JP2002058042A - Hue conversion method - Google Patents

Hue conversion method

Info

Publication number
JP2002058042A
JP2002058042A JP2000244193A JP2000244193A JP2002058042A JP 2002058042 A JP2002058042 A JP 2002058042A JP 2000244193 A JP2000244193 A JP 2000244193A JP 2000244193 A JP2000244193 A JP 2000244193A JP 2002058042 A JP2002058042 A JP 2002058042A
Authority
JP
Japan
Prior art keywords
axes
axis
hue
sin
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000244193A
Other languages
Japanese (ja)
Other versions
JP4526167B2 (en
Inventor
Makoto Murata
信 村田
Tatsuhiko Murata
達彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2000244193A priority Critical patent/JP4526167B2/en
Publication of JP2002058042A publication Critical patent/JP2002058042A/en
Application granted granted Critical
Publication of JP4526167B2 publication Critical patent/JP4526167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hue adjusting method capable of arbitrarily adjusting a desirable hue by a method wherein the desirable hue to be adjusted in color images is instructed at a hue coordinate. SOLUTION: A plurality of axes directing to an arbitrary direction are set with the origin of a UV coordinate system as a start point, and these axes are arbitrarily and independently set so as to give a deformation. A chrominance signal pinched between arbitrary two axes within the plurality of axes is changed by deforming at least one axis out of the two axes, whereby a hue of the chrominance signal in a region on both sides of the deformed axis is converted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラーテレビ受像
機、カラー複写機などのカラー画像信号の処理装置にお
ける色相変換方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hue conversion method in a color image signal processing apparatus such as a color television receiver and a color copying machine.

【0002】[0002]

【従来の技術】従来、カラーテレビ受像機、カラー複写
機などのカラー画像の色相を調整する場合には、色相を
表す色相座標の座標全体を調整したい所定の方向に回転
させることにより色相変換を行っていた。
2. Description of the Related Art Conventionally, when adjusting the hue of a color image of a color television receiver, a color copying machine, or the like, hue conversion is performed by rotating the entire hue coordinates representing the hue in a predetermined direction to be adjusted. I was going.

【0003】[0003]

【発明が解決しようとする課題】この従来の色相変換方
法では、色相座標全体を回転させるから全ての色相が変
換されてしまうことになり、カラー画像中の所望の色
相、例えば人間の肌色付近の色相のみを調整することが
出来ないという問題があった。
In this conventional hue conversion method, all the hues are converted because the entire hue coordinates are rotated, so that a desired hue in a color image, for example, a color near a human flesh color. There was a problem that only the hue could not be adjusted.

【0004】そこで、本発明は、カラー画像中の調整し
たい所望の色相を、色相座標上で指示することにより、
所望の色相を任意に調整することが出来る色相変換方法
を提供することを目的とする。
Accordingly, the present invention provides a method for designating a desired hue to be adjusted in a color image on hue coordinates.
It is an object of the present invention to provide a hue conversion method capable of arbitrarily adjusting a desired hue.

【0005】[0005]

【課題を解決するための手段】請求項1の色相変換方法
は、第1の色差信号と第2の色差信号との直交軸によっ
て構成された平面座標系に色信号を表現するようにし、
この平面座標系の原点を始点とし任意の方向に向かう複
数の軸を設定し、これらの軸は任意に独立に変位を与え
得るようにし、前記複数の軸の内の任意の二軸に挟まれ
る色信号を、前記二軸の少なくとも一方の軸を変位させ
て変化させることにより、変位された軸の両側の領域の
色信号の色相を変換することを特徴とする。
According to a first aspect of the present invention, there is provided a hue conversion method, wherein a color signal is expressed in a plane coordinate system formed by orthogonal axes of a first color difference signal and a second color difference signal.
A plurality of axes are set in any direction starting from the origin of the plane coordinate system, and these axes can be arbitrarily and independently displaced, and are sandwiched between any two of the plurality of axes. By changing the color signal by displacing at least one of the two axes, the hue of the color signal in the region on both sides of the displaced axis is converted.

【0006】この請求項1の色相変換方法によれば、色
信号を表現する色相座標系に、複数の軸を任意の方向に
設定し、これらの軸に独立に変位を与えて、その変位し
た軸の両側の領域の色相を変換するから、所定の色相の
調整を任意に行うことが出来る。
According to the hue conversion method of the first aspect, a plurality of axes are set in arbitrary directions in a hue coordinate system expressing color signals, and these axes are independently displaced, and the axes are displaced. Since the hues of the regions on both sides of the axis are converted, it is possible to arbitrarily adjust a predetermined hue.

【0007】また、軸の変位で座標変換をさせるから、
階調処理(グラデーション)も滑らかに変更できる。
In addition, since the coordinate is converted by the displacement of the axis,
The gradation processing (gradation) can be changed smoothly.

【0008】また、変位された軸の両側の領域が色相変
換されるから、色欠けの問題も発生しない。
In addition, since the regions on both sides of the displaced axis are subjected to hue conversion, the problem of color loss does not occur.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明の
色相変換方法の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a hue conversion method according to the present invention will be described with reference to the drawings.

【0010】図1、図2は、本発明の色相変換を説明す
るための図である。カラーテレビ受像機、カラー複写機
などのカラー画像信号の色相座標は、図1のように、第
1の色差信号Uと第2の色差信号Vとの直交軸によって
構成された平面座標系により表現される。ここで、第1
の色差信号UはR−Yであり、第2の色差信号VはB−
Yである。(なお、R、Bは3原色の赤、青であり、Y
は輝度信号である。)
FIG. 1 and FIG. 2 are diagrams for explaining the hue conversion of the present invention. Hue coordinates of a color image signal of a color television receiver, a color copier, or the like are expressed by a plane coordinate system formed by orthogonal axes of a first color difference signal U and a second color difference signal V as shown in FIG. Is done. Here, the first
Is the RY, and the second chrominance signal V is the B-
Y. (Note that R and B are the three primary colors red and blue, and Y
Is a luminance signal. )

【0011】図1において、第1の色差信号Uと第2の
色差信号Vとの直交軸によって構成された平面座標系
(以下、UV座標系、という)の任意の点Pは、P
(u、v)で表されている。このUV座標系に、点P
(u、v)を挟むように、原点0を通る角度θ1の第1
軸Aと角度θ2の第2軸Bを設定する。
In FIG. 1, an arbitrary point P in a plane coordinate system (hereinafter referred to as a UV coordinate system) constituted by orthogonal axes of a first color difference signal U and a second color difference signal V is represented by P
(U, v). In this UV coordinate system, the point P
(U, v) so that the first angle θ1 passing through the origin 0
An axis A and a second axis B at an angle θ2 are set.

【0012】この軸A,Bで座標系(以下、AB座標
系、という)を構成し、このAB座標系で前記点P
(u、v)を表す。
A coordinate system (hereinafter referred to as an AB coordinate system) is constituted by the axes A and B, and the point P is defined by the AB coordinate system.
(U, v).

【0013】まず、P(u、v)を、図1を参照して、
AB座標系の座標α、βで表すと、
First, P (u, v) is represented by referring to FIG.
When represented by coordinates α and β in the AB coordinate system,

【0014】[0014]

【数1】 (Equation 1)

【0015】となるから、式(1)を変形すると、点P
(α、β)は、
By transforming equation (1), the point P
(Α, β) is

【0016】[0016]

【数2】 (Equation 2)

【0017】と表すことができ、点PをUV座標系で表
すことができる。
The point P can be represented by a UV coordinate system.

【0018】次に、図2のように、角度θ1の第1軸A
を角度Δθ1だけ変位させ軸A′とし、角度θ2の第2
軸Bを角度Δθ2だけ変位させ軸B′とする。この軸
A′,B′で構成されるA′B′座標系で座標(α、
β)を表すことにより、点P(u、v)は、点P′
(u′、v′)に変化する。
Next, as shown in FIG. 2, the first axis A at the angle θ1
Is displaced by an angle Δθ1 to obtain an axis A ′.
The axis B is displaced by an angle Δθ2 to be an axis B ′. In the A′B ′ coordinate system composed of the axes A ′ and B ′, the coordinates (α,
β), the point P (u, v) becomes the point P ′
(U ', v').

【0019】この変化後の点P′(u′、v′)を、
A′B′座標系で表すと、
The point P '(u', v ') after this change is
In the A'B 'coordinate system,

【0020】[0020]

【数3】 (Equation 3)

【0021】となる。## EQU1 ##

【0022】次に、式(3)のα、βに、式(2)を代
入して、整理すると、変化後の点P′(u′、v′)
は、UV座標系において、
Next, by substituting equation (2) for α and β in equation (3) and rearranging, point P ′ (u ′, v ′) after the change is obtained.
Is in the UV coordinate system

【0023】[0023]

【数4】 (Equation 4)

【0024】のように表される。It is expressed as follows.

【0025】式(4)のように、任意の点Pの色相変換
後の座標P′(u′、v′)を、変換前の座標P(u、
v)と、角度θ1,θ2,Δθ1、Δθ2で定まる係数
とにより、簡単な2次元の行列式で演算して求められ
る。なお、式(4)でX11〜X22は、式整理の結果
の係数であり、それぞれ角度θ1,θ2,Δθ1、Δθ
2で定まる。
As shown in equation (4), the coordinates P ′ (u ′, v ′) of the arbitrary point P after the hue conversion are converted to the coordinates P (u,
v) and a coefficient determined by the angles θ1, θ2, Δθ1, and Δθ2, and can be calculated by a simple two-dimensional determinant. In Equation (4), X11 to X22 are coefficients resulting from the equation rearrangement, and are angles θ1, θ2, Δθ1, and Δθ, respectively.
Determined by 2.

【0026】以上の説明では、軸Aと軸Bとに挟まれた
領域にある任意の点Pについて説明したが、本発明にお
ける色相変換の作用は、変位された軸の両側の領域に及
ぶ。
In the above description, the arbitrary point P in the area between the axis A and the axis B has been described. However, the operation of the hue conversion in the present invention extends to the area on both sides of the displaced axis.

【0027】すなわち、UV座標系には複数の軸が設定
されているから、この座標系におけるどの点を取って
も、2軸に挟まれた領域となる。そして、1つの軸、例
えば図1の軸Bが変位する場合に、軸Aと軸Bとで挟ま
れる領域の点が色相変換されるとともに、図2中で破線
で例示したように軸Cが設けられている場合に軸Bと軸
Cとで挟まれる領域の点も同様に色相変換される。この
ようにして、変位した軸の両側の領域の色相がそれぞれ
対応して変換される。なお、軸数としては最低限2軸あ
れば良く、この2軸の内の少なくとも1軸を変位させる
ことにより、所定の色相変換を行うことができる。
That is, since a plurality of axes are set in the UV coordinate system, any point in this coordinate system is an area sandwiched between two axes. When one axis, for example, the axis B in FIG. 1 is displaced, the point in the region sandwiched between the axis A and the axis B is hue-converted, and the axis C is shifted as illustrated by a broken line in FIG. If provided, points in an area sandwiched between the axes B and C are also subjected to hue conversion. In this way, the hues of the regions on both sides of the displaced axis are converted correspondingly. Note that the number of axes may be at least two axes, and a predetermined hue conversion can be performed by displacing at least one of the two axes.

【0028】このように、色信号を表現するUV座標系
に、複数の軸(少なくとも2軸A,B)を設定し、これ
らの軸A,Bに独立に変位を与えて、その変位した軸の
両側の領域の色相を変換するから、階調処理(グラデー
ション)も滑らかに変更できる。また、変位された軸、
例えばA軸の両側の領域が色相変換されるから、色欠け
の問題も発生しない。
As described above, a plurality of axes (at least two axes A and B) are set in the UV coordinate system expressing the color signal, and these axes A and B are independently displaced, and the displaced axes are set. Since the hues of the regions on both sides of are converted, gradation processing (gradation) can also be smoothly changed. Also, the displaced axis,
For example, since the regions on both sides of the A axis are subjected to hue conversion, the problem of color loss does not occur.

【0029】図3,図4は、本発明の色相変換方法を、
8軸の場合に適用した例を示すものであり、図3はUV
座標上での軸A1〜軸A8の設定状況を示しており、図
4は色相変換のブロック回路を示している。
FIGS. 3 and 4 show the hue conversion method of the present invention.
FIG. 3 shows an example applied to the case of eight axes, and FIG.
FIG. 4 shows a setting state of axes A1 to A8 on the coordinates, and FIG. 4 shows a block circuit of hue conversion.

【0030】図3において、UV座標系上に、軸A1〜
軸A8を、軸A1がv軸と一致するように設定し、軸A
2以降の各軸はそれぞれ45度づつ順次ずらした角度で
設定されている。この結果、図のように奇数軸である軸
A1,軸A3,軸A5,軸A7はそれぞれUV座標の軸
と対応し、偶数軸である軸A2,軸A4,軸A6,軸A
8はUV座標の軸から45度の角度にある。
In FIG. 3, axes A1 to A1 are located on a UV coordinate system.
Axis A8 is set so that axis A1 coincides with the v axis, and axis A
The axes after 2 are set at angles shifted sequentially by 45 degrees. As a result, as shown in the figure, the axis A1, the axis A3, the axis A5, and the axis A7, which are the odd axes, respectively correspond to the axes of the UV coordinates, and the axes A2, A4, A6, and A6, which are the even axes, respectively.
8 is at an angle of 45 degrees from the axis of the UV coordinates.

【0031】これら軸A1と軸A2とで挟まれた領域
が形成され、以下同様に軸A2と軸A3で領域、軸A
3と軸A4で領域、軸A4と軸A5で領域、軸A5
と軸A6で領域、軸A6と軸A7で領域、軸A7と
軸A8で領域、軸A8と軸A1で領域が、それぞれ
形成される。
An area sandwiched between the axis A1 and the axis A2 is formed. Similarly, an area between the axis A2 and the axis A3,
3 and area on axis A4, area on axis A4 and axis A5, axis A5
And an axis A6, an axis A6 and an axis A7, an axis A7 and an axis A8, and an axis A8 and an axis A1.

【0032】そして、これらの軸A1〜軸A8は、それ
ぞれ独立して任意の正負の角度だけ変位させることがで
きる。例えば軸A2を軸A3方向に所定角度Δθ2だけ
変位させると、この軸A2の変位は、領域と領域と
の両方の領域の色相を互いに関連して変更することにな
る。
The axes A1 to A8 can be independently displaced by arbitrary positive and negative angles. For example, when the axis A2 is displaced by the predetermined angle Δθ2 in the direction of the axis A3, the displacement of the axis A2 changes the hues of both the area and the area in relation to each other.

【0033】図4の色相変換用ブロック回路40は、U
V座標系で表現されている画像データを入力信号u,v
として受けて、所望の色相変換処理を受けた変換後の画
像データの出力信号u′,v′を出力するものであり、
以下の構成要素を有している。
The hue conversion block circuit 40 shown in FIG.
The image data expressed in the V coordinate system is converted into input signals u, v
And outputs the output signals u ′ and v ′ of the converted image data having undergone the desired hue conversion processing.
It has the following components.

【0034】領域判別及び係数設定装置41は、入力信
号u,vが順次入力され、その入力信号が図3の領域
〜のいずれの領域に属するかの判定を行う領域判定機
能と、各軸A1〜A8が変位されるかどうか、変位され
るとするとどちらの方向にいくら変位するかの色相変更
指定Δθ1〜Δθ8が入力され、入力信号u,vの領域
判定に応じて計算された各係数K1〜K4を設定する係
数設定機能を有しており、設定された係数K1〜K4を
出力するものである。
The area discriminating and coefficient setting device 41 receives the input signals u and v sequentially, and determines which of the areas 1 to 3 in FIG. 3 the input signal belongs to.指定 A8 are input as to whether .about.A8 are to be displaced, and in which direction, if any, are displaced, and each coefficient K1 calculated according to the area determination of the input signals u and v is input. To K4, and outputs the set coefficients K1 to K4.

【0035】乗算器42は、入力信号のu成分と第1係
数K1を乗算し、同じく乗算器43は入力信号のv成分
と第2係数K2を乗算し、乗算器44は入力信号のu成
分と第3係数K3を乗算し、乗算器45は入力信号のv
成分と第4係数K4を乗算する。
The multiplier 42 multiplies the u component of the input signal by the first coefficient K1, the multiplier 43 multiplies the v component of the input signal by the second coefficient K2, and the multiplier 44 generates the u component of the input signal. Is multiplied by a third coefficient K3.
The component is multiplied by a fourth coefficient K4.

【0036】加算器46は、第1乗算器42の乗算結果
と第2乗算器43の乗算結果とを加算し、その加算結果
u′=K1・u+K2・vを出力し、加算器47は、第
3乗算器44の乗算結果と第4乗算器45の乗算結果と
を加算し、その加算結果v′=K3・u+K4・vを出
力する。この出力された加算結果u′、v′が、色相変
換処理を受けた変換後の画像データとなる。
The adder 46 adds the multiplication result of the first multiplier 42 and the multiplication result of the second multiplier 43, and outputs the addition result u ′ = K1 · u + K2 · v. The multiplication result of the third multiplier 44 and the multiplication result of the fourth multiplier 45 are added, and the addition result v ′ = K3 · u + K4 · v is output. The output addition results u ′ and v ′ become converted image data that has undergone hue conversion processing.

【0037】この色相変換ブロック40における変換式
は、前述のように、 u′=K1・u+K2・v ・・・(5) v′=K3・u+K4・v ・・・(6) となる。
As described above, the conversion formula in the hue conversion block 40 is as follows: u '= K1.u + K2.v (5) v' = K3.u + K4.v (6)

【0038】式(5)、式(6)における各係数K1〜
K4は次のように定義される。 K1={cos(a)*sin(b)*cos(Δ1)-sin(a)*sin(b)*sin(Δ1)-sin(a)*cos(b)*cos(Δ 2)+sin(a)*sin(b)*sin(Δ2)}/sin(b-a) =coef1*cos(Δ1)-coef2*sin(Δ1)-coef3*cos(Δ2)+coef2*sin(Δ2) ・・ ・(7) K2={-cos(a)*cos(b)*cos(Δ1)+sin(a)*cos(b)*sin(Δ1)+cos(a)*cos(b)*cos( Δ2)-cos(a)*sin(b)*sin(Δ2)}/sin(b-a) =-coef4*cos(Δ1)+coef3*sin(Δ1)+coef4*cos(Δ2)-coef1*sin(Δ2) ・・ ・(8) K3={sin(a)*sin(b)*cos(Δ1)+cos(a)*sin(b)*sin(Δ1)-sin(a)*sin(b)*cos(Δ 2)-sin(a)*cos(b)*sin(Δ2)}/sin(b-a) =coef2*cos(Δ1)+coef1*sin(Δ1)-coef2*cos(Δ2)-coef3*sin(Δ2) ・・ ・(9) K4={-sin(a)*cos(b)*cos(Δ1)-cos(a)*cos(b)*sin(Δ1)+cos(a)*sin(b)*cos( Δ2)+cos(a)*cos(b)*sin(Δ2)}/sin(b-a) =-coef3*cos(Δ1)-coef4*sin(Δ1)+coef1*cos(Δ2)+coef4*sin(Δ2) ・・・ (10)
Each of the coefficients K1 to K1 in the equations (5) and (6)
K4 is defined as follows. K1 = (cos (a) * sin (b) * cos (Δ1) -sin (a) * sin (b) * sin (Δ1) -sin (a) * cos (b) * cos (Δ2) + sin (a) * sin (b) * sin (Δ2)} / sin (ba) = coef1 * cos (Δ1) -coef2 * sin (Δ1) -coef3 * cos (Δ2) + coef2 * sin (Δ2) (7) K2 = {-cos (a) * cos (b) * cos (Δ1) + sin (a) * cos (b) * sin (Δ1) + cos (a) * cos (b) * cos (Δ2 ) -cos (a) * sin (b) * sin (Δ2)} / sin (ba) = -coef4 * cos (Δ1) + coef3 * sin (Δ1) + coef4 * cos (Δ2) -coef1 * sin (Δ2 (8) K3 = {sin (a) * sin (b) * cos (Δ1) + cos (a) * sin (b) * sin (Δ1) -sin (a) * sin (b) * cos (Δ 2) -sin (a) * cos (b) * sin (Δ2)} / sin (ba) = coef2 * cos (Δ1) + coef1 * sin (Δ1) -coef2 * cos (Δ2) -coef3 * sin (Δ2) ・ ・ ・ (9) K4 = {-sin (a) * cos (b) * cos (Δ1) -cos (a) * cos (b) * sin (Δ1) + cos (a) * sin (b) * cos (Δ2) + cos (a) * cos (b) * sin (Δ2)} / sin (ba) = -coef3 * cos (Δ1) -coef4 * sin (Δ1) + coef1 * cos (Δ2 ) + coef4 * sin (Δ2) (10)

【0039】なお、式(7)〜式(10)の角度
(a)、(b)、(Δ1)、(Δ2)は、図1,図2にお
ける角度(θ1)、(θ2)、(Δθ1)、(Δθ2)
にそれぞれ相当する。
The angles (a), (b), (Δ1) and (Δ2) in the equations (7) to (10) are the angles (θ1), (θ2) and (Δθ1) in FIGS. ), (Δθ2)
Respectively.

【0040】係数K1〜K4を表す式(7)〜(10)
において、各変数coef1〜coef4は、次のよう
に整理される。 coef1=cos(a)*sin(b)/sin(b-a) coef2=sin(a)*sin(b)/sin(b-a) coef3=sin(a)*cos(b)/sin(b-a) coef4=cos(a)*cos(b)/sin(b-a)
Equations (7) to (10) representing coefficients K1 to K4
In, the variables coef1 to coef4 are arranged as follows. coef1 = cos (a) * sin (b) / sin (ba) coef2 = sin (a) * sin (b) / sin (ba) coef3 = sin (a) * cos (b) / sin (ba) coef4 = cos (a) * cos (b) / sin (ba)

【0041】また、各変数coef1〜coef4と領
域〜との関係は、次の表のように整理される。
The relationship between each of the variables coef1 to coef4 and the area is arranged as shown in the following table.

【0042】さて、図4の色相変換用ブロック回路40
において、まず、領域判別及び係数設定装置41に各軸
A1〜A8が変位されるかどうか、変位されるとすると
どちらの方向にいくら変位するかの色相変更指定Δθ1
〜Δθ8が入力される。領域判別及び係数設定装置41
は、色相変更指定Δθ1〜Δθ8により各軸A1〜A8
の変更角が設定されるから、この変更角に基づいて各領
域〜での係数K1〜K4を式(7)〜式(10)に
より計算する。この計算された係数K1〜K4は、メモ
リに記憶しておく。この状態で、UV座標系で表現され
ている画像データの入力信号u,vが順次入力される。
The hue conversion block circuit 40 shown in FIG.
First, the region discriminating and coefficient setting device 41 determines whether or not each of the axes A1 to A8 is displaced, and if so, the hue change designation Δθ1 in which direction and how much.
~ Δθ8 is input. Region determination and coefficient setting device 41
Are axes A1 to A8 according to hue change designations Δθ1 to Δθ8.
Are set, the coefficients K1 to K4 in each area are calculated based on the changed angles by the equations (7) to (10). The calculated coefficients K1 to K4 are stored in a memory. In this state, input signals u and v of image data expressed in the UV coordinate system are sequentially input.

【0043】そして、順次入力される入力信号u,vが
領域〜のいずれの領域に属するか判定される。この
実施の形態では、8軸をUV座標系上に、軸A1がv軸
と一致するように設定し、軸A2以降の各軸はそれぞれ
45度づつ順次ずらした角度で設定しているから、入力
信号u,vのu成分とv成分との大小及び正負の比較の
みで、入力信号u,vが領域〜のどの領域に属する
かを判別できるから、領域判別回路を簡単な回路で構成
することができる。
Then, it is determined to which of the regions the input signals u and v sequentially input belong. In this embodiment, eight axes are set on the UV coordinate system such that the axis A1 coincides with the v axis, and the axes after the axis A2 are set at angles shifted sequentially by 45 degrees, respectively. Since it is possible to determine to which region the input signals u and v belong from the region 〜 only by comparing the magnitude of the u component and the v component of the input signals u and v and the sign thereof, a region determination circuit is configured by a simple circuit. be able to.

【0044】この入力信号u,vの領域判定結果に基づ
いて、予め計算され記憶されている係数K1〜K4がそ
の領域に応じて、領域判別及び係数設定装置41から出
力される。
Based on the area determination results of the input signals u and v, coefficients K1 to K4 calculated and stored in advance are output from the area determination and coefficient setting device 41 according to the area.

【0045】そして、入力信号u,vのu成分とv成分
及び係数K1〜K4とから、乗算器42〜45,加算器
46,47で、それぞれ乗算処理と加算処理が行われ
て、色相変換された出力信号u′(=K1・u+K2・
v)、v′(=K3・u+K4・v)が出力される。
From the u component and v component of the input signals u and v and the coefficients K1 to K4, multipliers 42 to 45 and adders 46 and 47 perform multiplication processing and addition processing, respectively. Output signal u ′ (= K1 · u + K2 ·
v) and v '(= K3.u + K4.v) are output.

【0046】この図3,図4の例では、軸数を8軸とし
ているが、この軸数は任意の数とすることができ、また
各軸の設定角度も均一に限らず、任意の角度に設定する
ことができる。
In the examples shown in FIGS. 3 and 4, the number of axes is eight. However, the number of axes can be any number, and the set angles of each axis are not limited to uniform. Can be set to

【0047】[0047]

【発明の効果】本発明の請求項1の色相変換方法によれ
ば、色信号を表現する色相座標系に、複数の軸を任意の
方向に設定し、これらの軸に独立に変位を与えて、その
変位した軸の両側の領域の色相を変換するから、所定の
色相の調整を任意に行うことが出来る。
According to the hue conversion method of the first aspect of the present invention, a plurality of axes are set in arbitrary directions in a hue coordinate system expressing a color signal, and these axes are independently displaced. Since the hues of the regions on both sides of the displaced axis are converted, the predetermined hue can be adjusted arbitrarily.

【0048】また、軸の変位で座標変換をさせるから、
階調処理(グラデーション)も滑らかに変更できる。
Also, since the coordinate transformation is performed by the displacement of the axis,
The gradation processing (gradation) can be changed smoothly.

【0049】また、変位された軸の両側の領域が色相変
換されるから、色欠けの問題も発生しない。
Further, since the areas on both sides of the displaced axis are subjected to the hue conversion, the problem of color loss does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の色相変換を説明するための図。FIG. 1 is a diagram for explaining hue conversion according to the present invention.

【図2】本発明の色相変換を説明するための図。FIG. 2 is a diagram for explaining hue conversion according to the present invention.

【図3】本発明の色相変換方法を8軸の場合に適用した
例を示す図。
FIG. 3 is a diagram showing an example in which the hue conversion method of the present invention is applied to a case of eight axes.

【図4】本発明の色相変換方法における色相変換のブロ
ック回路。
FIG. 4 is a block diagram of hue conversion in the hue conversion method of the present invention.

【符号の説明】[Explanation of symbols]

A1〜A8 設定された軸 〜 軸により区分される領域 41 領域判別及び係数設定器 42〜45 乗算器 46,47 加算器 A1 to A8 Set axis to area divided by axis 41 Area discriminating and coefficient setting device 42 to 45 Multiplier 46, 47 Adder

フロントページの続き Fターム(参考) 5B057 BA28 CA01 CA08 CB01 CB08 CE17 DA08 DB02 DB06 5C066 AA03 AA05 CA05 EB01 GA02 KE04 5C077 MP08 PP36 PP37 TT06 5C079 LB12 NA02 NA05 PA02 Continued on front page F term (reference) 5B057 BA28 CA01 CA08 CB01 CB08 CE17 DA08 DB02 DB06 5C066 AA03 AA05 CA05 EB01 GA02 KE04 5C077 MP08 PP36 PP37 TT06 5C079 LB12 NA02 NA05 PA02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の色差信号と第2の色差信号との直
交軸によって構成された平面座標系に色信号を表現する
ようにし、この平面座標系の原点を始点とし任意の方向
に向かう複数の軸を設定し、 これらの軸は任意に独立に変位を与え得るようにし、 前記複数の軸の内の任意の二軸に挟まれる色信号を、前
記二軸の少なくとも一方の軸を変位させて変化させるこ
とにより、 変位された軸の両側の領域の色信号の色相を変換するこ
とを特徴とする色相変換方法。
1. A color signal is expressed in a plane coordinate system constituted by orthogonal axes of a first color difference signal and a second color difference signal, and the origin of the plane coordinate system is set as a starting point in an arbitrary direction. A plurality of axes are set, these axes can be arbitrarily and independently displaced, and a color signal sandwiched by any two of the plurality of axes is displaced by at least one of the two axes. A hue conversion method characterized in that the hue of the color signal in the area on both sides of the displaced axis is converted by changing the hue.
JP2000244193A 2000-08-11 2000-08-11 Hue conversion method Expired - Fee Related JP4526167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244193A JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244193A JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Publications (2)

Publication Number Publication Date
JP2002058042A true JP2002058042A (en) 2002-02-22
JP4526167B2 JP4526167B2 (en) 2010-08-18

Family

ID=18734913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244193A Expired - Fee Related JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Country Status (1)

Country Link
JP (1) JP4526167B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323557C (en) * 2002-12-27 2007-06-27 明基电通股份有限公司 Method and device for regulating colour
JP2007189642A (en) * 2006-01-16 2007-07-26 Sony Corp Physical quantity interpolation method, chrominance signal processing circuit using the same and camera system
WO2009044827A1 (en) * 2007-10-05 2009-04-09 Sharp Kabushiki Kaisha Color adjustment circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767131A (en) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp Video signal processor
JPH10145805A (en) * 1996-11-14 1998-05-29 Victor Co Of Japan Ltd Hue correction circuit
WO1998042142A1 (en) * 1997-03-14 1998-09-24 Sony Corporation Color correction device, color correction method, picture processing device, and picture processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767131A (en) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp Video signal processor
JPH10145805A (en) * 1996-11-14 1998-05-29 Victor Co Of Japan Ltd Hue correction circuit
WO1998042142A1 (en) * 1997-03-14 1998-09-24 Sony Corporation Color correction device, color correction method, picture processing device, and picture processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323557C (en) * 2002-12-27 2007-06-27 明基电通股份有限公司 Method and device for regulating colour
JP2007189642A (en) * 2006-01-16 2007-07-26 Sony Corp Physical quantity interpolation method, chrominance signal processing circuit using the same and camera system
JP4600301B2 (en) * 2006-01-16 2010-12-15 ソニー株式会社 Color difference signal correction method, color difference signal processing circuit using the same, and camera system
US8135213B2 (en) 2006-01-16 2012-03-13 Sony Corporation Physical quantity interpolating method, and color signal processing circuit and camera system using the same
WO2009044827A1 (en) * 2007-10-05 2009-04-09 Sharp Kabushiki Kaisha Color adjustment circuit
JP2011155691A (en) * 2007-10-05 2011-08-11 Sharp Corp Color adjustment circuit, color adjustment device, color adjustment method, and program
US8466930B2 (en) 2007-10-05 2013-06-18 Sharp Kabushiki Kaisha Color adjustment circuit

Also Published As

Publication number Publication date
JP4526167B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
TWI321021B (en) Method and system for automatic color hue and color saturation adjustment of a pixel from a video source
EP0633535B1 (en) Image processor
JP3568485B2 (en) Color correction circuit
US6560356B1 (en) Color gamut compression method and color gamut compression device
US8774495B2 (en) Image synthesizing apparatus and method of synthesizing images
JPS61146090A (en) Color adjustment device
JP3581835B2 (en) Color conversion method and apparatus in chroma key processing
US20050276473A1 (en) Apparatus and method of detecting color gamut in color device and calculating color space inverse transform function
US6873730B2 (en) Color conversion method for preferred color tones
JP2002058042A (en) Hue conversion method
US8035698B2 (en) Joint automatic demosaicking and white balancing
US6552751B1 (en) Video signal processing circuit and color adjusting circuit for color video signal
JPH10145604A (en) Image sharpness processing method, its device and storage medium recording program
JP2001128189A (en) Color correcting circuit
JP2009182415A (en) Video signal converter, video image display ,and video signal converting method
US6072539A (en) Method and arrangement for steepening color edges
JP2000316172A (en) Video signal processing circuit
JP4462655B2 (en) Color signal extraction circuit and hue correction device
JP2600913B2 (en) Distortion image creation processing device
JP2887398B2 (en) Multiple camera correction method
JP2004254060A (en) Chroma correction unit
JPH0453343A (en) Picture reader
JP2001333435A (en) Beautiful skin processing circuit and color discrimination circuit
JPH0344776A (en) Synthesization processing method for gradated image
JP4557171B2 (en) Image processing apparatus, image processing method, image processing program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees