JP2002059257A - Composite material - Google Patents

Composite material

Info

Publication number
JP2002059257A
JP2002059257A JP2000244227A JP2000244227A JP2002059257A JP 2002059257 A JP2002059257 A JP 2002059257A JP 2000244227 A JP2000244227 A JP 2000244227A JP 2000244227 A JP2000244227 A JP 2000244227A JP 2002059257 A JP2002059257 A JP 2002059257A
Authority
JP
Japan
Prior art keywords
vapor
composite material
carbon fiber
grown carbon
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000244227A
Other languages
Japanese (ja)
Inventor
Eiji Murofushi
英治 室伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2000244227A priority Critical patent/JP2002059257A/en
Publication of JP2002059257A publication Critical patent/JP2002059257A/en
Abandoned legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight composite material having uniform and good thermal conductivity free from directivity. SOLUTION: The surface of vapor growth carbon fiber as a featherlike fibrous body vapor phase-grown using hydrocarbon such as benzene as a carbon feeding source and iron as neuclei in the presence of hydrogen, is formed with a silicon dioxide layer with a thickness of 0.01 to 0.1 μm by a sol-gel method, also, as the metal of the matrix, aluminum, various aluminum alloys, magnesium or magnesium alloys are used, and the metal is melted and press-impregnated into the fibrous layer via a filter made of porous ceramics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属をマトリック
スとし、フィラーとして二酸化ケイ素をコーティングし
た気相成長炭素繊維を有する複合材料、特に熱伝導性に
優れた複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material having vapor-grown carbon fibers coated with silicon dioxide as a filler using a metal as a matrix, and more particularly to a composite material having excellent thermal conductivity.

【0002】[0002]

【従来の技術】アルミニウム、あるいは、アルミニウム
合金は熱伝導性に優れているので、ヒートシンクなどに
用いられ、CPUなどの局所的な冷却・放熱に用いられ
ている。
2. Description of the Related Art Aluminum or an aluminum alloy is used for a heat sink or the like because of its excellent thermal conductivity, and is used for local cooling and heat radiation of a CPU or the like.

【0003】しかしながら、現在、放熱ファンを用いる
ことのできないノート型機器、ハンドヘルド機器など小
型化し、極度に軽量化した機器が次々と開発される一
方、クロック数(動作周波数)の増加などに伴い、これ
ら機器での発熱量が増大している。これら矛盾する要求
を満足するため、軽量でありながら熱伝導性に優れた材
料が求められている。
However, at the present time, miniaturized and extremely lightweight devices such as notebook devices and handheld devices that cannot use a heat radiation fan are being developed one after another, while the number of clocks (operating frequency) has been increasing. The amount of heat generated by these devices is increasing. In order to satisfy these contradictory requirements, a material that is lightweight and has excellent thermal conductivity is required.

【0004】[0004]

【発明が解決しようとする課題】このような軽量かつ熱
伝導性に優れたものとして、炭素繊維と金属とからなる
複合材料が挙げられる。ここで炭素繊維中でも気相成長
炭素繊維は極めて優れた熱伝導性を有する。そのため、
気相成長炭素繊維と金属とからなる複合材料が検討され
てきた。しかし、気相成長炭素繊維の性質として、金属
とのぬれ性が極めて低く、また分散性が悪い上、攪拌・
混合などの物理的な処理を行った場合、均一な熱伝導性
が得られず、また、物性が著しく低下するため、複合材
としての良さが生かし切れない。すなわちフィラー(気
相成長炭素繊維:VGVF)と母材(金属)との密着が
低く結果的に強度的に脆くなる。さらに密着性を向上さ
せる為にカップリング剤、サイズ剤等によってフィラー
を処理することが考えられるが、それらが有する炭素が
複合材料形成の途中で直鎖が破壊されるため使用できな
い。このように求められる性能をクリアーできる、均一
で高い熱伝導性を有する軽量な材料が求められていた。
A composite material composed of carbon fiber and metal is one example of such a material that is lightweight and has excellent thermal conductivity. Here, among carbon fibers, vapor-grown carbon fibers have extremely excellent thermal conductivity. for that reason,
Composite materials comprising vapor grown carbon fibers and metals have been studied. However, vapor-grown carbon fibers have very low wettability with metal, poor dispersibility,
When physical treatment such as mixing is performed, uniform thermal conductivity cannot be obtained, and physical properties are significantly reduced, so that the goodness of the composite material cannot be fully utilized. That is, the adhesion between the filler (vapor-grown carbon fiber: VGVF) and the base material (metal) is low, resulting in a brittle strength. In order to further improve the adhesion, it is conceivable to treat the filler with a coupling agent, a sizing agent, or the like, but the carbon contained therein cannot be used because the straight chain is broken during the formation of the composite material. There has been a demand for a lightweight material having uniform and high thermal conductivity, which can satisfy the performance required in this way.

【0005】[0005]

【課題を解決するための手段】本発明の複合材料は上記
課題を解決するため、請求項1に記載の通り、表面に二
酸化ケイ素層を有する気相成長炭素繊維と金属とからな
る複合材料である。本発明の複合材料における気相成長
炭素繊維は上記二酸化ケイ素層の存在により、金属との
ぬれ性が著しく向上し、ボイド(空隙)のない複合材料
となると同時に金属マトリックス中での分散性が向上す
るため、材料全体に亘る均一性が得られ、高い性能が安
定して得られる。
According to a first aspect of the present invention, there is provided a composite material comprising a vapor-grown carbon fiber having a silicon dioxide layer on its surface and a metal. is there. The vapor-grown carbon fiber in the composite material of the present invention is significantly improved in wettability with metal due to the presence of the silicon dioxide layer, becomes a void-free composite material, and has improved dispersibility in a metal matrix. Therefore, uniformity over the entire material is obtained, and high performance is stably obtained.

【0006】[0006]

【発明の実施の形態】本発明の複合材料は極めて熱伝導
性の良好な気相成長炭素繊維(以下「VGCF」とも云
う)を用いるため、複合材料とした場合、優れた熱伝導
性が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Since the composite material of the present invention uses vapor-grown carbon fiber (hereinafter also referred to as "VGCF") having extremely good thermal conductivity, excellent thermal conductivity is obtained when the composite material is used. Can be

【0007】気相成長炭素繊維として一般にウィスカー
と云われる針状結晶のものが知られている。しかし、こ
れは形状が一次元的であり、放熱などの三次元的用途に
用いる複合材料の成形に当たってはその配向方向を制御
する必要があるとされてきた。
[0007] Needle-shaped crystals generally called whiskers are known as vapor-grown carbon fibers. However, this is one-dimensional in shape, and it has been said that it is necessary to control the orientation direction of a composite material used for three-dimensional applications such as heat radiation.

【0008】ここで、表面に二酸化ケイ素層を有する気
相成長炭素繊維を用いることにより、金属マトリックス
中にフィラーである気相成長炭素繊維が均一、かつ、著
しい配向なしに分散し、かつ、金属マトリックスとより
一体となって複合材料を形成することができる。
[0008] Here, by using the vapor-grown carbon fiber having a silicon dioxide layer on the surface, the vapor-grown carbon fiber as a filler is dispersed uniformly and without significant orientation in the metal matrix, and The composite material can be formed more integrally with the matrix.

【0009】本発明で用いる気相成長炭素繊維としては
上記のような一般的なウィスカー的な気相成長炭素繊維
の表面に二酸化ケイ素層を設けたものを用いることがで
きるが、羽毛状繊維体である気相成長炭素繊維の表面に
二酸化ケイ素層を設けたものがさらに均一な複合材料を
得ることができるので好ましい。
As the vapor-grown carbon fiber used in the present invention, the above-mentioned general whisker-like vapor-grown carbon fiber provided with a silicon dioxide layer on the surface can be used. It is preferable to provide a silicon dioxide layer on the surface of the vapor-grown carbon fiber, since a more uniform composite material can be obtained.

【0010】羽毛状繊維体である気相成長炭素繊維と
は、比重が2.0前後(アルミニウムの比重は2.7)
であって、枝分かれ(分岐)を有し、場所によって曲が
りを有し、場合によってはくびれがあり、また、自ら或
いは互いに絡まりあって、全体として0.03mm〜1
mmの不定な形状の繊維塊となっているものである。羽
毛状繊維体である気相成長炭素繊維は枝分かれがあるた
め、その三次元的ネットワークを通じて熱が伝導される
ため、このものをフィラーとした場合に極めて三次元的
に熱伝導性が良好な複合材料が得られる。
The specific gravity is about 2.0 (specific gravity of aluminum is 2.7) with the vapor grown carbon fiber which is a feather-like fibrous body.
Having a branch (branch), a bend depending on a place, a constriction in some cases, and being entwined with each other or with each other to form a total of 0.03 mm to 1
It is a fiber lump having an irregular shape of mm. Since the vapor grown carbon fiber, which is a feathered fibrous body, is branched, heat is conducted through its three-dimensional network, and when this is used as a filler, a composite that has extremely good three-dimensional thermal conductivity The material is obtained.

【0011】このような羽毛状繊維体である気相成長炭
素繊維は、ベンゼンなどの炭化水素を炭素供給元とし、
水素存在下で鉄を核として気相成長させる。このとき、
温度、雰囲気圧力、原料の炭化水素供給量等条件を変化
させることにより、枝分かれ(分岐)を有し、場所によ
って曲がりを有し、場合によってはくびれがあり、ま
た、自ら或いは互いに絡まる羽毛状繊維体である気相成
長炭素繊維を得ることができる。このとき、複数の羽毛
状繊維体は互いに絡まり合って、繊維塊を形成してい
る。
[0011] The vapor-grown carbon fiber which is such a feather-like fibrous body uses a hydrocarbon such as benzene as a carbon source,
Vapor growth is performed using iron as a nucleus in the presence of hydrogen. At this time,
By changing conditions such as temperature, atmospheric pressure, and the amount of hydrocarbon feed as a raw material, there is a branch (branch), a bend depending on a place, a constriction in some cases, and a feather fiber entangled with itself or with each other. A vapor-grown carbon fiber as a body can be obtained. At this time, the plurality of feathered fiber bodies are entangled with each other to form a fiber mass.

【0012】なお、同様に一次元形状の炭素繊維として
知られる、ポリアクリロニトリル系炭素繊維やピッチ系
炭素繊維などの長繊維の炭素繊維をチョップ化、或いは
ミルド化(通常の方法でミルド化しても完全には粉状に
ならず、繊維としての形状は保たれる)したものは気相
成長炭素繊維に比べて熱伝導性が数段低い。気相成長炭
素繊維の熱伝導率が1500w/mK程度であるのに対
し、これらPAN系及びピッチ系炭素繊維では1〜60
0w/mK程度と低いため、例えばアルミニウム(熱伝
導性は200〜270w/mK)との複合材料を形成し
ても、熱伝導性の向上は小さく、そのために用いる炭素
繊維としては気相成長炭素繊維である必要がある。
It is to be noted that long fibers such as polyacrylonitrile-based carbon fibers and pitch-based carbon fibers, also known as one-dimensional carbon fibers, are chopped or milled (even if milled by a usual method). (The fibers are not completely powdered, and the shape of the fibers is maintained.) The thermal conductivity is several steps lower than that of the vapor grown carbon fibers. While the thermal conductivity of the vapor grown carbon fiber is about 1500 w / mK, these PAN-based and pitch-based carbon fibers have a thermal conductivity of 1 to 60 w / mK.
Since it is as low as about 0 w / mK, even if a composite material made of, for example, aluminum (thermal conductivity is 200 to 270 w / mK) is formed, the improvement in thermal conductivity is small. Must be fiber.

【0013】このような気相成長炭素繊維とアルミニウ
ム、アルミニウム合金等の軽量で熱伝導性に優れた金属
とを組み合わせることによって、従来から高熱伝導部材
として用いられてきた銅(400w/mK程度)をも越
えるような熱伝導性を有する軽量な材料とすることがで
きる。
By combining such a vapor grown carbon fiber with a lightweight metal having excellent thermal conductivity such as aluminum and aluminum alloy, copper (about 400 w / mK) which has been conventionally used as a high heat conductive member is used. And a light-weight material having thermal conductivity that exceeds

【0014】なお、本発明で用いる表面に二酸化ケイ素
層を有する気相成長炭素繊維は、気相成長炭素繊維表面
に熱CVD(化学気相成長)法、真空蒸着法あるいはゾ
ルゲル法などの方法により形成することができる。
The vapor-grown carbon fiber having a silicon dioxide layer on the surface used in the present invention can be formed on the surface of the vapor-grown carbon fiber by a method such as thermal CVD (chemical vapor deposition), vacuum deposition or sol-gel method. Can be formed.

【0015】ゾルゲル法とは、コーティングする目的成
分(目的元素)を有するゾル溶液を用いて、コーティン
グ対象の材料表面にゾル液膜を形成し、これをゲル化す
る工程を有する方法であり、ゾル液膜形成は、ゾル液に
予め浸漬した対象材料を液から引き上げる方法(引き上
げ法)で行うことができる。その後、適当な温度(本発
明の場合、例えばアルゴン気流中で700℃程度の処
理)で熱処理し、あるいは、加水分解処理(本発明の場
合、例えば100℃程度に加熱した、加湿アルゴン気流
中での処理)を行って目的の化学的組成(本発明におい
ては二酸化ケイ素)を有する薄膜を得る技術である。な
お、ゾル液に対象材料である気相成長炭素繊維を浸漬す
るときに超音波処理、減圧処理などを行って、ゾル液と
気相成長炭素繊維との接触が完全なものとなるようにす
ることが望ましい。
The sol-gel method is a method having a step of forming a sol liquid film on the surface of a material to be coated using a sol solution having a target component (target element) to be coated and gelling the same. The formation of the liquid film can be performed by a method (pulling-up method) in which the target material previously immersed in the sol liquid is pulled up from the liquid. Thereafter, heat treatment is performed at an appropriate temperature (in the case of the present invention, for example, treatment in an argon stream at about 700 ° C.), or hydrolysis treatment (in the case of the present invention, in a humidified argon stream heated to, for example, about 100 ° C.). ) To obtain a thin film having a desired chemical composition (in the present invention, silicon dioxide). When the vapor-grown carbon fiber as the target material is immersed in the sol liquid, ultrasonic treatment, decompression treatment, or the like is performed so that the contact between the sol liquid and the vapor-grown carbon fiber is completed. It is desirable.

【0016】一般にゾルゲル法で用いるゾル液は、目的
成分(目的元素:本発明においてはケイ素)のアルコキ
シドとアルコール、水などの溶剤とから形成される。こ
のようなケイ素を有するアルコキシドとしてはテトラエ
トキシシラン[Si(0C254)]などが挙げられ
る。
In general, the sol liquid used in the sol-gel method is formed from an alkoxide of a target component (target element: silicon in the present invention) and a solvent such as alcohol and water. Examples of such alkoxides having silicon include tetraethoxysilane [Si (0C 2 H 5 ) 4 ).

【0017】上記ゾルゲル法において、上記のような引
き上げ法のほか、材料を回転させておいてこれにゾル溶
液を振りかける方法(スピンコート法)、ゾル液を材料
表面に噴霧する方法(スプレー法)などの方法があり、
対象材料の形状、生産性、求められる性能などによって
適宜選択する。
In the sol-gel method, in addition to the above-mentioned pulling method, a method in which a material is rotated and sprinkled with a sol solution (spin coating method), and a method in which a sol liquid is sprayed on the material surface (spray method) There are methods such as
It is appropriately selected according to the shape of the target material, productivity, required performance, and the like.

【0018】本発明における気相成長炭素繊維の場合
も、フェルト・マット状の形状を有する場合にはスプレ
ーによりゾル膜を形成し、また繊維束の場合にはディッ
ピング法によることが好ましい。
Also in the case of the vapor-grown carbon fiber of the present invention, it is preferable to form a sol film by spraying when it has a felt mat shape, and to use a dipping method when it is a fiber bundle.

【0019】本発明の場合気相成長炭素繊維表面に形成
する二酸化ケイ素層の厚さとしては、0.01μm以上
0.1μm以下であることが望ましい。0.01μm未
満の場合にはむらが生じやすく、0.1μm超の場合に
は繊維が「だま」となって不均一になりやすい。なお、
上記ゾルゲル法は必要な層厚とするために、ゲル液膜作
製・熱処理(あるいは加水分解)を適宜繰り返すことが
できる。
In the present invention, the thickness of the silicon dioxide layer formed on the surface of the vapor grown carbon fiber is desirably 0.01 μm or more and 0.1 μm or less. If it is less than 0.01 μm, unevenness tends to occur, and if it is more than 0.1 μm, the fibers tend to “dangle” and become non-uniform. In addition,
In the above-mentioned sol-gel method, in order to obtain a required layer thickness, gel liquid film preparation and heat treatment (or hydrolysis) can be repeated as appropriate.

【0020】本発明の複合材料でマトリックスとして用
いる金属としては、本発明の趣旨から、熱伝導性が高
く、かつ、比重の低いものであることが好ましい。すな
わち、アルミニウム、各種アルミニウム合金、マグネシ
ウム、或いは、マグネシウム合金等が挙げられる。
The metal used as the matrix in the composite material of the present invention is preferably one having high thermal conductivity and low specific gravity for the purpose of the present invention. That is, aluminum, various aluminum alloys, magnesium, a magnesium alloy, or the like can be used.

【0021】本発明の複合材料は、上記のように表面に
二酸化ケイ素層を形成した気相成長炭素繊維を用いて例
えば次のようにして得ることができる。表面に二酸化ケ
イ素層を形成した気相成長炭素繊維を水、あるいはアル
コール類、ケトン類などの有機溶媒(混合溶媒を用いて
も良い)(これらを併せて「溶媒」と云う)に分散さ
せ、必要に応じて界面活性剤など分散性を向上させる薬
品を添加し、スラリー状として、底部が液透過性を有す
る多孔質材(濾紙、あるいは多孔質セラミック等)から
なる容器に注ぎ(図1(a)参照)、その後溶媒を除去
して、図1(b)のように表面に二酸化ケイ素層を形成
した気相成長炭素繊維からなる繊維層(図中「VGCF
繊維層」)を形成する。
The composite material of the present invention can be obtained, for example, as follows using the vapor-grown carbon fiber having a silicon dioxide layer formed on the surface as described above. The vapor-grown carbon fiber having a silicon dioxide layer formed on its surface is dispersed in water or an organic solvent such as alcohols and ketones (a mixed solvent may be used) (these are collectively referred to as a “solvent”). If necessary, a chemical such as a surfactant that improves dispersibility is added, and the slurry is poured into a container made of a porous material (filter paper, porous ceramic, or the like) having a liquid permeable bottom (FIG. 1 ( a)), and thereafter, the solvent was removed, and a fiber layer made of a vapor-grown carbon fiber having a silicon dioxide layer formed on the surface as shown in FIG.
Fiber layer ").

【0022】この繊維層を図1(c)に示すようなヒー
タが設けられた加減圧可能な容器(圧力容器)に移す。
この圧力容器の底部(図中「基材」)は後述するように
外れるようになっている。
This fiber layer is transferred to a container (pressure container) which can be pressurized and decompressed and provided with a heater as shown in FIG.
The bottom of the pressure vessel ("base" in the figure) is detached as described later.

【0023】このような繊維層の上に耐熱性を有する多
孔質材料(ここでは多孔質セラミック)からなるフィル
タ、このフィルタの上に金属(固形)を積層する。この
ように圧力容器内に繊維層、フィルタ及び金属を載置し
たのち、圧力容器内を真空状態とするとともに容器に付
属するヒータにより上記金属を加熱溶融させ、容器内を
マトリックスとなる溶融金属及び炭素に対して不活性な
ガス、アルゴンガス等を用いて加圧し(この例ではアル
ゴンガスを圧入)、繊維層に溶融金属をマトリックス成
分として加圧含浸させ、その後容器のヒータによる加熱
を中止し、系を冷やして金属を固化させ、放冷後、容器
底部の基材を外し、得られた表面に二酸化ケイ素層を形
成した気相成長炭素繊維と金属とからなる複合材料を取
り出す。このように不活性ガス圧力下で溶融金属の含浸
を行うことにより、酸化されやすい溶融金属を用いなが
らも良好な複合材料が得られる。
A filter made of a porous material having heat resistance (here, a porous ceramic) is formed on such a fiber layer, and a metal (solid) is laminated on the filter. After placing the fiber layer, the filter and the metal in the pressure vessel in this manner, the inside of the pressure vessel is evacuated and the above-mentioned metal is heated and melted by a heater attached to the vessel. Pressurize using a gas inert to carbon, argon gas, etc. (in this example, pressurize argon gas), pressurize and impregnate the fibrous layer with the molten metal as a matrix component, and then stop heating the container heater. Then, the system is cooled to solidify the metal, and after allowing to cool, the base material at the bottom of the container is removed, and a composite material composed of a vapor-grown carbon fiber having a silicon dioxide layer formed on the obtained surface and the metal is taken out. By performing the impregnation of the molten metal under the inert gas pressure as described above, a favorable composite material can be obtained while using the easily oxidized molten metal.

【0024】なお、上記フィルタは圧力容器内で上下動
可能となっていて、その下の空間を最適に保つため、得
られる複合材料は不必要にマトリックス成分が多くなる
ことなく、また、表面に二酸化ケイ素層を形成した気相
成長炭素繊維の破壊もほとんど生じないため、この表面
に二酸化ケイ素層を形成した気相成長炭素繊維フィラー
による熱伝導性向上効果、及び、軽量化効果が充分に発
揮できるものとなる。
The above-mentioned filter can be moved up and down in the pressure vessel, and in order to keep the space under the filter optimal, the composite material obtained does not needlessly contain a large amount of matrix components. Since the vapor-grown carbon fiber on which the silicon dioxide layer has been formed hardly breaks, the effect of improving the thermal conductivity and reducing the weight by the vapor-grown carbon fiber filler having the silicon dioxide layer formed on the surface is sufficiently exhibited. You can do it.

【0025】また、上記において基材及び多孔質セラミ
ックスの形状を変えることにより、さまざまな形状、例
えばヒートシンクとして適した形状とすることができ、
形状を整える後加工を不要としたり、或いは、そのよう
な後加工を容易なものとすることができる。
Further, by changing the shape of the base material and the porous ceramic in the above, various shapes, for example, a shape suitable as a heat sink can be obtained.
Post-processing for adjusting the shape can be made unnecessary, or such post-processing can be facilitated.

【0026】上記複合材料の製造方法によれば、従来、
製造が困難であったマトリックスの比重がフィラーの比
重より大きいFRM(繊維強化金属)を容易に得ること
ができ、また、そのとき、フィラーの分散に優れ、各種
性能(伝熱特性、伝導率、強度、弾性等)のばらつき、
方向性の少ない優れた複合材料となる。なお、上記本発
明に係る複合材料の製造方法は、表面に二酸化ケイ素層
を形成した気相成長炭素繊維の他、通常の気相成長炭素
繊維をフィラーとする複合材料の製造にも同様に応用で
きる。
According to the method for producing a composite material,
FRM (fiber reinforced metal) in which the specific gravity of the matrix, which was difficult to manufacture, is larger than the specific gravity of the filler can be easily obtained. At that time, the filler is excellent in dispersion, and various performances (heat transfer characteristics, conductivity, Variation in strength, elasticity, etc.)
It becomes an excellent composite material with less directivity. The method for producing a composite material according to the present invention is similarly applied to the production of a composite material using a normal vapor-grown carbon fiber as a filler, in addition to the vapor-grown carbon fiber having a silicon dioxide layer formed on the surface. it can.

【0027】[0027]

【実施例】気相成長炭素繊維(繊維長:数〜数10m
m、平均繊維径:0.1〜数μm)を用いて検討を行っ
た。
[Example] Vapor-grown carbon fiber (fiber length: several to several tens of meters)
m, average fiber diameter: 0.1 to several μm).

【0028】上記気相成長炭素繊維の表面に二酸化ケイ
素層をゾルゲル法にて形成した。ゾル液は常法によっ
て、すなわち、金属アルコキシド、水、アルコール、触
媒としての酸または塩基等を混合して調整した。
A silicon dioxide layer was formed on the surface of the vapor grown carbon fiber by a sol-gel method. The sol was prepared by a conventional method, that is, by mixing a metal alkoxide, water, alcohol, an acid or base as a catalyst, and the like.

【0029】このようなゾル液中に上記気相成長炭素繊
維約10〜100gを浸漬し、超音波処理を行って脱泡
したのち、その液面より引き上げた。その後、室温で乾
燥して気相成長炭素繊維表面のゾル液層をゲル層とし、
次いで不活性ガス中で不活性化し、その後、熱処理を行
って気相成長炭素繊維表面に約50×10-2μmの二酸
化ケイ素層を形成した。
About 10 to 100 g of the vapor-grown carbon fiber was immersed in such a sol solution, subjected to ultrasonic treatment and defoamed, and then pulled up from the liquid surface. Then, dried at room temperature, the sol liquid layer on the surface of the vapor-grown carbon fiber becomes a gel layer,
Next, it was inertized in an inert gas, and then heat-treated to form a silicon dioxide layer of about 50 × 10 −2 μm on the surface of the vapor grown carbon fiber.

【0030】このように作製した表面に二酸化ケイ素層
を有する気相成長炭素繊維10〜100gを用いて、複
合材料を作製した。図1に示すような方法で、本発明に
係る複合材料Aを作製した。また、比較例として、二酸
化ケイ素層を有しない気相成長炭素繊維を用いて、同様
にして複合材料Bを作製した。
A composite material was produced using 10 to 100 g of the vapor-grown carbon fiber having a silicon dioxide layer on the surface thus produced. A composite material A according to the present invention was produced by a method as shown in FIG. Further, as a comparative example, a composite material B was produced in the same manner using a vapor-grown carbon fiber having no silicon dioxide layer.

【0031】この2つの複合材料AおよびBを切断し、
その内部断面の顕微鏡写真を撮影した。このときの本発
明に係る複合材料Aの断面顕微鏡写真を図2(a)、従
来技術に係る複合材料Bの断面顕微鏡写真を図2(b)
に示す。なお、これら写真における墨色の部分が気相成
長炭素繊維であり、白色の部分がマトリックス金属部で
ある。
Cutting the two composite materials A and B,
A micrograph of the internal cross section was taken. FIG. 2A is a cross-sectional micrograph of the composite material A according to the present invention at this time, and FIG. 2B is a cross-sectional micrograph of a composite material B according to the prior art.
Shown in In these photographs, the black portions are vapor grown carbon fibers, and the white portions are matrix metal portions.

【0032】これら図2(a)および(b)より、本発
明に係る複合材料Aでは表面に二酸化ケイ素層を有する
気相成長炭素繊維を用いたことにより、フィラーとマト
リックスとのぬれ性が向上し、結果として分散性が向上
するため、材料全体に亘る均一性が得られることが判
る。
2 (a) and 2 (b), in the composite material A according to the present invention, the wettability between the filler and the matrix is improved by using the vapor grown carbon fiber having the silicon dioxide layer on the surface. However, as a result, the dispersibility is improved, and it can be seen that uniformity over the entire material can be obtained.

【0033】[0033]

【発明の効果】本発明の複合材料は、軽量で方向性のな
い良好な熱伝導性を有し、また表面に二酸化ケイ素層を
形成した気相成長炭素繊維をフィラーとして有するた
め、気相成長炭素繊維の有する機械的強度等の諸性能が
完全に発揮される優れた複合材料である。
As described above, the composite material of the present invention has good thermal conductivity without weight and directionality, and has as a filler a vapor-grown carbon fiber having a silicon dioxide layer formed on its surface. It is an excellent composite material in which various properties such as mechanical strength of carbon fiber are fully exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合材料を作製する方法の一例を示す
図である。 (a)表面に二酸化ケイ素層を有する気相成長炭素繊維
を溶媒に分散したスラリーを容器に注ぐ状態を示す図
(モデル図)である。 (b)(a)の容器内で表面に二酸化ケイ素層を有する
気相成長炭素繊維からなる繊維層が形成されたことを示
す図(モデル図)である。 (c)上記繊維層に溶融金属を含浸させる状態を示すモ
デル断面図である。 (d)本発明に係る複合材料(表面に二酸化ケイ素層を
有する気相成長炭素繊維と金属とからなる複合材料)を
示す図(モデル図)である。
FIG. 1 is a diagram showing an example of a method for producing a composite material of the present invention. FIG. 3A is a diagram (model diagram) showing a state in which a slurry in which a vapor-grown carbon fiber having a silicon dioxide layer on the surface is dispersed in a solvent is poured into a container. (B) It is a figure (model figure) which shows that the fiber layer which consists of a vapor growth carbon fiber which has a silicon dioxide layer on the surface was formed in the container of (a). (C) It is a model sectional view showing the state where the above-mentioned fiber layer is impregnated with molten metal. (D) is a diagram (model diagram) showing a composite material (composite material composed of vapor-grown carbon fiber having a silicon dioxide layer on the surface and metal) according to the present invention.

【図2】(a)本発明に係る複合材料Aの断面の顕微鏡
写真である。 (b)従来技術に係る複合材料Bの断面の顕微鏡写真で
ある。
FIG. 2A is a micrograph of a cross section of a composite material A according to the present invention. (B) Photomicrograph of a cross section of a composite material B according to the prior art.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D06M 11/79 (C22C 47/04 //(C22C 47/04 101:08) 101:08) D06M 101:40 D06M 101:40 11/00 B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D06M 11/79 (C22C 47/04 // (C22C 47/04 101: 08) 101: 08) D06M 101: 40 D06M 101: 40 11/00 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面に二酸化ケイ素層を有する気相成長
炭素繊維と金属とからなることを特徴とする複合材料。
1. A composite material comprising a metal and a vapor-grown carbon fiber having a silicon dioxide layer on its surface.
【請求項2】 上記二酸化ケイ素層がゾルゲル法で形成
されたことを特徴とする請求項1に記載の複合材料。
2. The composite material according to claim 1, wherein said silicon dioxide layer is formed by a sol-gel method.
JP2000244227A 2000-08-11 2000-08-11 Composite material Abandoned JP2002059257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244227A JP2002059257A (en) 2000-08-11 2000-08-11 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244227A JP2002059257A (en) 2000-08-11 2000-08-11 Composite material

Publications (1)

Publication Number Publication Date
JP2002059257A true JP2002059257A (en) 2002-02-26

Family

ID=18734941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244227A Abandoned JP2002059257A (en) 2000-08-11 2000-08-11 Composite material

Country Status (1)

Country Link
JP (1) JP2002059257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107151A (en) * 2005-10-17 2007-04-26 Showa Denko Kk Silica-coated carbon fiber
JP2008049399A (en) * 2006-07-27 2008-03-06 Iwate Industrial Research Center Method for manufacturing preform, preform and inserted article using preform
WO2011148978A1 (en) 2010-05-27 2011-12-01 矢崎総業株式会社 Rotor of induction motor, and induction motor using same
JP2015158018A (en) * 2014-02-21 2015-09-03 積水化学工業株式会社 Feathery carbon
JP2016092407A (en) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member and semiconductor device
CN109652976A (en) * 2018-12-26 2019-04-19 宜兴市中碳科技有限公司 A kind of carbon fibre material for antibacterial

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176662A (en) * 1986-01-30 1987-08-03 Nikkiso Co Ltd Metallic compound coated graphite whisker
JPH05156386A (en) * 1991-12-06 1993-06-22 Nikkiso Co Ltd Fiber reinforced composite material
JPH05279958A (en) * 1992-03-28 1993-10-26 Nippon Muki Co Ltd Production of inorganic material-coated fiber material
JPH0673615A (en) * 1992-07-06 1994-03-15 Nikkiso Co Ltd Graphitized vapor-grown carbon fiber, its production, form and composite therefrom
JPH11256253A (en) * 1998-03-13 1999-09-21 Furukawa Electric Co Ltd:The Carbon fiber for composite material and composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176662A (en) * 1986-01-30 1987-08-03 Nikkiso Co Ltd Metallic compound coated graphite whisker
JPH05156386A (en) * 1991-12-06 1993-06-22 Nikkiso Co Ltd Fiber reinforced composite material
JPH05279958A (en) * 1992-03-28 1993-10-26 Nippon Muki Co Ltd Production of inorganic material-coated fiber material
JPH0673615A (en) * 1992-07-06 1994-03-15 Nikkiso Co Ltd Graphitized vapor-grown carbon fiber, its production, form and composite therefrom
JPH11256253A (en) * 1998-03-13 1999-09-21 Furukawa Electric Co Ltd:The Carbon fiber for composite material and composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107151A (en) * 2005-10-17 2007-04-26 Showa Denko Kk Silica-coated carbon fiber
JP2008049399A (en) * 2006-07-27 2008-03-06 Iwate Industrial Research Center Method for manufacturing preform, preform and inserted article using preform
WO2011148978A1 (en) 2010-05-27 2011-12-01 矢崎総業株式会社 Rotor of induction motor, and induction motor using same
JP2015158018A (en) * 2014-02-21 2015-09-03 積水化学工業株式会社 Feathery carbon
JP2016092407A (en) * 2014-10-31 2016-05-23 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member and semiconductor device
JP2017038086A (en) * 2014-10-31 2017-02-16 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member and semiconductor device
US9922901B2 (en) 2014-10-31 2018-03-20 Dexerials Corporation Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device
CN109652976A (en) * 2018-12-26 2019-04-19 宜兴市中碳科技有限公司 A kind of carbon fibre material for antibacterial

Similar Documents

Publication Publication Date Title
Gole et al. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
US9181098B2 (en) Preparation of array of long carbon nanotubes and fibers therefrom
WO2017121204A1 (en) Modified barium titanate foam ceramic/thermosetting resin composite material and preparation method therefor
JPS6134167A (en) Manufacture of preform wire, preform sheet or tape for frm and ultrasonic vibration apparatus used for said method
TW201006784A (en) Carbon fiber carbon composite compact, carbon fiber reinforced carbon complex material and method for making same
US20120189846A1 (en) Cnt-infused ceramic fiber materials and process therefor
JP2008163535A (en) Carbon fiber composite structure and method for producing the carbon fiber composite structure
CN107012349A (en) A kind of CNT strengthens the preparation method of foamed aluminium radical composite material
CN108117403A (en) A kind of SiC nanowire enhancing SiC ceramic based composites and preparation method thereof
CN110241325A (en) A kind of titanium fossil ink sheet reinforced aluminum matrix composites and its preparation method and application
CN112111665B (en) Method for preparing carbon modified aluminum alloy composite material by vacuum pressure infiltration method
JP2002059257A (en) Composite material
CN113896558B (en) High-performance heat-conducting composite material and preparation method thereof
CN108727049B (en) CfSiC-HfC ultrahigh-temperature ceramic matrix composite and preparation method thereof
CN112008087A (en) Method for improving comprehensive performance of carbon nano material reinforced nickel-based high-temperature alloy
JP4538607B2 (en) High thermal conductivity of SiC / SiC composites using carbon nanotubes or nanofibers
JP4340485B2 (en) Method for producing carbon fiber reinforced aluminum matrix composite
JP2001107203A (en) Composite material and its production method
CN110158309B (en) Method for preparing carbon fiber with silicon carbide coating on surface
JPH0257135B2 (en)
CN107955998B (en) Light high-flexibility mullite superfine/nano ceramic fiber and preparation method thereof
JPH0672029B2 (en) Fiber reinforced metal
JP4053729B2 (en) Composite material and manufacturing method thereof
JP2001176333A (en) Overhead power cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20051005