient light wavelength conversion element can be formed.

【0081】さらに、耐光損傷強度の大幅な向上と安定
性、再現性も確認された。従来のTa成分過剰のLT単結
晶を利用した場合、数10mW以上の青色光(波長:400nm
帯)を出力すると、光損傷による出力の不安定性が生じ
ていた。すなわち、従来の一致溶融組成単結晶を基板と
して用いたQPM-SHG素子では、この光損傷のために高出
力を発生した場合に、ときおりSHG光出力が時間ととも
に低下する現象は見られた。
Further, it was confirmed that the light damage resistance was significantly improved, and the stability and reproducibility were also confirmed. When a conventional LT single crystal with excess Ta component is used, blue light (wavelength: 400 nm) of several tens mW or more is used.
Band, the output was unstable due to optical damage. That is, in a conventional QPM-SHG device using a single crystal of the same fused composition as a substrate, when a high output was generated due to the optical damage, a phenomenon that the SHG optical output sometimes decreased with time was observed.

【0082】これに対し、上述の方法で作成したLi2O/
(Ta2O5+Li2O)のモル分率が0.500〜0.505の範囲にあるL
i成分が過剰な定比組成に近いLT単結晶を用いること
で50mW以上の青色光に対しても、安定な出力が得られる
ようになった。特に、波長が415nm以下のSHG光に対
して、耐光損傷強度の向上は顕著に現れた。
On the other hand, the Li 2 O /
L having a molar fraction of (Ta 2 O 5 + Li 2 O) in the range of 0.500 to 0.505
By using an LT single crystal having an i-component having an excessively close stoichiometric composition, a stable output can be obtained even for blue light of 50 mW or more. In particular, for SHG light having a wavelength of 415 nm or less, the improvement of the light damage resistance was remarkably exhibited.

【0083】この理由としては、まず1つめに、本発明
の組成のLT結晶では、不定比欠陥濃度が従来の一致溶
融組成結晶に比べて遥かに小さいため、フォトキャリア
が散乱を受けにくく移動度が大きいために、フォトコン
ダクティビティが高いことである。フォトコンダクティ
ビティが高ければ、光損傷の起因となるフォトキャリア
の局在は打ち消され、光損傷は発生しにくくなると考え
られる。
The first reason is that, in the LT crystal having the composition of the present invention, the non-stoichiometric defect concentration is much smaller than that of the conventional matched-melting composition crystal, so that the photocarrier is hardly scattered and the mobility is low. Is large, so that photoconductivity is high. It is considered that if photoconductivity is high, the localization of photocarriers that causes optical damage is canceled out, and optical damage hardly occurs.

【0084】2つめは、Ta過剰成分を含まないLi2O/(Ta2
O5+Li2O)のモル分率が0.50より大きくLi成分過剰なタ
ンタル酸リチウム単結晶では、Liイオンサイトを置換す
る過剰なTaイオンが存在しないため、還元された状態で
も光損傷の原因となるポラロンは誘起されないためであ
ると考えられる。
The second is Li 2 O / (Ta 2
In the lithium tantalate single crystal in which the molar fraction of O 5 + Li 2 O) is larger than 0.50 and the Li component is excessive, there is no excess Ta ion to replace the Li ion site. Polaron is considered to be not induced.

【0085】3つめは、本発明の分極反転素子では分極
反転幅が数ミクロンと小さく、かつ、その比が完全な
1:1に形成されているために、たとえ、材料の光損傷が
多少存在したとしてもz軸方向に異方性を持つ光損傷が
隣り合う分極間で相殺されるということである。
Third, in the domain-inverted device of the present invention, the domain-inverted width is as small as several microns, and the ratio is perfect.
Due to the 1: 1 formation, even if there is some optical damage to the material, optical damage having anisotropy in the z-axis direction is canceled between adjacent polarizations.

【0086】4つめは、定比組成結晶では不定比欠陥濃
度が小さいことから、光散乱因子やストリエーションな
どのマクロな結晶欠陥がほとんど含まれず、結晶の光吸
収が非常に小さいことである。
Fourth, since the stoichiometric crystal has a low non-stoichiometric defect concentration, it contains almost no macroscopic crystal defects such as light scattering factors and striations, and the crystal has very low light absorption.

【0087】特に、高出力のSHG素子では、基本波や高
調波による光吸収の増加から熱レンズ効果による光損傷
も発生する可能性があるが、結晶の完全性が高く、光吸
収の小さい定比組成LT単結晶ではこれらの問題も解決
されると理解される。また、ここでは、850nmの近赤外
光の基本波に対して青色光を発生するQPM-SHG素子を作
成した実施例に付いて詳しく述べたが、本発明によれ
ば、基本波がこの二つの波長に限ることはなく、LT単
結晶が透明で、かつ位相整合が可能である波長域に関し
て適用することが可能である。
In particular, in a high-power SHG element, there is a possibility that optical damage due to a thermal lens effect may occur due to an increase in light absorption due to a fundamental wave or a harmonic, but the crystal integrity is high and a constant light absorption is small. It is understood that these problems can be solved by the specific composition LT single crystal. In addition, here, the embodiment in which the QPM-SHG element that generates blue light with respect to the fundamental wave of near infrared light of 850 nm is described in detail. The present invention is not limited to one wavelength, and can be applied to a wavelength range where the LT single crystal is transparent and phase matching is possible.

【0088】さらに、本発明のLT単結晶の分極構造を
周期的に反転させ、可視から近赤外域の波長を持った入
射レーザの波長を短波長化あるいは長波長化させる光機
能素子は、第二高調波発生素子に限らず、光パラメトリ
ック発振器素子など、リモートセンシング、ガス検知を
はじめとする各種の応用分野での適用が可能である。
Further, the optical functional device of the present invention for periodically inverting the polarization structure of the LT single crystal to shorten or lengthen the wavelength of an incident laser having a wavelength in the visible to near-infrared region is described below. The present invention can be applied not only to the second harmonic generation element but also to various application fields such as remote sensing and gas detection such as an optical parametric oscillator element.

【0089】実施例2 次に、上述の方法で作成したLi2O/(Ta2O5+Li2O)のモル
分率が0.500〜0.505の範囲にあるLi成分が過剰な定比組
成に近いLT単結晶に、レンズやプリズム状の分極反転
構造を作製し電気光学効果を利用した偏向素子や、シリ
ンドリカルレンズ、ビームスキャナー、スイッチなどの
光素子を製作した。
Example 2 Next, the Li component having a molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) in the range of 0.500 to 0.505 produced by the above-described method is close to an excessive stoichiometric composition. A lens and a prism-shaped domain-inverted structure were formed on an LT single crystal, and a deflection element using an electro-optic effect and optical elements such as a cylindrical lens, a beam scanner, and a switch were manufactured.

【0090】図4は、周期的分極反転を形成した波長変
換素子8とレンズ9、10やプリズム状11の分極反転構造12
を集積したLi成分過剰LT単結晶基板6を用いた光素子
の構成図である。直径2インチ、厚み0.2〜2.0m
m、両面研摩されたz-カットのLi成分過剰LT単結晶を
準備し、両z面に厚さ約0.2ミクロンのAl電極をスパ
ッタリングにより形成し、リソグラフを用いて、レンズ
やプリズム状パターンを形成した。その後、+z面にパ
ルス状の電圧を約0.5〜2.0kV/mm印加し分極を反転させ
た。
FIG. 4 shows a wavelength conversion element 8 having periodic polarization inversion, a polarization inversion structure 12 of lenses 9 and 10 and a prism 11.
FIG. 3 is a configuration diagram of an optical element using a Li component excess LT single crystal substrate 6 on which is integrated. 2 inch diameter, 0.2-2.0m thickness
m, prepare a z-cut Li component excess LT single crystal polished on both sides, form an Al electrode with a thickness of about 0.2 micron on both z faces by sputtering, and use a lithograph to create a lens or prismatic pattern. Was formed. Thereafter, a pulsed voltage of about 0.5 to 2.0 kV / mm was applied to the + z plane to invert the polarization.

【0091】さらに、熱処理を施し、分極反転に際して
導入されるといわれている屈折率の不均一性を解消させ
た。さらに、結晶の端面を鏡面研磨仕上げを行い、レー
ザ光の入出射面とした。試作した分極反転構造による屈
折率の反転を形成したLT単結晶の電気光学効果を利用
した光素子の性能は、レンズやプリズム状の分極反転構
造の設計や分極反転構造の作製プロセスの精度、および
材料の持つ電気光学定数の大きさで決定された。ここで
試作したレンズやプリズム状パターンの分極反転構造
で、特筆すべきことは、分極反転性電界が低く、かつ分
極反転性の制御が非常に容易であることから良好な素子
特性が得られたことである。
Further, heat treatment was performed to eliminate the non-uniformity of the refractive index, which is said to be introduced upon polarization inversion. Further, the end face of the crystal was mirror-polished to provide a laser light input / output surface. The performance of the optical element utilizing the electro-optic effect of the LT single crystal in which the refractive index is inverted by the prototyped domain-inverted structure is determined by the accuracy of the design of the lens or prism-shaped domain-inverted structure and the manufacturing process of the domain-inverted structure. It was determined by the magnitude of the electro-optic constant of the material. The lens and the prism-inverted structure in which the prototype was fabricated here were notable, and it was notable that good element characteristics were obtained because the polarization inversion electric field was low and the control of the polarization inversion was very easy. That is.

【0092】従来の一致溶融組成のLT結晶では分極反
転に大きな印加電圧が必要なために分極反転構造の制御
が困難であった。また定比組成に近くTa成分過剰のLT
結晶に少量のMgOを添加した単結晶では反転周期が短
くなり、反転構造が複雑になると、精度の良いレンズや
プリズム状の分極反転構造の作製は困難だった。
In a conventional LT crystal having a congruent melting composition, it is difficult to control a domain-inverted structure because a large applied voltage is required for domain inversion. In addition, LT with a Ta component excess near the stoichiometric composition
When a single crystal in which a small amount of MgO is added to a crystal has a short reversal period and a complicated reversal structure, it is difficult to produce a lens or a prism-like polarization reversal structure with high accuracy.

【0093】これに対し、上述の方法で作成したLi2O /
(Ta2O5+Li2O)のモル分率が0.500〜0.505の範囲にあるL
i成分が過剰な定比組成に近いLT単結晶、あるいはキ
ュリー温度が686〜695℃の範囲にあるタンタル酸リチウ
ム単結晶基板を分極反転構造を利用した光機能素子用途
として用いることにより、光機能素子の高精度な分極反
転の形成が可能であった。
On the other hand, Li 2 O /
L having a molar fraction of (Ta 2 O 5 + Li 2 O) in the range of 0.500 to 0.505
By using an LT single crystal with an i-component in excess of a stoichiometric composition or a lithium tantalate single crystal substrate with a Curie temperature in the range of 686 to 695 ° C as an optical functional device using a domain-inverted structure, It was possible to form the polarization inversion of the element with high accuracy.

【0094】さらに、耐光損傷特性も問題とならないた
め、青紫〜緑色の短波長光を用いる光機能素子として、
レンズやプリズム状の分極反転構造を作製し、電気光学
効果を利用した偏向素子やシリンドリカルレンズ、ビー
ムスキャナー、スイッチなどの光素子を製作した場合に
も、光損傷によるビーム変形の問題はなかった。
Further, since the light damage resistance does not matter, the optical functional element using blue-violet to green short-wavelength light is
Even when a lens or a prism-shaped domain-inverted structure is manufactured and optical elements such as a deflection element, a cylindrical lens, a beam scanner, and a switch utilizing the electro-optic effect are manufactured, there is no problem of beam deformation due to optical damage.

【0095】さらに、本結晶は一致溶融組成の結晶より
も大きな電気光学定数r33を有しているので、より小さ
な動作電圧でより優れたデバイス性能が得られた。例え
ば偏向素子の場合には約600V/mmの電圧で約6℃と大き
な偏向角が得られた。また、約100V/mm近傍で動作する
レンズや、約500V/mmでのスイッチング動作も得られ
た。 実施例3 次に、上述の方法で作成したLi2O /(Ta2O5+Li2O)のモ
ル分率が0.500〜0.505の範囲にあるLi成分が過剰な定比
組成に近いLT単結晶を用いて、LT単結晶の微少分極
反転部を用いた光記憶素子の作成方法を図5の概念図に
示す。
[0095] In addition, since the crystals have a large electro-optical constant r 33 than crystals of congruent, more superior device performance with a small operation voltage were obtained. For example, in the case of a deflection element, a large deflection angle of about 6 ° C. was obtained at a voltage of about 600 V / mm. In addition, a lens operating at about 100 V / mm and a switching operation at about 500 V / mm were obtained. Example 3 Next, an LT single crystal having a molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) in the range of 0.500 to 0.505 and an Li component excessively close to a stoichiometric composition prepared by the above method. FIG. 5 is a conceptual diagram showing a method of manufacturing an optical storage element using a small domain-inverted portion of an LT single crystal using the method described above.

【0096】既に述べたように、本発明のLi成分過剰な
LT単結晶は、従来のTa成分過剰なLT単結晶に比べて
容易に分極反転が形成できるという特徴を持つ。さら
に、LT単結晶自身は、アズグロウン状態では多分域状
態にあるが、それぞれの分域の大きさは数ミクロン程度
と小さく、LN単結晶の分域の大きさの数mm〜数cmに比
べて格段に小さい。このことは、LT単結晶自体がLN
単結晶よりも数ミクロン以下の微少な分域形成が容易で
あるという特徴を示唆している。
As described above, the LT single crystal with excess Li component according to the present invention has a feature that the polarization inversion can be easily formed as compared with the conventional LT single crystal with excess Ta component. Further, the LT single crystal itself is in a multi-domain state in the as-grown state, but the size of each domain is as small as about several microns, which is smaller than the size of the domain of the LN single crystal of several mm to several cm. It is much smaller. This means that the LT single crystal itself is LN
This suggests that it is easier to form minute domains of several microns or less than a single crystal.

【0097】そこで、図5に示すように、厚み0.2〜1m
m、大きさ10mm×20mm角の両面研摩されたzムカットLi成
分過剰なLT単結晶14を準備し、図5に示すように、+z
面から、マクスウエル・ストレスを利用した走査型顕微
鏡を用いて、微少領域に電圧を加えその部分17の分極方
向を反転させた。
Therefore, as shown in FIG.
m, a 10 mm × 20 mm square double-side polished z-mucat Li component-excess LT single crystal 14 was prepared, and as shown in FIG.
From the surface, a voltage was applied to the minute region using a scanning microscope utilizing Maxwell stress to reverse the polarization direction of the portion 17.

【0098】この方法では、結晶の-z面に付着した電極
15と伝導性のチップ16間に印加する交流電場に加え、さ
らに、微少な振動で誘起した電界によって、結晶に分極
反転を形成する。分極反転の形成と同時に試料表面の様
子や、誘導電界の振動振幅と位相および結晶の分極状態
をレーザ18と受光素子19を用いて観察した。この方法を
用いて、定比LT組成に近いLi過剰の単結晶内に1ミク
ロン程度の幅で2次元情報を容易に書き込み記憶する強
誘電体分極を利用した光素子を得ることができることを
確認した。
In this method, the electrode attached to the -z plane of the crystal
In addition to the alternating electric field applied between the conductive chip 15 and the conductive chip 16, a polarization inversion is formed in the crystal by an electric field induced by minute vibration. At the same time as the formation of the polarization inversion, the state of the sample surface, the oscillation amplitude and phase of the induced electric field, and the polarization state of the crystal were observed using the laser 18 and the light receiving element 19. Using this method, it was confirmed that an optical device using ferroelectric polarization, which can easily write and store two-dimensional information with a width of about 1 micron in a Li-rich single crystal close to the stoichiometric LT composition, could be obtained. did.

【0099】[0099]

【発明の効果】以上詳しく述べたように、本発明によれ
ば、結晶基板にLi過剰のストイキオメトリ組成に近いLi
2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505であるタン
タル酸リチウム単結晶を用いることで、分極反転制御性
に優れた素子が実現できるため、光機能素子特性の大幅
な向上が期待できる。
As described above in detail, according to the present invention, the crystal substrate has a Li-excess stoichiometric composition.
By using a lithium tantalate single crystal having a molar fraction of 2 O / (Ta 2 O 5 + Li 2 O) of 0.500 to 0.505, an element having excellent polarization reversal controllability can be realized. Significant improvement can be expected.

【0100】さらに、結晶基板にLi過剰のストイキオメ
トリ組成に近いLi2O/(Ta2O5+Li2O)のモル分率が0.500
〜0.505であるタンタル酸リチウム単結晶を用いること
で、耐光損傷性に優れ、光強度103KW/cm2以上の波長407
nmの連続発振レーザ照射に対して安定に動作させること
ができるため、優れた性能の光機能素子を提供すること
ができる。これにより、本発明は、レーザ光を利用した
光情報処理、光加工技術、光化学反応技術、光計測制御
等々の分野での光機能素子の実用化を促進させる大きな
効果をもたらす。
[0100] Further, near the Li excess stoichiometric composition crystal substrate L i2 O / (Ta 2 O 5 + Li 2 O) molar fraction of 0.500
By using a lithium tantalate single crystal having a wavelength of 、 0.505, it has excellent light damage resistance and a wavelength of 407 with a light intensity of 10 3 KW / cm 2 or more.
Since the device can be operated stably with irradiation of a continuous wave laser of nm, an optical functional device having excellent performance can be provided. Accordingly, the present invention has a great effect of promoting the practical use of optical functional devices in fields such as optical information processing using laser light, optical processing technology, photochemical reaction technology, and optical measurement control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】LT単結晶の組成と分極反転特性の関係を示し
たグラフ。
FIG. 1 is a graph showing the relationship between the composition of an LT single crystal and polarization inversion characteristics.

【図2】LT単結晶の組成と光損傷閾値関係を示したグ
ラフ。
FIG. 2 is a graph showing the relationship between the composition of an LT single crystal and an optical damage threshold.

【図3】本発明の一実施例の光波長変換素子を示す概念
図。
FIG. 3 is a conceptual diagram showing an optical wavelength conversion element according to one embodiment of the present invention.

【図4】分極反転した波長変換素子、レンズ、プリズム
を集積した光素子を示す概念図。
FIG. 4 is a conceptual diagram showing an optical element in which a polarization-inverted wavelength conversion element, a lens, and a prism are integrated.

【図5】LT単結晶の微少分極反転部を用いた光記憶素
子の作製方法を示す概念図。
FIG. 5 is a conceptual diagram illustrating a method for manufacturing an optical storage element using a fine domain-inverted portion of an LT single crystal.

【符号の説明】[Explanation of symbols]

1 Li成分過剰LT単結晶基板 2 分極反転領域 3 周期的分極反転幅 4 波長可変レーザ 5 レンズ 6 Li成分過剰LT単結晶基板 7 半導体レーザ 8 周期的分極反転領域 9 凸レンズ 10 凹レンズ 11 プリズム 12 分極反転領域 13 出射レーザ 14 Li成分過剰LT単結晶基板 15 電極 16 チップ 17 微少分極反転領域 18 レーザ 19 受光素子 20 ロックインアンプ 1 Li component excess LT single crystal substrate 2 Polarization inversion region 3 Periodic polarization inversion width 4 Tunable laser 5 Lens 6 Li component excess LT single crystal substrate 7 Semiconductor laser 8 Periodic polarization inversion region 9 Convex lens 10 Concave lens 11 Prism 12 Polarization inversion Region 13 Emission laser 14 Li component excess LT single crystal substrate 15 Electrode 16 Chip 17 Micro domain reversal region 18 Laser 19 Photodetector 20 Lock-in amplifier

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/39 G02F 1/39 (72)発明者 古川 保典 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 北村 健二 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 (72)発明者 竹川 俊二 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 Fターム(参考) 2H079 AA02 CA05 DA03 HA12 KA20 2K002 AB06 AB12 BA01 CA03 EA13 FA27 GA04 GA05 GA07 HA02 HA20 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G02F 1/39 G02F 1/39 (72) Inventor Yasunori Furukawa 1-1-1, Namiki, Tsukuba, Ibaraki Pref. In-house (72) Inventor Kenji Kitamura 1-1-1, Namiki, Tsukuba, Ibaraki Pref., Japan Science and Technology Agency Inorganic Materials Research Laboratory (72) Inventor Shunji Takekawa 1-1, Namiki, Tsukuba, Ibaraki Pref. Reference) 2H079 AA02 CA05 DA03 HA12 KA20 2K002 AB06 AB12 BA01 CA03 EA13 FA27 GA04 GA05 GA07 HA02 HA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 タンタル酸リチウム単結晶の分極構造を
周期的に反転させ、可視から近赤外域の波長を持った入
射レーザの波長を短波長化あるいは長波長化させる光機
能素子において、Li過剰のストイキオメトリ組成に近い
Li2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505であるタ
ンタル酸リチウム単結晶を基板に用いたことを特徴とす
る光機能素子。
1. An optical functional device for periodically or periodically reversing the polarization structure of a lithium tantalate single crystal to shorten or lengthen the wavelength of an incident laser having a wavelength in the visible to near infrared region. Close to the stoichiometric composition of
An optical functional element using a lithium tantalate single crystal having a molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) of 0.500 to 0.505 for a substrate.
【請求項2】 単一分域状態にあるタンタル酸リチウム
単結晶に微少領域で分極反転を形成し、分極反転させる
ことで種々の情報を単結晶内に記録する光記憶素子ある
いは光回路素子において、Li過剰のストイキオメトリ組
成に近いLi2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505
であるタンタル酸リチウム単結晶を基板に用いたことを
特徴とする光機能素子。
2. An optical storage element or an optical circuit element in which polarization inversion is formed in a minute region in a lithium tantalate single crystal in a single domain state and various information is recorded in the single crystal by inverting polarization. The molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) close to the Li excess stoichiometric composition is 0.500 to 0.505
An optical functional element, wherein a lithium single crystal of lithium tantalate is used for a substrate.
【請求項3】 単結晶の電気光学効果を利用して単結晶
内に入射されたレーザ光を制御する光素子であって、タ
ンタル酸リチウム単結晶の強誘電分極の反転構造の大き
な屈折率変化を利用して光の偏向、焦点、スイッチング
を行う光素子において、Li過剰のストイキオメトリ組成
に近いLi2O/(Ta2O5+Li2O)のモル分率が0.500〜0.505で
あるタンタル酸リチウム単結晶を基板に用いたことを特
徴とする光機能素子。
3. An optical element for controlling a laser beam incident on a single crystal by utilizing an electro-optic effect of the single crystal, wherein a large refractive index change of a reversal structure of ferroelectric polarization of a lithium tantalate single crystal is provided. In an optical element that performs light deflection, focus, and switching by using, the molar fraction of Li 2 O / (Ta 2 O 5 + Li 2 O) close to the Li-excess stoichiometric composition is 0.500 to 0.505. An optical functional element, wherein a lithium oxide single crystal is used for a substrate.
【請求項4】 上記のストイキオメトリ組成に近いタン
タル酸リチウム単結晶を用いた光機能素子は、基板とな
るタンタル酸リチウム単結晶のキュリー温度が686〜695
℃の範囲であることを特徴とする請求項1〜3のいずれか
に記載の光機能素子。
4. The optical functional element using a lithium tantalate single crystal having a composition close to the stoichiometric composition has a Curie temperature of 686 to 695 of the lithium tantalate single crystal serving as a substrate.
4. The optical functional device according to claim 1, wherein the temperature is in the range of ° C.
【請求項5】 前記のストイキオメトリ組成に近いタン
タル酸リチウム単結晶基板は、分極反転に必要とする印
加電圧が2kV/mm以下であることを特徴とする請求項1〜4
のいずれかに記載の光機能素子。
5. The lithium tantalate single crystal substrate having a composition close to the stoichiometric composition, wherein an applied voltage required for polarization inversion is 2 kV / mm or less.
The optical functional device according to any one of the above.
【請求項6】 前記のストイキオメトリ組成に近いタン
タル酸リチウム単結晶基板は、波長407nmの連続発振レ
ーザ照射に対して103KW/cm2以上の耐光損傷閾値を持つ
ことを特徴とする請求項1〜4のいずれかに記載の光機能
素子。
6. The lithium tantalate single crystal substrate having a stoichiometric composition close to the stoichiometric composition has a light damage threshold of 10 3 KW / cm 2 or more with continuous wave laser irradiation at a wavelength of 407 nm. Item 5. The optical functional element according to any one of Items 1 to 4.
JP2000255102A 2000-08-25 2000-08-25 Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal Expired - Fee Related JP3424125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255102A JP3424125B2 (en) 2000-08-25 2000-08-25 Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255102A JP3424125B2 (en) 2000-08-25 2000-08-25 Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal

Publications (2)

Publication Number Publication Date
JP2002072266A true JP2002072266A (en) 2002-03-12
JP3424125B2 JP3424125B2 (en) 2003-07-07

Family

ID=18743948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255102A Expired - Fee Related JP3424125B2 (en) 2000-08-25 2000-08-25 Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JP3424125B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083492A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Illuminating light source and two-dimensional image display using same
JP2007003885A (en) * 2005-06-24 2007-01-11 Shimadzu Corp Method for manufacturing substrate having periodical polarization inversion region
US7198670B2 (en) 2004-01-21 2007-04-03 Shimadzu Corporation Method of fabricating board having periodically poled region
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element
US8018646B2 (en) 2005-07-28 2011-09-13 Panasonic Corporation Wavelength conversion element, laser light source, two-dimensional image display and laser processing system
US8125703B2 (en) 2007-03-22 2012-02-28 Panasonic Corporation Wavelength converter and image display with wavelength converter
JP2014224896A (en) * 2013-05-16 2014-12-04 株式会社島津製作所 Optical waveguide type diffraction grating and optical module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837671B2 (en) 2005-10-12 2011-12-14 パナソニック株式会社 Wavelength conversion module, laser light source device, two-dimensional image display device, backlight light source, liquid crystal display device, and laser processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198670B2 (en) 2004-01-21 2007-04-03 Shimadzu Corporation Method of fabricating board having periodically poled region
WO2005083492A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Illuminating light source and two-dimensional image display using same
JPWO2005083492A1 (en) * 2004-02-27 2007-11-22 松下電器産業株式会社 Illumination light source and two-dimensional image display apparatus using the same
US7679799B2 (en) 2004-02-27 2010-03-16 Panasonic Corporation Illuminating light source including a light intensity modulator that oscillates a light from a coherent light source in a non-integral multiple of one cycle and two- dimensional image display using the same
US7848011B2 (en) 2005-03-25 2010-12-07 Panasonic Corporation Wavelength converting element
JP2007003885A (en) * 2005-06-24 2007-01-11 Shimadzu Corp Method for manufacturing substrate having periodical polarization inversion region
US8018646B2 (en) 2005-07-28 2011-09-13 Panasonic Corporation Wavelength conversion element, laser light source, two-dimensional image display and laser processing system
US8125703B2 (en) 2007-03-22 2012-02-28 Panasonic Corporation Wavelength converter and image display with wavelength converter
JP2014224896A (en) * 2013-05-16 2014-12-04 株式会社島津製作所 Optical waveguide type diffraction grating and optical module

Also Published As

Publication number Publication date
JP3424125B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
Arizmendi Photonic applications of lithium niobate crystals
Satyanarayan et al. Potassium titanyl phosphate and its isomorphs: Growth, properties, and applications
US6211999B1 (en) Lithium tantalate single-crystal and photo-functional device
JP3511204B2 (en) Optical function element, single crystal substrate for the element, and method of using the same
JP3424125B2 (en) Optical functional device using ferroelectric polarization reversal of lithium tantalate single crystal
US6747787B2 (en) Optically functional device, single crystal substrate for the device and method for its use
JP4553081B2 (en) Lithium niobate single crystal, optical element thereof, and manufacturing method thereof
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
JP2000066050A (en) Production of optical waveguide parts and optical waveguide parts
Kumaragurubaran et al. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals
Kumaragurubaran et al. Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures
US6195197B1 (en) Lithium niobate single-crystal and photo-functional device
JP3213907B2 (en) Lithium niobate single crystal and optical functional device
JP2001287999A (en) Lithium tantalate single crystal, optical element thereof and method for producing the same
Fejer Nonlinear frequency conversion in periodically-poled ferroelectric waveguides
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP3909845B2 (en) Manufacturing method of optical functional element
JP2951583B2 (en) Optical waveguide component, second harmonic generation device, and method of manufacturing optical waveguide component
JP4590531B2 (en) Optical device comprising lithium niobate single crystal wafer and method for producing lithium niobate single crystal for the wafer
JP2001264554A (en) Optical device
Ghambaryan et al. Periodically poled structures in lithium niobate crystals: growth and photoelectric properties.
JP2001059983A (en) Lithium niobate single crystal
Liu et al. Effective aperture in periodically poled Mg-doped stoichiometric LiTaO3 for quasi-phase-matched optical parametric oscillation
LEE Optically functional device, single crystal substrate for the device and method for its use
JP4569911B2 (en) Wavelength conversion element made of lithium tantalate single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees