JP2002063718A - Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder - Google Patents

Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder

Info

Publication number
JP2002063718A
JP2002063718A JP2000246654A JP2000246654A JP2002063718A JP 2002063718 A JP2002063718 A JP 2002063718A JP 2000246654 A JP2000246654 A JP 2000246654A JP 2000246654 A JP2000246654 A JP 2000246654A JP 2002063718 A JP2002063718 A JP 2002063718A
Authority
JP
Japan
Prior art keywords
magnetic
perpendicular magnetic
recording medium
magnetic recording
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000246654A
Other languages
Japanese (ja)
Inventor
Hideo Ogiwara
英夫 荻原
Kazuyuki Hikosaka
和志 彦坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000246654A priority Critical patent/JP2002063718A/en
Publication of JP2002063718A publication Critical patent/JP2002063718A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to form a base film having a granular structure of a state where that magnetic particles are held in a spherical shape. SOLUTION: The method for manufacturing a perpendicular magnetic recording medium has a stage for forming a base film layer 2 having a granular structure wherein the magnetic particles 2b are dispersed in a non-magnetic base material 2a on a substrate 1, a stage for forming a perpendicular magnetic layer 3 on the base film layer 2 and a stage for forming a protective film layer 4 on the perpendicular magnetic layer 3. And the base film layer having a layer structure wherein the magnetic particles 2b are arrayed in a direction perpendicular to the base film layer 2 in plural rows is formed by forming the base film layer 2 while substrate bias are intermittently applied to the substrate 1, in the stage for forming the base film layer 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低ノイズかつ高密
度記録が可能な垂直磁気記録媒体の製造方法、垂直磁気
記録媒体及び垂直磁気記録装置に関する。
The present invention relates to a method for manufacturing a perpendicular magnetic recording medium capable of performing low-noise and high-density recording, a perpendicular magnetic recording medium, and a perpendicular magnetic recording apparatus.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ等の電子
機器においては、外部記録装置として磁気記録装置が広
く用いられている。この磁気記録装置においては、更な
る面記録密度の高密度化が要求されており、それに伴
い、磁気記録媒体の走行方向に対して垂直方向に磁化容
易軸を持つ垂直磁性膜を設け、磁気ヘッドにより垂直磁
性膜の垂直方向に磁界を印加し磁気信号を記録する垂直
磁気記録方式が検討されている。また、垂直磁性膜の下
に高透磁率の下地膜を設けて2層構造とすることで、磁
気ヘッドと下地膜との相互作用により更に優れた記録再
生特性を得る方法が検討されている。ここで、下地膜が
磁壁を生じる構造である場合、スピンドルモータやボイ
スコイルモータなどから発生する磁界の影響により、下
地膜に存在する磁壁の移動や揺らぎが生じ、この磁壁移
動や磁壁揺らぎが、その上層の垂直磁性膜の磁気信号の
記録消磁、書き換えなどを起こしてしまうという問題を
生じることが知られている。
2. Description of the Related Art In recent years, magnetic recording devices have been widely used as external recording devices in electronic devices such as personal computers. In this magnetic recording apparatus, further increase in areal recording density is required, and accordingly, a perpendicular magnetic film having an easy axis of magnetization in a direction perpendicular to the running direction of the magnetic recording medium is provided, and a magnetic head is provided. A perpendicular magnetic recording method for applying a magnetic field in the perpendicular direction of a perpendicular magnetic film to record a magnetic signal has been studied. In addition, a method of obtaining a more excellent recording / reproducing characteristic by an interaction between a magnetic head and a base film by providing a base layer having high magnetic permeability under the perpendicular magnetic film to form a two-layer structure is being studied. Here, when the underlying film has a structure in which a domain wall is generated, the movement and fluctuation of the domain wall existing in the underlying film occur due to the influence of the magnetic field generated from the spindle motor, the voice coil motor, and the like. It is known that a problem arises in that recording and degaussing and rewriting of the magnetic signal of the upper perpendicular magnetic film occur.

【0003】この問題を解決するために下地膜の構造に
ついて検討されており、例えば、特開平11‐1496
28号公報では、下地膜を、非磁性母材中に、Co、C
oPt、CoCrPtといった硬磁性材料の磁性粒子を
分散させたグラニューラ構造とすることで、軟磁気特性
を示させ、下地膜に磁壁ができない構造にする方法につ
いて記載されている。
In order to solve this problem, the structure of a base film has been studied.
In Japanese Patent Publication No. 28, the underlayer film is made of Co, C
It describes a method of forming a granular structure in which magnetic particles of a hard magnetic material such as oPt and CoCrPt are dispersed to exhibit soft magnetic characteristics and prevent a domain wall from forming a domain wall.

【0004】しかし、この従来技術のように硬磁性材料
の磁性粒子を下地膜に用いた場合、実際の記録時に行な
われる高速磁化反転時に影響を与える熱揺らぎを受けな
い磁気特性であるHco(Dynamic coeir
sivity)等は、硬磁性材料の磁性粒子と同じ硬磁
性を示すこととなる。すなわち、磁気信号の記録時に
は、下地膜中の硬磁性材料の磁性粒子の高い異方性磁界
Hkの影響により、垂直磁性膜に高密度に磁気信号を記
録することができない。更に、硬磁性材料の磁性粒子は
飽和磁束密度Bsの値が小さいため、硬磁性材料の磁性
粒子を用いてグラニュラー構造とする場合、垂直磁性膜
に対して軟磁性膜として作用するために必要な飽和磁束
密度Bsを得るためには、その膜厚を非常に厚く形成し
なければならない。
However, when magnetic particles of a hard magnetic material are used for the underlayer as in this prior art, Hco (Dynamic) which is a magnetic characteristic which is not affected by thermal fluctuation which is affected during high-speed magnetization reversal performed during actual recording. coair
Sivity) shows the same hard magnetism as the magnetic particles of the hard magnetic material. That is, when recording a magnetic signal, it is not possible to record a magnetic signal at high density on the perpendicular magnetic film due to the effect of the high anisotropic magnetic field Hk of the magnetic particles of the hard magnetic material in the underlayer. Further, since the magnetic particles of the hard magnetic material have a small value of the saturation magnetic flux density Bs, when the magnetic particles of the hard magnetic material have a granular structure, the magnetic particles are required to act as a soft magnetic film with respect to the perpendicular magnetic film. In order to obtain the saturation magnetic flux density Bs, the film thickness must be formed very thick.

【0005】一方、本発明者は、特願平11−2774
50号において、下地膜に使用する磁性粒子として、硬
磁性材料に代えて、軟磁性材料を用い、更に飽和磁束密
度Bsの値が大きく且つ高透磁率のCoFe、NiF
e、CoZrNb等の軟磁性材料を用いることで、高密
度に磁気信号の記録を可能とすることを図った垂直磁気
記録媒体を提案している。
On the other hand, the present inventor has disclosed in Japanese Patent Application No. 11-2774.
No. 50, a soft magnetic material is used instead of a hard magnetic material as a magnetic particle used for a base film, and CoFe, NiF having a large saturation magnetic flux density Bs and a high magnetic permeability.
e, there has been proposed a perpendicular magnetic recording medium capable of recording a magnetic signal with high density by using a soft magnetic material such as CoZrNb.

【0006】[0006]

【発明が解決しようとする課題】しかし、グラニュラー
構造では、連続膜よりも磁性粒子の体積含有率が低くな
る為、軟磁性材料の磁性粒子でグラニュラー構造の下地
膜を成膜する場合でも、垂直磁性膜に磁気信号を記録す
るに十分な飽和磁束密度Bsを得るため、或る程度膜厚
を厚くすることが必要である。一般に、基板上に硬磁性
材料や軟磁性材料の磁性粒子のグラニュラー構造を持つ
下地膜を成膜する場合には、磁性粒子の粒成長を行なわ
せるために、基板に基板バイアスを印加しながら基板上
に下地膜の材料を物理蒸着させることにより行なう。
However, in the granular structure, the volume content of the magnetic particles is lower than that of the continuous film. In order to obtain a saturation magnetic flux density Bs sufficient for recording a magnetic signal on the magnetic film, it is necessary to increase the film thickness to some extent. In general, when a base film having a granular structure of magnetic particles of a hard magnetic material or a soft magnetic material is formed on a substrate, a substrate bias is applied to the substrate so that the magnetic particles grow. This is performed by physically depositing a material for a base film thereon.

【0007】しかしながら、この従来の方法では、膜厚
の厚い下地膜を成膜する場合に硬磁性材料や軟磁性材料
の磁性粒子が下地膜の垂直方向に柱状に成長してしまう
という不具合があった。磁性粒子が垂直方向に柱状の形
状となってしまうと、下地膜が垂直異方性を示すように
なり、この下地膜の垂直異方性が影響して、垂直磁性膜
に高密度に磁気信号を記録することができなくなる。
However, this conventional method has a disadvantage that when a thick underlayer is formed, magnetic particles of a hard magnetic material or a soft magnetic material grow in columns in a direction perpendicular to the underlayer. Was. If the magnetic particles have a columnar shape in the vertical direction, the underlying film will exhibit vertical anisotropy. Cannot be recorded.

【0008】そこで、本発明では、磁性粒子を球状の形
状に保った状態のグラニュラー構造を持つ下地膜を成膜
することを可能とし、これにより、低ノイズ且つ高密度
に磁気信号の記録が可能な垂直磁気記録媒体を製造可能
な垂直磁気記録媒体の製造方法、垂直磁気記録媒体、及
び、垂直磁気記録装置を提供することを目的とする。
Therefore, the present invention makes it possible to form a base film having a granular structure in which magnetic particles are kept in a spherical shape, thereby enabling recording of a magnetic signal with low noise and high density. It is an object of the present invention to provide a method for manufacturing a perpendicular magnetic recording medium, a perpendicular magnetic recording medium, and a perpendicular magnetic recording device capable of manufacturing a perpendicular magnetic recording medium.

【0009】[0009]

【課題を解決するための手段】本発明の垂直磁気記録媒
体の製造方法は、基板の上に非磁性母材中に磁性粒子が
分散したグラニュラー構造を持った下地膜層を成膜する
工程と、前記下地膜層の上に垂直磁性層を成膜する工程
と、前記垂直磁性層の上に保護膜層を成膜する工程とを
有し、前記下地膜層を成膜する工程は、前記基板に断続
的に基板バイアスを印加しながら前記下地膜層を成膜す
ることで、前記磁性粒子が前記下地膜層の垂直方向に複
数の列に並んだ層構造の下地膜層を成膜することを特徴
とする。
According to the present invention, there is provided a method of manufacturing a perpendicular magnetic recording medium, comprising the steps of: forming a base film layer having a granular structure in which magnetic particles are dispersed in a non-magnetic base material on a substrate; Forming a perpendicular magnetic layer on the underlying film layer, and forming a protective film layer on the perpendicular magnetic layer, the step of forming the underlying film layer, By forming the base film layer while applying a substrate bias intermittently to the substrate, a base film layer having a layer structure in which the magnetic particles are arranged in a plurality of rows in the vertical direction of the base film layer is formed. It is characterized by the following.

【0010】また、本発明の垂直磁気記録媒体は、基板
と、前記基板上に形成された下地膜層と、前記下地膜層
上に形成された垂直磁性層と、前記垂直磁性層上に形成
された保護膜層を有する垂直磁気記録媒体において、前
記下地膜層は、非磁性母材中に磁性粒子が分散したグラ
ニュラー構造であり、且つ、前記磁性粒子が前記下地膜
層の垂直方向に複数の列に並んだ層構造であることを特
徴とする。
[0010] The perpendicular magnetic recording medium of the present invention comprises a substrate, an underlayer formed on the substrate, a perpendicular magnetic layer formed on the underlayer, and a perpendicular magnetic layer formed on the underlayer. In the perpendicular magnetic recording medium having a protective film layer provided, the underlayer film has a granular structure in which magnetic particles are dispersed in a non-magnetic base material, and a plurality of the magnetic particles are arranged in a direction perpendicular to the underlayer film layer. Are characterized by a layered structure arranged in a row.

【0011】また、本発明の垂直磁気記録再生装置は、
垂直磁気記録媒体と、前記垂直磁気記録媒体を支持及び
回転駆動するスピンドルモータと、前記垂直磁気記録媒
体への磁気信号の記録及び前記垂直磁気記録媒体に記録
された磁気信号の再生を行なう磁気ヘッドとを具備する
垂直磁気記録再生装置において、前記垂直磁気記録媒体
は、基板と、前記基板上に形成された下地膜層と、前記
下地膜層上に形成された垂直磁性層と、前記垂直磁性層
上に形成された保護膜層を有し、且つ、前記下地膜層
は、非磁性母材中に軟磁性材料の磁性粒子が分散したグ
ラニュラー構造であり、且つ、前記軟磁性材料の磁性粒
子が前記下地膜層の垂直方向に複数の列に並んだ層構造
であることを特徴とする。
Further, the perpendicular magnetic recording / reproducing apparatus of the present invention comprises:
A perpendicular magnetic recording medium, a spindle motor for supporting and rotating the perpendicular magnetic recording medium, and a magnetic head for recording a magnetic signal on the perpendicular magnetic recording medium and reproducing a magnetic signal recorded on the perpendicular magnetic recording medium The perpendicular magnetic recording / reproducing apparatus comprising: a perpendicular magnetic recording medium comprising: a substrate; a base film layer formed on the substrate; a perpendicular magnetic layer formed on the base film layer; A protective film layer formed on the magnetic layer, wherein the underlayer film has a granular structure in which magnetic particles of a soft magnetic material are dispersed in a non-magnetic base material; Has a layer structure arranged in a plurality of rows in the vertical direction of the base film layer.

【0012】上記構成により、磁性粒子の形状を球状に
保った状態で膜厚の厚い下地膜を有する垂直磁気記録媒
体が実現可能であり、よって、低ノイズ且つ高密度記録
の垂直磁気記録媒体及び垂直磁気記録装置を提供するこ
とが可能である。
With the above structure, it is possible to realize a perpendicular magnetic recording medium having a thick underlayer while maintaining the shape of the magnetic particles in a spherical shape. It is possible to provide a perpendicular magnetic recording device.

【0013】[0013]

【発明の実施の形態】(垂直磁気記録媒体)以下、図面
を参照して本発明の実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Perpendicular Magnetic Recording Medium) Embodiments of the present invention will be described below with reference to the drawings.

【0014】先ず、本発明の製造方法にて製造される垂
直磁気記録媒体について説明する。図1は、本発明の製
造方法にて製造した垂直磁気記録媒体の断面構成図であ
る。本発明の垂直磁気記録媒体は、基板1、軟磁性下地
膜2、垂直磁性膜3、保護膜4を順次積層した構造を有
している。
First, a perpendicular magnetic recording medium manufactured by the manufacturing method of the present invention will be described. FIG. 1 is a sectional view of a perpendicular magnetic recording medium manufactured by the manufacturing method of the present invention. The perpendicular magnetic recording medium of the present invention has a structure in which a substrate 1, a soft magnetic underlayer 2, a perpendicular magnetic film 3, and a protective film 4 are sequentially laminated.

【0015】基板1の材料としては、ガラス、シリコ
ン、プラスチック、合成樹脂などを用いることができ
る。軟磁性下地膜2及び垂直磁性膜3を基板1上に成膜
する方法としては、スパッタ法、真空蒸着法、ガス中ス
パッタ法、ガスフロースパッタ法等の物理蒸着法を用い
ることが可能である。軟磁性下地膜2の磁性材料として
は、少なくともCo、Fe、Niから選択された一種の
元素を包含する軟磁性材料、例えば、CoFe、NiF
e、CoZrNb等を用いることができる。軟磁性下地
膜2の非磁性母材としては、Ag、Ti、Ru、C等の
非磁性金属やその化合物、又は、酸化物、窒化物、弗化
物、炭化物、例えば、SiO2、SiO、Si3N4、
Al2O3、AlN、TiN、BN、CaF、TiC等
を用いる。
As a material of the substrate 1, glass, silicon, plastic, synthetic resin and the like can be used. As a method for forming the soft magnetic underlayer 2 and the perpendicular magnetic film 3 on the substrate 1, it is possible to use a physical vapor deposition method such as a sputtering method, a vacuum vapor deposition method, an in-gas sputtering method, and a gas flow sputtering method. . As the magnetic material of the soft magnetic underlayer 2, a soft magnetic material containing at least one element selected from Co, Fe, and Ni, for example, CoFe, NiF
e, CoZrNb or the like can be used. As the non-magnetic base material of the soft magnetic underlayer 2, a non-magnetic metal such as Ag, Ti, Ru, C or a compound thereof, or an oxide, a nitride, a fluoride, a carbide, for example, SiO2, SiO, Si3N4,
Al2O3, AlN, TiN, BN, CaF, TiC or the like is used.

【0016】また、図2は、図1に示す垂直磁気記録媒
体において、軟磁性下地膜2、及び、垂直磁性膜3の領
域Aで示される部分を模式的に示した図である。図2に
示されるように、垂直磁性膜3では、矢印で模式的に示
しているような垂直方向に磁気信号が記録されている。
そして垂直磁性膜3の下に設けられている軟磁性下地膜
2は、非磁性母材2a中に軟磁性材料の磁性粒子2bが
均一に分散したグラニュラー構造を有している。
FIG. 2 is a diagram schematically showing a portion of the perpendicular magnetic recording medium shown in FIG. 1 which is indicated by a region A of the soft magnetic underlayer 2 and the perpendicular magnetic film 3. As shown in FIG. 2, in the perpendicular magnetic film 3, a magnetic signal is recorded in a vertical direction as schematically indicated by an arrow.
The soft magnetic underlayer 2 provided below the perpendicular magnetic film 3 has a granular structure in which magnetic particles 2b of a soft magnetic material are uniformly dispersed in a nonmagnetic base material 2a.

【0017】次に、図1の垂直磁気記録媒体の製造方法
について、以下に説明する。
Next, a method of manufacturing the perpendicular magnetic recording medium of FIG. 1 will be described below.

【0018】(第1の垂直磁気記録媒体の製造方法)第
1の垂直磁気記録媒体は、次のようにして製造する。す
なわち、2.5インチガラスの基板1上に、Co80F
e20とTiNを成膜後の体積組成比が60:40とな
るよう調節したコンポジットターゲットを用い、対向静
止マグネトロンスパッタ法により、TiNを非磁性母材
2a、Co80Fe20を磁性粒子2bとしたグラニュ
ラー構造の軟磁性下地膜2を成膜した。この軟磁性下地
膜2の成膜に際しては、最初、基板1に基板バイアス4
00[W]を印加しながら、Arガス雰囲気中で、基板
1上にスパッタパワーを1000[W]としてコンポジ
ットターゲットを20[sec]スパッタして成膜し、
軟磁性材料の磁性粒子2bの最初の列が存在する軟磁性
下地膜2の下側部分(図2で、2点鎖線の下側)を成膜
する。その次に、基板1に基板バイアスを印加せずに5
[sec]スパッタして成膜する。引き続いて再度、基
板1に基板バイアス400[W]を印加しながら20
[sec]スパッタして成膜し、軟磁性材料の磁性粒子
2bの次の列が存在する軟磁性下地膜2の上側部分(図
2で、2点鎖線の上側)を成膜する。このようにして、
80[nm]の軟磁性下地膜2を成膜する。
(Method of Manufacturing First Perpendicular Magnetic Recording Medium) The first perpendicular magnetic recording medium is manufactured as follows. That is, on a substrate 1 of 2.5 inch glass, Co80F
Using a composite target in which the volume composition ratio of e20 and TiN after film formation was adjusted to be 60:40, a granular structure having TiN as the non-magnetic base material 2a and Co80Fe20 as the magnetic particles 2b was formed by facing static magnetron sputtering. A soft magnetic underlayer 2 was formed. When the soft magnetic underlayer 2 is formed, first, the substrate bias 4 is applied to the substrate 1.
While applying 00 [W], a composite target is sputtered on the substrate 1 in an Ar gas atmosphere at a sputtering power of 1000 [W] for 20 [sec] to form a film.
A lower portion of the soft magnetic underlayer 2 where the first row of the magnetic particles 2b of the soft magnetic material exists (the lower side of the two-dot chain line in FIG. 2) is formed. Then, 5 is applied to the substrate 1 without applying a substrate bias.
[Sec] A film is formed by sputtering. Subsequently, while applying a substrate bias of 400 [W] to the substrate 1 again, 20
[Sec] A film is formed by sputtering, and an upper portion (above the two-dot chain line in FIG. 2) of the soft magnetic underlayer 2 in which the next row of the magnetic particles 2b of the soft magnetic material exists. In this way,
An 80 [nm] soft magnetic underlayer 2 is formed.

【0019】成膜した軟磁性下地膜2の上に連続して、
CoPt20Cr16合金ターゲットを用いて、Arガ
スに酸素を微量添加した混合ガス中で、CoPt20C
r16の垂直磁性膜3を50[nm]に成膜した。最後
に8[nm]のC保護膜4を成膜する。
Continuously on the soft magnetic underlayer 2 formed,
Using a CoPt20Cr16 alloy target, CoPt20C
An r16 perpendicular magnetic film 3 was formed to a thickness of 50 [nm]. Finally, an 8 [nm] C protective film 4 is formed.

【0020】(第2の垂直磁気記録媒体の製造方法)第
1の垂直磁気記録媒体では、非磁性母材2aにTiNを
用いたのに対して、第2の垂直磁気記録媒体は、非磁性
母材2aとして、絶縁材料であるSiO2を用いている
点が異なる。
(Method of Manufacturing the Second Perpendicular Magnetic Recording Medium) In the first perpendicular magnetic recording medium, TiN is used for the nonmagnetic base material 2a, whereas the second perpendicular magnetic recording medium is The difference is that SiO2, which is an insulating material, is used as the base material 2a.

【0021】第2の垂直磁気記録媒体は次のようにして
製造する。すなわち、2.5インチガラスの基板1上
に、Co80Fe20とSiO2の成膜後の体積組成比
が60:40となるよう調節したコンポジットターゲッ
トを用いて、対向静止マグネトロンスパッタ法でSiO
2を非磁性母材2a、Co80Fe20を磁性粒子2b
としたグラニュラー構造の軟磁性下地膜2を成膜する。
この軟磁性下地膜2の成膜に際しては、上述した第1の
製造方法と同じように、基板1への基板バイアスを2度
に分けて断続的に印加する。すなわち、最初、基板1に
基板バイアス400[W]を印加しながら、Arガス雰
囲気中で、基板1上にスパッタパワーを1000[W]
としてコンポジットターゲットを20[sec]スパッ
タして成膜し、その次に、基板1に基板バイアスを印加
せずに5[sec]スパッタして成膜し、引き続いて再
度、基板1に基板バイアス400[W]を印加しながら
20[sec]スパッタして成膜する。このようにし
て、80[nm]の軟磁性下地膜2を成膜する。
The second perpendicular magnetic recording medium is manufactured as follows. That is, using a composite target adjusted so that the volume composition ratio of Co80Fe20 and SiO2 after film formation is 60:40 on a 2.5-inch glass substrate 1, SiO 2 was deposited by a facing stationary magnetron sputtering method.
2 is a non-magnetic base material 2a, Co80Fe20 is a magnetic particle 2b.
A soft magnetic underlayer 2 having a granular structure is formed.
In forming the soft magnetic underlayer 2, the substrate bias to the substrate 1 is applied twice and intermittently in the same manner as in the first manufacturing method described above. That is, first, a sputtering power of 1000 [W] is applied to the substrate 1 in an Ar gas atmosphere while applying a substrate bias of 400 [W] to the substrate 1.
As a result, a composite target is sputtered for 20 [sec] to form a film, and then the substrate 1 is sputtered for 5 [sec] without applying a substrate bias to the substrate 1, and subsequently, a substrate bias 400 is applied to the substrate 1 again. A film is formed by sputtering for 20 [sec] while applying [W]. Thus, the soft magnetic underlayer 2 of 80 [nm] is formed.

【0022】成膜した軟磁性下地膜2の上に連続して、
CoPt20Cr16合金ターゲットを用いて、Arガ
スに酸素を微量添加した混合ガス中で、CoPt20C
r16の垂直磁性膜3を50[nm]に成膜する。最後
に8[nm]のC保護膜4を成膜する。
Continuously on the soft magnetic underlayer 2 formed,
Using a CoPt20Cr16 alloy target, CoPt20C
The perpendicular magnetic film 3 of r16 is formed to a thickness of 50 [nm]. Finally, an 8 [nm] C protective film 4 is formed.

【0023】また、第1及び第2の垂直磁気記録媒体と
磁気特性等を比較するための比較例として、軟磁性下地
膜の成膜時に、基板バイアスを印加せず成膜した垂直磁
気記録媒体を製造した。比較例の垂直磁気記録媒体は、
軟磁性下地膜の以外の層は、第1及び第2の垂直磁気記
録媒体と同じ方法で成膜したものである。
As a comparative example for comparing magnetic properties and the like with the first and second perpendicular magnetic recording media, a perpendicular magnetic recording medium formed without applying a substrate bias when forming a soft magnetic underlayer was used. Was manufactured. The perpendicular magnetic recording medium of the comparative example
The layers other than the soft magnetic underlayer were formed by the same method as the first and second perpendicular magnetic recording media.

【0024】(磁気特性の測定)次に、上記した製造方
法で製造した本発明の第1及び第2の垂直磁気記録媒体
と比較例の垂直磁気記録媒体について、それぞれの軟磁
性下地膜の磁気特性を測定し、比較を行なった。磁気特
性の測定に際しては、本発明の第1及び第2の垂直磁気
記録媒体と比較例の垂直磁気記録媒体について、それぞ
れ軟磁性下地膜のみを上述した方法で成膜し、それをV
SM(Vibrating SampleMagnet
ometer)を用いて測定した。その磁気特性の測定
結果を図3に示す。保磁力Hcについては、本発明の第
1の垂直磁気記録媒体の軟磁性下地膜が87[A/
m]、第2の垂直磁気記録媒体の軟磁性下地膜が79
[A/m]、比較例の垂直磁気記録媒体の軟磁性下地膜
が40[A/m]といずれも低く、また、透磁率μにつ
いてはいずれも1000以上と高いことから、第1及び
第2の垂直磁気記録媒体の軟磁性下地膜と比較例の垂直
磁気記録媒体の軟磁性下地膜はいずれも軟磁気特性を示
していることが分かる。
(Measurement of Magnetic Properties) Next, regarding the first and second perpendicular magnetic recording media of the present invention and the perpendicular magnetic recording media of the comparative example manufactured by the above-described manufacturing method, the magnetic properties of the respective soft magnetic underlayers were measured. The characteristics were measured and compared. When measuring the magnetic characteristics, only the soft magnetic underlayer was formed by the above-described method for each of the first and second perpendicular magnetic recording media of the present invention and the perpendicular magnetic recording media of the comparative example.
SM (Vibrating SampleMagnet)
measurement). FIG. 3 shows the measurement results of the magnetic properties. As for the coercive force Hc, the soft magnetic underlayer of the first perpendicular magnetic recording medium of the present invention was 87 [A /
m], the soft underlayer of the second perpendicular magnetic recording medium is 79
[A / m], the soft magnetic underlayer of the perpendicular magnetic recording medium of the comparative example was as low as 40 [A / m], and the magnetic permeability μ was as high as 1000 or more. It can be seen that both the soft magnetic underlayer of the perpendicular magnetic recording medium of No. 2 and the soft magnetic underlayer of the perpendicular magnetic recording medium of the comparative example show soft magnetic characteristics.

【0025】しかし、Mr/Msの値について比較する
と、本発明の第1及び第2の垂直磁気記録媒体の軟磁性
下地膜はそれそれ0.52、0.6と値が低く、磁性粒
子がより磁化回転型に近い球状の形状となっていること
が考えられるが、一方、比較例の垂直磁気記録媒体の軟
磁性下地膜は0.85と高く、磁性粒子が膜厚方向に伸
びた柱状の形状となっていると考えられる。
However, comparing the values of Mr / Ms, the soft magnetic underlayers of the first and second perpendicular magnetic recording media of the present invention have low values of 0.52 and 0.6, respectively, and the magnetic particles are small. It is conceivable that the perpendicular magnetic recording medium of the comparative example has a soft magnetic underlayer as high as 0.85, and the magnetic particles have a columnar shape extending in the film thickness direction. It is considered that the shape is as follows.

【0026】更に、本発明の第1及び第2の垂直磁気記
録媒体の軟磁性下地膜はどちらも、図4に示すような、
残留磁化Mrが小さく且つ磁化曲線の飽和磁化Msから
残留磁化Mrへ至る部分がストーナー・ウォルファス型
(Stoner・Wohlfarth)の曲線的な変化
の磁気特性が測定されたことからも、本発明の第1及び
第2の垂直磁気記録媒体の軟磁性下地膜はどちらも磁性
粒子が球状、或いは回転楕円体の形状になっている考え
られる。
Further, both the soft magnetic underlayers of the first and second perpendicular magnetic recording media of the present invention are as shown in FIG.
The fact that the remanent magnetization Mr is small and the portion from the saturation magnetization Ms to the remanent magnetization Mr of the magnetization curve is a Stoner-Wohlfarth type curve-like magnetic characteristic was measured. It is considered that the magnetic particles of both the soft magnetic underlayer of the second perpendicular magnetic recording medium and the soft magnetic underlayer are spherical or spheroidal.

【0027】一方、比較例の軟磁性下地膜では、図5に
示すように、垂直異方性が見られる磁化曲線が得られる
ため、磁性粒子が柱状の形状となっていると考えられ
る。
On the other hand, in the soft magnetic underlayer film of the comparative example, as shown in FIG. 5, since a magnetization curve showing a perpendicular anisotropy is obtained, it is considered that the magnetic particles have a columnar shape.

【0028】(膜構造の観測)更に、本発明の第1及び
第2の垂直磁気記録媒体び比較例の垂直磁気記録媒体の
それぞれの軟磁性下地膜について、膜内で軟磁性の磁性
粒子が均一に分散しているか、また、軟磁性の磁性粒子
が球状に成長しているか否かを確認するため、TEM
(Transmission Electron Sp
ectroscopy)を用いてその膜構造を観察し
た。
(Observation of Film Structure) Further, regarding the soft magnetic underlayers of the first and second perpendicular magnetic recording media of the present invention and the perpendicular magnetic recording media of the comparative example, soft magnetic magnetic particles were formed in the films. In order to confirm whether the particles are uniformly dispersed and whether the soft magnetic particles are growing spherically, a TEM
(Transmission Electron Sp
(Electroscopy) was used to observe the film structure.

【0029】先ず、本発明の第1及び第2の垂直磁気記
録媒体の軟磁性下地膜について、平面方向(図2に示す
平面方向)の膜構造を観察したところ、どちらも非磁性
母材中に球状の軟磁性材料の磁性粒子が一様に分散して
いることが観察できた。また、その磁性粒子の粒径が約
15〜20[nm]となっており、軟磁性下地膜の成膜
時に基板バイアスを印加した効果により磁性粒子の粒成
長が促進され、その粒径が大きくなったと考えられる。
First, the film structure of the soft magnetic underlayers of the first and second perpendicular magnetic recording media of the present invention in the plane direction (the plane direction shown in FIG. 2) was observed. It was observed that the magnetic particles of the spherical soft magnetic material were uniformly dispersed. In addition, the particle diameter of the magnetic particles is about 15 to 20 [nm], and the effect of applying a substrate bias during the formation of the soft magnetic underlayer promotes the particle growth of the magnetic particles. It is thought that it became.

【0030】次に、垂直方向(図2に示す垂直方向)の
膜構造の観察を行なったところ、本発明の第1及び第2
の垂直磁気記録媒体の軟磁性下地膜は、どちらも磁性粒
子が球状、或いは回転楕円状で、且つ、図2に示すよう
に磁性粒子が垂直方向に2列に並んだ層構造をしている
ことが確認された。これは、軟磁性下地膜の成膜におい
て、基板バイアスの印加を途中で一旦中断しているめで
ある。すなわち、基板バイアスの印加を途中で一旦中断
することで、1段目の磁性材料の磁性粒子が柱状に成長
する前に粒成長を抑制し、その後再度基板バイアスの印
加を行なうことで、2段目の磁性材料の磁性粒子の粒成
長をさせるようにしているためである。
Next, when the film structure in the vertical direction (vertical direction shown in FIG. 2) was observed, the first and second films of the present invention were observed.
Each of the soft magnetic underlayers of the perpendicular magnetic recording medium has a layer structure in which the magnetic particles are spherical or spheroidal, and the magnetic particles are vertically arranged in two rows as shown in FIG. It was confirmed that. This is because the application of the substrate bias is temporarily interrupted during the formation of the soft magnetic underlayer. That is, by temporarily interrupting the application of the substrate bias, the grain growth is suppressed before the magnetic particles of the first-stage magnetic material grow in a columnar shape, and thereafter, the substrate bias is applied again to perform the two-stage application. This is because the magnetic particles of the eye magnetic material are allowed to grow.

【0031】このように、本発明の第1及び第2の垂直
磁気記録媒体では、軟磁性下地膜の成膜に際して、基板
に基板バイアスを2度に分けて断続的に印加すること
で、磁性粒子が断面方向に柱状に成長した形状とならず
断面方向に2列に並んだ層構造となり、且つ、磁性粒子
の凝集促進効果により磁性粒子の粒径を大きくすること
ができる。
As described above, in the first and second perpendicular magnetic recording media of the present invention, when the soft magnetic underlayer is formed, the substrate bias is intermittently applied to the substrate in two steps, so that the The particles have a layer structure in which the particles do not grow in a columnar direction in the cross-sectional direction but are arranged in two rows in the cross-sectional direction, and the particle diameter of the magnetic particles can be increased by the effect of promoting the aggregation of the magnetic particles.

【0032】一方、比較例について膜構造の観察を行な
ったところ、平面方向の膜構造では、非磁性母材中に磁
性粒子が一様に分散しておりグラニュラー構造となって
いるものの、軟磁性下地膜層の成膜時に基板バイアスを
印加しなかったため磁性粒子の粒成長が促進されること
無くその粒径が約10〜13[nm]となり、本発明の
第1及び第2の垂直磁気記録媒体に比べ小さいことが確
認された。更に、垂直方向の膜構造は、図6に示すよう
な磁性粒子が垂直方向に柱状に成長した形状となってい
ることが確認された。
On the other hand, when the film structure of the comparative example was observed, the film structure in the planar direction showed that although the magnetic particles were uniformly dispersed in the non-magnetic base material and had a granular structure, Since no substrate bias was applied during the formation of the underlayer, the grain growth of the magnetic grains was about 10 to 13 [nm] without promoting the grain growth, and the first and second perpendicular magnetic recording of the present invention were performed. It was confirmed that it was smaller than the medium. Further, it was confirmed that the magnetic film in the vertical direction had a shape in which magnetic particles were grown in a columnar shape in the vertical direction as shown in FIG.

【0033】(ノイズ特性の測定)次に、本発明の第1
及び第2の垂直磁気記録媒体び比較例の垂直磁気記録媒
体のそれぞれのノイズ特性を調べた。ノイズ測定に際し
ては、再生ギャップ長0.15[μm]、再生トラック
幅0.8[μm]のGMRヘッドと主磁極膜圧0.4
[μm]、記録トラック幅2[μm]の単磁極型ヘッド
を用いて、浮上量20[nm]でスピンスタンドを用い
て測定した。
(Measurement of Noise Characteristics) Next, the first aspect of the present invention will be described.
The noise characteristics of each of the second perpendicular magnetic recording medium and the perpendicular magnetic recording medium of the comparative example were examined. At the time of noise measurement, a GMR head having a read gap length of 0.15 [μm] and a read track width of 0.8 [μm] and a main magnetic pole film pressure of 0.4 were used.
The measurement was performed using a single pole type head having a recording track width of 2 [μm] and a flying height of 20 [nm] using a spin stand.

【0034】先ず、本発明の第1及び第2の垂直磁気記
録媒体の軟磁性下地膜のみ(但し、保護膜は有り)につ
いて、そのDCノイズを測定した。その結果、どちらも
スパイクノイズは測定されないことから、軟磁性下地膜
には磁壁が存在していないことが確認された。
First, the DC noise of only the soft magnetic underlayer of the first and second perpendicular magnetic recording media of the present invention (provided that the protective film is provided) was measured. As a result, no spike noise was measured in either case, and it was confirmed that no domain wall was present in the soft magnetic underlayer.

【0035】次に、垂直磁気記録媒体の全体(軟磁性下
地膜のみではなく、基板から保護膜までの各膜が積層さ
れた状態のもの)に対して、垂直磁性膜に記録密度30
0[kfci]で記録した時の規格化媒体ノイズNm/
SOを測定した。その結果、どちらも、規格化媒体ノイ
ズNm/SO=0.015[μm1/2μVrms/μ
Vpp]程度とその値は小さく、低ノイズ化されている
ことが分かる。
Next, with respect to the entire perpendicular magnetic recording medium (in which not only the soft magnetic underlayer but also the layers from the substrate to the protective film are laminated), a recording density of 30% is applied to the perpendicular magnetic film.
Normalized medium noise Nm / when recording at 0 [kfci]
SO was measured. As a result, in both cases, the normalized medium noise Nm / SO = 0.015 [μm1 / 2 μVrms / μ
Vpp] and its value are small, and it can be seen that the noise is reduced.

【0036】一方、比較例の垂直磁気記録媒体について
軟磁性下地膜のみのDCノイズを測定した結果ではスパ
イクノイズは測定されず磁壁が存在していないことが確
認されたが、垂直磁気記録媒体の全体に対して規格化媒
体ノイズの測定結果では、その値がNm/SO=0.0
22[μm1/2μVrms/μVpp]となり、第1
及び第2の垂直磁気記録媒体よりも大きい値となった。
これは、比較例では、軟磁性下地膜が磁性粒子の分散し
たグラニュラー構造となっていることから磁壁は存在し
ないものの、磁性粒子の形状が垂直方向に柱状に成長し
た形状であるため軟磁性下地膜に垂直異方性が現れたた
めと考えられる。
On the other hand, the DC noise of only the soft magnetic underlayer of the perpendicular magnetic recording medium of the comparative example was measured. As a result, no spike noise was measured and no domain wall was confirmed. In the measurement result of the normalized medium noise for the whole, the value is Nm / SO = 0.0
22 [μm1 / 2 μVrms / μVpp], the first
And a value larger than that of the second perpendicular magnetic recording medium.
This is because in the comparative example, the soft magnetic underlayer had a granular structure in which magnetic particles were dispersed, and thus no magnetic domain wall was present. This is probably due to the appearance of vertical anisotropy in the ground film.

【0037】なお、上述した第1及び第2の垂直磁気記
録媒体の製造方法では、軟磁性下地膜の成膜時に、2回
に分けて基板に基板バイアスを断続的に印加するように
しているが、これに限らず、軟磁性下地膜の膜厚を更に
厚くするため、又は、磁性粒子の列を増加させるため
に、3回以上に分けて基板バイアスを断続的に印加して
も良い。3回に分けて基板バイアスを断続的に印加した
場合は、軟磁性下地膜の垂直方向に球状の磁性粒子が3
列に並んだ層構造となる。4回以上の場合も、軟磁性下
地膜の垂直方向に球状の磁性粒子が基板バイアスの印加
回数に応じた列数分並んだ層構造となることが考えられ
る。
In the first and second methods for manufacturing a perpendicular magnetic recording medium, the substrate bias is intermittently applied to the substrate in two separate steps during the formation of the soft magnetic underlayer. However, the present invention is not limited to this, and in order to further increase the thickness of the soft magnetic underlayer or to increase the number of magnetic particles, the substrate bias may be intermittently applied in three or more steps. When the substrate bias is intermittently applied in three times, three spherical magnetic particles are formed in the vertical direction of the soft magnetic underlayer.
The layer structure is arranged in a line. Even in the case of four or more times, it is conceivable that the magnetic layer has a layered structure in which spherical magnetic particles are arranged in the vertical direction of the soft magnetic underlayer by the number of columns corresponding to the number of times of application of the substrate bias.

【0038】このように、軟磁性下地膜の成膜時に基板
バイアスを複数回に分けて断続的に印加することで、磁
性粒子の形状を球状に保った状態で軟磁性下地膜の膜厚
を厚くすることが可能となり、従って、規格化媒体ノイ
ズNm/SOの値の小さい低ノイズの垂直磁気記録媒体
を実現することが可能である。
As described above, when the soft magnetic underlayer is formed, the substrate bias is divided and applied intermittently a plurality of times, so that the thickness of the soft magnetic underlayer can be reduced while the shape of the magnetic particles is kept spherical. This makes it possible to increase the thickness of the recording medium, thereby realizing a low-noise perpendicular magnetic recording medium having a small normalized medium noise Nm / SO.

【0039】(分解能の測定)次に、本発明の第1及び
第2の垂直磁気記録媒体について軟磁性下地膜における
非磁性母材の相違による高周波記録特性を比較するた
め、それぞれの垂直磁性膜に記録密度400[kfc
i]で記録した時の分解能PW50を測定した。その結
果、図3に示すように、第1の垂直磁気記録媒体の分解
能PW50は約12[nSec]、第2の垂直磁気記録
媒体の分解能PW50は約10[nSec]となった。
すなわち、第2の垂直磁気記録媒体の方が第1の垂直磁
気記録媒体よりも分解能PW50が1割程度小さいこと
から、第2の垂直磁気記録媒体の方が高周波記録に優れ
ている。
(Measurement of Resolution) Next, in order to compare the high-frequency recording characteristics of the first and second perpendicular magnetic recording media of the present invention due to the difference in the non-magnetic base material in the soft magnetic underlayer, the respective perpendicular magnetic films were compared. Recording density 400 [kfc
i] and the resolution PW50 at the time of recording was measured. As a result, as shown in FIG. 3, the resolution PW50 of the first perpendicular magnetic recording medium was about 12 [nSec], and the resolution PW50 of the second perpendicular magnetic recording medium was about 10 [nSec].
That is, since the second perpendicular magnetic recording medium has a resolution PW50 about 10% smaller than that of the first perpendicular magnetic recording medium, the second perpendicular magnetic recording medium is superior to high-frequency recording.

【0040】ここで、第1及び第2の垂直磁気記録媒体
の軟磁性下地膜の表面の電気抵抗率ρを四端子法で測定
したことろ、第1の垂直磁気記録媒体の軟磁性下地膜は
電気抵抗率ρ=〜500[μΩm]、第2の垂直磁気記
録媒体の軟磁性下地膜は電気抵抗率ρ=〜1000[μ
Ωm]となり、第2の垂直磁気記録媒体の軟磁性下地膜
の方が高電気抵抗であることを示した。すなわち、非磁
性母材としてSiO2等の高電気抵抗の材料を用いて軟
磁性下地膜を高抵抗にすることにより、軟磁性下地膜の
表面の渦電流の発生を低減でき、より高周波記録に優れ
た垂直磁気記録媒体を得ることが可能となる。
Here, the electric resistivity ρ of the surface of the soft magnetic underlayer of the first and second perpendicular magnetic recording media was measured by the four-terminal method, and the soft magnetic underlayer of the first perpendicular magnetic recording medium was measured. Is the electric resistivity ρ = 〜500 [μΩm], and the soft magnetic underlayer of the second perpendicular magnetic recording medium has the electric resistivity ρ = 〜1000 [μm].
Ωm], indicating that the soft magnetic underlayer of the second perpendicular magnetic recording medium has higher electric resistance. That is, by using a material having a high electric resistance such as SiO2 as the non-magnetic base material to increase the resistance of the soft magnetic underlayer, the generation of eddy current on the surface of the soft magnetic underlayer can be reduced, and the high frequency recording is more excellent. Perpendicular magnetic recording medium can be obtained.

【0041】(垂直磁気記録装置)次に、上述した垂直
磁気記録媒体を用いた垂直磁気記録装置の構成について
説明する。
(Perpendicular Magnetic Recording Apparatus) Next, the configuration of a perpendicular magnetic recording apparatus using the above-described perpendicular magnetic recording medium will be described.

【0042】図7に本発明の垂直磁気記録装置の概観図
を示している。図7に示されるように、本発明の垂直磁
気記録装置は、上面の開口した矩形箱上の筐体26と、
複数のねじにより筐体26にねじ止めされる筐体の上端
開口を閉塞する図示しないトップカバーとを有してい
る。筐体26内には、上述した第1又は第2の垂直磁気
記録媒体を用いた垂直磁気記録媒体22、この垂直磁気
記録媒体22を支持および回転させる駆動手段としての
スピンドルモータ21、垂直磁気記録媒体22への磁気
信号の記録及び垂直磁気記録媒体22に記録された磁気
信号の再生を行なう磁気ヘッド23、磁気ヘッド23を
先端に搭載したサスペンションを有し且つ磁気ヘッド2
3を垂直磁気記録媒体22に対して移動自在に支持する
ヘッドアクチュエータ24、ヘッドアクチュエータ24
を回転自在に支持する回転軸28、回転軸28を介して
ヘッドアクチュエータ24を回動および位置決めするボ
イスコイルモータ27、ヘッドアンプ回路25が収納さ
れている。
FIG. 7 is a schematic view of a perpendicular magnetic recording apparatus according to the present invention. As shown in FIG. 7, the perpendicular magnetic recording apparatus of the present invention comprises a housing 26 on a rectangular box having an open top,
A top cover (not shown) that closes an upper end opening of the housing that is screwed to the housing 26 with a plurality of screws. Inside the housing 26, a perpendicular magnetic recording medium 22 using the above-described first or second perpendicular magnetic recording medium, a spindle motor 21 as a driving means for supporting and rotating the perpendicular magnetic recording medium 22, a perpendicular magnetic recording medium A magnetic head 23 for recording a magnetic signal on the medium 22 and reproducing a magnetic signal recorded on the perpendicular magnetic recording medium 22;
Head actuator 24, which supports the magnetic recording medium 3 movably with respect to the perpendicular magnetic recording medium 22,
, A voice coil motor 27 for rotating and positioning the head actuator 24 via the rotary shaft 28, and a head amplifier circuit 25 are housed.

【0043】このように、垂直磁気記録媒体22に、本
発明の第1又は第2の垂直磁気記録媒体を用いることに
より、低ノイズで且つ高密度記録が可能な垂直磁気記録
媒体を実現することが可能である。
As described above, by using the first or second perpendicular magnetic recording medium of the present invention as the perpendicular magnetic recording medium 22, it is possible to realize a perpendicular magnetic recording medium capable of performing high-density recording with low noise. Is possible.

【0044】[0044]

【発明の効果】以上詳述したように本発明によれば、磁
性粒子の形状を球状に保った状態で膜厚の厚い下地膜を
有する垂直磁気記録媒体が実現可能であり、よって、低
ノイズ且つ高密度記録の垂直磁気記録媒体及び垂直磁気
記録装置を提供することが可能である。
As described above in detail, according to the present invention, it is possible to realize a perpendicular magnetic recording medium having a thick underlayer film while keeping the shape of the magnetic particles spherical, and therefore low noise. In addition, it is possible to provide a perpendicular magnetic recording medium and a perpendicular magnetic recording device for high-density recording.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1及び第2の垂直磁気記録媒体の断
面構成を示す図。
FIG. 1 is a diagram showing a cross-sectional configuration of first and second perpendicular magnetic recording media of the present invention.

【図2】本発明の第1及び第2の垂直磁気記録媒体の垂
直磁性膜と軟磁性下地膜の部分拡大模式図。
FIG. 2 is a partially enlarged schematic diagram of a perpendicular magnetic film and a soft magnetic underlayer of first and second perpendicular magnetic recording media of the present invention.

【図3】本発明の第1及び第2の垂直磁気記録媒体と比
較例の垂直磁気記録媒体との磁気特性表を示す図。
FIG. 3 is a diagram showing a magnetic characteristic table of first and second perpendicular magnetic recording media of the present invention and a perpendicular magnetic recording medium of a comparative example.

【図4】本発明の第1及び第2の垂直磁気記録媒体の軟
磁性下地膜の磁化曲線を示す図。
FIG. 4 is a diagram showing a magnetization curve of a soft magnetic underlayer of the first and second perpendicular magnetic recording media of the present invention.

【図5】比較例の垂直磁気記録媒体の軟磁性下地膜の磁
化曲線を示す図。
FIG. 5 is a diagram showing a magnetization curve of a soft magnetic underlayer of a perpendicular magnetic recording medium of a comparative example.

【図6】比較例の垂直磁気記録媒体の垂直磁性膜と軟磁
性下地膜の部分拡大模式図。
FIG. 6 is a partially enlarged schematic view of a perpendicular magnetic film and a soft magnetic underlayer of a perpendicular magnetic recording medium of a comparative example.

【図7】本発明の垂直磁気記録装置の一例を示す図。FIG. 7 is a diagram showing an example of a perpendicular magnetic recording device according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…軟磁性下地膜 2a…非磁性母材 2b…軟磁性材料の磁性粒子 3…垂直磁性膜 4…保護膜 11…軟磁性下地膜 11a…非磁性母材 11b…軟磁性材料の磁性粒子 12…垂直磁性膜 21…スピンドルモータ 22…垂直磁気記録媒体 23…磁気ヘッド 24…ヘッドアクチュエータ 25…ヘッドアンプ回路 26…筐体 27…ボイスコイルモータ 28…回転軸 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Soft magnetic base film 2a ... Non-magnetic base material 2b ... Magnetic particles of soft magnetic material 3 ... Perpendicular magnetic film 4 ... Protective film 11 ... Soft magnetic base film 11a ... Non-magnetic base material 11b ... Soft magnetic material Magnetic particles 12 ... Perpendicular magnetic film 21 ... Spindle motor 22 ... Perpendicular magnetic recording medium 23 ... Magnetic head 24 ... Head actuator 25 ... Head amplifier circuit 26 ... Housing 27 ... Voice coil motor 28 ... Rotating axis

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 BA24 BA64 BB02 BB07 BC06 BD11 CA05 CA13 5D006 CA01 CA03 CA05 5D112 AA03 BD01 BD03 FA04 FB26 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K029 BA24 BA64 BB02 BB07 BC06 BD11 CA05 CA13 5D006 CA01 CA03 CA05 5D112 AA03 BD01 BD03 FA04 FB26

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板の上に非磁性母材中に磁性粒子が分
散したグラニュラー構造を持った下地膜層を成膜する工
程と、 前記下地膜層の上に垂直磁性層を成膜する工程と、 前記垂直磁性層の上に保護膜層を成膜する工程とを有
し、 前記下地膜層を成膜する工程は、前記基板に断続的に基
板バイアスを印加しながら前記下地膜層を成膜すること
で、前記磁性粒子が前記下地膜層の垂直方向に複数の列
に並んだ層構造の下地膜層を成膜することを特徴とする
垂直磁気記録媒体の製造方法。
1. A step of forming a base film layer having a granular structure in which magnetic particles are dispersed in a nonmagnetic base material on a substrate, and a step of forming a perpendicular magnetic layer on the base film layer And a step of forming a protective film layer on the perpendicular magnetic layer, wherein the step of forming the underlayer film layer comprises intermittently applying a substrate bias to the substrate to form the underlayer film layer. A method for manufacturing a perpendicular magnetic recording medium, comprising forming a film on a base film layer having a layer structure in which the magnetic particles are arranged in a plurality of rows in a direction perpendicular to the base film layer.
【請求項2】 前記下地膜層を成膜する工程は、前記非
磁性母材として、非磁性金属、当該非磁性金属の化合
物、酸化物、窒化物、弗化物、炭化物の中から選ばれる
材料を用いたことを特徴とする請求項1記載の垂直磁気
記録媒体の製造方法。
2. The step of forming the underlayer film, wherein the nonmagnetic base material is a material selected from nonmagnetic metals, compounds of the nonmagnetic metals, oxides, nitrides, fluorides, and carbides. 2. The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein
【請求項3】 前記下地膜層を成膜する工程は、前記磁
性粒子として、少なくともCo、Fe、Niから選択さ
れた一種を含んだ軟磁性材料を用いたことを特徴とする
請求項1又は2記載の垂直磁気記録媒体の製造方法。
3. The method according to claim 1, wherein in the step of forming the underlayer, a soft magnetic material containing at least one selected from Co, Fe, and Ni is used as the magnetic particles. 3. The method for manufacturing a perpendicular magnetic recording medium according to item 2.
【請求項4】 基板と、前記基板上に形成された下地膜
層と、前記下地膜層上に形成された垂直磁性層と、前記
垂直磁性層上に形成された保護膜層を有する垂直磁気記
録媒体において、 前記下地膜層は、非磁性母材中に磁性粒子が分散したグ
ラニュラー構造であり、且つ、前記磁性粒子が前記下地
膜層の垂直方向に複数の列に並んだ層構造であることを
特徴とする垂直磁気記録媒体。
4. A perpendicular magnetic field comprising: a substrate; a base film layer formed on the substrate; a perpendicular magnetic layer formed on the base film layer; and a protective film layer formed on the perpendicular magnetic layer. In the recording medium, the base film layer has a granular structure in which magnetic particles are dispersed in a nonmagnetic base material, and has a layer structure in which the magnetic particles are arranged in a plurality of rows in a direction perpendicular to the base film layer. A perpendicular magnetic recording medium characterized by the above-mentioned.
【請求項5】 前記下地膜層の非磁性母材として、非磁
性金属、当該非磁性金属の化合物、酸化物、窒化物、弗
化物、炭化物の中から選ばれる材料を用いたことを特徴
とする請求項4記載の垂直磁気記録媒体。
5. The non-magnetic base material of the under film layer is made of a material selected from a non-magnetic metal, a compound of the non-magnetic metal, an oxide, a nitride, a fluoride, and a carbide. The perpendicular magnetic recording medium according to claim 4, wherein
【請求項6】 前記下地膜層の前記磁性粒子として、少
なくともCo、Fe、Niから選択された一種を含んだ
軟磁性材料を用いたことを特徴とする請求項4又は5記
載の垂直磁気記録媒体。
6. The perpendicular magnetic recording according to claim 4, wherein a soft magnetic material containing at least one selected from Co, Fe, and Ni is used as the magnetic particles of the underlayer. Medium.
【請求項7】 垂直磁気記録媒体と、前記垂直磁気記録
媒体を支持及び回転駆動するスピンドルモータと、前記
垂直磁気記録媒体への磁気信号の記録及び前記垂直磁気
記録媒体に記録された磁気信号の再生を行なう磁気ヘッ
ドとを具備する垂直磁気記録再生装置において、 前記垂直磁気記録媒体は、基板と、前記基板上に形成さ
れた下地膜層と、前記下地膜層上に形成された垂直磁性
層と、前記垂直磁性層上に形成された保護膜層を有し、
且つ、前記下地膜層は、非磁性母材中に軟磁性材料の磁
性粒子が分散したグラニュラー構造であり、且つ、前記
軟磁性材料の磁性粒子が前記下地膜層の垂直方向に複数
の列に並んだ層構造であることを特徴とする垂直磁気記
録再生装置。
7. A perpendicular magnetic recording medium, a spindle motor for supporting and rotating the perpendicular magnetic recording medium, recording a magnetic signal on the perpendicular magnetic recording medium, and transmitting a magnetic signal recorded on the perpendicular magnetic recording medium. A perpendicular magnetic recording / reproducing apparatus comprising: a magnetic head for performing reproduction; wherein the perpendicular magnetic recording medium comprises a substrate, a base film layer formed on the substrate, and a perpendicular magnetic layer formed on the base film layer. And a protective film layer formed on the perpendicular magnetic layer,
In addition, the undercoat layer has a granular structure in which magnetic particles of a soft magnetic material are dispersed in a nonmagnetic matrix, and the magnetic particles of the soft magnetic material are arranged in a plurality of rows in a direction perpendicular to the undercoat layer. A perpendicular magnetic recording / reproducing apparatus characterized by having a layered structure.
JP2000246654A 2000-08-16 2000-08-16 Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder Withdrawn JP2002063718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000246654A JP2002063718A (en) 2000-08-16 2000-08-16 Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000246654A JP2002063718A (en) 2000-08-16 2000-08-16 Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder

Publications (1)

Publication Number Publication Date
JP2002063718A true JP2002063718A (en) 2002-02-28

Family

ID=18736924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246654A Withdrawn JP2002063718A (en) 2000-08-16 2000-08-16 Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder

Country Status (1)

Country Link
JP (1) JP2002063718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817308B1 (en) * 2006-06-22 2008-03-27 삼성전자주식회사 Perpendicular magnetic recording media
JP2012146385A (en) * 2011-01-07 2012-08-02 Showa Denko HD Singapore Pte Ltd Method of manufacturing perpendicular magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817308B1 (en) * 2006-06-22 2008-03-27 삼성전자주식회사 Perpendicular magnetic recording media
JP2012146385A (en) * 2011-01-07 2012-08-02 Showa Denko HD Singapore Pte Ltd Method of manufacturing perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US6713197B2 (en) Perpendicular magnetic recording medium and magnetic recording apparatus
JP4405436B2 (en) Negative anisotropic exchange coupled magnetic recording medium and magnetic recording / reproducing apparatus
US20080075979A1 (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording device
JP3805018B2 (en) Magnetic recording medium and magnetic disk device
JP2005032352A (en) Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device
KR20080029813A (en) Magnetic recording medium and magnetic recording device
JP4102221B2 (en) Method for manufacturing magnetic recording medium
JP3648450B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2001283428A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
JP3913967B2 (en) Perpendicular magnetic recording medium and perpendicular magnetic recording / reproducing apparatus
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP3359706B2 (en) Magnetic recording media
JP2006286103A (en) Vertical magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP2001101644A (en) Vertical magnetic recording medium and magnetic recording device
JP2002092843A (en) Magnetic recording medium
JP2002063718A (en) Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recorder
JP2007102833A (en) Perpendicular magnetic recording medium
JP3684047B2 (en) Magnetic recording medium
JP3445537B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3864637B2 (en) Magnetic recording medium
JP2000339657A (en) Magnetic recording medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2001176048A (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070731