JP2002060298A - Method of producing epitaxial multilayer film for soft x-ray mirror - Google Patents

Method of producing epitaxial multilayer film for soft x-ray mirror

Info

Publication number
JP2002060298A
JP2002060298A JP2000245696A JP2000245696A JP2002060298A JP 2002060298 A JP2002060298 A JP 2002060298A JP 2000245696 A JP2000245696 A JP 2000245696A JP 2000245696 A JP2000245696 A JP 2000245696A JP 2002060298 A JP2002060298 A JP 2002060298A
Authority
JP
Japan
Prior art keywords
titanium
film
substrate
plane
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000245696A
Other languages
Japanese (ja)
Other versions
JP4761090B2 (en
Inventor
Haruya Yamamoto
春也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2000245696A priority Critical patent/JP4761090B2/en
Publication of JP2002060298A publication Critical patent/JP2002060298A/en
Application granted granted Critical
Publication of JP4761090B2 publication Critical patent/JP4761090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a multilayer film mirror used in a soft X-ray region of 2.3 to 4.4 nm, which comprises stacking the multilayer film by epitaxial growth and by which crystal defects in the multilayer film can be reduced and the reflectivity to soft X-rays can be improved. SOLUTION: The epitaxial multilayer film comprising titanium and copper or titanium and cobalt, being expected to be high in the reflectivity, is formed on a sapphire single crystal substrate excellent in heat resistance and chemical stability by a vacuum vapor deposition method for titanium, cobalt, copper or the like under ultra-high vacuum while controlling the crystal orientation, the substrate temperature and the vapor deposition speed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2.3nm〜4.
4nmの軟X線領域に用いる多層膜ミラーを作製する方
法に関するものであり、多層膜をエピタキシャル成長で
積層させることにより多層膜内の結晶欠陥を減少させ、
軟X線の反射率を向上させるものである。
BACKGROUND OF THE INVENTION The present invention relates to a light emitting device having a wavelength of 2.3 nm to 4.0 nm.
The present invention relates to a method for manufacturing a multilayer mirror used for a soft X-ray region of 4 nm, in which crystal defects in the multilayer film are reduced by stacking the multilayer films by epitaxial growth.
This is to improve the reflectivity of soft X-rays.

【0002】[0002]

【従来技術】従来、真空蒸着法やスパッタリング成膜法
により軟X線用の多層膜ミラーの作製が行われている
が、これまでの多層膜は多結晶構造のものがほとんど
で、特に原子層レベルでの平坦性が必要とされる軟X線
(2.3nm〜4.4nm)の多層膜ミラーを作製する
ことは困難であった。
2. Description of the Related Art Conventionally, multilayer mirrors for soft X-rays have been manufactured by a vacuum evaporation method or a sputtering film forming method. It has been difficult to fabricate a soft X-ray (2.3 nm to 4.4 nm) multilayer mirror that requires level flatness.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は多層膜
をエピタキシャル成長で積層させることにより、多層膜
内の結晶欠陥を減少させ、平坦な多層膜の界面を形成
し、軟X線の反射率を向上させることにある。
An object of the present invention is to reduce crystal defects in a multilayer film by forming a multilayer film by epitaxial growth, to form a flat multilayer film interface, and to obtain a soft X-ray reflectivity. Is to improve.

【0004】[0004]

【課題を解決するための手段】本発明は、2.3nm〜
4.4nmの軟X線領域に用いる多層膜ミラーを作製す
る手段として、超高真空下でチタン、コバルト、銅など
の真空蒸着法により、高反射率が期待されるチタンと
銅、及びチタンとコバルトのエピタキシャル多層膜を耐
熱性、化学的安定性に優れたサファイア単結晶基板上に
結晶方位、基板温度、蒸着速度を制御して作製するもの
である。
SUMMARY OF THE INVENTION The present invention relates to a light emitting device having a wavelength of 2.3 nm or less.
As a means for producing a multilayer mirror used in the soft X-ray region of 4.4 nm, titanium and copper, and titanium and copper, which are expected to have high reflectance by ultra-high vacuum under a vacuum vapor deposition method of titanium, cobalt, copper, etc. In this method, an epitaxial multilayer film of cobalt is formed on a sapphire single crystal substrate having excellent heat resistance and chemical stability by controlling the crystal orientation, the substrate temperature, and the deposition rate.

【0005】[0005]

【発明の実施の形態】超高真空下でチタン、コバルト、
銅などの高純度金属材料を電子ビーム加熱により蒸発さ
せ、温度制御されたサファイア単結晶の基板上にエピタ
キシャル成長させるものである。作製した多層膜はX線
回折、ラザフォード後方散乱法を用いて構造評価した。
この作製条件としては、サファイア基板の面方位、成膜
中の基板温度及び成膜速度が重要な項目である。
DETAILED DESCRIPTION OF THE INVENTION Under ultra-high vacuum, titanium, cobalt,
A high-purity metal material such as copper is evaporated by electron beam heating, and is epitaxially grown on a sapphire single crystal substrate whose temperature is controlled. The structure of the produced multilayer film was evaluated using X-ray diffraction and Rutherford backscattering method.
As the manufacturing conditions, the plane orientation of the sapphire substrate, the substrate temperature during film formation, and the film formation speed are important items.

【0006】即ち、本発明の成膜においては、蒸着速度
が0.1nm/secのとき、(0001)面のサファ
イア基板上に(0001)面のチタンをエピタキシャル
成長させる基板温度は、400℃〜800℃、好ましく
は500℃〜750℃、最も好ましくは650℃〜70
0℃に制御され、(0001)面のチタン膜上に(11
1)面の銅をエピタキシャル成長させる基板温度は、1
00℃〜300℃、好ましくは150℃〜250℃、最
も好ましくは200℃に制御され、(111)面の銅膜
上に(0001)面のチタンをエピタキシャル成長させ
る基板温度は、400℃〜600℃、好ましくは450
℃〜550℃、最も好ましくは500℃に制御される。
That is, in the film formation of the present invention, when the deposition rate is 0.1 nm / sec, the substrate temperature for epitaxially growing (0001) titanium on a (0001) sapphire substrate is 400 ° C. to 800 ° C. ° C, preferably 500 ° C to 750 ° C, most preferably 650 ° C to 70 ° C.
0 ° C., and (11) was placed on the (0001) plane titanium film.
1) The substrate temperature for epitaxially growing copper on the surface is 1
The substrate temperature is controlled at 00 ° C. to 300 ° C., preferably 150 ° C. to 250 ° C., and most preferably 200 ° C., and the substrate temperature for epitaxially growing (0001) titanium on the (111) copper film is 400 ° C. to 600 ° C. , Preferably 450
C. to 550.degree. C., most preferably 500.degree.

【0007】一方、本発明の他の成膜においては、蒸着
速度が0.1nm/secのとき、(0001),(1
1−20)及び(01−12)面のサファイア基板上に
(0001)面のコバルトをエピタキシャル成長させる
基板温度は、300℃〜500℃、好ましくは350℃
〜450℃、最も好ましくは400℃に制御され、(0
001)面のコバルト膜上に(0001)面のチタンを
エピタキシャル成長させる基板温度は、250℃〜45
0℃、好ましくは300℃〜400℃、最も好ましくは
350℃に制御され、(0001)面のチタン膜上に
(0001)面のコバルトをエピタキシャル成長させる
基板温度は、250℃〜450℃、好ましくは300℃
〜400℃、最も好ましくは350℃に制御される。以
下、本発明を実施例に基づいて説明する。
On the other hand, in another film formation of the present invention, when the deposition rate is 0.1 nm / sec, (0001), (1)
The substrate temperature at which the (0001) plane cobalt is epitaxially grown on the (1-20) and (01-12) plane sapphire substrates is 300 ° C to 500 ° C, preferably 350 ° C.
~ 450 ° C, most preferably 400 ° C, (0
The substrate temperature for epitaxially growing (0001) titanium on the (001) cobalt film is 250 ° C. to 45 ° C.
The temperature is controlled to 0 ° C., preferably 300 ° C. to 400 ° C., and most preferably 350 ° C., and the substrate temperature for epitaxially growing (0001) cobalt on the (0001) titanium film is 250 ° C. to 450 ° C., preferably 300 ℃
400400 ° C., most preferably 350 ° C. Hereinafter, the present invention will be described based on examples.

【0008】[0008]

【実施例1】真空蒸着法により基板温度を200℃、3
00℃、400℃、500℃、600℃、700℃、8
00℃に制御して(0001)面のサファイア単結晶基
板上に約5×10-8Torrの真空下で成膜を行った。
基板は鏡面研磨処理をした大きさ8mm×8mm、厚さ
0.5mmのものを用いた。蒸着速度0.1nm/秒で
25分間の成膜で厚さ約150nmのチタン膜を作製し
た。X線回折によりこれらのチタン膜の結晶構造及び結
晶性をを評価した結果、(0001)面のサファイア基
板上に(0001)面のチタンがエピタキシャル成長し
ていることが確認できた。また、基板温度を700℃に
制御して作製したチタン膜は完全結晶に対して95%の
結晶性を示した。
Embodiment 1 The substrate temperature was set to 200 ° C. and 3 by the vacuum evaporation method.
00 ° C, 400 ° C, 500 ° C, 600 ° C, 700 ° C, 8
The film was formed under a vacuum of about 5 × 10 −8 Torr on a (0001) plane sapphire single crystal substrate while controlling the temperature to 00 ° C.
The substrate used was a mirror-polished substrate having a size of 8 mm × 8 mm and a thickness of 0.5 mm. A titanium film having a thickness of about 150 nm was formed by deposition at a deposition rate of 0.1 nm / sec for 25 minutes. As a result of evaluating the crystal structure and crystallinity of these titanium films by X-ray diffraction, it was confirmed that (0001) titanium was epitaxially grown on the (0001) sapphire substrate. The titanium film formed by controlling the substrate temperature to 700 ° C. showed 95% crystallinity with respect to perfect crystals.

【0009】基板温度を700℃に制御して(000
1)面のサファイア単結晶基板上に厚さ150nmのチ
タン膜の蒸着を行い、さらに基板温度を200℃に制御
し、同様の成膜条件でチタン膜上に厚さ200nmの銅
膜の蒸着を行った。X線回折及びラザフォード後方散乱
測定によりこのチタン/銅の二層膜の構造評価を行った
結果、(0001)面のチタン膜上に(111)面の銅
がエピタキシャル成長していることを確認した。
The substrate temperature is controlled to 700 ° C. (000
1) A titanium film having a thickness of 150 nm is deposited on a sapphire single crystal substrate having a surface, and the substrate temperature is controlled at 200 ° C., and a copper film having a thickness of 200 nm is deposited on the titanium film under the same film forming conditions. went. The structure of this titanium / copper bilayer film was evaluated by X-ray diffraction and Rutherford backscattering measurement. As a result, it was confirmed that (111) plane copper was epitaxially grown on the (0001) plane titanium film.

【0010】即ち、図1は(0001)面のサファイア
単結晶基板上に成膜したCu/Ti膜のX線回折(θ―
2θ)図である。2θの角度が38.4°,41.7°
及び43.4°にあるピークはそれぞれTi(000
2),α−Al23(0006)及びCu(111)か
らのピークであり、(0001)面のサファイア基板上
にCu(111)/Ti(0001)面がエピタキシャ
ル成長していることが確認できる。つまり膜の成長方向
に対してCu(111)/Ti(0001)/α−Al
23(0001)基板、膜の面内方向に対してCu[1
−21]/Ti[01−10]/α−Al23[01−
10]基板の結晶方位関係でエピタキシャル成長してい
ることが確認できた。
That is, FIG. 1 shows an X-ray diffraction (θ−) of a Cu / Ti film formed on a (0001) plane sapphire single crystal substrate.
FIG. 2θ angles of 38.4 ° and 41.7 °
And the peaks at 43.4 ° are Ti (000
2) Peaks from α-Al 2 O 3 (0006) and Cu (111), confirming that the Cu (111) / Ti (0001) plane is epitaxially grown on the (0001) sapphire substrate. it can. That is, Cu (111) / Ti (0001) / α-Al with respect to the growth direction of the film.
Cu [1] in the in-plane direction of the 2 O 3 (0001) substrate and film.
-21] / Ti [01-10] / α-Al 2 O 3 [01-
10] It was confirmed that epitaxial growth was performed in relation to the crystal orientation of the substrate.

【0011】次に、基板温度を700℃に制御して(0
001)面のサファイア単結晶基板上に厚さ150nm
のチタン膜、次にチタン膜上に基板温度を200℃に制
御して厚さ200nmの銅膜の蒸着を行い、さらに基板
温度を500℃に制御して、銅膜上に厚さ200nmの
チタン膜の蒸着を行った。構造評価した結果、(11
1)面の銅膜上に(0001)面のチタンがエピタキシ
ャル成長していることを確認した。
Next, the substrate temperature is controlled to 700 ° C. (0
150 nm thick on a (001) sapphire single crystal substrate
A 200 nm thick copper film is deposited on the titanium film by controlling the substrate temperature to 200 ° C., and the substrate temperature is further controlled to 500 ° C. to form a 200 nm thick titanium film on the titanium film. Film deposition was performed. As a result of the structure evaluation, (11
It was confirmed that (0001) plane titanium was epitaxially grown on the 1) plane copper film.

【0012】[0012]

【実施例2】実施例1と同様の条件で基板温度を700
℃に制御して(0001)面のサファイア単結晶基板上
に厚さ150nmのチタン膜の蒸着を行い、さらに基板
温度を350℃に制御してチタン膜上に厚さ200nm
のコバルト膜の蒸着を行った。実施例1と同様に構造評
価を行った結果、(0001)面のチタン膜上に(00
01)面のコバルトがエピタキシャル成長していること
を確認した。
Embodiment 2 The substrate temperature was set to 700 under the same conditions as in Embodiment 1.
C., a 150 nm thick titanium film was deposited on the (0001) sapphire single crystal substrate, and the substrate temperature was further controlled at 350 ° C. to form a 200 nm thick titanium film.
Was deposited. As a result of structural evaluation performed in the same manner as in Example 1, (00) was formed on the (0001) plane titanium film.
It was confirmed that cobalt on the (01) plane was epitaxially grown.

【0013】即ち、図2は(0001)面のサファイア
単結晶基板上に成膜したCo/Ti膜のX線回折(θ−
2θ)図である。2θの角度が38.4°、41.7°
及び44.6°にあるピークは、それぞれ、Ti(00
02)、α−Al23(0006)及びCo(000
2)からのピークであり、(0001)面のサファイア
基板上にCo(0001)/Ti(0001)面がエピ
タキシャル成長していることが確認できる。
That is, FIG. 2 shows an X-ray diffraction (θ−) of a Co / Ti film formed on a (0001) sapphire single crystal substrate.
FIG. 2θ angles of 38.4 ° and 41.7 °
And the peaks at 44.6 ° correspond to Ti (00
02), α-Al 2 O 3 (0006) and Co (000
2), and it can be confirmed that the Co (0001) / Ti (0001) plane is epitaxially grown on the (0001) sapphire substrate.

【0014】つまり、膜の成長方向に対してCo(00
01)/Ti(0001)/α−Al23(0001)
基板、膜の面内方向に対してCo[01−10]/Ti
[01−10]/α−Al23[01−10]基板の結
晶方位関係でエピタキシャル成長していることが確認で
きた。
In other words, Co (00)
01) / Ti (0001) / α-Al 2 O 3 (0001)
Co [01-10] / Ti with respect to the in-plane direction of the substrate and the film
[01-10] / α-Al 2 O 3 [01-10] It was confirmed that the substrate was epitaxially grown in relation to the crystal orientation of the substrate.

【0015】[0015]

【実施例3】実施例1と同様の条件で基板温度を300
℃、400℃、450℃、500℃、600℃に制御し
て(0001)面のサファイア単結晶基板上に厚さ10
0nmのコバルト膜の蒸着を行った。実施例1と同様に
これらのコバルト膜の結晶構造及び結晶性を評価した結
果、(0001)面のサファイア基板上に(0001)
面のコバルトがエピタキシャル成長していることが確認
できた。
[Embodiment 3] The substrate temperature was set to 300 under the same conditions as in Embodiment 1.
At 400 ° C., 400 ° C., 450 ° C., 500 ° C., and 600 ° C. to form a layer having a thickness of 10
A 0 nm cobalt film was deposited. As a result of evaluating the crystal structure and crystallinity of these cobalt films in the same manner as in Example 1, the (0001) plane was formed on the (0001) sapphire substrate.
It was confirmed that cobalt on the surface was epitaxially grown.

【0016】また、基板温度を400℃に制御して作製
したコバルト膜は完全結晶に対して85%の結晶性を示
した。基板温度を600℃に制御して作製したコバルト
膜は、表面が凸凹になり島状成長した膜構造であった。
The cobalt film produced by controlling the substrate temperature to 400 ° C. showed 85% crystallinity with respect to the perfect crystal. The cobalt film produced by controlling the substrate temperature to 600 ° C. had a film structure in which the surface became uneven and grew like an island.

【0017】次に基板温度を350℃に制御しコバルト
膜上に厚さ150nmのチタン膜の蒸着を行った。実施
例1と同様に構造評価を行った結果、(0001)面の
コバルト膜上に(0001)面のチタンがエピタキシャ
ル成長することがわかった。
Next, the substrate temperature was controlled at 350 ° C., and a titanium film having a thickness of 150 nm was deposited on the cobalt film. As a result of the structural evaluation performed in the same manner as in Example 1, it was found that (0001) plane titanium was epitaxially grown on the (0001) plane cobalt film.

【0018】つまり、膜の成長方向に対してTi(00
01)/Co(0001)/α−Al23(0001)
基板、膜の面内方向に対してTi[01−10]/Co
[01−10]/α−Al23[01−10]基板の結
晶方位関係でエピタキシャル成長していることが確認で
きた。
That is, Ti (00)
01) / Co (0001) / α-Al 2 O 3 (0001)
Ti [01-10] / Co with respect to the in-plane direction of the substrate and the film
[01-10] / α-Al 2 O 3 [01-10] It was confirmed that the substrate was epitaxially grown in relation to the crystal orientation of the substrate.

【0019】[0019]

【実施例4】実施例1と同様の条件で基板温度を400
℃に制御して(0001)面のサファイア単結晶基板上
に厚さ100nmのコバルト膜、次にコバルト膜上に基
板温度を350℃に制御して厚さ200nmのチタン膜
の蒸着を行い、さらに基板温度を350℃に制御してチ
タン膜上に厚さ100nmのコバルト膜の蒸着を行っ
た。実施例1と同様に構造評価した結果、膜の成長方向
に対してCo(0001)/Ti(0001)/Co
(0001)/α−Al23(0001)基板の結晶方
位関係でエピタキシャル成長していることが確認でき
た。
[Embodiment 4] The substrate temperature was set to 400 under the same conditions as in Embodiment 1.
C., a 100 nm-thick cobalt film was deposited on the (0001) sapphire single crystal substrate, and then a 200 nm-thick titanium film was deposited on the cobalt film by controlling the substrate temperature to 350 ° C. The substrate temperature was controlled at 350 ° C., and a 100 nm-thick cobalt film was deposited on the titanium film. As a result of the structure evaluation in the same manner as in Example 1, Co (0001) / Ti (0001) / Co
It was confirmed that epitaxial growth was performed in the (0001) / α-Al 2 O 3 (0001) substrate with respect to the crystal orientation.

【0020】[0020]

【発明の効果】エピタキシャル成長で積層した多層膜
は、結晶欠陥が減少するために平坦な界面が形成され、
軟X線の反射率を向上させることができる。
According to the present invention, a flat interface is formed in a multilayer film formed by epitaxial growth because crystal defects are reduced.
The reflectivity of soft X-rays can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、(0001)面のサファイア単結晶基
板上に成膜したCu/Ti膜のX線回折(θ−2θ)図
である。2θ:38.4°,41.7°及び43.4°
にあるピークはそれぞれTi(0002),α−Al2
3(0006)及びCu(111)からのピークであ
り、(0001)面のサファイア基板上にCu(11
1)/Ti(0001)面がエピタキシャル成長してい
ることが確認できる。
FIG. 1 is an X-ray diffraction (θ-2θ) diagram of a Cu / Ti film formed on a (0001) sapphire single crystal substrate. 2θ: 38.4 °, 41.7 ° and 43.4 °
Are Ti (0002) and α-Al 2
These peaks are from O 3 (0006) and Cu (111), and Cu (11) is present on the (0001) plane sapphire substrate.
1) It can be confirmed that the / Ti (0001) plane is epitaxially grown.

【図2】図2は、(0001)面のサファイア単結晶基
板上に成膜したCo/Ti膜のX線回折(θ−2θ)図
である。2θ:38.4°,41.7°及び44.6°
にあるピークはそれぞれTi(0002),α−Al2
3(0006)及びCo(0002)からのピークで
あり、(0001)面のサファイア基板上にCo(00
01)/Ti(0001)面がエピタキシャル成長して
いることが確認できる。
FIG. 2 is an X-ray diffraction (θ-2θ) diagram of a Co / Ti film formed on a (0001) plane sapphire single crystal substrate. 2θ: 38.4 °, 41.7 ° and 44.6 °
Are Ti (0002) and α-Al 2
The peaks are from O 3 (0006) and Co (0002), and Co (00) on the (0001) plane sapphire substrate.
It can be confirmed that the (01) / Ti (0001) plane is epitaxially grown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 5/08 G21K 1/06 D G21K 1/06 C G02B 1/10 Z Fターム(参考) 2H042 DA01 DA06 DA12 DC02 DC09 DE00 2K009 AA05 BB04 CC14 DD03 DD06 EE00 4G077 AA03 BA01 DA01 EA02 ED05 ED06 EF04 HA01 HA20 SA04 SA07 4K029 AA07 BA06 BA08 BA17 BB02 BB09 BD09 CA01 EA02 EA08──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 5/08 G21K 1/06 D G21K 1/06 C G02B 1/10 Z F term (Reference) 2H042 DA01 DA06 DA12 DC02 DC09 DE00 2K009 AA05 BB04 CC14 DD03 DD06 EE00 4G077 AA03 BA01 DA01 EA02 ED05 ED06 EF04 HA01 HA20 SA04 SA07 4K029 AA07 BA06 BA08 BA17 BB02 BB09 BD09 CA01 EA02 EA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超高真空下での真空蒸着法によりサファ
イア(α−Al23)単結晶基板上にチタン(Ti)と
銅(Cu)のエピタキシャル多層膜を作製する方法。
1. A method for producing an epitaxial multilayer film of titanium (Ti) and copper (Cu) on a sapphire (α-Al 2 O 3 ) single crystal substrate by a vacuum evaporation method under ultra-high vacuum.
【請求項2】 超高真空下での真空蒸着法によりサファ
イア(α−Al23)単結晶基板上にチタン(Ti)と
コバルト(Co)のエピタキシャル多層膜を作製する方
法。
2. A method for producing an epitaxial multilayer film of titanium (Ti) and cobalt (Co) on a sapphire (α-Al 2 O 3 ) single crystal substrate by a vacuum evaporation method under ultra-high vacuum.
【請求項3】 蒸着速度が0.05nm/sec〜0.
15nm/secのとき、(0001)面のサファイア
基板上に(0001)面のチタンをエピタキシャル成長
させる基板温度は、400℃〜800℃の範囲に制御さ
れ、(0001)面のチタン膜上に(111)面の銅を
エピタキシャル成長させる基板温度は、100℃〜30
0℃の範囲に制御され、(111)面の銅膜上に(00
01)面のチタンをエピタキシャル成長させる基板温度
は、400℃〜600℃の範囲に制御される請求項1に
記載の方法。
3. The deposition rate is 0.05 nm / sec to 0.1.
At 15 nm / sec, the substrate temperature for epitaxially growing (0001) titanium on a (0001) sapphire substrate is controlled in the range of 400 ° C. to 800 ° C., and (111) is deposited on the (0001) titanium film. The substrate temperature for epitaxially growing copper on the surface is 100 ° C. to 30 ° C.
The temperature is controlled within the range of 0 ° C., and (00) is formed on the (111) plane copper film.
The method according to claim 1, wherein the substrate temperature for epitaxially growing the 01) plane titanium is controlled in a range of 400C to 600C.
【請求項4】 蒸着速度が0.05nm/sec〜0.
15nm/secのとき、(0001)、(11−2
0)及び(01−12)面のサファイア基板上に(00
01)面のコバルトをエピタキシャル成長させる基板温
度は、300℃〜500℃の範囲に制御され、(000
1)面のコバルト膜上に(0001)面のチタンをエピ
タキシャル成長させる基板温度は、250℃〜450℃
の範囲に制御され、(0001)面のチタン膜上に(0
001)面のコバルトをエピタキシャル成長させる基板
温度は、250℃〜450℃の範囲に制御される請求項
2に記載の方法。
4. A deposition rate of 0.05 nm / sec to 0.1.
At 15 nm / sec, (0001), (11-2)
(00) and (01-12) on a sapphire substrate.
The substrate temperature for epitaxially growing cobalt on the (01) plane is controlled in the range of 300 ° C to 500 ° C.
The substrate temperature for epitaxially growing (0001) titanium on the (1) cobalt film is 250 ° C. to 450 ° C.
(0) on the (0001) plane titanium film.
The method according to claim 2, wherein the substrate temperature for epitaxially growing the (001) plane cobalt is controlled in a range of 250C to 450C.
JP2000245696A 2000-08-14 2000-08-14 Method for producing epitaxial multilayer film for soft X-ray mirror Expired - Fee Related JP4761090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245696A JP4761090B2 (en) 2000-08-14 2000-08-14 Method for producing epitaxial multilayer film for soft X-ray mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245696A JP4761090B2 (en) 2000-08-14 2000-08-14 Method for producing epitaxial multilayer film for soft X-ray mirror

Publications (2)

Publication Number Publication Date
JP2002060298A true JP2002060298A (en) 2002-02-26
JP4761090B2 JP4761090B2 (en) 2011-08-31

Family

ID=18736169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245696A Expired - Fee Related JP4761090B2 (en) 2000-08-14 2000-08-14 Method for producing epitaxial multilayer film for soft X-ray mirror

Country Status (1)

Country Link
JP (1) JP4761090B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818526A (en) * 2015-01-27 2015-08-05 夏洋 Preparation method for vapor grown two-dimensional material
KR20220060951A (en) * 2020-11-05 2022-05-12 부산대학교 산학협력단 Wafer scale Ag thin film using single crystal Cu buffer layer and manufacturing method therof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319984A (en) * 1992-05-15 1993-12-03 Nisshin Steel Co Ltd Production of metallic epitaxial film
JPH11116379A (en) * 1997-10-21 1999-04-27 Japan Atom Energy Res Inst Production of single crystal multilayer film of ultrathin film niobium and copper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319984A (en) * 1992-05-15 1993-12-03 Nisshin Steel Co Ltd Production of metallic epitaxial film
JPH11116379A (en) * 1997-10-21 1999-04-27 Japan Atom Energy Res Inst Production of single crystal multilayer film of ultrathin film niobium and copper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010070910, C. Montcalm et al., "Survey of Ti−, B−, and Y−based soft x−ray−extreme ultraviolet multilayer mirrors for the 2− to 12−nm", Appl. Opt., 19960901, Vol. 35, No. 25, pp. 5134−5147, US, Optical Society of America *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818526A (en) * 2015-01-27 2015-08-05 夏洋 Preparation method for vapor grown two-dimensional material
KR20220060951A (en) * 2020-11-05 2022-05-12 부산대학교 산학협력단 Wafer scale Ag thin film using single crystal Cu buffer layer and manufacturing method therof
KR102456782B1 (en) * 2020-11-05 2022-10-19 부산대학교 산학협력단 Wafer scale Ag thin film using single crystal Cu buffer layer and manufacturing method therof

Also Published As

Publication number Publication date
JP4761090B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
KR20180091741A (en) Underlayer substrate for diamond film-forming and method for preparing diamond substrate using the same
JPS59211216A (en) Method of producing semiconductor device
Wang et al. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates
JP2009209028A (en) Process of manufacturing diamond polycrystal substrate and diamond polycrystal substrate
JP2002025349A (en) Super flat transparent conductive film and manufacturing method of the same
JPH0948694A (en) Method for forming diamond single crystal film
US5205871A (en) Monocrystalline germanium film on sapphire
CN105826438B (en) A kind of light emitting diode with metal buffer layer and preparation method thereof
JP2004284831A (en) METHOD OF MANUFACTURING GaN SUBSTRATE
JP2002060298A (en) Method of producing epitaxial multilayer film for soft x-ray mirror
Carter et al. Micron thick epitaxial (100) Ag film growth on MgO
KR100422333B1 (en) Method for manufacturing a metal film having giant single crystals and the metal film
JP3586870B2 (en) Oriented thin film forming substrate and method for producing the same
JP4590603B2 (en) Method for producing a tungsten oxide thin film with crystal orientation on the surface of a substrate having low crystallinity
Itoh et al. Growth process of CuO (1 1 1) and Cu2O (0 0 1) thin films on MgO (0 0 1) substrate under metal-mode condition by reactive dc-magnetron sputtering
JP2006073579A (en) METHOD OF FORMING CRYSTALLINE ZINC OXIDE (ZnO) THIN FILM
JPH0524149A (en) Heat ray shield film
JP2022109306A (en) Diamond film deposition ground substrate and method for manufacturing diamond substrate using the same
JP2001270799A (en) Zinc oxide thin film and method for producing the same
JP2569426B2 (en) Superlattice multilayer film manufacturing method
JP2004346336A (en) Laminate containing wurtzite crystalline layer and its manufacturing method
JP3700786B2 (en) GaN substrate manufacturing method
JP2768364B2 (en) Method for manufacturing semiconductor device
JP2782590B2 (en) Method for producing superlattice multilayer film composed of metal and oxide
JPH10275896A (en) Memory element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees