JP2002060898A - High strength steel sheet for automotive room structural parts, and its manufacturing method - Google Patents

High strength steel sheet for automotive room structural parts, and its manufacturing method

Info

Publication number
JP2002060898A
JP2002060898A JP2000252904A JP2000252904A JP2002060898A JP 2002060898 A JP2002060898 A JP 2002060898A JP 2000252904 A JP2000252904 A JP 2000252904A JP 2000252904 A JP2000252904 A JP 2000252904A JP 2002060898 A JP2002060898 A JP 2002060898A
Authority
JP
Japan
Prior art keywords
volume fraction
less
ferrite
steel sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000252904A
Other languages
Japanese (ja)
Other versions
JP4313507B2 (en
Inventor
Shunji Hiwatari
俊二 樋渡
Koji Sakuma
康治 佐久間
Akinobu Murasato
映信 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000252904A priority Critical patent/JP4313507B2/en
Publication of JP2002060898A publication Critical patent/JP2002060898A/en
Application granted granted Critical
Publication of JP4313507B2 publication Critical patent/JP4313507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet which is used for automotive room structural parts and hardly causes stretch-flange rupture at press working and can suppress the deformation of the room at collision and also to provide its manufacturing method. SOLUTION: The steel sheet has a composition consisting of, by weight, 0.05-0.17% C, 0.5-1.5% Si, 0.8-2.4% Mn, <=0.02% P, <=0.004% S, 0.01-0.1% Al, <=0.006% N, 0.0005-0.004% Ca and the balance Fe with inevitable impurities and has a structure containing >=30% ferrite by volume fraction, >=10% bainite by volume fraction and <6%, in total, of martensite and austenite by volume fraction. In the steel sheet: average grain size of ferrite is <=22 μm; the volume fraction of carbides of >=0.1 μm circle-equivalent radius is <=0.1%;, stretch-flange formability is >=80% by bore expanding ratio; upper yield stress at 500/s strain rate is >=1.5 times the quasi-static tensile strength; and strength is >=490 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車客室構造部品
用高強度鋼板とその製造方法に関わるものである。本発
明による高強度鋼板はプレス成形を経て自動車客室構造
部品に加工され、自動車衝突の際に客室中の乗員を保護
するために使用されるものである。なお、プレス加工性
や防錆性能の観点から、表面に溶融めっき、電気めっ
き、無機皮膜、有機皮膜などの処理を施した鋼板も本発
明に含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel sheet for automobile passenger compartment structural parts and a method for producing the same. The high-strength steel sheet according to the present invention is processed into a vehicle cabin structural part through press forming, and is used to protect an occupant in a passenger cabin during a vehicle collision. In addition, from the viewpoint of press workability and rust prevention performance, a steel sheet whose surface is subjected to a treatment such as hot-dip plating, electroplating, an inorganic film, and an organic film is also included in the present invention.

【0002】[0002]

【従来の技術】自動車車体が衝突した際の乗員の安全性
を高めるために高速で塑性変形するときの流動応力の高
い490MPa級以上の高強度鋼板が開発されている。
これらはフロントサイドメンバーなど衝突時に大きく塑
性変形することで、エネルギーを吸収することを目的と
した部品を対象としており、5%ないし10%程度の比
較的大きなひずみまでの吸収エネルギーが高速変形時に
特に大きいことが重視されている。そのような鋼板とし
て特開平09−111396号公報や特開平09−29
6247号公報ではマルテンサイトを含む複合組織鋼が
開示されている。また、特開平10−158735号公
報では残留オーステナイトを含む複合組織鋼板が、特開
平11−100641号公報ではフェライトの硬さとあ
る関係を満足する第2相(マルテンサイト、オーステナ
イト、ベイナイトのいずれか)を含む複合組織鋼板が開
示されている。さらに特開平10−259448号公報
ではベイナイトとフェライトからなる複合組織鋼板によ
り高速引張試験における吸収エネルギーが高まることが
開示されている。これらの鋼板の特徴は、鋼板中に最初
から含まれるマルテンサイト、あるいはオーステナイ
ト、ベイナイトを第2相として含み、これらがマトリッ
クスに比べ硬質であることから発現される吸収エネルギ
ーのひずみ速度依存性を活用しているものである。これ
ら従来の鋼板では高速変形時の吸収エネルギーに主眼が
置かれているが、低降伏比型デュアルフェーズ鋼で一般
に知られているように硬質第2相+軟質マトリックスの
組み合わせでは伸びフランジ性が劣り、クロスメンバー
やセンターピラーインナーなどプレス成形時に伸びフラ
ンジ成形をともなう部品には適していない。また、衝突
時に大きな塑性変形を生じることが許されない客室構造
部品では、塑性変形吸収エネルギーを高めることを主眼
にした従来の鋼板では乗員の安全性を確保する効果が小
さい。
2. Description of the Related Art High-strength steel sheets of 490 MPa class or higher, which have high flow stress when plastically deformed at high speed, have been developed in order to enhance the safety of occupants in the event of collision of an automobile body.
These target parts such as front side members that absorb plastic energy due to large plastic deformation at the time of collision. Absorbed energy up to a relatively large strain of about 5% to 10% is particularly important during high-speed deformation. It is important to be big. Such a steel plate is disclosed in JP-A-09-111396 and JP-A-09-29.
No. 6247 discloses a composite structure steel containing martensite. Japanese Patent Application Laid-Open No. H10-158735 discloses a composite structure steel sheet containing retained austenite, and Japanese Patent Application Laid-Open No. H11-100641 discloses a second phase satisfying a certain relationship with the hardness of ferrite (any of martensite, austenite and bainite). A composite structure steel sheet comprising: Further, Japanese Patent Application Laid-Open No. 10-259448 discloses that a composite structure steel sheet comprising bainite and ferrite increases absorption energy in a high-speed tensile test. The feature of these steel sheets is that they use martensite, austenite, and bainite as a second phase, which are originally contained in the steel sheet, and utilize the strain rate dependence of the absorbed energy that is developed because they are harder than the matrix. Is what you are doing. While these conventional steel sheets focus on the absorbed energy during high-speed deformation, the combination of a hard second phase and a soft matrix has inferior stretch flangeability, as is generally known for low-yield-ratio dual-phase steels. It is not suitable for parts with stretch flange forming during press forming, such as cross members and center pillar inners. Further, in a passenger compartment structural component in which large plastic deformation is not allowed to occur at the time of a collision, a conventional steel plate whose main purpose is to enhance plastic deformation absorption energy has a small effect of securing occupant safety.

【0003】一方、伸びフランジ性に優れる鋼板は自動
車用でも足回り部品やホィール、リムなどを対象として
おり、客室構造部品に要求される衝突安全性を満足する
ことができなかった。
On the other hand, steel sheets having excellent stretch flangeability are intended for undercarriage parts, wheels, rims and the like even for automobiles, and cannot satisfy the collision safety required for passenger compartment structural parts.

【0004】[0004]

【発明が解決しようとする課題】自動車の衝突安全性の
開発が進められて行く中で、上述のようにフロントサイ
ドメンバー用の複合組織型の従来鋼板は、クロスメンバ
ーやセンターピラーインナーなど客室構造部品に適して
いないことが明らかになった。そのため、伸びフランジ
性と衝突時の耐変形強度が高い客室構造部品用高強度鋼
板の開発が課題とされている。
As the collision safety of automobiles is being developed, as described above, the conventional steel sheet of the composite structure type for the front side member has been applied to the cabin structure such as the cross member and the center pillar inner. It turned out to be unsuitable for parts. Therefore, development of a high-strength steel sheet for passenger compartment structural parts having high stretch flangeability and high deformation resistance at the time of collision has been considered as an issue.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記の課題
を解決すべく、まず、客室構造部品用材料にはどのよう
な機械的特性が重要であるかを検討した。その結果、
加工性として伸びの他に伸びフランジ性が必要であるこ
と、および、客室の安全性は塑性変形による吸収エネ
ルギーとは無関係で入力した最大応力に対する耐変形強
度が重要であること、それには材料のひずみ速度50
0/s程度の高ひずみ速度域における上降伏点応力がそ
の最重要材料要因であること、たとえ低ひずみ速度で
上降伏点が見られない材料でも500/s程度の高ひず
み速度では図1に示すような鋭い上降伏点が観察される
こと、上降伏点応力のひずみ速度による上昇の程度は
材料によって異なり、降伏比の低い複合組織鋼ではその
値が比較的小さいこと、鋼材の規格は静的引張強さが
その基準となるため、ひずみ速度500/sにおける上
降伏点応力の準静的引張強さに対する比が1.5以上が
必要であることを見出した。さらに、種々の成分と種々
の微視的組織を有する鋼板を用いた実験から、フェライ
トとベイナイトとマルテンサイト・残留オーステナイト
の体積分率、フェライトの粒径がある範囲にある場合
に、上記の材料要件が満足されることを見出した。そし
て、炭化物の形態が伸びフランジ性と高ひずみ速度での
上降伏点応力を両立するために重要な因子であることも
見出した。また、塗装焼き付け時に浸入型固溶元素が転
位に固着し硬化する場合、強度上昇量は高ひずみ速度域
でも大きいため、準静的引張強さを大きく上げることな
く、ひずみ速度500/sにおける上降伏点応力を上げ
ることができることを見出し、プレス成形で転位が導入
できなくとも、調質圧延の工程で導入した転位が有効で
あることを発見した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors first studied what mechanical properties are important for the material for passenger compartment structural parts. as a result,
The workability requires stretch flangeability in addition to elongation, and the safety of the cabin is irrelevant to the absorbed energy due to plastic deformation, and it is important that the deformation resistance to the input maximum stress is important. Strain rate 50
The upper yield point stress in the high strain rate range of about 0 / s is the most important material factor. Even if the material does not show an upper yield point at a low strain rate, it is shown in FIG. 1 at a high strain rate of about 500 / s. The sharp upper yield point is observed as shown in the figure, and the degree of increase of the upper yield point stress due to the strain rate differs depending on the material.The value is relatively small in a composite structure steel with a low yield ratio, and the steel specification is static. It has been found that the ratio of the upper yield point stress to the quasi-static tensile strength at a strain rate of 500 / s needs to be 1.5 or more because the tensile strength is the standard. Furthermore, from experiments using steel sheets having various components and various microstructures, it was found that, when the volume fraction of ferrite, bainite, martensite and retained austenite, and the grain size of ferrite are within a certain range, the above materials We found that the requirements were satisfied. They also found that the form of carbide is an important factor for achieving both stretch flangeability and upper yield point stress at high strain rates. Further, when the penetration type solid solution element is fixed to the dislocation and hardened during baking of the paint, the strength increase is large even in the high strain rate range, and therefore, the strength at the strain rate of 500 / s is not increased without greatly increasing the quasi-static tensile strength. They found that the yield point stress could be raised, and found that even if dislocations could not be introduced by press forming, the dislocations introduced in the temper rolling step were effective.

【0006】本発明はこのような新しい知見に基づき、
従来の衝突安全用鋼板にない思想に基づいて構成された
新しい鋼板であり、その要旨は以下の通りである。
[0006] The present invention is based on such new knowledge,
This is a new steel plate constructed based on the concept not found in the conventional steel plate for collision safety, and the gist is as follows.

【0007】(1) 引張り強さが490MPa以上
で、穴広げ率が80%以上で、ひずみ速度500/sで
の上降伏点が準静的引張り強さの1.5倍以上であるこ
とを特徴とする自動車客室構造部品用高強度鋼板。
(1) The tensile strength is 490 MPa or more, the hole expansion ratio is 80% or more, and the upper yield point at a strain rate of 500 / s is 1.5 times or more the quasi-static tensile strength. High-strength steel sheet for automobile passenger compartment structural parts.

【0008】(2) 上記(1)において、質量%で、 C:0.05〜0.17%、 Si:0.5〜1.5%、 Mn:0.8〜2.4%、 P:0.02%以下、 S:0.004%以下、 Al:0.01〜0.1%、 N:0.006%以下 を含有し、残部Fe及び不可避的不純物からなることを
特徴とする自動車客室構造部品用高強度鋼板。
(2) In the above (1), C: 0.05 to 0.17%, Si: 0.5 to 1.5%, Mn: 0.8 to 2.4%, P : 0.02% or less, S: 0.004% or less, Al: 0.01 to 0.1%, N: 0.006% or less, with the balance being Fe and unavoidable impurities. High-strength steel sheet for automotive cabin structural parts.

【0009】(3) 上記(1)又は(2)において、
体積分率で30%以上のフェライトを含み、体積分率で
10%以上のベイナイトを含み、マルテンサイト及びオ
ーステナイトを合わせた体積分率が6%未満で、フェラ
イトの平均結晶粒径が22μm以下で、円相当半径が
0.1μm以上の炭化物の体積分率が0.1%以下であ
ることを特徴とする自動車客室構造部品用高強度鋼板。
(3) In the above (1) or (2),
When the ferrite contains at least 30% ferrite by volume fraction, contains at least 10% bainite by volume fraction, the combined volume fraction of martensite and austenite is less than 6%, and the average crystal grain size of ferrite is 22 μm or less. A high-strength steel sheet for automobile passenger compartment structural parts, wherein the volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1% or less.

【0010】(4) 上記(1)又は(2)において、
体積分率で30%以上のフェライトを含み、体積分率で
10%以上のベイナイトを含み、マルテンサイト及びオ
ーステナイトを合わせた体積分率が6%未満で、フェラ
イトの平均結晶粒径が10μm以上で、円相当半径が
0.1μm以上の炭化物の体積分率が0.1%以下であ
ることを特徴とする自動車客室構造部品用高強度鋼板。
(4) In the above (1) or (2),
A ferrite having a volume fraction of at least 30%, a bainite having a volume fraction of at least 10%, a martensite and austenite volume fraction of less than 6%, and an average ferrite grain size of at least 10 μm; A high-strength steel sheet for automobile passenger compartment structural parts, wherein the volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1% or less.

【0011】(5) 上記(1)又は(2)において、
体積分率で30%以上のフェライトを含み、体積分率で
10%以上のベイナイトを含み、マルテンサイト及びオ
ーステナイトを合わせた体積分率が6%未満で、フェラ
イトの平均結晶粒径が10μm〜22μmで、円相当半
径が0.1μm以上の炭化物の体積分率が0.1%以下
であることを特徴とする自動車客室構造部品用高強度鋼
板。
(5) In the above (1) or (2),
It contains 30% or more of ferrite by volume fraction, contains 10% or more of bainite by volume fraction, the combined volume fraction of martensite and austenite is less than 6%, and the average grain size of ferrite is 10 μm to 22 μm. A high-strength steel sheet for automobile passenger compartment structural parts, wherein a volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1% or less.

【0012】(6) 上記(2)、(3)、(4)又は
(5)において、Ca:0.0005〜0.004%を
含むことを特徴とする自動車客室構造部品用高強度鋼
板。
(6) A high-strength steel sheet for automobile passenger compartment structural parts according to the above (2), (3), (4) or (5), which contains 0.0005 to 0.004% of Ca.

【0013】(7) 上記(2)又は(6)のいずれか
に記載の化学成分からなる組成の鋼片を(Ac1変態点
+50)℃以上(Ar3変態点+50)℃以下の温度で
仕上げ圧延を施し、仕上げ圧延終了から平均冷却速度5
0℃/s以上の速さで、 T=650−450×[%C]+40×[%Si]−6
0×[%Mn]+470×[%P] で計算される温度T℃以下(T−60)℃以上の範囲ま
で冷却を施し、その後、空冷を経て350超〜500℃
で巻き取り、さらに冷間で0.6〜3%の調質圧延を施
すことを特徴とする、体積分率で30%以上のフェライ
トを含み、体積分率で10%以上のベイナイトを含み、
マルテンサイト及びオーステナイトを合わせた体積分率
が6%未満で、フェライトの平均結晶粒径が22μm以
下で、円相当半径が0.1μm以上の炭化物の体積分率
が0.1%以下であり、引張り強さが490MPa以上
で、穴広げ率が80%以上で、ひずみ速度500/sで
の上降伏点が準静的引張り強さの1.5倍以上である自
動車客室構造部品用高強度鋼板の製造方法。
(7) A steel slab having the chemical composition described in any of (2) and (6) above is heated at a temperature of (Ac 1 transformation point + 50) ° C. or more and (Ar 3 transformation point + 50) ° C. or less. After finish rolling, average cooling rate 5 after finishing rolling
At a speed of 0 ° C./s or more, T = 650−450 × [% C] + 40 × [% Si] −6
Cooling is performed to a range of T ° C or lower (T-60) ° C or higher, which is calculated by 0 × [% Mn] + 470 × [% P], and then, after air cooling, over 350 to 500 ° C.
Characterized in that it is subjected to a temper rolling of 0.6 to 3% in a cold state, and further includes a ferrite of 30% or more in volume fraction and a bainite of 10% or more in volume fraction,
The combined volume fraction of martensite and austenite is less than 6%, the average crystal grain size of ferrite is 22 μm or less, and the volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1% or less, High-strength steel sheet for automobile passenger compartment structural parts having a tensile strength of 490 MPa or more, a hole expansion ratio of 80% or more, and an upper yield point at a strain rate of 500 / s of 1.5 times or more the quasi-static tensile strength. Manufacturing method.

【0014】(8) 上記(2)又は(6)のいずれか
に記載の化学成分からなる組成の熱延鋼板を、そのま
ま、もしくは冷間圧延を施し、(Ac1変態点+50)
℃以上(Ar3変態点+50)℃以下の温度で30s以
上焼鈍し、その温度域から0.5〜10℃/sの平均冷
却速度で U=723+30×[%Si]−10×[%Mn] で計算される温度U℃以下(U−170)℃以上の範囲
まで冷却を施し、その後、10℃/s以上の平均冷却速
度で350超〜500℃の範囲に冷却し、その温度範囲
で70s以上保持し、さらに冷間で0.6〜3%の調質
圧延を施すことを特徴とする、体積分率で30%以上の
フェライトを含み、体積分率で10%以上のベイナイト
を含み、マルテンサイト及びオーステナイトを合わせた
体積分率が6%未満で、フェライトの平均結晶粒径が2
2μm以下で、円相当半径が0.1μm以上の炭化物の
体積分率が0.1%以下であり、引張り強さが490M
Pa以上で、穴広げ率が80%以上で、ひずみ速度50
0/sでの上降伏点が準静的引張り強さの1.5倍以上
である自動車客室構造部品用高強度鋼板の製造方法。
(8) A hot-rolled steel sheet having a composition consisting of the chemical component according to any of (2) or (6) above is directly or cold-rolled to obtain (Ac 1 transformation point +50)
C. (Ar 3 transformation point +50) ° C. or lower for 30 s or more, and from the temperature range at an average cooling rate of 0.5 to 10 ° C./s, U = 723 + 30 × [% Si] −10 × [% Mn Cooling is performed to a temperature range of not more than U ° C (U-170) ° C or more, and then cooled to a range of more than 350 to 500 ° C at an average cooling rate of 10 ° C / s or more. Holds 70 s or more, and further performs cold pass tempering of 0.6 to 3%, including ferrite with a volume fraction of 30% or more, and containing bainite with a volume fraction of 10% or more. , The combined volume fraction of martensite and austenite is less than 6%, and the average grain size of ferrite is 2%.
2 μm or less, carbide having a circle equivalent radius of 0.1 μm or more has a volume fraction of 0.1% or less and a tensile strength of 490 M
Pa or higher, hole expansion ratio is 80% or more, strain rate 50
A method for producing a high-strength steel sheet for automobile passenger compartment structural parts, wherein the upper yield point at 0 / s is 1.5 times or more of the quasi-static tensile strength.

【0015】[0015]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。まず、C、Si、Mn、P、S、Al、N、Caの
数値限定理由について述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. First, the reasons for limiting the numerical values of C, Si, Mn, P, S, Al, N, and Ca will be described.

【0016】Cはベイナイトにより鋼板を高強度化する
のに不可欠な元素である。Cが0.05%未満では十分
な強度を得ることができない。しかし、0.17%を超
えるとスポット溶接性が劣化する。そのためCは0.0
5〜0.17%とした。
C is an element indispensable for enhancing the strength of the steel sheet by bainite. If C is less than 0.05%, sufficient strength cannot be obtained. However, if it exceeds 0.17%, the spot weldability deteriorates. Therefore, C is 0.0
5 to 0.17%.

【0017】Siは伸びフランジ性の向上に最も重要な
元素である。0.5%未満では伸びフランジ性が劣る。
しかしながら1.5%を超えると溶接性が劣化するとと
もに、理由は定かでないが高ひずみ速度での上降伏点応
力が準静的引張り強さに比べて低下する。そのためSi
は0.5〜1.5%とした。
Si is the most important element for improving the stretch flangeability. If it is less than 0.5%, the stretch flangeability is poor.
However, if it exceeds 1.5%, the weldability is deteriorated, and the upper yield point stress at a high strain rate is lower than the quasi-static tensile strength, for unknown reasons. Therefore Si
Was set to 0.5 to 1.5%.

【0018】Mnは高強度化と高ひずみ速度での上降伏
点上昇に必要な元素であり、0.8%以上の含有が必要
である。Mnは低い冷却速度でもフェライト粒径の粗大
化を抑制するのに有効である。0.8%未満ではフェラ
イトの粒径を小さくするのに極めて高い冷却速度が必要
となるのでこれを下限とした。しかしながら2.4%を
超えると鋼中Mn分布の不均一性により性能が不安定に
なるのでこれを上限とした。フェライトを30%以上含
む場合、フェライトの粒径が大きいほど、鋼材の上降伏
点応力のひずみ速度依存性が増し、高ひずみ速度での上
降伏点応力が高まるが、フェライト粒径は冷却速度が低
いほど大きい。Mnは比較的低い冷却速度でも粗大な炭
化物の生成を押さえるため、伸びフランジ性を損なうこ
となく、大きなフェライト粒径を確保できる。
Mn is an element necessary for increasing the strength and increasing the upper yield point at a high strain rate, and must be contained at 0.8% or more. Mn is effective in suppressing coarsening of ferrite grain size even at a low cooling rate. If it is less than 0.8%, an extremely high cooling rate is required to reduce the grain size of the ferrite. However, if it exceeds 2.4%, the performance becomes unstable due to the non-uniformity of the Mn distribution in the steel. When the ferrite content is 30% or more, as the grain size of ferrite increases, the strain rate dependence of the upper yield point stress of steel increases, and the upper yield point stress at high strain rates increases. The lower, the greater. Since Mn suppresses the formation of coarse carbides even at a relatively low cooling rate, a large ferrite grain size can be secured without impairing stretch flangeability.

【0019】Pは一般に不可避的不純物として鋼に含ま
れるが、その量が0.02%を超えるとスポット溶接性
の劣化が大きい上、衝突変形時の靭性と冷間圧延性も劣
化する。
P is generally contained in steel as an unavoidable impurity, but if its amount exceeds 0.02%, the spot weldability is greatly deteriorated, and the toughness and cold rollability during impact deformation are also deteriorated.

【0020】Sも一般に不可避的不純物として鋼に含ま
れるが、その量が0.004%を超えると硫化物系介在
物が伸びフランジ性に悪影響をおよぼす。
S is generally contained in steel as an unavoidable impurity, but if its amount exceeds 0.004%, sulfide inclusions adversely affect the stretch flangeability.

【0021】Alは脱酸元素として0.01%以上必要
であるが、0.1%以上ではアルミナ介在物が顕著とな
り、伸びフランジ性を劣化させる。
Al is required to be 0.01% or more as a deoxidizing element, but if it is 0.1% or more, alumina inclusions become remarkable and the stretch flangeability is deteriorated.

【0022】Nもまた一般に不可避的不純物として鋼に
含まれるが、その量が0.006%を超えると伸びフラ
ンジ性が劣化するため、これを上限とする。
N is also generally contained in steel as an unavoidable impurity, but if its amount exceeds 0.006%, the stretch flangeability deteriorates, so this is set as the upper limit.

【0023】Caは硫化物系介在物の形態を制御し伸び
フランジ性に対して無害化するために0.0005%以
上添加する必要がある。ただし、0.004%を超える
とCa系の介在物による悪影響が問題となる。
Ca must be added in an amount of 0.0005% or more in order to control the form of the sulfide-based inclusions and render the harmlessness to the stretch flangeability. However, if it exceeds 0.004%, the adverse effect of Ca-based inclusions becomes a problem.

【0024】次に本発明による高強度鋼板の微視的組織
の特徴について述べる。
Next, the characteristics of the microstructure of the high-strength steel sheet according to the present invention will be described.

【0025】フェライトは上降伏点応力のひずみ速度依
存性を確保するため、及び高ひずみ速度での上降伏点応
力を高めるため非常に重要な相である。複合組織鋼の降
伏比はフェライトと第2相の強度差が大きいほど低下
し、高ひずみ速度下でも上降伏点が十分に上昇しない。
一般にフェライトの粒径は小さいほど強度が増すが、ひ
ずみ速度500/s以上の高ひずみ速度ではひずみ速度
依存性も重要である。また、フェライトは第2相に比較
し、ひずみ速度依存性を高める。その体積分率が30%
未満ではひずみ速度の増加にともなう上降伏強さの上昇
の程度が小さい。さらに、フェライトの体積分率が30
%未満では他の第2相による上降伏点応力のひずみ速度
依存性の低下を十分に補えない。そのためフェライトは
体積分率で30%以上必要である。特にフェライトのひ
ずみ速度依存性が十分であるためには、その平均粒径は
10μm以上が望ましい。また、フェライトの強度が十
分であり、動的な上降伏強さが高く、かつ準静的な引張
り強さを高くし部品として必要な衝突強度以外の実用強
度を満足させるためには、その平均粒径は22μm以下
が望ましい。
Ferrite is a very important phase in order to secure the strain rate dependence of the upper yield point stress and to increase the upper yield point stress at a high strain rate. The yield ratio of the composite structure steel decreases as the strength difference between the ferrite and the second phase increases, and the upper yield point does not sufficiently increase even under a high strain rate.
Generally, the smaller the grain size of ferrite, the higher the strength. However, at a high strain rate of 500 / s or more, the strain rate dependency is also important. In addition, ferrite increases strain rate dependence as compared with the second phase. Its volume fraction is 30%
If it is less than 10, the degree of increase of the upper yield strength with the increase of the strain rate is small. Furthermore, the volume fraction of ferrite is 30
%, The decrease in the strain rate dependence of the upper yield point stress due to the other second phase cannot be sufficiently compensated. Therefore, ferrite needs to be 30% or more in volume fraction. In particular, in order for the strain rate dependence of ferrite to be sufficient, the average particle size is desirably 10 μm or more. In addition, the ferrite strength is sufficient, the dynamic upper yield strength is high, and the quasi-static tensile strength is increased to satisfy the practical strength other than the impact strength required as a part. The particle size is desirably 22 μm or less.

【0026】ベイナイトは伸びフランジ性を損なうこと
なく準静的強度を確保するのに重要である。体積分率で
10%に満たないと十分な強度が得られない。
Bainite is important for securing quasi-static strength without impairing stretch flangeability. If the volume fraction is less than 10%, sufficient strength cannot be obtained.

【0027】マルテンサイト及びオーステナイトは体積
分率が6%以上では伸びフランジ性と上降伏点応力を低
下させる。さらにマルテンサイトは動的な降伏強さの上
昇を抑制するため好ましくない。
Martensite and austenite reduce the stretch flangeability and the upper yield point stress when the volume fraction is 6% or more. Further, martensite is not preferred because it suppresses a dynamic increase in yield strength.

【0028】炭化物は降伏強さを高めるのに有効である
が、ひずみ速度が高くてもその効果は認められる。しか
しながら、円相当半径が0.1μm以上の炭化物が体積
分率で0.1%以上あると伸びフランジ性が低下する。
[0028] Carbides are effective in increasing the yield strength, but the effect is recognized even at a high strain rate. However, if the carbide having a circle equivalent radius of 0.1 μm or more has a volume fraction of 0.1% or more, the stretch flangeability decreases.

【0029】次に製造条件の限定理由について述べる。
まず、熱延鋼板の製造条件について説明する。
Next, the reasons for limiting the manufacturing conditions will be described.
First, the manufacturing conditions of the hot-rolled steel sheet will be described.

【0030】熱間圧延の仕上げ温度は、本発明範囲の成
分においてその後の冷却条件との組み合わせにより、必
要な量のベイナイトとフェライトを得、かつ、フェライ
トの平均粒径を最終的に22μm以下にするためであ
る。(Ac1変態点+50)℃以下では最終的に10%
以上のベイナイトが得られないか、得られるフェライト
の粒径が22μm以上になる。(Ar3変態点+50)
℃以上では最終的に得られるフェライトの体積分率が3
0%に満たない。
The finishing temperature of the hot rolling is determined by combining the components within the scope of the present invention with the subsequent cooling conditions to obtain the required amounts of bainite and ferrite, and finally reduce the average grain size of the ferrite to 22 μm or less. To do that. (Ac 1 transformation point + 50) 10% or less at below ℃
The above bainite cannot be obtained, or the obtained ferrite has a grain size of 22 μm or more. (Ar 3 transformation point +50)
Above ° C, the finally obtained ferrite has a volume fraction of 3
Less than 0%.

【0031】仕上げ圧延終了後の平均冷却速度は20℃
/s以上である必要がある。20℃/s以下では冷却中
にオーステナイトのフェライト変態が進み最終的に得ら
れるベイナイト量が10%以下となる。100℃/s以
上ではこの効果が飽和するため、これを上限とした。
The average cooling rate after finishing rolling is 20 ° C.
/ S or more. At 20 ° C./s or less, the austenite ferrite transformation proceeds during cooling, and the amount of bainite finally obtained is 10% or less. At 100 ° C./s or more, this effect is saturated.

【0032】急速冷却の終了温度は T=650−450×[%C]+40×[%Si]−6
0×[%Mn]+470×[%P] で計算される温度T℃以下(T−60)℃以上の範囲が
必要である。T℃を超える温度ではパーライト生成によ
り伸びフランジ性が低下する。(T−60)℃未満では
準静的強度が不安定になる。
The end temperature of the rapid cooling is T = 650-450 × [% C] + 40 × [% Si] -6
It is necessary to have a temperature calculated by the following equation: 0 × [% Mn] + 470 × [% P] T ° C. or less (T−60) ° C. or more. At a temperature exceeding T ° C., the stretch flangeability decreases due to the formation of pearlite. Below (T-60) ° C, the quasi-static strength becomes unstable.

【0033】急速冷却終点温度からは空冷を施し、巻き
取り温度を350超〜500℃とする必要がある。これ
は、空冷から巻き取りを経てコイルの状態での冷却によ
り、10%以上のベイナイトを確保し、他の相の生成を
避けるためである。350℃以下の巻き取り温度ではマ
ルテンサイトの混入が多くなるため不適当である。ま
た、500℃を超えるとベイナイトが得られないばかり
か、0.1μm以上の炭化物が0.1%以上生成するこ
とにより伸びフランジ性が劣化する。
It is necessary to perform air cooling from the rapid cooling end point temperature and to adjust the winding temperature to more than 350 to 500 ° C. This is for securing 10% or more of bainite by cooling in the state of a coil after winding from air cooling to winding and avoiding generation of other phases. At a winding temperature of 350 ° C. or lower, martensite is undesirably mixed due to increased mixing of martensite. On the other hand, when the temperature exceeds 500 ° C., not only bainite is not obtained, but also the stretch flangeability is deteriorated due to the formation of 0.1% or more of carbides of 0.1 μm or more.

【0034】さらに冷間で0.6%〜3%の調質圧延を
施す必要があるが、これはストレッチャーストレインを
防止することの他に、塗装焼き付け処理時に鋼中に固溶
するCやNの浸入型原子が調質圧延により導入された転
位を固着することにより、静的引張強さの上昇を最小限
に抑えたままひずみ速度500/sでの上降伏点応力を
上昇せしめることを狙ったものである。上記の工程で製
造された鋼板は巻き取り後の冷却で特に工夫することな
く室温で過飽和な浸入型原子を含み、塗装焼き付け硬化
量が大きいことが見出された。転位はプレス加工の際に
も導入されるが、曲げ成形が主体のクロスメンバーやセ
ンターピラーインナーの場合、変形を受けない部分も広
く存在するため、調質圧延により素材まま必要最小限の
転位を導入し、当該性能の発現を確実にする。0.6%
未満では十分な効果が認められない。3%以上では伸び
フランジ性を含む加工性が劣化する。
Further, it is necessary to perform cold-rolling of 0.6% to 3% in the cold state. This not only prevents the stretcher strain but also the C and the solid solution in the steel during the baking treatment. The penetration of N atoms fixes the dislocations introduced by temper rolling, thereby increasing the upper yield point stress at a strain rate of 500 / s while minimizing the increase in static tensile strength. It was aimed. It has been found that the steel sheet produced in the above process contains supersaturated penetrating atoms at room temperature without any special measures for cooling after winding and has a large amount of paint bake hardening. Dislocations are also introduced during press working, but in the case of cross members or center pillar inners mainly formed by bending, there are a wide range of parts that are not deformed. Introduce and ensure the performance. 0.6%
If it is less than 30, a sufficient effect is not recognized. If it is 3% or more, workability including stretch flangeability deteriorates.

【0035】次に一度、任意の熱間圧延か冷間圧延によ
り、所望の板厚に調整された素材を連続焼鈍ラインに適
用して本発明の鋼板を製造する場合の条件について述べ
る。前述の熱間圧延での温度条件とやや異なるが、これ
は350超〜500℃でのベイナイト変態温度保持の直
前の冷却を急速に行なうことが可能なことによる。
Next, conditions for manufacturing a steel sheet of the present invention by applying a material adjusted to a desired thickness to a continuous annealing line by arbitrary hot rolling or cold rolling once will be described. The temperature condition is slightly different from the temperature condition in the above-mentioned hot rolling, but this is because cooling can be rapidly performed immediately before holding the bainite transformation temperature at more than 350 to 500 ° C.

【0036】焼鈍温度は本発明範囲の成分においてその
後の冷却条件との組み合わせにより、必要な量のベイナ
イトとフェライトを得、かつ、フェライトの平均粒径を
最終的に22μm以下にするためである。(Ac1変態
点+50)℃以下では最終的に10%以上のベイナイト
が得られないか、得られるフェライトの粒径が22μm
以上になる。(Ar3変態点+50)℃以上では最終的
に得られるフェライトの体積分率が30%に満たない。
焼鈍温度が30s未満ではこの温度域でも十分な量のオ
ーステナイトが生成しないため、最終的に得られるベイ
ナイトが10%未満となる。
The annealing temperature is set so that the required amount of bainite and ferrite can be obtained by combining the components in the range of the present invention with the subsequent cooling conditions, and the average grain size of the ferrite is finally reduced to 22 μm or less. At (Ac 1 transformation point +50) ° C. or lower, 10% or more of bainite is not finally obtained, or the grain size of the obtained ferrite is 22 μm.
That is all. Above (Ar 3 transformation point +50) ° C., the volume fraction of the finally obtained ferrite is less than 30%.
If the annealing temperature is less than 30 s, a sufficient amount of austenite is not generated even in this temperature range, so that bainite finally obtained is less than 10%.

【0037】最初の冷却は0.5〜10℃/sの平均冷
却速度で U=723+30×[%Si]−10×[%Mn] で計算される温度U℃以下(U−170)℃以上の範囲
まで、その後の冷却は10℃/s以上の平均冷却速度で
350超〜500℃の範囲まで行なう必要がある。最初
の冷却速度が0.5℃/s未満では生産性が低下するた
めこれを下限とする。10℃/sを超えるとオーステナ
イト中のC濃度が低く、次の急速冷却中にマルテンサイ
トが生成し、降伏強さと伸びフランジ性を低下せしめ
る。最初の冷却終了温度がU℃を超える温度では十分な
量のフェライトを確保できない。(U−170)℃未満
ではその冷却中に粗大な炭化物が多く発生する。その後
の冷却速度が10℃/s未満ではオーステナイトがパー
ライトに変態し、準静的強度が低下するだけでなく、伸
びフランジ性も劣化する。
The first cooling is performed at an average cooling rate of 0.5 to 10 ° C./s. The temperature calculated by U = 723 + 30 × [% Si] −10 × [% Mn] is not higher than U ° C. and is not lower than (U-170) ° C. , And the subsequent cooling must be performed at an average cooling rate of 10 ° C./s or more to a range of more than 350 to 500 ° C. If the initial cooling rate is less than 0.5 ° C./s, the productivity is reduced, so this is set as the lower limit. If it exceeds 10 ° C./s, the C concentration in austenite is low, and martensite is formed during the next rapid cooling, which lowers the yield strength and stretch flangeability. If the first cooling end temperature exceeds U ° C., a sufficient amount of ferrite cannot be secured. If the temperature is lower than (U-170) C, a large amount of coarse carbides is generated during the cooling. If the subsequent cooling rate is less than 10 ° C./s, austenite is transformed into pearlite, and not only the quasi-static strength is reduced, but also the stretch flangeability is deteriorated.

【0038】その後、350超〜500℃の範囲で70
s以上保持するのは10%以上のベイナイトを確保し、
他の相の生成を避けるためである。350℃以下ではオ
ーステナイトもしくはマルテンサイトが多く混入する。
また、500℃を超えるとベイナイトが得られないばか
りか、0.1μm以上の炭化物が0.1%以上生成す
る。保持時間が70s以下ではベイナイト変態が不十分
で室温までの冷却が終了した際に最終的にマルテンサイ
トが多くなり含まれることとなる。
Thereafter, 70 to 350 ° C. to 500 ° C.
More than 10% of bainite is to be kept,
This is to avoid formation of other phases. If the temperature is lower than 350 ° C., a large amount of austenite or martensite is mixed.
On the other hand, when the temperature exceeds 500 ° C., not only bainite is not obtained, but also carbides having a diameter of 0.1 μm or more are generated in an amount of 0.1% or more. If the holding time is 70 s or less, the bainite transformation is insufficient, so that when cooling to room temperature is completed, martensite will eventually be increased and included.

【0039】さらに冷間で0.6%〜3%の調質圧延を
施す必要があるが、その理由は前述の熱延工程での製造
条件で説明したのと同じである。
Further, it is necessary to perform cold-rolling of 0.6% to 3% in the cold state, for the same reason as explained in the above-mentioned production conditions in the hot rolling step.

【0040】[0040]

【実施例】表1に示す成分の鋼を表2に示す方法で熱間
圧延し、いったん室温まで冷却した後、表2に示すひず
みの調質圧延を施した。板厚は1.8mmとした。ま
た、表1の4番の成分の鋼を表2のEの熱延方法で1.
8mmにしたものを0.8mmに冷間圧延した鋼板を準
備し、表3に示す条件で熱処理と調質圧延を施した。こ
れらのサンプルに準静的引張り試験及び穴広げ試験を行
なった。フェライト粒径Df(μm)、フェライト体積
分率Vf、ベイナイト体積分率Vb、マルテンサイト・
オーステナイト体積分率VmはSEM写真から測定し
た。0.1μm以上の炭化物の体積分率の測定にはTE
M写真の高倍率と低倍率を併用し、鋼全体の平均値とし
て測定した。準静的引張り試験はJIS5号試験片を用
い0.003/sのひずみ速度で実施し、引張強さTS
(MPa)を測定した。穴広げ試験は直径10mmの打
ち抜き穴を頂角60°の円錐ポンチで押し広げ、最初に
クラックが板厚方向に貫通した際の穴径d(mm)を測
定し、穴広げ率λ(%)=100×(d−10)/10
で評価した。ひずみ速度500/sでの高速引張試験は
170℃×20分の塗装焼き付け相当の熱処理を施した
材料に対して行ない、降伏点の応力値DYPU(MP
a)を測定した。
EXAMPLES Steels having the components shown in Table 1 were hot-rolled by the method shown in Table 2, and once cooled to room temperature, were subjected to temper rolling with strains shown in Table 2. The plate thickness was 1.8 mm. In addition, steel No. 4 in Table 1 was subjected to hot rolling by the hot rolling method of E in Table 2 for 1.
A steel sheet cold-rolled to 8 mm was prepared from 8 mm, and subjected to heat treatment and temper rolling under the conditions shown in Table 3. These samples were subjected to a quasi-static tensile test and a hole expanding test. Ferrite particle diameter Df (μm), ferrite volume fraction Vf, bainite volume fraction Vb, martensite
The austenite volume fraction Vm was measured from an SEM photograph. TE for measuring the volume fraction of carbides of 0.1 μm or more
The high magnification and the low magnification of the M photograph were used in combination, and the average value was measured for the entire steel. The quasi-static tensile test was performed using a JIS No. 5 test piece at a strain rate of 0.003 / s, and the tensile strength TS
(MPa) was measured. In the hole expansion test, a punched hole having a diameter of 10 mm is pushed and expanded with a conical punch having a vertex angle of 60 °, and first, a hole diameter d (mm) when a crack penetrates in a thickness direction is measured, and a hole expansion ratio λ (%) is measured. = 100 × (d−10) / 10
Was evaluated. A high-speed tensile test at a strain rate of 500 / s was performed on a material that had been subjected to a heat treatment equivalent to paint baking at 170 ° C. for 20 minutes, and a stress value DYPU (MP
a) was measured.

【0041】必要な穴広げ率は部品の形状やプレス成形
方法にもよるが、λが80%以上なら伸びフランジ破断
が発生しないか、わずかなブランク形状の変更で伸びフ
ランジ破断を回避できるようなクロスメンバーやセンタ
ーピラーインナーが多くある。λが80%以上でDYP
U/TSが1.5以上を満足する引張強さ490MPa
以上の高強度鋼板は、表4から01A、02A、03
B、04B、05B、04Mであることがわかる。これ
らは本発明の範囲にあるが、それ以外の鋼はTSか、λ
か、DYPU/TSを満足していない。以上に示したよ
うに本発明をもってすれば、クロスメンバーやセンター
ピラーインナーなど自動車客室構造部品用高強度鋼板を
提供することが可能である。
The required hole expansion ratio depends on the shape of the part and the press forming method. If λ is 80% or more, the stretch flange does not break or the stretch flange break can be avoided by slightly changing the blank shape. There are many cross members and center pillar inners. DYP when λ is 80% or more
490MPa tensile strength satisfying U / TS of 1.5 or more
The above high-strength steel sheets are shown in Table 4 as 01A, 02A, 03
B, 04B, 05B, and 04M. These are within the scope of the present invention, but the other steels are TS or λ
Or, DYPU / TS is not satisfied. As described above, according to the present invention, it is possible to provide a high-strength steel sheet for a vehicle cabin structural component such as a cross member or a center pillar inner.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】以上、詳しく述べたように、本発明によ
ればプレス加工時の伸びフランジ破断が避けられ、か
つ、部品としての衝突性能を満足する、自動車客室構造
部品用高強度鋼板を得ることができる。これは、自動車
の生産性、衝突安全性、車体軽量化に大きく寄与する、
産業上極めて大きな効果を有する。
As described above in detail, according to the present invention, a high-strength steel sheet for an automobile passenger compartment structural part, which can prevent the stretch flange from breaking during press working and satisfy the collision performance as a part. be able to. This greatly contributes to automobile productivity, collision safety, and body weight reduction,
It has an extremely large industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ひずみ速度500/sでの高速引張試験により
測定される応力(σ)−ひずみ(ε)曲線に観察される
上降伏点の応力値(DYPU)を示す図である。
FIG. 1 is a graph showing a stress value (DYPU) at an upper yield point observed in a stress (σ) -strain (ε) curve measured by a high-speed tensile test at a strain rate of 500 / s.

フロントページの続き (72)発明者 村里 映信 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K037 EA01 EA05 EA06 EA09 EA15 EA16 EA18 EA23 EA25 EA27 EA28 EB05 EB06 EB09 EB12 FC04 FD04 FD05 FE01 FF03 FJ06 FK02 FK03 FK08 FM02 GA05 JA06 JA07 Continuing from the front page (72) Inventor Eishin Murasa 1 Kimitsu, Kimitsu City F-term in the Nippon Steel Corporation Kimitsu Works (reference) 4K037 EA01 EA05 EA06 EA09 EA15 EA16 EA18 EA23 EA25 EA27 EA28 EB05 EB06 EB09 EB12 FC04 FD04 FD05 FE01 FF03 FJ06 FK02 FK03 FK08 FM02 GA05 JA06 JA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 引張り強さが490MPa以上で、穴広
げ率が80%以上で、ひずみ速度500/sでの上降伏
点が準静的引張り強さの1.5倍以上であることを特徴
とする自動車客室構造部品用高強度鋼板。
1. The tensile strength is 490 MPa or more, the hole expansion ratio is 80% or more, and the upper yield point at a strain rate of 500 / s is 1.5 times or more the quasi-static tensile strength. High-strength steel sheet for automobile passenger compartment structural parts.
【請求項2】 請求項1において、質量%で、 C:0.05〜0.17%、 Si:0.5〜1.5%、 Mn:0.8〜2.4%、 P:0.02%以下、 S:0.004%以下、 Al:0.01〜0.1%、 N:0.006%以下 を含有し、残部Fe及び不可避的不純物からなることを
特徴とする自動車客室構造部品用高強度鋼板。
2. The method according to claim 1, wherein C: 0.05 to 0.17%, Si: 0.5 to 1.5%, Mn: 0.8 to 2.4%, P: 0 in mass%. 0.02% or less, S: 0.004% or less, Al: 0.01 to 0.1%, N: 0.006% or less, with the balance being Fe and inevitable impurities. High strength steel sheet for structural parts.
【請求項3】 体積分率で30%以上のフェライトを含
み、体積分率で10%以上のベイナイトを含み、マルテ
ンサイト及びオーステナイトを合わせた体積分率が6%
未満で、フェライトの平均結晶粒径が22μm以下で、
円相当半径が0.1μm以上の炭化物の体積分率が0.
1%以下であることを特徴とする請求項1又は請求項2
に記載の自動車客室構造部品用高強度鋼板。
3. A ferrite having a volume fraction of at least 30%, a bainite having a volume fraction of at least 10%, and a combined volume fraction of martensite and austenite of 6%.
Less than, the average crystal grain size of the ferrite is 22 μm or less,
The volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1 μm.
3. The method according to claim 1, wherein the amount is 1% or less.
A high-strength steel sheet for a vehicle cabin structural part according to claim 1.
【請求項4】 体積分率で30%以上のフェライトを含
み、体積分率で10%以上のベイナイトを含み、マルテ
ンサイト及びオーステナイトを合わせた体積分率が6%
未満で、フェライトの平均結晶粒径が10μm以上で、
円相当半径が0.1μm以上の炭化物の体積分率が0.
1%以下であることを特徴とする請求項1又は請求項2
に記載の自動車客室構造部品用高強度鋼板。
4. A ferrite having a volume fraction of at least 30%, a bainite having a volume fraction of at least 10%, and a combined volume fraction of martensite and austenite of 6%.
Less than, the average crystal grain size of the ferrite is 10 μm or more,
The volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1 μm.
3. The method according to claim 1, wherein the amount is 1% or less.
A high-strength steel sheet for a vehicle cabin structural part according to claim 1.
【請求項5】 体積分率で30%以上のフェライトを含
み、体積分率で10%以上のベイナイトを含み、マルテ
ンサイト及びオーステナイトを合わせた体積分率が6%
未満で、フェライトの平均結晶粒径が10μm〜22μ
mで、円相当半径が0.1μm以上の炭化物の体積分率
が0.1%以下であることを特徴とする請求項1又は請
求項2に記載の自動車客室構造部品用高強度鋼板。
5. A ferrite having a volume fraction of not less than 30%, a bainite having a volume fraction of not less than 10%, and a combined volume fraction of martensite and austenite of 6%.
Less than 10 μm to 22 μm
3. The high-strength steel sheet for automobile passenger compartment structural parts according to claim 1, wherein the volume fraction of carbide having a circle equivalent radius of 0.1 μm or more in m is 0.1% or less. 4.
【請求項6】 Ca:0.0005〜0.004%を含
むことを特徴とする請求項2、3、4又は5に記載の自
動車客室構造部品用高強度鋼板。
6. The high-strength steel sheet for automobile passenger compartment structural parts according to claim 2, wherein Ca: 0.0005 to 0.004% is contained.
【請求項7】 請求項2又は6に記載の化学成分からな
る組成の鋼片を(Ac1変態点+50)℃以上(Ar3
態点+50)℃以下の温度で仕上げ圧延を施し、仕上げ
圧延終了から平均冷却速度50℃/s以上の速さで、 T=650−450×[%C]+40×[%Si]−6
0×[%Mn]+470×[%P] で計算される温度T℃以下(T−60)℃以上の範囲ま
で冷却を施し、その後、空冷を経て350超〜500℃
で巻き取り、さらに冷間で0.6〜3%の調質圧延を施
すことを特徴とする、体積分率で30%以上のフェライ
トを含み、体積分率で10%以上のベイナイトを含み、
マルテンサイト及びオーステナイトを合わせた体積分率
が6%未満で、フェライトの平均結晶粒径が22μm以
下で、円相当半径が0.1μm以上の炭化物の体積分率
が0.1%以下であり、引張り強さが490MPa以上
で、穴広げ率が80%以上で、ひずみ速度500/sで
の上降伏点が準静的引張り強さの1.5倍以上である自
動車客室構造部品用高強度鋼板の製造方法。
7. A steel slab having the chemical composition according to claim 2 or 3 is subjected to finish rolling at a temperature of (Ac 1 transformation point + 50) ° C. or more and (Ar 3 transformation point + 50) ° C. or less, and finish rolling is performed. T = 650−450 × [% C] + 40 × [% Si] −6 at an average cooling rate of 50 ° C./s or more from the end.
Cooling is performed to a range of T ° C or lower (T-60) ° C or higher, which is calculated by 0 × [% Mn] + 470 × [% P], and then, after air cooling, over 350 to 500 ° C.
Characterized in that it is subjected to a temper rolling of 0.6 to 3% in a cold state, and further includes a ferrite of 30% or more in volume fraction and a bainite of 10% or more in volume fraction,
The combined volume fraction of martensite and austenite is less than 6%, the average crystal grain size of ferrite is 22 μm or less, and the volume fraction of carbide having a circle equivalent radius of 0.1 μm or more is 0.1% or less, High-strength steel sheet for automobile passenger compartment structural parts having a tensile strength of 490 MPa or more, a hole expansion ratio of 80% or more, and an upper yield point at a strain rate of 500 / s of 1.5 times or more the quasi-static tensile strength. Manufacturing method.
【請求項8】 請求項2又は6に記載の化学成分からな
る組成の熱延鋼板を、そのまま、もしくは冷間圧延を施
し、(Ac1変態点+50)℃以上(Ar3変態点+5
0)℃以下の温度で30s以上焼鈍し、その温度域から
0.5〜10℃/sの平均冷却速度で U=723+30×[%Si]−10×[%Mn] で計算される温度U℃以下(U−170)℃以上の範囲
まで冷却を施し、その後、10℃/s以上の平均冷却速
度で350超〜500℃の範囲に冷却し、その温度範囲
で70s以上保持し、さらに冷間で0.6〜3%の調質
圧延を施すことを特徴とする、体積分率で30%以上の
フェライトを含み、体積分率で10%以上のベイナイト
を含み、マルテンサイト及びオーステナイトを合わせた
体積分率が6%未満で、フェライトの平均結晶粒径が2
2μm以下で、円相当半径が0.1μm以上の炭化物の
体積分率が0.1%以下であり、引張り強さが490M
Pa以上で、穴広げ率が80%以上で、ひずみ速度50
0/sでの上降伏点が準静的引張り強さの1.5倍以上
である自動車客室構造部品用高強度鋼板の製造方法。
8. A hot-rolled steel sheet having a composition comprising the chemical components according to claim 2 or 6 as it is or subjected to cold rolling, and is (Ac 1 transformation point + 50) ° C. or more (Ar 3 transformation point + 5).
0) Anneal at a temperature of not more than 30 ° C. for not less than 30 s, and from the temperature range at an average cooling rate of 0.5 to 10 ° C./s, U = 723 + 30 × [% Si] −10 × [% Mn] ℃ or lower (U-170) ℃ or more, and then cooled to a range of more than 350 to 500 ° C. at an average cooling rate of 10 ° C./s or more, and kept at that temperature for 70 s or more. Characterized in that temper rolling of 0.6 to 3% is performed between them, containing ferrite of volume fraction of 30% or more, containing bainite of volume fraction of 10% or more, and combining martensite and austenite. Is less than 6% and the average grain size of ferrite is 2%.
2 μm or less, carbide having a circle equivalent radius of 0.1 μm or more has a volume fraction of 0.1% or less and a tensile strength of 490 M
Pa or higher, hole expansion ratio is 80% or more, strain rate 50
A method for producing a high-strength steel sheet for automobile passenger compartment structural parts, wherein the upper yield point at 0 / s is 1.5 times or more of the quasi-static tensile strength.
JP2000252904A 2000-08-23 2000-08-23 High-strength steel sheet for automobile cabin structural parts and its manufacturing method Expired - Fee Related JP4313507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000252904A JP4313507B2 (en) 2000-08-23 2000-08-23 High-strength steel sheet for automobile cabin structural parts and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000252904A JP4313507B2 (en) 2000-08-23 2000-08-23 High-strength steel sheet for automobile cabin structural parts and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2002060898A true JP2002060898A (en) 2002-02-28
JP4313507B2 JP4313507B2 (en) 2009-08-12

Family

ID=18742078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000252904A Expired - Fee Related JP4313507B2 (en) 2000-08-23 2000-08-23 High-strength steel sheet for automobile cabin structural parts and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4313507B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673424B1 (en) 2004-01-29 2007-01-24 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for maufacturing same
WO2008133092A1 (en) 2007-04-12 2008-11-06 Nippon Steel Corporation Breakage prediction method, calculation processing device, program, and recording medium
US20120312433A1 (en) * 2011-06-13 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
WO2013154071A1 (en) * 2012-04-10 2013-10-17 新日鐵住金株式会社 Steel sheet suitable as impact absorbing member, and method for manufacturing same
US8888933B2 (en) 2009-05-27 2014-11-18 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
KR20170118132A (en) 2015-03-27 2017-10-24 신닛테츠스미킨 카부시키카이샤 Blank shape determination method, blank, press-formed article, press molding method, computer program and recording medium
KR20170136605A (en) 2015-05-18 2017-12-11 신닛테츠스미킨 카부시키카이샤 Fracture prediction method, program, recording medium, and arithmetic processing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673424B1 (en) 2004-01-29 2007-01-24 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for maufacturing same
WO2008133092A1 (en) 2007-04-12 2008-11-06 Nippon Steel Corporation Breakage prediction method, calculation processing device, program, and recording medium
US8589121B2 (en) 2007-04-12 2013-11-19 Nippon Steel & Sumitomo Metal Corporation Fracture prediction method, processing device, program product and recording medium
US8888933B2 (en) 2009-05-27 2014-11-18 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
US20120312433A1 (en) * 2011-06-13 2012-12-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
WO2013154071A1 (en) * 2012-04-10 2013-10-17 新日鐵住金株式会社 Steel sheet suitable as impact absorbing member, and method for manufacturing same
US9809874B2 (en) 2012-04-10 2017-11-07 Nippon Steel & Sumitomo Metal Corporation Steel sheet suitable for impact absorbing member and method for its manufacture
KR20170118132A (en) 2015-03-27 2017-10-24 신닛테츠스미킨 카부시키카이샤 Blank shape determination method, blank, press-formed article, press molding method, computer program and recording medium
US10444732B2 (en) 2015-03-27 2019-10-15 Nippon Steel Corporation Blank shape determining method, blank, press formed product, press forming method, computer program, and recording medium
KR20170136605A (en) 2015-05-18 2017-12-11 신닛테츠스미킨 카부시키카이샤 Fracture prediction method, program, recording medium, and arithmetic processing device
US11016011B2 (en) 2015-05-18 2021-05-25 Nippon Steel Corporation Breaking prediction method, program, recording medium, and arithmetic processing device

Also Published As

Publication number Publication date
JP4313507B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
KR101912512B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP4062118B2 (en) High-tensile hot-rolled steel sheet with excellent stretch characteristics and stretch flange characteristics and manufacturing method thereof
KR101569977B1 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP2952624B2 (en) High yield ratio type hot rolled high strength steel sheet excellent in formability and spot weldability and its manufacturing method and high yield ratio type hot rolled high strength steel sheet excellent in formability and its manufacturing method
WO2004001084A1 (en) High-strength cold rolled steel sheet and process for producing the same
EP2880189A1 (en) A process for producing hot-rolled steel strip and a steel strip produced therewith
JP3039842B2 (en) Hot-rolled and cold-rolled steel sheets for automobiles having excellent impact resistance and methods for producing them
CN108350536B (en) High-strength hot-rolled steel sheet and method for producing same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
WO2018096090A1 (en) High strength cold rolled steel sheet for automotive use
JP2000239791A (en) Superfine-grained hot rolled steel plate excellent in impact resistance
JPH11189839A (en) High strength steel plate with high dynamic deformation resistance, and its production
JP3231204B2 (en) Composite structure steel sheet excellent in fatigue characteristics and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP5323702B2 (en) High manganese high strength steel plate with excellent burring workability
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JPH1161327A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JP2023554277A (en) High-strength hot-dip galvanized steel sheet with excellent ductility and formability and its manufacturing method
JP4313507B2 (en) High-strength steel sheet for automobile cabin structural parts and its manufacturing method
EP3884074A1 (en) Cold rolled steel sheet
CN114761583B (en) Heat-treated cold-rolled steel sheet and method for manufacturing same
JP2002294400A (en) High tensile strength steel plate and production method therefor
JP3530353B2 (en) High-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4313507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees