JP2002071646A - Liquid concentration measuring method - Google Patents

Liquid concentration measuring method

Info

Publication number
JP2002071646A
JP2002071646A JP2000256979A JP2000256979A JP2002071646A JP 2002071646 A JP2002071646 A JP 2002071646A JP 2000256979 A JP2000256979 A JP 2000256979A JP 2000256979 A JP2000256979 A JP 2000256979A JP 2002071646 A JP2002071646 A JP 2002071646A
Authority
JP
Japan
Prior art keywords
concentration
relational expression
material property
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256979A
Other languages
Japanese (ja)
Inventor
Kenji Kawaguchi
賢治 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2000256979A priority Critical patent/JP2002071646A/en
Publication of JP2002071646A publication Critical patent/JP2002071646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of needing to be careful about the accuracy evaluation of the divided position of a concentration region, an interpolation point and an extrapolation point, and the like other than data used for fitting when expressing concentration by a relational expression to a specific material property value. SOLUTION: In this concentration measuring method for measuring the concentration C of a solution from two kinds of specific material property quantities αand β, the relational expression β=fi(α) is stored for each of a plurality of different concentrations Ci and the liquid concentration C is obtained from the measured material property quantity α, a new relational expression C=g(β) obtained at real time from the stored β=fi(α), and the measured material property quantity β. In this case, the temperature of the liquid is used as the material property quantity α to compensate the temperature of the measured liquid concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は濃度測定方法に関
し、特に、2つの物性量に応じた濃度を示す液体の濃度
測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a concentration, and more particularly to a method for measuring a concentration of a liquid exhibiting a concentration corresponding to two physical properties.

【0002】[0002]

【従来の技術】液体の濃度は、例えば、密度と屈折率の
関数、導電率と圧力の関数、超音波速度と温度の関数等
として表される。例えば密度Dと屈折率Rとから濃度C
を求める場合、あらじめ、密度Dと屈折率Rを変数とす
る関係式C=F(D,R)を実験的に決定し、密度Dと
屈折率Rの測定値より濃度Cを求める方法がある。他
に、圧力Pと導電率ρを変数とするC=F(P,ρ)を
実験的に決定し、圧力Pと導電率ρの測定値より濃度C
を求める方法、更に、特公平04−008746に示す
ように、温度Tと超音波の速度Vと濃度Cの関係式C=
F(T,V)を実験的に決定し、温度Tと超音波の速度
Vの測定値より濃度Cを求める方法等がある。
2. Description of the Related Art The concentration of a liquid is expressed as a function of density and refractive index, a function of conductivity and pressure, a function of ultrasonic velocity and temperature, and the like. For example, from the density D and the refractive index R, the density C
Is determined beforehand by experimentally determining a relational expression C = F (D, R) using the density D and the refractive index R as variables, and obtaining the concentration C from the measured values of the density D and the refractive index R. There is. In addition, C = F (P, ρ) using the pressure P and the conductivity ρ as variables is experimentally determined, and the concentration C is determined from the measured values of the pressure P and the conductivity ρ.
Further, as shown in Japanese Patent Publication No. 04-008746, the relational expression C = T between the temperature T, the velocity V of the ultrasonic wave, and the concentration C
There is a method in which F (T, V) is experimentally determined, and a concentration C is obtained from a measured value of the temperature T and the velocity V of the ultrasonic wave.

【0003】[0003]

【発明が解決使用とする課題】これらの方法を用いる場
合、関係式Fの精度評価が重要である。すなわち、関係
式F=(α、β)は図4に示すように、2つの変数をも
つ3次元空間の曲面を表し、溶液によっては複雑な曲面
を呈することがある。この場合、次数の高い項まで使用
したとしても、実測値と隔たるときがあり、このとき
は、濃度領域を幾つかに分割して複数個の関係式を使用
する場合がある。
When these methods are used, it is important to evaluate the accuracy of the relational expression F. That is, as shown in FIG. 4, the relational expression F = (α, β) represents a curved surface in a three-dimensional space having two variables, and may exhibit a complicated curved surface depending on the solution. In this case, even if a term having a higher order is used, the term may be different from the actually measured value. In this case, a plurality of relational expressions may be used by dividing the density region into several parts.

【0004】特に、濃度の変化に伴う物性値の変化の大
きいときは濃度領域の分割位置、フィティングに使用さ
れたデータ以外の内挿点や外挿点などの精度評価に注意
を要することになる。
In particular, when a change in a physical property value due to a change in density is large, it is necessary to pay attention to the accuracy of evaluation of a division position of a density region, an interpolation point and an extrapolation point other than data used for fitting. Become.

【0005】本発明は上記従来の事情に鑑みて提案され
たものであって、フィッティグが容易であり、実験式へ
の精度評価も簡単な濃度測定方法を提供することを目的
とするものである。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a concentration measuring method which can easily perform fitting and can easily evaluate the accuracy of an empirical formula. .

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために以下の手段を採用している。すなわち、溶
液の2種類の物性量αとβとから、溶液の濃度Cを測定
する濃度測定方法を提供することを目的とし、複数の異
なる濃度Ciごとに、関係式β=fi(α)をそれぞれ
記憶しておき、実測物性量αと、上記記憶されているβ
=fi(α)より、リアルタイムに得られた新たな関係
式C=g(β)と実測物性量βより液体濃度Cを求める
ようになっている。
The present invention employs the following means to achieve the above object. That is, an object of the present invention is to provide a concentration measuring method for measuring the concentration C of a solution from two physical quantities α and β of a solution. For each of a plurality of different concentrations Ci, a relational expression β = fi (α) is obtained. The measured physical property α and the stored β
= Fi (α), the liquid concentration C is obtained from a new relational expression C = g (β) obtained in real time and the measured physical property β.

【0007】ここで、上記物性量αとしては、液体の温
度を採用することによって、測定された液体濃度の温度
補償をすることができる。
Here, the temperature of the measured liquid concentration can be compensated by adopting the temperature of the liquid as the physical quantity α.

【0008】[0008]

【実施の形態】図1、図2は濃度Cが温度Tと超音波の
音速Vに依存する場合の本発明の実施の形態を示す概念
図であり、図3は本発明に使用する装置の一例を示すブ
ロック図である。
1 and 2 are conceptual diagrams showing an embodiment of the present invention when the concentration C depends on the temperature T and the sound velocity V of the ultrasonic wave, and FIG. 3 shows an apparatus used in the present invention. It is a block diagram showing an example.

【0009】まず、特定の種類の溶液の濃度を一定にし
た状態で、温度を変化させ、各温度における溶液中の超
音波の音速Vを測定手段3で実測する。この作業を異な
る複数の濃度の溶液について実行して各濃度について、
図1に示すように、関係式V=fi (T)を記憶手段1
に記憶しておく。
First, while the concentration of a specific type of solution is kept constant, the temperature is changed, and the sound speed V of the ultrasonic wave in the solution at each temperature is actually measured by the measuring means 3. This operation is performed for solutions having different concentrations, and for each concentration,
As shown in FIG. 1, the relational expression V = fi (T) is stored in the storage unit 1.
To memorize it.

【0010】ついで、未知の濃度Cの溶液の温度Tと超
音波の音速Vを測定手段3で実測し、図2に示すよう
に、上記記憶手段1に記憶された関係式より、当該温度
Tにおける音速Vと濃度Cとの関係式C=g(V)を演
算手段2でリアルタイムで算出し、実測によって得られ
た音速Vより、濃度Cを求めることになる。
Next, the temperature T of the solution having the unknown concentration C and the sound velocity V of the ultrasonic wave are actually measured by the measuring means 3, and as shown in FIG. The relational expression C = g (V) between the sound velocity V and the density C at the time is calculated in real time by the calculating means 2, and the density C is obtained from the sound velocity V obtained by actual measurement.

【0011】上記のように温度T(=α)、超音波の音
速V(=β)以外に、αとして屈折率R、βとして密度
Dを用い、関係式D=fi (R)を記憶手段1に記憶し
ておき、関係C=g(D)を演算する方法、あるいは、
αとして圧力P、βとして導電率ρを用い、関係式ρ=
fi (P)を記憶手段1に記憶しておき、関係C=g
(ρ)を演算する方法等が考えられる。
As described above, in addition to the temperature T (= α) and the sound speed V (= β) of the ultrasonic wave, the relational expression D = fi (R) is stored by using the refractive index R as α and the density D as β. 1 to calculate the relationship C = g (D), or
Using the pressure P as α and the conductivity ρ as β, the relational expression ρ =
fi (P) is stored in the storage means 1, and the relation C = g
A method of calculating (ρ) can be considered.

【0012】上記の説明より明らかなように、本発明は
扱う次数が少なくなるため、曲線形状が簡素化され、濃
度領域を分割して式を設定しなくても、フィッティグが
容易となる。また、実験式への精度評価も簡単にするこ
とができる。また、基本的には必要な領域(例えば特定
温度、特定屈折率、特定圧力)のみに関する関係式をリ
アルタイムに計算させることを特徴としているため、3
種類以上の特定物性量を利用する場合にも応用が可能で
ある。
As is clear from the above description, the present invention reduces the number of orders to be handled, simplifies the curve shape, and facilitates fitting without dividing the density region and setting an equation. In addition, accuracy evaluation of the empirical formula can be simplified. Basically, a relational expression relating only to a necessary area (for example, a specific temperature, a specific refractive index, and a specific pressure) is calculated in real time.
The present invention can be applied to a case where more than one kind of specific physical quantity is used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する温度と超音波の音速との実測
値を示すグラフである。
FIG. 1 is a graph showing actually measured values of the temperature and the sound speed of an ultrasonic wave used in the present invention.

【図2】特定の温度で図1より得られる音速Vと濃度C
との関係を示すグラフである。
FIG. 2 shows sound velocity V and density C obtained from FIG. 1 at a specific temperature.
6 is a graph showing a relationship with the graph.

【図3】本発明を実施する装置を示すブロック図であ
る。
FIG. 3 is a block diagram showing an apparatus for implementing the present invention.

【図4】従来方法による濃度を算出するためのグラフで
ある。
FIG. 4 is a graph for calculating a density according to a conventional method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶液の2種類の物性量αとβとから、溶
液の濃度Cを測定する濃度測定方法において、 複数の異なる濃度Ciごとに、関係式β=fi(α)を
それぞれ記憶しておき、実測物性量αと、上記記憶され
ているβ=fi(α)より、リアルタイムに得られた新
たな関係式C=g(β)と実測物性量βより液体濃度C
を求めることを特徴とする液体濃度測定方法。
1. A concentration measuring method for measuring a concentration C of a solution from two physical quantities α and β of a solution, wherein a relational expression β = fi (α) is stored for each of a plurality of different concentrations Ci. In advance, from the measured physical property α and the stored β = fi (α), a new relational expression C = g (β) obtained in real time and the liquid concentration C from the measured physical property β
A liquid concentration measuring method, wherein
【請求項2】 上記物性量αが液体の温度である請求項
1に記載の液体濃度測定方法。
2. The method according to claim 1, wherein the physical quantity α is a temperature of the liquid.
JP2000256979A 2000-08-28 2000-08-28 Liquid concentration measuring method Pending JP2002071646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256979A JP2002071646A (en) 2000-08-28 2000-08-28 Liquid concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256979A JP2002071646A (en) 2000-08-28 2000-08-28 Liquid concentration measuring method

Publications (1)

Publication Number Publication Date
JP2002071646A true JP2002071646A (en) 2002-03-12

Family

ID=18745511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256979A Pending JP2002071646A (en) 2000-08-28 2000-08-28 Liquid concentration measuring method

Country Status (1)

Country Link
JP (1) JP2002071646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713044A (en) * 2013-12-10 2014-04-09 同济大学 Distributed ultrasonic liquid concentration detection system and method thereof
CN105181525A (en) * 2015-10-14 2015-12-23 慈溪市赛思德环保科技有限公司 Laser concentration tester
JP2019066410A (en) * 2017-10-04 2019-04-25 株式会社ディスコ Measuring instrument and processing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249964A (en) * 1989-03-24 1990-10-05 Mitsubishi Heavy Ind Ltd Instrument for measuring concentration of two-component liquid mixture
JPH0419559A (en) * 1990-05-14 1992-01-23 Fuji Photo Film Co Ltd Method for measuring concentration of multiple component liquid
JPH05180810A (en) * 1991-12-27 1993-07-23 Suzuki Motor Corp Ultrasonic transmitter-receiver for liquid concentration meter
JPH08159946A (en) * 1994-12-09 1996-06-21 Mitsubishi Gas Chem Co Inc Method and device for measuring solution concentration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249964A (en) * 1989-03-24 1990-10-05 Mitsubishi Heavy Ind Ltd Instrument for measuring concentration of two-component liquid mixture
JPH0419559A (en) * 1990-05-14 1992-01-23 Fuji Photo Film Co Ltd Method for measuring concentration of multiple component liquid
JPH05180810A (en) * 1991-12-27 1993-07-23 Suzuki Motor Corp Ultrasonic transmitter-receiver for liquid concentration meter
JPH08159946A (en) * 1994-12-09 1996-06-21 Mitsubishi Gas Chem Co Inc Method and device for measuring solution concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713044A (en) * 2013-12-10 2014-04-09 同济大学 Distributed ultrasonic liquid concentration detection system and method thereof
CN105181525A (en) * 2015-10-14 2015-12-23 慈溪市赛思德环保科技有限公司 Laser concentration tester
JP2019066410A (en) * 2017-10-04 2019-04-25 株式会社ディスコ Measuring instrument and processing device

Similar Documents

Publication Publication Date Title
JP3638812B2 (en) Method and apparatus for measuring the thickness of a coated material
CN100573133C (en) Improve the method and the detecting instrument of milk quality ultrasonic detection precision
ATE527534T1 (en) METHOD AND DEVICE FOR MEASURING THE DENSITY OF AN AGRICULTURAL PROPERTY
US20090299658A1 (en) Sensor processing method
McNamara et al. A sensitivity metric and software to guide the analysis of soft films measured by a quartz crystal microbalance
JP2002071646A (en) Liquid concentration measuring method
RILEM Technical Committee (Hans-Wolf Reinhardt)**+ 49-711-68563323+ 49-711-68567681 reinhardt@ iwb. uni-stuttgart. de Recommendation of RILEM TC 218-SFC: Sonic methods for quality control of fresh cementitious materials* Testing of fresh concrete by ultrasound transmission
JP7097006B2 (en) Sensor system
Holtschulze et al. A simplified tyre model for intelligent tyres
JP2006052996A (en) Determination method of extreme value frequency
JPH048746B2 (en)
Taymanov et al. Actual measuring technologies of Industry 4.0 and analysis of their realization experience
Grenyer et al. An Uncertainty Quantification and Aggregation Framework for System Performance Assessment in Industrial Maintenance
Püttmer et al. Ultrasonic density sensor—Analysis of errors due to thin layers of deposits on the sensor surface
JP2008128736A (en) Waveform display apparatus and waveform display method
JP3770522B2 (en) Method and apparatus for measuring internal temperature of steel material
JP2004028653A (en) Internal diameter measuring device
JPS5927260A (en) Oil exchange display for vehicle
SU547673A1 (en) The method of determining the hardware function of the flow meter
Cruvinel et al. Visualizing thermal information and knowledge creation in grain storage bin based on three-dimensional (3D) interface model and computer graphic techniques
JPH06264153A (en) Method for predicting slab temperature in continuous type heating furnace
Berntsson Boundary identification for an elliptic equation
JPH10318848A (en) Method and device for raising response characteristics of sensor
Kachanov et al. Measuring the Acoustic Characteristics of Compact Concrete Building Structures Using the Impact Echo Method
JP7189089B2 (en) Temperature prediction method, temperature prediction device, and temperature prediction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070502

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A977 Report on retrieval

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100707