JP2782590B2 - Method for producing superlattice multilayer film composed of metal and oxide - Google Patents
Method for producing superlattice multilayer film composed of metal and oxideInfo
- Publication number
- JP2782590B2 JP2782590B2 JP29032095A JP29032095A JP2782590B2 JP 2782590 B2 JP2782590 B2 JP 2782590B2 JP 29032095 A JP29032095 A JP 29032095A JP 29032095 A JP29032095 A JP 29032095A JP 2782590 B2 JP2782590 B2 JP 2782590B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- multilayer film
- intermetallic compound
- superlattice
- superlattice multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、超格子多層膜の製
造方法に関するものである。さらに詳しくいえば、本発
明は、金属間化合物と酸化物とを原料とし、例えばトラ
ンジスタなどの高速電子デバイス、軟X線反射鏡、中性
子線ポラライザーなどの新規機能材料として有用な、結
晶性が良く、高品質の超格子多層膜を、真空成膜法によ
るエピタキシャル成長処理により効率よく製造する方法
に関するものである。[0001] The present invention relates to a method for manufacturing a superlattice multilayer film. More specifically, the present invention uses an intermetallic compound and an oxide as raw materials, and is useful as a novel functional material such as a high-speed electronic device such as a transistor, a soft X-ray reflector, and a neutron polarizer. The present invention relates to a method for efficiently manufacturing a high-quality superlattice multilayer film by an epitaxial growth process using a vacuum film forming method.
【0002】[0002]
【従来の技術】金属と酸化物からなる超格子多層膜は、
金属層と酸化物層が原子オーダーの厚さで交互に積層さ
れているため、電子波や中性子波などの物質波あるいは
X線、遠紫外線などの電磁波と干渉や回折を引き起こ
し、酸化物、金属のもつ特性を越えて、波動現象に基づ
いた新規の機能性を効果的に引き出せる機能材料と考え
られている。このため従来より、金属と酸化物からなる
超格子多層膜の作製が種々試みられ、例えば銀と酸化ニ
ッケルとの超格子多層膜[「ジャーナル・オブ・クリス
タル・グロース(Journal of Crysta
l Growth)」第144巻,第329ページ(1
994年)]、銀と酸化マグネシウムとの超格子多層膜
(特願平6−79729号)などが提案されている。2. Description of the Related Art Superlattice multilayer films composed of a metal and an oxide are:
Since metal layers and oxide layers are alternately stacked at a thickness of the order of atoms, they cause interference or diffraction with matter waves such as electron waves and neutron waves or electromagnetic waves such as X-rays and far ultraviolet rays. It is considered to be a functional material that can effectively bring out new functionality based on wave phenomena beyond the properties of the material. For this reason, various attempts have heretofore been made to produce a superlattice multilayer film composed of a metal and an oxide, for example, a superlattice multilayer film of silver and nickel oxide [Journal of Crystal Growth (Journal of Crystal Growth)].
l Growth), Vol. 144, p. 329 (1
994)], and a superlattice multilayer film of silver and magnesium oxide (Japanese Patent Application No. 6-79729) has been proposed.
【0003】しかしながら、前記銀と酸化ニッケルとの
多層膜は積層数50層以上において、また銀と酸化マグ
ネシウムとの多層膜は積層数12層以下で超格子構造を
とるが、これらの超格子多層膜は、いずれも結晶の品質
が劣るという欠点を有している。この結晶の品質はX線
回折で中角度に現われるサテライトピークに対してロッ
キング曲線の半価幅によって示すことができ、この半価
幅が小さいほど、結晶性が良いと考えられる。銀(8.
3nm)と酸化ニッケル(1.3nm)との超格子多層
膜では、半価幅が0.69°であるが、同じ装置を用い
て測定したMgO基板(001)ピークやSi基板(0
04)ピークでは、半価幅がそれぞれ0.05°及び
0.04°であり、銀と酸化ニッケルとの超格子多層膜
の結晶性は、MgO基板やSi基板に比べて著しく劣っ
ている。[0003] However, the multilayer film of silver and nickel oxide has a superlattice structure with more than 50 layers, and the multilayer film of silver and magnesium oxide has a superlattice structure with less than 12 layers. All films have the disadvantage of poor crystal quality. The quality of this crystal can be indicated by the half width of the rocking curve with respect to the satellite peak appearing at a middle angle in the X-ray diffraction. It is considered that the smaller this half width is, the better the crystallinity is. Silver (8.
In the superlattice multilayer film of 3 nm) and nickel oxide (1.3 nm), the half width is 0.69 °, but the MgO substrate (001) peak and the Si substrate (0
04) In the peak, the half widths are 0.05 ° and 0.04 °, respectively, and the crystallinity of the superlattice multilayer film of silver and nickel oxide is significantly inferior to that of the MgO substrate or the Si substrate.
【0004】これは、立方晶としての格子定数の違い
が、銀と酸化ニッケルとの超格子多層膜の場合2%、銀
と酸化マグネシウムとの超格子多層膜の場合3%もあ
り、これらの格子不整合の度合いは小さくないため、超
格子を構成している各層の結晶格子は、界面におけるこ
の格子不整合を低減させるため、変形していて、いわゆ
る歪超格子となっているためである。したがって、歪み
を緩和すべく層内に転位や欠陥が導入されやすく、これ
らが電子波の散乱や電磁波の位相のずれなどを生じる原
因となり、その結果、波動現象に基づく機能性を効果的
に引き出しにくくなるものと考えられる。The difference in lattice constant between cubic crystals is 2% for a superlattice multilayer film of silver and nickel oxide, and 3% for a superlattice multilayer film of silver and magnesium oxide. This is because the degree of lattice mismatch is not small, and the crystal lattice of each layer constituting the superlattice is deformed to reduce this lattice mismatch at the interface, and is a so-called strained superlattice. . Therefore, dislocations and defects are likely to be introduced into the layer in order to alleviate the strain, which causes scattering of electron waves and phase shift of electromagnetic waves, and as a result, effectively brings out functionality based on the wave phenomenon. It is thought that it becomes difficult.
【0005】[0005]
【発明が解決しようとする課題】本発明は、このような
従来の金属と酸化物との超格子多層膜のもつ欠点を克服
し、結晶性が良好で品質に優れ、波動現象に基づく機能
性を効果的に引き出しうる超格子多層膜を効率よく製造
する方法を提供することを目的としてなされたものであ
る。SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned drawbacks of the conventional superlattice multilayer film of metal and oxide, and has good crystallinity, excellent quality, and functionality based on the wave phenomenon. It is an object of the present invention to provide a method for efficiently producing a superlattice multilayer film that can effectively extract.
【0006】[0006]
【課題を解決するための手段】本発明者らは、結晶性が
良好で高品質の超格子多層膜を製造する方法について鋭
意研究を重ねた結果、原料として、格子定数の差が2%
未満の面心構造の金属間化合物と塩化ナトリウム型立方
晶構造の酸化物を用い、真空成膜法によるエピタキシャ
ル成長処理を施し、金属間化合物と酸化物とを交互に2
層以上積層させることにより、その目的を達成しうるこ
とを見出し、この知見に基づいて本発明を完成するに至
った。Means for Solving the Problems The present inventors have conducted intensive studies on a method for producing a superlattice multilayer film having good crystallinity and high quality. As a result, as a raw material, the difference in lattice constant was 2%.
Epitaxial growth treatment by a vacuum film forming method using an intermetallic compound having a face-centered structure of less than and an oxide having a sodium chloride type cubic structure, and the intermetallic compound and the oxide
It has been found that the object can be achieved by laminating more than one layer, and based on this finding, the present invention has been completed.
【0007】すなわち、本発明は、面心正方晶構造又は
面心立方晶構造の金属間化合物と塩化ナトリウム型立方
晶構造の酸化物とから成り、かつこれらの格子定数の差
が2%未満のものを原料として用い、真空成膜法による
エピタキシャル成長処理を施し、金属間化合物と酸化物
とを交互に少なくとも2層積層させることを特徴とする
超格子多層膜の製造方法を提供するものである。That is, the present invention comprises an intermetallic compound having a face-centered tetragonal structure or a face-centered cubic structure and an oxide having a sodium chloride-type cubic structure, and having a difference in lattice constant of less than 2%. It is intended to provide a method for producing a superlattice multilayer film, characterized in that the material is used as a raw material, and at least two layers of an intermetallic compound and an oxide are alternately laminated by performing epitaxial growth treatment by a vacuum film formation method.
【0008】[0008]
【発明の実施の形態】本発明方法においては、原料とし
て金属間化合物と酸化物とが用いられ、このうち、金属
間化合物は面心正方晶構造又は面心立方晶構造を有する
ものであり、一方酸化物は塩化ナトリウム型立方晶構造
を有するものである。また、前記金属間化合物と酸化物
は、それらの格子定数の差(格子のミスマッチの度合
い)が2%未満のものを組み合わせて用いることが必要
である。この格子定数の差が2%以上では結晶性が良好
で、高品質の超格子多層膜が得られない。超格子多層膜
の品質の面から、金属間化合物と酸化物の格子定数の差
は1%以下が好ましく、特に0.6%以下が好適であ
る。BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, an intermetallic compound and an oxide are used as raw materials, wherein the intermetallic compound has a face-centered tetragonal structure or a face-centered cubic structure, On the other hand, the oxide has a sodium chloride type cubic structure. In addition, it is necessary to use a combination of the intermetallic compound and the oxide having a difference in lattice constant (degree of lattice mismatch) of less than 2%. If the difference between the lattice constants is 2% or more, the crystallinity is good and a high-quality superlattice multilayer film cannot be obtained. From the viewpoint of the quality of the superlattice multilayer film, the difference between the lattice constants of the intermetallic compound and the oxide is preferably 1% or less, and particularly preferably 0.6% or less.
【0009】本発明方法において用いられる金属間化合
物としては、例えばTi2Agが挙げられる。Ti2Ag
は面心正方晶構造を有し、格子定数はa=0.4187
nm、c=0.3950nmである[ハンセン(Han
sen)「2元合金相図」マクグローヒル出版第2版
(1958年)]。The intermetallic compound used in the method of the present invention includes, for example, Ti 2 Ag. Ti 2 Ag
Has a face-centered tetragonal structure, and the lattice constant is a = 0.4187.
nm, c = 0.3950 nm [Hansen
sen) "Binary alloy phase diagram", McGraw-Hill Publishing Co., 2nd edition (1958)].
【0010】一方、これらの金属間化合物と組み合わせ
る酸化物としては、塩化ナトリウム型立方晶構造を有
し、かつ該金属間化合物との格子定数の差が2%未満の
ものであればよく、特に制限はないが、例えば酸化マグ
ネシウム(MgO)を好ましく挙げることができる。M
gOは塩化ナトリウム型立方晶構造を有し、格子定数は
a=0.42112nmであるので、例えば金属間化合
物Ti2Agとの積層界面での格子ミスマッチの度合い
は0.58%である。On the other hand, the oxide to be used in combination with these intermetallic compounds only needs to have a sodium chloride type cubic structure and have a difference in lattice constant from the intermetallic compound of less than 2%. Although there is no limitation, a preferred example is magnesium oxide (MgO). M
Since gO has a sodium chloride type cubic structure and a lattice constant of a = 0.42112 nm, the degree of lattice mismatch at the lamination interface with the intermetallic compound Ti 2 Ag is 0.58%, for example.
【0011】本発明においては、超格子多層膜における
金属層に金属間化合物が用いられるが、このように金属
間化合物を用いることにより、塩化ナトリウム型酸化物
層に対する格子ミスマッチの度合いを、単体金属では困
難であった2%未満に低減させうる上、金属層の硬度が
向上し、金属層の弾性定数が酸化物層の弾性定数に近づ
くため、歪エネルギーを両層でほぼ均等に分配でき、安
定な超格子多層膜の形成が可能となる。また、積層界面
では、塩化ナトリウム型のA、B原子から成る面内配列
に近い配列を金属層がとることが可能となり、層間の結
合力が向上することが考えられる。In the present invention, an intermetallic compound is used for the metal layer in the superlattice multilayer film. By using such an intermetallic compound, the degree of lattice mismatch with respect to the sodium chloride type oxide layer can be reduced by a single metal. In addition, the hardness can be reduced to less than 2%, and the hardness of the metal layer is improved, and the elastic constant of the metal layer approaches the elastic constant of the oxide layer. A stable superlattice multilayer film can be formed. Further, at the lamination interface, the metal layer can have an arrangement close to an in-plane arrangement composed of sodium chloride type A and B atoms, and it is conceivable that the bonding strength between the layers is improved.
【0012】本発明方法においては、面心立方晶又は面
心正方晶構造を有し、かつ塩化ナトリウム型立方晶構造
の酸化物との格子定数の差が2%未満であれば、前記以
外の金属間化合物でも品質の良好な超格子多層膜の作製
が可能である。また、この金属間化合物は、整数比率の
成分から成る規則合金であるが、実際には整数比のまわ
りに組成比が分布しており、合金相図においても不明な
ものが多い。例えばTi2Agは、銀組成が33.3原
子%付近のγ相であるが、その結晶構造はCu3Au型
の規則合金相構造であり、相構造から推定される銀25
原子%組成から大きくずれていて、そのずれは8.3原
子%になっている。また、γ相の銀組成範囲も明確でな
い。このため、本発明における金属間化合物とは、組成
比で示される成分組成から、±10原子%の範囲内の成
分組成の合金も含めるものとする。In the method of the present invention, if the difference between the lattice constant of the oxide having the face-centered cubic or face-centered tetragonal structure and that of the oxide having the cubic structure of the sodium chloride type is less than 2%, other than the above, Even with an intermetallic compound, a superlattice multilayer film with good quality can be produced. Further, this intermetallic compound is an ordered alloy composed of components having an integer ratio, but in fact, the composition ratio is distributed around the integer ratio, and many of them are unknown in the alloy phase diagram. For example, Ti 2 Ag is a γ phase having a silver composition of about 33.3 atomic%, and its crystal structure is a Cu 3 Au type ordered alloy phase structure.
The composition greatly deviates from the atomic% composition, and the deviation is 8.3 atomic%. Also, the silver composition range of the γ phase is not clear. For this reason, the intermetallic compound in the present invention includes an alloy having a component composition within a range of ± 10 atomic% from the component composition indicated by the composition ratio.
【0013】本発明方法においては、前記の金属間化合
物及び酸化物を、交互に真空成膜法でエピタキシャル成
長させて、少なくとも2層積層させる。この真空成膜法
はエピタキシャル成長を行わせて成膜する方法として従
来慣用されているものであれば特に制限されないが、有
利には電子ビーム蒸着法、レーザーアブレーション法、
スパッタリング法が用いられる。In the method of the present invention, at least two layers of the above-mentioned intermetallic compound and oxide are alternately epitaxially grown by a vacuum film-forming method. This vacuum film formation method is not particularly limited as long as it is conventionally used as a method of forming a film by performing epitaxial growth, but is preferably an electron beam evaporation method, a laser ablation method,
A sputtering method is used.
【0014】この真空成膜法においては、好ましくは単
結晶基板上にバッファー層としての下地層をあらかじめ
形成させるのがよい。この下地層は、平坦性を高め、基
板の表面状態を良好にし、基板と超格子多層膜間の格子
の不整合などのトラブルを防止あるいは緩和するために
施される。このような下地層としては、基板に対するエ
ピタキシャル成長性がよく、かつ超格子多層膜を形成す
る一方の層の格子とミスマッチがほとんどない材料を用
いればよいが、多くの場合には、超格子多層膜の構成材
料の一つを厚く積層させることによって形成される。例
えば、酸化マグネシウム基板上のTi2Ag/酸化マグ
ネシウムの場合では、Ti2Ag、酸化マグネシウム共
に下地層として用いることができる。In this vacuum film forming method, it is preferable to previously form an underlayer as a buffer layer on a single crystal substrate. This underlayer is applied to improve flatness, improve the surface condition of the substrate, and prevent or reduce troubles such as lattice mismatch between the substrate and the superlattice multilayer film. As such an underlayer, a material having good epitaxial growth properties with respect to the substrate and having little mismatch with the lattice of one of the layers forming the superlattice multilayer film may be used. Is formed by laminating one of the constituent materials thickly. For example, in the case of Ti 2 Ag / magnesium oxide on a magnesium oxide substrate, both Ti 2 Ag and magnesium oxide can be used as the underlayer.
【0015】この下地層の形成法は材料によって異なる
が、例えばTi2Ag/酸化マグネシウム超格子多層膜
を製造する場合、20nm以上の酸化マグネシウム層を
100〜500℃程度で酸化マグネシウム基板上に成膜
後、600〜650℃程度で5〜15分間程度熟成(ア
ニーリング)するなどの方法が用いられる。Although the method of forming the underlayer varies depending on the material, for example, when manufacturing a Ti 2 Ag / magnesium oxide superlattice multilayer film, a magnesium oxide layer of 20 nm or more is formed on a magnesium oxide substrate at about 100 to 500 ° C. After the film, a method of aging (annealing) at about 600 to 650 ° C. for about 5 to 15 minutes is used.
【0016】この際用いられる単結晶基板としては、そ
の上に少なくとも超格子多層膜の成分材料の1つが単層
膜としてエピタキシャル成長しうるものが好ましく、例
えば酸化マグネシウム基板や塩化ナトリウム基板などを
好ましく挙げることができる。これらの単結晶基板は、
成膜前に吸着水分を除去するために、250℃以上に加
熱するのが好ましい。The single crystal substrate used at this time is preferably a substrate on which at least one of the component materials of the superlattice multilayer film can be epitaxially grown as a single layer film, such as a magnesium oxide substrate or a sodium chloride substrate. be able to. These single crystal substrates are
It is preferable to heat to 250 ° C. or higher in order to remove adsorbed moisture before film formation.
【0017】また、成膜は、真空下にて、通常基板温度
−100〜300℃、好ましくは−50〜200℃の範
囲で行われる。金属間化合物及び酸化物は、分子線とし
て基板に堆積させるようにするのがよい。その際、成膜
装置として、スパッタリング装置やレーザーアブレーシ
ョン装置も用いられるが、電子ビーム蒸着装置を備えた
分子線エピタキシャル成長装置(MBE装置)を用いる
のが好ましい。The film is formed under vacuum at a substrate temperature of usually -100 to 300 ° C, preferably -50 to 200 ° C. The intermetallic compounds and oxides are preferably deposited on the substrate as molecular beams. At this time, a sputtering apparatus or a laser ablation apparatus is also used as a film forming apparatus, but it is preferable to use a molecular beam epitaxial growth apparatus (MBE apparatus) equipped with an electron beam evaporation apparatus.
【0018】成膜速度は、低い方が好ましく、電子ビー
ム蒸着法では、0.1nm/s以下、好ましくは0.0
3nm/s以下とするのが有利である。また、金属間化
合物層及び酸化物層の厚さは、通常、それぞれ0.4〜
10.0nm及び0.2〜10.0nmの範囲で選ばれ
る。The film forming rate is preferably as low as possible. In the electron beam evaporation method, the film forming rate is 0.1 nm / s or less, preferably 0.0 nm / s or less.
Advantageously, it is 3 nm / s or less. Further, the thickness of the intermetallic compound layer and the oxide layer is usually 0.4 to 0.4, respectively.
It is selected in the range of 10.0 nm and 0.2 to 10.0 nm.
【0019】[0019]
【発明の効果】本発明方法によれば、金属間化合物層と
酸化物層とが交互に積層された高品質の超格子多層膜を
効率よく形成することができる。この超格子多層膜は、
酸化物層と類似の結晶構造をもつ単体金属を金属層に用
いたものに比べて結晶性が向上し、層内において転位や
欠陥が少なく、電磁波の散乱や位相のずれなどが生じに
くい上、波動現象に基づく機能性を効果的に引き出しう
るという顕著な効果を奏する。According to the present invention, a high-quality superlattice multilayer film in which intermetallic compound layers and oxide layers are alternately laminated can be efficiently formed. This superlattice multilayer film,
The crystallinity is improved as compared to the case where a single metal having a crystal structure similar to the oxide layer is used for the metal layer, dislocations and defects are less in the layer, electromagnetic wave scattering and phase shift are less likely to occur, It has a remarkable effect that the functionality based on the wave phenomenon can be effectively derived.
【0020】この超格子多層膜は、新規機能材料とし
て、例えばトランジスタなどの高速電子デバイス、軟X
線反射鏡、中性子線ポラライザーなどに有用である。さ
らに、金属化合物層/酸化物絶縁層/金属化合物層の構
成で、表面プラズモンを介した発光素子、トンネル効果
を利用した電子放射素子などにも有用である。This superlattice multilayer film can be used as a new functional material, for example, for high-speed electronic devices such as transistors, soft X
It is useful for X-ray reflectors, neutron polarizers, etc. Further, the structure of the metal compound layer / oxide insulating layer / metal compound layer is useful for a light emitting element via surface plasmon, an electron emitting element utilizing a tunnel effect, and the like.
【0021】[0021]
【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、この例によって何ら限定されるも
のではない。Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
【0022】実施例 面心正方晶構造を有し、格子定数がa=0.4187n
m、c=0.3950nmであるチタン銀(Ti2A
g)金属間化合物と、塩化ナトリウム型立方晶構造を有
し、格子定数がa=0.42112nmである酸化マグ
ネシウムを原料として用いた。これらの格子定数の差は
0.58%である。また、基板として20×20×1m
mのサイズの単結晶酸化マグネシウム(001)基板を
用い、超格子多層膜の作製には、3基の電子ビーム蒸着
装置を備えたMBE装置を用いた。原料のTi2Agは
99.9%以上の銀と99%以上のチタンをアーク炉で
溶製した市販のものを、酸化マグネシウムは市販の高純
度品を用いた。Example A face-centered tetragonal crystal structure with a lattice constant of a = 0.4187n
m, c = 0.3950 nm titanium silver (Ti 2 A
g) An intermetallic compound and magnesium oxide having a sodium chloride type cubic structure and a lattice constant of a = 0.42112 nm were used as raw materials. The difference between these lattice constants is 0.58%. In addition, as a substrate, 20 × 20 × 1 m
A single crystal magnesium oxide (001) substrate having a size of m was used, and an MBE apparatus equipped with three electron beam evaporation apparatuses was used to produce a superlattice multilayer film. The raw material used was a commercially available Ti 2 Ag obtained by melting 99.9% or more of silver and 99% or more of titanium in an arc furnace, and the commercially available high purity magnesium oxide was used.
【0023】基板をアセトン、エタノール及び超純水で
超音波洗浄し、次いで超高真空中、600℃で加熱した
のち、バッファー層として500℃で20nmの厚さに
酸化マグネシウム下地層を成膜した。600℃で5分間
熟成したのち、基板温度0℃でTi2Agと酸化マグネ
シウムとを、交互にそれぞれ2.6nm及び2.0nm
の厚さで、MBE装置により、50層堆積させた。Ti
2Ag及び酸化マグネシウムの成膜速度は、それぞれ
0.02nm/s及び0.01nm/sであり、成膜時
の真空圧力は10-7Paレベルであった。The substrate was ultrasonically cleaned with acetone, ethanol and ultrapure water, and then heated at 600 ° C. in an ultra-high vacuum, and then a magnesium oxide underlayer was formed as a buffer layer to a thickness of 20 nm at 500 ° C. . After aging at 600 ° C. for 5 minutes, Ti 2 Ag and magnesium oxide were alternately deposited at 2.6 nm and 2.0 nm at a substrate temperature of 0 ° C.
, 50 layers were deposited by the MBE apparatus. Ti
The film formation rates of 2 Ag and magnesium oxide were 0.02 nm / s and 0.01 nm / s, respectively, and the vacuum pressure during film formation was at a level of 10 -7 Pa.
【0024】成膜時の高エネルギー電子線回折(RHE
ED)パターンにはエピタキシャル成長を示す強いスト
リークパターンが認められた。50層の堆積において
も、パターンは完全な再現性を示し、任意の積層数にお
いてもエピタキシャル成長は持続するものと予測され
る。図1に50層の多層膜の低角度でのX線回折パター
ンチャートをaで示す。これより低角度で3つの超格子
反射が認められ、周期的積層構造をもつことが分かっ
た。図1において、bは理論曲線を示す。High energy electron diffraction (RHE) during film formation
In the (ED) pattern, a strong streak pattern indicating epitaxial growth was observed. Even with the deposition of 50 layers, the pattern shows perfect reproducibility, and it is expected that epitaxial growth will continue at any number of layers. FIG. 1 shows an X-ray diffraction pattern chart of a 50-layer multilayer film at a low angle by a. From this, three superlattice reflections were observed at a lower angle, indicating a periodic laminated structure. In FIG. 1, b indicates a theoretical curve.
【0025】また、図2に前記50層の多層膜の中角度
でのX線回折パターンチャートをaで示す。これより、
基板のMgO(001)以外に4つの超格子反射が認め
られた。中角度でのパターンは、各層の原子配列が周期
性をもつことを示しており、このことから、この多層膜
は周期的積層構造をもつ人工単結晶、すなわち人工超格
子であることが分かった。図2において、bは理論曲線
を示す。FIG. 2 shows an X-ray diffraction pattern chart at a middle angle of the 50-layer multilayer film by a. Than this,
Four superlattice reflections were observed in addition to MgO (001) of the substrate. The pattern at the middle angle shows that the atomic arrangement of each layer has periodicity, which indicates that this multilayer film is an artificial single crystal with a periodic laminated structure, that is, an artificial superlattice. . In FIG. 2, b indicates a theoretical curve.
【0026】さらに、図3に、図2における2θ=4
3.414°にみられる超格子反射ピークのロッキング
曲線を示す。これより、半価幅が0.04°であり、こ
の半価幅は使用したX線装置のピーク分解能に等しく
[この装置を用いて測定したSi基板(004)ピーク
の半価幅は0.04°であった]、銀/酸化ニッケル超
格子多層膜のそれが0.69°以上であることを考慮す
れば、結晶性が極めて優れているといえる。FIG. 3 shows that 2θ = 4 in FIG.
The rocking curve of the superlattice reflection peak seen at 3.414 degrees is shown. From this, the half width is 0.04 °, which is equal to the peak resolution of the X-ray apparatus used [the half width of the Si substrate (004) peak measured with this apparatus is 0. 04 °], considering that that of the silver / nickel oxide superlattice multilayer film is 0.69 ° or more, it can be said that the crystallinity is extremely excellent.
【図1】 実施例で得られた超格子多層膜の低角度での
X線回折パターンチャート。FIG. 1 is an X-ray diffraction pattern chart at a low angle of a superlattice multilayer film obtained in an example.
【図2】 実施例で得られた超格子多層膜の中角度での
X線回折パターンチャート。FIG. 2 is an X-ray diffraction pattern chart at a middle angle of the superlattice multilayer film obtained in the example.
【図3】 図2における2θ=43.414°にみられ
る超格子反射ピークのロッキング曲線。FIG. 3 is a rocking curve of a superlattice reflection peak observed at 2θ = 43.414 ° in FIG. 2;
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/205 H01L 21/205 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/205 H01L 21/205
Claims (3)
属間化合物と塩化ナトリウム型立方晶構造の酸化物とか
ら成り、かつこれらの格子定数の差が2%未満のものを
原料として用い、真空成膜法によるエピタキシャル成長
処理を施し、金属間化合物と酸化物とを交互に少なくと
も2層積層させることを特徴とする超格子多層膜の製造
方法。1. A raw material comprising an intermetallic compound having a face-centered tetragonal structure or a face-centered cubic structure and an oxide having a sodium chloride-type cubic structure and having a difference in lattice constant of less than 2%. A method for producing a superlattice multilayer film, comprising performing an epitaxial growth process by a vacuum film forming method and alternately laminating at least two layers of an intermetallic compound and an oxide.
と酸化物とを組み合わせて用いる請求項1記載の超格子
多層膜の製造方法。2. The method for producing a superlattice multilayer film according to claim 1, wherein a combination of an intermetallic compound having a lattice constant difference of 1% or less and an oxide is used.
物が酸化マグネシウムである請求項1又は2記載の超格
子多層膜の製造方法。3. The method according to claim 1, wherein the intermetallic compound is Ti 2 Ag and the oxide is magnesium oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29032095A JP2782590B2 (en) | 1995-10-11 | 1995-10-11 | Method for producing superlattice multilayer film composed of metal and oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29032095A JP2782590B2 (en) | 1995-10-11 | 1995-10-11 | Method for producing superlattice multilayer film composed of metal and oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09110597A JPH09110597A (en) | 1997-04-28 |
JP2782590B2 true JP2782590B2 (en) | 1998-08-06 |
Family
ID=17754568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29032095A Expired - Lifetime JP2782590B2 (en) | 1995-10-11 | 1995-10-11 | Method for producing superlattice multilayer film composed of metal and oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2782590B2 (en) |
-
1995
- 1995-10-11 JP JP29032095A patent/JP2782590B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09110597A (en) | 1997-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5316615A (en) | Surfactant-enhanced epitaxy | |
Choi et al. | Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition | |
McWhan et al. | Structure and coherence of NbAl multilayer films | |
US5603766A (en) | Method for producing uniaxial tetragonal thin films of ternary intermetallic compounds | |
JPS5983997A (en) | Formation of hetero structure containing epitaxial multi-component material | |
JP3981732B2 (en) | FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same | |
US5205871A (en) | Monocrystalline germanium film on sapphire | |
JP2782590B2 (en) | Method for producing superlattice multilayer film composed of metal and oxide | |
CN111945110B (en) | Deposition method | |
Hakkens et al. | Transmission electron microscopy study of Co/Pd and Co/Au multilayers | |
JP2569426B2 (en) | Superlattice multilayer film manufacturing method | |
JPH06232058A (en) | Preparation of epitaxial semiconductor structure | |
JP2782592B2 (en) | Method for producing superlattice multilayer film comprising titanium and magnesium oxide | |
US5628834A (en) | Surfactant-enhanced epitaxy | |
JP4761090B2 (en) | Method for producing epitaxial multilayer film for soft X-ray mirror | |
Robaut et al. | Epitaxial growth of cubic Laves phase intermetallic compounds (YCo2, TbCo2) and new epitaxial relationship between fcc (111) and bcc (110) | |
JPH1146045A (en) | Group iii nitride semiconductor thin film and its manufacturing method | |
TWI851720B (en) | Method for sputter depositing an additive-containing aluminium nitride film, additive-containing aluminium nitride film, and piezoelectric device | |
JPH07109032B2 (en) | Method of forming continuous thin film | |
JP2005251840A (en) | New ferrimagnetic alternative multilayer film complex, its production process and three-dimensional integrated circuit employing it | |
Mertler et al. | Hetero-epitaxial growth of Mo single crystal films on MgO-crystals and of W, Nb, and Ta on Mo thin film substrates | |
JP2001102215A (en) | Exchange coupling film and method for production thereof, magnetoresistive effect element | |
JPH04178909A (en) | Soft magnetic thin film and its manufacture | |
JPH10273394A (en) | Production of epitaxial multilayer film | |
Guerret-Piécourt et al. | Growth and structural characteristics of (Ga, Al) As Bragg reflectors grown by MBE on nominal and vicinal (1 1 1) B GaAs substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |