JP4526167B2 - Hue conversion method - Google Patents

Hue conversion method Download PDF

Info

Publication number
JP4526167B2
JP4526167B2 JP2000244193A JP2000244193A JP4526167B2 JP 4526167 B2 JP4526167 B2 JP 4526167B2 JP 2000244193 A JP2000244193 A JP 2000244193A JP 2000244193 A JP2000244193 A JP 2000244193A JP 4526167 B2 JP4526167 B2 JP 4526167B2
Authority
JP
Japan
Prior art keywords
axis
coordinate system
plane coordinate
hue
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000244193A
Other languages
Japanese (ja)
Other versions
JP2002058042A (en
Inventor
信 村田
達彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2000244193A priority Critical patent/JP4526167B2/en
Publication of JP2002058042A publication Critical patent/JP2002058042A/en
Application granted granted Critical
Publication of JP4526167B2 publication Critical patent/JP4526167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、カラーテレビ受像機、カラー複写機などのカラー画像信号の処理装置における色相変換方法に関する。
【0002】
【従来の技術】
従来、カラーテレビ受像機、カラー複写機などのカラー画像の色相を調整する場合には、色相を表す色相座標の座標全体を調整したい所定の方向に回転させることにより色相変換を行っていた。
【0003】
【発明が解決しようとする課題】
この従来の色相変換方法では、色相座標全体を回転させるから全ての色相が変換されてしまうことになり、カラー画像中の所望の色相、例えば人間の肌色付近の色相のみを調整することが出来ないという問題があった。
【0004】
そこで、本発明は、カラー画像中の調整したい所望の色相を、色相座標上で指示することにより、所望の色相を任意に調整することが出来る色相変換方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本明細書中に開示された第1構成の色相変換方法は、第1の色差信号と第2の色差信号との直交軸によって構成された平面座標系に色信号を表現するようにし、この平面座標系の原点を始点とし任意の方向に向かう複数の軸を設定し、これらの軸は任意に独立に変位を与え得るようにし、前記複数の軸の内の任意の二軸に挟まれる色信号を、前記二軸の少なくとも一方の軸を変位させて変化させることにより、変位された軸の両側の領域の色信号の色相を変換することを特徴とする。
【0006】
この第1構成の色相変換方法によれば、色信号を表現する色相座標系に、複数の軸を任意の方向に設定し、これらの軸に独立に変位を与えて、その変位した軸の両側の領域の色相を変換するから、所定の色相の調整を任意に行うことが出来る。
【0007】
また、軸の変位で座標変換をさせるから、階調処理(グラデーション)も滑らかに変更できる。
【0008】
また、変位された軸の両側の領域が色相変換されるから、色欠けの問題も発生しない。
【0009】
【発明の実施の形態】
以下、図面を参照して、本発明の色相変換方法の実施の形態について説明する。
【0010】
図1、図2は、本発明の色相変換を説明するための図である。カラーテレビ受像機、カラー複写機などのカラー画像信号の色相座標は、図1のように、第1の色差信号Uと第2の色差信号Vとの直交軸によって構成された平面座標系により表現される。ここで、第1の色差信号UはR−Yであり、第2の色差信号VはB−Yである。(なお、R、Bは3原色の赤、青であり、Yは輝度信号である。)
【0011】
図1において、第1の色差信号Uと第2の色差信号Vとの直交軸によって構成された平面座標系(以下、UV座標系、という)の任意の点Pは、P(u、v)で表されている。このUV座標系に、点P(u、v)を挟むように、原点0を通る角度θ1の第1軸Aと角度θ2の第2軸Bを設定する。
【0012】
この軸A,Bで座標系(以下、AB座標系、という)を構成し、このAB座標系で前記点P(u、v)を表す。
【0013】
まず、P(u、v)を、図1を参照して、AB座標系の座標α、βで表すと、
【0014】
【数1】

Figure 0004526167
【0015】
となるから、
式(1)を変形すると、点P(α、β)は、
【0016】
【数2】
Figure 0004526167
【0017】
と表すことができ、点PをUV座標系で表すことができる。
【0018】
次に、図2のように、角度θ1の第1軸Aを角度Δθ1だけ変位させ軸A′とし、角度θ2の第2軸Bを角度Δθ2だけ変位させ軸B′とする。この軸A′,B′で構成されるA′B′座標系で座標(α、β)を表すことにより、点P(u、v)は、点P′(u′、v′)に変化する。
【0019】
この変化後の点P′(u′、v′)を、A′B′座標系で表すと、
【0020】
【数3】
Figure 0004526167
【0021】
となる。
【0022】
次に、式(3)のα、βに、式(2)を代入して、整理すると、変化後の点P′(u′、v′)は、UV座標系において、
【0023】
【数4】
Figure 0004526167
【0024】
のように表される。
【0025】
式(4)のように、任意の点Pの色相変換後の座標P′(u′、v′)を、変換前の座標P(u、v)と、角度θ1,θ2,Δθ1、Δθ2で定まる係数とにより、簡単な2次元の行列式で演算して求められる。なお、式(4)でX11〜X22は、式整理の結果の係数であり、それぞれ角度θ1,θ2,Δθ1、Δθ2で定まる。
【0026】
以上の説明では、軸Aと軸Bとに挟まれた領域にある任意の点Pについて説明したが、本発明における色相変換の作用は、変位された軸の両側の領域に及ぶ。
【0027】
すなわち、UV座標系には複数の軸が設定されているから、この座標系におけるどの点を取っても、2軸に挟まれた領域となる。そして、1つの軸、例えば図1の軸Bが変位する場合に、軸Aと軸Bとで挟まれる領域の点が色相変換されるとともに、図2中で破線で例示したように軸Cが設けられている場合に軸Bと軸Cとで挟まれる領域の点も同様に色相変換される。このようにして、変位した軸の両側の領域の色相がそれぞれ対応して変換される。なお、軸数としては最低限2軸あれば良く、この2軸の内の少なくとも1軸を変位させることにより、所定の色相変換を行うことができる。
【0028】
このように、色信号を表現するUV座標系に、複数の軸(少なくとも2軸A,B)を設定し、これらの軸A,Bに独立に変位を与えて、その変位した軸の両側の領域の色相を変換するから、階調処理(グラデーション)も滑らかに変更できる。また、変位された軸、例えばA軸の両側の領域が色相変換されるから、色欠けの問題も発生しない。
【0029】
図3,図4は、本発明の色相変換方法を、8軸の場合に適用した例を示すものであり、図3はUV座標上での軸A1〜軸A8の設定状況を示しており、図4は色相変換のブロック回路を示している。
【0030】
図3において、UV座標系上に、軸A1〜軸A8を、軸A1がv軸と一致するように設定し、軸A2以降の各軸はそれぞれ45度づつ順次ずらした角度で設定されている。この結果、図のように奇数軸である軸A1,軸A3,軸A5,軸A7はそれぞれUV座標の軸と対応し、偶数軸である軸A2,軸A4,軸A6,軸A8はUV座標の軸から45度の角度にある。
【0031】
これら軸A1と軸A2とで挟まれた領域▲1▼が形成され、以下同様に軸A2と軸A3で領域▲2▼、軸A3と軸A4で領域▲3▼、軸A4と軸A5で領域▲4▼、軸A5と軸A6で領域▲5▼、軸A6と軸A7で領域▲6▼、軸A7と軸A8で領域▲7▼、軸A8と軸A1で領域▲8▼が、それぞれ形成される。
【0032】
そして、これらの軸A1〜軸A8は、それぞれ独立して任意の正負の角度だけ変位させることができる。例えば軸A2を軸A3方向に所定角度Δθ2だけ変位させると、この軸A2の変位は、領域▲1▼と領域▲2▼との両方の領域の色相を互いに関連して変更することになる。
【0033】
図4の色相変換用ブロック回路40は、UV座標系で表現されている画像データを入力信号u,vとして受けて、所望の色相変換処理を受けた変換後の画像データの出力信号u′,v′を出力するものであり、以下の構成要素を有している。
【0034】
領域判別及び係数設定装置41は、入力信号u,vが順次入力され、その入力信号が図3の領域▲1▼〜▲8▼のいずれの領域に属するかの判定を行う領域判定機能と、各軸A1〜A8が変位されるかどうか、変位されるとするとどちらの方向にいくら変位するかの色相変更指定Δθ1〜Δθ8が入力され、入力信号u,vの領域判定に応じて計算された各係数K1〜K4を設定する係数設定機能を有しており、設定された係数K1〜K4を出力するものである。
【0035】
乗算器42は、入力信号のu成分と第1係数K1を乗算し、同じく乗算器43は入力信号のv成分と第2係数K2を乗算し、乗算器44は入力信号のu成分と第3係数K3を乗算し、乗算器45は入力信号のv成分と第4係数K4を乗算する。
【0036】
加算器46は、第1乗算器42の乗算結果と第2乗算器43の乗算結果とを加算し、その加算結果u′=K1・u+K2・vを出力し、加算器47は、第3乗算器44の乗算結果と第4乗算器45の乗算結果とを加算し、その加算結果v′=K3・u+K4・vを出力する。この出力された加算結果u′、v′が、色相変換処理を受けた変換後の画像データとなる。
【0037】
この色相変換ブロック40における変換式は、前述のように、
u′=K1・u+K2・v ・・・(5)
v′=K3・u+K4・v ・・・(6)
となる。
【0038】
式(5)、式(6)における各係数K1〜K4は次のように定義される。
K1={cos(a)*sin(b)*cos(Δ1)-sin(a)*sin(b)*sin(Δ1)-sin(a)*cos(b)*cos(Δ2)+sin(a)*sin(b)*sin(Δ2)}/sin(b-a)
=coef1*cos(Δ1)-coef2*sin(Δ1)-coef3*cos(Δ2)+coef2*sin(Δ2) ・・・(7)
K2={-cos(a)*cos(b)*cos(Δ1)+sin(a)*cos(b)*sin(Δ1)+cos(a)*cos(b)*cos(Δ2)-cos(a)*sin(b)*sin(Δ2)}/sin(b-a)
=-coef4*cos(Δ1)+coef3*sin(Δ1)+coef4*cos(Δ2)-coef1*sin(Δ2) ・・・(8)
K3={sin(a)*sin(b)*cos(Δ1)+cos(a)*sin(b)*sin(Δ1)-sin(a)*sin(b)*cos(Δ2)-sin(a)*cos(b)*sin(Δ2)}/sin(b-a)
=coef2*cos(Δ1)+coef1*sin(Δ1)-coef2*cos(Δ2)-coef3*sin(Δ2) ・・・(9)
K4={-sin(a)*cos(b)*cos(Δ1)-cos(a)*cos(b)*sin(Δ1)+cos(a)*sin(b)*cos(Δ2)+cos(a)*cos(b)*sin(Δ2)}/sin(b-a)
=-coef3*cos(Δ1)-coef4*sin(Δ1)+coef1*cos(Δ2)+coef4*sin(Δ2) ・・・(10)
【0039】
なお、式(7)〜式(10)の角度(a)、(b)、(Δ1)、(Δ2)は、図1,図2における角度(θ1)、(θ2)、(Δθ1)、(Δθ2)にそれぞれ相当する。
【0040】
係数K1〜K4を表す式(7)〜(10)において、各変数coef1〜coef4は、次のように整理される。
coef1=cos(a)*sin(b)/sin(b-a)
coef2=sin(a)*sin(b)/sin(b-a)
coef3=sin(a)*cos(b)/sin(b-a)
coef4=cos(a)*cos(b)/sin(b-a)
【0041】
また、各変数coef1〜coef4と領域▲1▼〜▲8▼との関係は、次の表のように整理される。
領域 coef1 coef2 coef3 coef4
▲1▼ 1 0 0 1
▲2▼ 1 1 0 0
▲3▼ 0 1 −1 0
▲4▼ 0 0 −1 1
▲5▼ 1 0 0 1
▲6▼ 1 1 0 0
▲7▼ 0 1 −1 0
▲8▼ 0 0 −1 1
【0042】
さて、図4の色相変換用ブロック回路40において、まず、領域判別及び係数設定装置41に各軸A1〜A8が変位されるかどうか、変位されるとするとどちらの方向にいくら変位するかの色相変更指定Δθ1〜Δθ8が入力される。領域判別及び係数設定装置41は、色相変更指定Δθ1〜Δθ8により各軸A1〜A8の変更角が設定されるから、この変更角に基づいて各領域▲1▼〜▲8▼での係数K1〜K4を式(7)〜式(10)により計算する。この計算された係数K1〜K4は、メモリに記憶しておく。この状態で、UV座標系で表現されている画像データの入力信号u,vが順次入力される。
【0043】
そして、順次入力される入力信号u,vが領域▲1▼〜▲8▼のいずれの領域に属するか判定される。この実施の形態では、8軸をUV座標系上に、軸A1がv軸と一致するように設定し、軸A2以降の各軸はそれぞれ45度づつ順次ずらした角度で設定しているから、入力信号u,vのu成分とv成分との大小及び正負の比較のみで、入力信号u,vが領域▲1▼〜▲8▼のどの領域に属するかを判別できるから、領域判別回路を簡単な回路で構成することができる。
【0044】
この入力信号u,vの領域判定結果に基づいて、予め計算され記憶されている係数K1〜K4がその領域に応じて、領域判別及び係数設定装置41から出力される。
【0045】
そして、入力信号u,vのu成分とv成分及び係数K1〜K4とから、乗算器42〜45,加算器46,47で、それぞれ乗算処理と加算処理が行われて、色相変換された出力信号u′(=K1・u+K2・v)、v′(=K3・u+K4・v)が出力される。
【0046】
この図3,図4の例では、軸数を8軸としているが、この軸数は任意の数とすることができ、また各軸の設定角度も均一に限らず、任意の角度に設定することができる。
【0047】
【発明の効果】
本明細書中に開示された色相変換方法によれば、色信号を表現する色相座標系に、複数の軸を任意の方向に設定し、これらの軸に独立に変位を与えて、その変位した軸の両側の領域の色相を変換するから、所定の色相の調整を任意に行うことが出来る。
【0048】
また、軸の変位で座標変換をさせるから、階調処理(グラデーション)も滑らかに変更できる。
【0049】
また、変位された軸の両側の領域が色相変換されるから、色欠けの問題も発生しない。
【図面の簡単な説明】
【図1】本発明の色相変換を説明するための図。
【図2】本発明の色相変換を説明するための図。
【図3】本発明の色相変換方法を8軸の場合に適用した例を示す図。
【図4】本発明の色相変換方法における色相変換のブロック回路。
【符号の説明】
A1〜A8 設定された軸
▲1▼〜▲8▼ 軸により区分される領域
41 領域判別及び係数設定器
42〜45 乗算器
46,47 加算器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hue conversion method in a color image signal processing apparatus such as a color television receiver or a color copying machine.
[0002]
[Prior art]
Conventionally, in the case of adjusting the hue of a color image such as a color television receiver or a color copying machine, the hue conversion is performed by rotating the entire coordinates of the hue coordinates representing the hue in a predetermined direction.
[0003]
[Problems to be solved by the invention]
In this conventional hue conversion method, since all the hue coordinates are rotated, all hues are converted, and it is impossible to adjust only a desired hue in a color image, for example, a hue near human skin color. There was a problem.
[0004]
Accordingly, an object of the present invention is to provide a hue conversion method capable of arbitrarily adjusting a desired hue by indicating a desired hue to be adjusted in a color image on hue coordinates.
[0005]
[Means for Solving the Problems]
According to the hue conversion method of the first configuration disclosed in the present specification , a color signal is expressed in a plane coordinate system configured by orthogonal axes of the first color difference signal and the second color difference signal. Set a plurality of axes starting from the origin of the coordinate system and going in any direction, these axes can be arbitrarily displaced, color signal sandwiched between any two of the plurality of axes By changing at least one of the two axes, the hue of the color signal in the area on both sides of the displaced axis is converted.
[0006]
According to the hue conversion method of the first configuration , a plurality of axes are set in an arbitrary direction in the hue coordinate system expressing a color signal, and displacement is independently applied to these axes, and both sides of the displaced axes are set. Since the hue of this area is converted, the predetermined hue can be arbitrarily adjusted.
[0007]
In addition, since the coordinate conversion is performed by the displacement of the axis, the gradation processing (gradation) can be changed smoothly.
[0008]
In addition, since the regions on both sides of the displaced axis are subjected to hue conversion, the problem of lack of color does not occur.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the hue conversion method of the present invention will be described below with reference to the drawings.
[0010]
1 and 2 are diagrams for explaining the hue conversion of the present invention. Hue coordinates of a color image signal of a color television receiver, a color copying machine, etc. are expressed by a plane coordinate system constituted by orthogonal axes of a first color difference signal U and a second color difference signal V as shown in FIG. Is done. Here, the first color difference signal U is RY, and the second color difference signal V is BY. (Note that R and B are the three primary colors red and blue, and Y is a luminance signal.)
[0011]
In FIG. 1, an arbitrary point P in a plane coordinate system (hereinafter referred to as a UV coordinate system) constituted by orthogonal axes of the first color difference signal U and the second color difference signal V is P (u, v). It is represented by In this UV coordinate system, a first axis A having an angle θ1 passing through the origin 0 and a second axis B having an angle θ2 are set so as to sandwich the point P (u, v).
[0012]
A coordinate system (hereinafter referred to as AB coordinate system) is constituted by the axes A and B, and the point P (u, v) is represented by the AB coordinate system.
[0013]
First, P (u, v) is represented by coordinates α and β in the AB coordinate system with reference to FIG.
[0014]
[Expression 1]
Figure 0004526167
[0015]
So,
By transforming equation (1), the point P (α, β) becomes
[0016]
[Expression 2]
Figure 0004526167
[0017]
The point P can be expressed in the UV coordinate system.
[0018]
Next, as shown in FIG. 2, the first axis A at the angle θ1 is displaced by an angle Δθ1 to be an axis A ′, and the second axis B at an angle θ2 is displaced by an angle Δθ2 to be an axis B ′. By expressing the coordinates (α, β) in the A′B ′ coordinate system composed of the axes A ′ and B ′, the point P (u, v) is changed to the point P ′ (u ′, v ′). To do.
[0019]
When the point P ′ (u ′, v ′) after this change is expressed in the A′B ′ coordinate system,
[0020]
[Equation 3]
Figure 0004526167
[0021]
It becomes.
[0022]
Next, when formula (2) is substituted into α and β in formula (3) and rearranged, the point P ′ (u ′, v ′) after the change is expressed in the UV coordinate system as follows:
[0023]
[Expression 4]
Figure 0004526167
[0024]
It is expressed as
[0025]
As shown in the equation (4), the coordinates P ′ (u ′, v ′) after the hue conversion of an arbitrary point P are expressed by the coordinates P (u, v) before the conversion and the angles θ1, θ2, Δθ1, and Δθ2. It is calculated by a simple two-dimensional determinant according to the determined coefficient. In Equation (4), X11 to X22 are coefficients resulting from the rearrangement of equations, and are determined by angles θ1, θ2, Δθ1, and Δθ2, respectively.
[0026]
In the above description, the arbitrary point P in the region sandwiched between the axis A and the axis B has been described. However, the action of hue conversion in the present invention extends to the regions on both sides of the displaced axis.
[0027]
That is, since a plurality of axes are set in the UV coordinate system, any point in this coordinate system is an area sandwiched between two axes. When one axis, for example, the axis B in FIG. 1, is displaced, the point of the region sandwiched between the axis A and the axis B is subjected to hue conversion, and the axis C as illustrated by the broken line in FIG. If provided, the points of the region sandwiched between the axis B and the axis C are similarly subjected to hue conversion. In this way, the hues of the regions on both sides of the displaced axis are converted correspondingly. The number of axes may be at least two, and predetermined hue conversion can be performed by displacing at least one of the two axes.
[0028]
In this way, a plurality of axes (at least two axes A and B) are set in the UV coordinate system that expresses the color signal, and the axes A and B are independently displaced, and both sides of the displaced axes are set. Since the hue of the area is converted, gradation processing (gradation) can be changed smoothly. Further, since the hue of the displaced axis, for example, the area on both sides of the A axis is converted, the problem of lack of color does not occur.
[0029]
3 and 4 show an example in which the hue conversion method of the present invention is applied to the case of 8 axes, and FIG. 3 shows the setting status of the axes A1 to A8 on the UV coordinates. FIG. 4 shows a block circuit for hue conversion.
[0030]
In FIG. 3, on the UV coordinate system, the axes A1 to A8 are set so that the axis A1 coincides with the v-axis, and each axis after the axis A2 is set at an angle that is sequentially shifted by 45 degrees. . As a result, as shown in the figure, the odd-numbered axes A1, A3, A5, and A7 correspond to the UV coordinate axes, and the even-numbered axes A2, A4, A6, and A8 are the UV coordinates. At an angle of 45 degrees from the axis.
[0031]
An area (1) sandwiched between the axes A1 and A2 is formed. Similarly, the area (2) is formed between the axes A2 and A3, the area (3) is formed between the axes A3 and A4, and the areas A3 and A5 are formed. Region (4), Axis A5 and A6 are region (5), Axis A6 and A7 are region (6), Axis A7 and A8 are region (7), Axis A8 and A1 are region (8), Each is formed.
[0032]
These axes A1 to A8 can be independently displaced by any positive and negative angles. For example, when the axis A2 is displaced in the direction of the axis A3 by a predetermined angle Δθ2, the displacement of the axis A2 changes the hues of both the areas (1) and (2) in relation to each other.
[0033]
4 receives the image data expressed in the UV coordinate system as input signals u and v, and outputs output signals u ′ and v ′ of the converted image data subjected to a desired hue conversion process. v 'is output and has the following components.
[0034]
The area determination and coefficient setting device 41 has an area determination function that sequentially receives input signals u and v, and determines which of the areas (1) to (8) in FIG. Hue change designations Δθ1 to Δθ8 indicating whether or not each of the axes A1 to A8 is displaced and in which direction the displacement is assumed are input, and are calculated according to the region determination of the input signals u and v. It has a coefficient setting function for setting the coefficients K1 to K4, and outputs the set coefficients K1 to K4.
[0035]
The multiplier 42 multiplies the u component of the input signal by the first coefficient K1, the multiplier 43 similarly multiplies the v component of the input signal by the second coefficient K2, and the multiplier 44 multiplies the u component of the input signal by the third coefficient K2. Multiplying by the coefficient K3, the multiplier 45 multiplies the v component of the input signal by the fourth coefficient K4.
[0036]
The adder 46 adds the multiplication result of the first multiplier 42 and the multiplication result of the second multiplier 43, and outputs the addition result u ′ = K1 · u + K2 · v. The adder 47 outputs the third multiplication. The multiplication result of the multiplier 44 and the multiplication result of the fourth multiplier 45 are added, and the addition result v ′ = K3 · u + K4 · v is output. The output addition results u ′ and v ′ become the converted image data subjected to the hue conversion process.
[0037]
The conversion formula in the hue conversion block 40 is as described above.
u ′ = K1 · u + K2 · v (5)
v ′ = K3 · u + K4 · v (6)
It becomes.
[0038]
Each coefficient K1-K4 in Formula (5) and Formula (6) is defined as follows.
K1 = {cos (a) * sin (b) * cos (Δ1) -sin (a) * sin (b) * sin (Δ1) -sin (a) * cos (b) * cos (Δ2) + sin ( a) * sin (b) * sin (Δ2)} / sin (ba)
= coef1 * cos (Δ1) -coef2 * sin (Δ1) -coef3 * cos (Δ2) + coef2 * sin (Δ2) (7)
K2 = {-cos (a) * cos (b) * cos (Δ1) + sin (a) * cos (b) * sin (Δ1) + cos (a) * cos (b) * cos (Δ2) -cos (a) * sin (b) * sin (Δ2)} / sin (ba)
= -coef4 * cos (Δ1) + coef3 * sin (Δ1) + coef4 * cos (Δ2) -coef1 * sin (Δ2) (8)
K3 = {sin (a) * sin (b) * cos (Δ1) + cos (a) * sin (b) * sin (Δ1) -sin (a) * sin (b) * cos (Δ2) -sin ( a) * cos (b) * sin (Δ2)} / sin (ba)
= coef2 * cos (Δ1) + coef1 * sin (Δ1) -coef2 * cos (Δ2) -coef3 * sin (Δ2) (9)
K4 = {-sin (a) * cos (b) * cos (Δ1) -cos (a) * cos (b) * sin (Δ1) + cos (a) * sin (b) * cos (Δ2) + cos (a) * cos (b) * sin (Δ2)} / sin (ba)
= -coef3 * cos (Δ1) -coef4 * sin (Δ1) + coef1 * cos (Δ2) + coef4 * sin (Δ2) (10)
[0039]
Note that the angles (a), (b), (Δ1), and (Δ2) in the equations (7) to (10) are the angles (θ1), (θ2), (Δθ1), ( Δθ2) respectively.
[0040]
In the equations (7) to (10) representing the coefficients K1 to K4, the variables coef1 to coef4 are arranged as follows.
coef1 = cos (a) * sin (b) / sin (ba)
coef2 = sin (a) * sin (b) / sin (ba)
coef3 = sin (a) * cos (b) / sin (ba)
coef4 = cos (a) * cos (b) / sin (ba)
[0041]
The relationship between each variable coef1 to coef4 and the areas (1) to (8) is organized as shown in the following table.
Domain coef1 coef2 coef3 coef4
(1) 1 0 0 1
(2) 1 1 0 0
(3) 0 1 -1 0
(4) 0 0 -1 1
(5) 1 0 0 1
(6) 1 1 0 0
(7) 0 1 -1 0
(8) 0 0 -1 1
[0042]
In the hue conversion block circuit 40 shown in FIG. 4, first, whether or not each of the axes A1 to A8 is displaced by the region discrimination and coefficient setting device 41, and if so, how much the hue is displaced. Change designations Δθ1 to Δθ8 are input. In the area determination and coefficient setting device 41, the change angles of the axes A1 to A8 are set by the hue change designations Δθ1 to Δθ8. Based on the change angles, the coefficients K1 to K1 in the areas (1) to (8) are set. K4 is calculated according to equations (7) to (10). The calculated coefficients K1 to K4 are stored in a memory. In this state, input signals u and v of image data expressed in the UV coordinate system are sequentially input.
[0043]
Then, it is determined which of the areas (1) to (8) the input signals u and v that are sequentially input belong. In this embodiment, the eight axes are set on the UV coordinate system so that the axis A1 coincides with the v axis, and each axis after the axis A2 is set at an angle that is sequentially shifted by 45 degrees. Since the input signals u and v can be determined to which of the areas (1) to (8) only by comparing the magnitude and positive / negative of the u component and the v component of the input signals u and v. It can be configured with a simple circuit.
[0044]
Based on the region determination results of the input signals u and v, the coefficients K1 to K4 calculated and stored in advance are output from the region determination and coefficient setting device 41 according to the region.
[0045]
Then, multiplication and addition processing are performed by the multipliers 42 to 45 and the adders 46 and 47 from the u component and the v component of the input signals u and v, and the coefficients K1 to K4, respectively, and the hue converted output. Signals u ′ (= K1 · u + K2 · v) and v ′ (= K3 · u + K4 · v) are output.
[0046]
In the example of FIGS. 3 and 4, the number of axes is eight. However, the number of axes can be an arbitrary number, and the setting angle of each axis is not limited to be uniform, and is set to an arbitrary angle. be able to.
[0047]
【The invention's effect】
According to the hue conversion method disclosed in the present specification , a plurality of axes are set in an arbitrary direction in the hue coordinate system that expresses a color signal, and the displacement is independently given to these axes. Since the hues of the regions on both sides of the axis are converted, the predetermined hue can be adjusted arbitrarily.
[0048]
In addition, since the coordinate conversion is performed by the displacement of the axis, gradation processing (gradation) can be changed smoothly.
[0049]
In addition, since the regions on both sides of the displaced axis are subjected to hue conversion, the problem of lack of color does not occur.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining hue conversion of the present invention.
FIG. 2 is a diagram for explaining hue conversion according to the present invention.
FIG. 3 is a diagram showing an example in which the hue conversion method of the present invention is applied to the case of eight axes.
FIG. 4 is a block diagram of hue conversion in the hue conversion method of the present invention.
[Explanation of symbols]
A1 to A8 Set axes (1) to (8) Area 41 divided by axes Area discrimination and coefficient setting units 42 to 45 Multipliers 46 and 47 Adders

Claims (4)

第1の色差信号と第2の色差信号との直交軸によって構成された第1平面座標系に色信号を表現するようにし、この第1平面座標系の原点を始点とし任意の方向に向かう第1の軸、前記第1の軸と隣り合う第2の軸、および、前記第2の軸と隣り合う第3の軸を設定し、
前記第1の軸と前記第2の軸とに挟まれる第1領域と、前記第2の軸と前記第3の軸とに挟まれる第2領域とを前記第2の軸を変位させて変化させることにより、
前記第2の軸の両側にある前記第1領域および前記第2領域の色信号の色相を変換するものであって、
前記第1平面座標系で表される前記第1領域内の第1色信号を、前記第1の軸および前記第2の軸で張られる第2平面座標系に座標変換するとともに、前記第1平面座標系で表される前記第2領域内の第2色信号を、前記第2の軸および前記第3の軸で張られる第3平面座標系に座標変換し、
前記第2の軸を変位させ
第2の軸を変位させる前の第2平面座標系、第3平面座標系に変換された第1色信号、第2色信号を、第2の軸を変位させた後の第2平面座標系、第3平面座標系から第1平面座標系への座標変換により、第1平面座標系に再変換することで、第1色信号、第2色信号の色相を変換することを特徴とする色相変換方法。
The color signal is expressed in a first plane coordinate system configured by orthogonal axes of the first color difference signal and the second color difference signal, and the first plane coordinate system starts in the arbitrary direction starting from the origin of the first plane coordinate system. 1 axis, a second axis adjacent to the first axis, and a third axis adjacent to the second axis,
The first region sandwiched between the first shaft and the second shaft and the second region sandwiched between the second shaft and the third shaft are changed by displacing the second shaft. By letting
Converting the hue of the color signals of the first region and the second region on both sides of the second axis,
The first color signal in the first region represented by the first plane coordinate system is coordinate-transformed into a second plane coordinate system stretched by the first axis and the second axis, and the first Coordinate-transforming the second color signal in the second region represented by a plane coordinate system into a third plane coordinate system stretched by the second axis and the third axis;
Displacing the second axis ;
The second plane coordinate system after the second axis is displaced with respect to the first color signal and the second color signal converted into the second plane coordinate system and the third plane coordinate system before the second axis is displaced. The hue of the first color signal and the second color signal is converted by re-converting to the first plane coordinate system by the coordinate conversion from the third plane coordinate system to the first plane coordinate system. Conversion method.
前記第3の軸に隣り合い、かつ、前記第2領域外に第4の軸を設定し、
前記第2領域と、前記第3の軸と前記第4の軸とに挟まれる第3領域とを前記第3の軸を変位させて変化させることにより、
前記第3の軸の両側にある前記第2領域および前記第3領域の色信号の色相を変換するものであって、
前記第2色信号を、前記第3平面座標系に座標変換するとともに、前記第1平面座標系で表される前記第3領域内の第3色信号を前記第3の軸および前記第4の軸で張られる第4平面座標系に座標変換し、
前記第3の軸を変位させ、
第3の軸を変位させる前の第3平面座標系、第4平面座標系に変換された第2色信号、第3色信号を、第3の軸を変位させた後の第3平面座標系、第4平面座標系から第1平面座標系への座標変換により、第1平面座標系に再変換することで、第2色信号、第3色信号の色相を変換することを特徴とする請求項1に記載の色相変換方法。
Adjoin the third axis, and sets a fourth axis outside the second region,
By changing the second region and the third region sandwiched between the third axis and the fourth axis by displacing the third axis,
Converting hues of color signals of the second region and the third region on both sides of the third axis,
The second color signal is coordinate-converted to the third plane coordinate system, and the third color signal in the third region represented by the first plane coordinate system is converted to the third axis and the fourth axis. Coordinate transformation to the fourth plane coordinate system stretched around the axis,
Displacing the third axis;
The third plane coordinate system before displacing the third axis, the second color signal converted to the fourth plane coordinate system, the third color signal, and the third plane coordinate system after displacing the third axis The hue of the second color signal and the third color signal is converted by re-converting to the first plane coordinate system by coordinate conversion from the fourth plane coordinate system to the first plane coordinate system. Item 2. The hue conversion method according to Item 1.
前記第1の軸および前記第3の軸は、前記第1平面座標系の直交軸の一方および他方にそれぞれ一致することを特徴とする請求項1に記載の色相変換方法。  2. The hue conversion method according to claim 1, wherein the first axis and the third axis coincide with one and the other of orthogonal axes of the first planar coordinate system, respectively. 前記第1平面座標系の原点を始点とし、前記第1の色差信号からそれぞれ順に角度0度、45度、90度、135度、180度、225度、270度、および、315度の方向に向かう8軸を設定し、
前記8軸のうち、任意の隣り合う3軸は、前記第1の軸、前記第2の軸、および、前記第3の軸であることを特徴とする請求項1に記載の色相変換方法。
Starting from the origin of the first plane coordinate system, the first color difference signals are sequentially angled from 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 °, and 315 °, respectively. Set the 8 axes to go to
2. The hue conversion method according to claim 1, wherein among the eight axes, any three adjacent axes are the first axis, the second axis, and the third axis.
JP2000244193A 2000-08-11 2000-08-11 Hue conversion method Expired - Fee Related JP4526167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244193A JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244193A JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Publications (2)

Publication Number Publication Date
JP2002058042A JP2002058042A (en) 2002-02-22
JP4526167B2 true JP4526167B2 (en) 2010-08-18

Family

ID=18734913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244193A Expired - Fee Related JP4526167B2 (en) 2000-08-11 2000-08-11 Hue conversion method

Country Status (1)

Country Link
JP (1) JP4526167B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323557C (en) * 2002-12-27 2007-06-27 明基电通股份有限公司 Method and device for regulating colour
JP4600301B2 (en) * 2006-01-16 2010-12-15 ソニー株式会社 Color difference signal correction method, color difference signal processing circuit using the same, and camera system
CN101889454B (en) 2007-10-05 2013-01-30 夏普株式会社 Color adjustment circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767131A (en) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp Video signal processor
JPH10145805A (en) * 1996-11-14 1998-05-29 Victor Co Of Japan Ltd Hue correction circuit
WO1998042142A1 (en) * 1997-03-14 1998-09-24 Sony Corporation Color correction device, color correction method, picture processing device, and picture processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767131A (en) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp Video signal processor
JPH10145805A (en) * 1996-11-14 1998-05-29 Victor Co Of Japan Ltd Hue correction circuit
WO1998042142A1 (en) * 1997-03-14 1998-09-24 Sony Corporation Color correction device, color correction method, picture processing device, and picture processing method

Also Published As

Publication number Publication date
JP2002058042A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
EP0633535B1 (en) Image processor
JP3568485B2 (en) Color correction circuit
TWI321021B (en) Method and system for automatic color hue and color saturation adjustment of a pixel from a video source
EP1347654B1 (en) Video correction apparatus and method, video correction program, and recording medium on which the program is recorded
JP2003143615A (en) Apparatus and method for processing output data from image sensor
CN110113519A (en) Camera module
JPH10313464A (en) Color filter array and its hue interpolating device
JP4526167B2 (en) Hue conversion method
US7746519B2 (en) Method and device for scanning images
US8553974B2 (en) Method and circuit for correcting signals and image correcting method and circuit using the same
JP3576600B2 (en) Color imaging device
JP4032579B2 (en) Single plate solid-state image sensor color interpolation method and recording medium recording single-chip solid-state image sensor color interpolation processing program
TWI250802B (en) Image signal processing device
JP3914633B2 (en) Color signal processing apparatus and color signal processing method
JP5825681B2 (en) Image processing apparatus, image processing method, and program
JP2003070010A (en) Two-plate image capture device
JP2744260B2 (en) Color signal processing device
JP4462655B2 (en) Color signal extraction circuit and hue correction device
JPS63313967A (en) Dot density converter
JP2658086B2 (en) Color image processing method
US7239341B2 (en) Vector waveform rotation device
JPH06292014A (en) Picture processor
JPH0453343A (en) Picture reader
JP3562782B2 (en) Contour correction device
JPH0242875A (en) Color image reader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees