JP2002054183A - System and method for intake of seawater - Google Patents

System and method for intake of seawater

Info

Publication number
JP2002054183A
JP2002054183A JP2000243009A JP2000243009A JP2002054183A JP 2002054183 A JP2002054183 A JP 2002054183A JP 2000243009 A JP2000243009 A JP 2000243009A JP 2000243009 A JP2000243009 A JP 2000243009A JP 2002054183 A JP2002054183 A JP 2002054183A
Authority
JP
Japan
Prior art keywords
seawater
intake
sand
sand layer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000243009A
Other languages
Japanese (ja)
Other versions
JP3899788B2 (en
Inventor
Hideo Hayashi
秀郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000243009A priority Critical patent/JP3899788B2/en
Publication of JP2002054183A publication Critical patent/JP2002054183A/en
Application granted granted Critical
Publication of JP3899788B2 publication Critical patent/JP3899788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for intake of seawater for reducing clogging of a sand stratum due to the breakage and slit of an biofilm formed in the sand layer as much as possible, and for removing a suspended material or the like deposited on the surface of the sand stratum without much time and labor. SOLUTION: In the system, a conducting tube 10 is buried into a sand stratum 3 in an ocean floor 2, seawater naturally penetrating through the sand stratum 3 is taken in from intake pipes 12 and 14 (an intake part 10a) at the tip of the conducting tube 10. The penetration flow rate of seawater appearing in the sand stratum 3 due to the intake operation of the intake part 10a is set to 1.0-8.0 (m/day). Also, the water depth of the sand stratum 3 where the intake part 10a is formed is set deeper than water depth where sand at the surface- layer part of the sand stratum 3 travels at least for 50 cm and shallower than water depth where the sand travels at least as long as 1 cm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海底の砂層内に取
水管を埋め込み、海中から砂層内を浸透してくる海水を
取水管内に導入して取水する海水取水システムおよび海
水取水方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seawater intake system and a seawater intake method in which an intake pipe is buried in a sand layer at the bottom of the sea, and seawater penetrating the sand layer from the sea is introduced into the intake pipe to take water.

【0002】[0002]

【従来の技術】海水を淡水化して飲料水等の生活用水を
生成する海水淡水化プラントとして、逆浸透膜(RO
膜)を利用したプラントが知られている。このプラント
は、逆浸透膜により海水からこれに溶け込まれている塩
分を除去して淡水を生成するものである。非常に水質の
良好な淡水が得られることから、幅広く実施されてい
る。海水は、海底に設置された取水管を通じてポンプで
汲み上げられ、凝集剤等の化学薬品類を添加した上で、
ろ過砂に強制的に透過させて大量にろ過処理されるよう
になっていて、これにより不純物やゴミ等の除去、並び
に滅菌等の前処理が施される。これにより海水をある程
度清浄化して水質を改善してから、逆浸透膜(RO膜)
により淡水化処理する。このように淡水化処理するにあ
たり海水を清浄化するのは、逆浸透膜の目詰まりを防止
するためである。
2. Description of the Related Art A reverse osmosis membrane (RO) is used as a seawater desalination plant for producing seawater such as drinking water by desalinating seawater.
Plants utilizing membranes are known. In this plant, salt dissolved in seawater is removed from seawater by a reverse osmosis membrane to produce freshwater. It is widely practiced because fresh water of very good quality can be obtained. Seawater is pumped through a water intake pipe installed on the seabed, and after adding chemicals such as flocculants,
The filter sand is forcibly permeated through filter sand and is subjected to a large amount of filtration treatment, thereby removing impurities and dust, and performing pretreatment such as sterilization. After purifying seawater to some extent to improve water quality, reverse osmosis membrane (RO membrane)
For desalination. The purpose of purifying seawater in the desalination treatment in this way is to prevent clogging of the reverse osmosis membrane.

【0003】[0003]

【発明が解決しようとする課題】この海水淡水化プラン
トにあっては次のような問題があった。 (1)大量の海水をポンプを使って強制的にろ過砂内を
透過させてろ過処理を行っているため、ろ過砂が汚れ易
く、毎日多くの汚泥が発生し、ろ過砂を頻繁に洗浄する
必要があった。このため、発生した汚泥を処理するため
のプラントが必要であった。 (2)細菌や懸濁物等を除去するために多くの化学薬品
類を添加しなければならないため、これら化学薬品類に
よる水質の悪化が懸念された。 (3)取水管内には海水が強制的に導入されるため、生
物が付着し、配管を詰まらせる原因となった。そのた
め、生物付着防止用に塩素を注入しなければならないと
ともに、定期的な清掃が必要であった。 (4)漁業への影響が多大であるとともに、自然環境へ
の影響が大きいなどのデメリットもあった。
The seawater desalination plant has the following problems. (1) Since a large amount of seawater is forcibly permeated through the filter sand using a pump and the filtration process is performed, the filter sand is easily contaminated, and a large amount of sludge is generated every day, and the filter sand is frequently washed. Needed. Therefore, a plant for treating the generated sludge is required. (2) Since many chemicals must be added in order to remove bacteria, suspensions, and the like, there is a concern that water quality may be deteriorated by these chemicals. (3) Seawater was forcibly introduced into the intake pipe, causing organisms to adhere and clog the pipe. Therefore, chlorine had to be injected to prevent biofouling and periodic cleaning was required. (4) There are disadvantages such as a great impact on the fishery and a great impact on the natural environment.

【0004】海水を取水する方式として浸透取水方式も
ある。この浸透取水方式は、海底の砂層内に取水管を埋
め込み、ポンプを用いることなく、海中から砂層内を自
然浸透してきた海水を取水管内に導入して海水を取水す
る。砂層内を自然透過して浄化された海水を取水してい
るため、取水管内への生物付着もなく、非常に水質の良
好な海水が得られる。この他、漁業への影響も小さく自
然環境への影響も小さいといったメリットもある。
[0004] As a system for taking in seawater, there is also a permeated water intake system. In this infiltration water intake system, an intake pipe is buried in a sand layer on the sea floor, and seawater that has naturally penetrated into the sand layer from under the sea is introduced into the water pipe without using a pump to take in seawater. Since the seawater that has been purified by natural permeation through the sand layer is taken in, the seawater with very good water quality can be obtained without organisms adhering to the intake pipe. Another advantage is that the impact on the fishery is small and the impact on the natural environment is small.

【0005】しかしながら、この浸透取水方式では、砂
層の表面にシルト(泥分)が堆積した場合に砂層が目詰
まりしてしまうという問題があった。このため、不安定
で確実性に非常に乏しいという理由で、海水淡水化プラ
ントをはじめとする各種海水取水施設においてほとんど
採用されなかった。
[0005] However, this permeation water intake method has a problem that the sand layer is clogged when silt (mud) accumulates on the surface of the sand layer. For this reason, it was hardly adopted in various seawater intake facilities such as a seawater desalination plant because of its unstableness and very poor reliability.

【0006】本発明者は、このような事情に鑑み、多く
のメリットを有する浸透取水方式を海水淡水化プラント
等で採用できないものかと考えた。そして、従来から陸
上の浄水場等で採用されている緩速ろ過方式に着目し、
海水の砂層への浸透流速を考慮に入れて、この緩速ろ過
方式のしくみを浸透取水方式に利用しようと考えた。緩
速ろ過方式は、ろ過砂内を自然透過させて水をろ過処理
する方式であり、ろ過砂内には、バクテリア等からなる
生物膜が形成され、この生物膜による生物ろ過機能によ
り細菌レベルで水を浄化処理することができる。また、
この浄化処理により、懸濁物の除去や細菌等を死滅させ
るために多くの化学薬品を使う前処理を行わずに済む。
[0006] In view of such circumstances, the present inventor has considered whether a permeated water intake system having many merits can be adopted in a seawater desalination plant or the like. Focusing on the slow filtration method conventionally used in land-based water purification plants,
Taking into account the permeation velocity of seawater into the sand layer, we thought that this slow filtration system would be used for the permeation water intake system. The slow filtration method is a method in which water is filtered by allowing natural permeation through the filter sand, and a biofilm composed of bacteria or the like is formed in the filter sand. Water can be purified. Also,
By this purifying process, it is not necessary to perform a pretreatment using many chemicals to remove suspended matters and kill bacteria and the like.

【0007】しかし、陸上と海中とでは環境条件が全く
異なり、陸上の緩速ろ過方式を海中の浸透取水方式に適
用する際には、様々な問題点があった。例えば、台風な
どによって引き起こされる大きな波や速い流れ等によ
り、海中では砂層が一夜にして2〜3mも浸食されるこ
とがある。このため、砂層内に生物膜が形成されてもこ
れが破壊され、生物ろ過機能が得られないだけでなく、
構造物自体も被災するおそれがある。また、陸上では、
砂層表面を削り取ってそこに堆積した懸濁物等を除去す
る作業を簡単に行えるが、海中でこの除去作業を行うの
はきわめて困難である。
[0007] However, environmental conditions are completely different between land and the sea, and there are various problems in applying the land-based slow filtration system to the submerged osmotic water intake system. For example, the sand layer may be eroded by 2 to 3 m in the sea overnight due to a large wave or a fast current caused by a typhoon or the like. For this reason, even if a biofilm is formed in the sand layer, it will be destroyed and not only will not be able to obtain the biological filtration function,
The structure itself may be damaged. On land,
Although the work of scraping the surface of the sand layer to remove suspended matter and the like deposited thereon can be easily performed, it is extremely difficult to perform this removal work in the sea.

【0008】本発明は、このような事情に基づきなされ
たもので、その目的は、海水を取水する海底の砂層が目
詰まりを起こすのを可及的に低減することができるとと
もに、ろ過作用を担う砂層内に形成された生物膜が破壊
されずに済み、また砂層表面に堆積した懸濁物等を手間
をかけずに除去することができ、安定した取水を確保し
得るような海水取水システムおよび海水取水方法を提供
することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to reduce the occurrence of clogging of a sand layer on the seabed that takes in seawater as much as possible, and to improve the filtering action. A seawater intake system that does not destroy the biofilm formed in the sand layer that bears it and that can remove suspended matter etc. deposited on the surface of the sand layer without hassle and ensure stable intake And a method for withdrawing seawater.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに本発明にかかる海水取水システムにあっては、海底
の砂層内に取水管を埋設して形成した取水部により、海
中から当該砂層を通じて自然浸透してくる海水を取水す
るシステムにおいて、上記取水部の取水作用によって上
記砂層内に発現される海水浸透流速を1.0〜8.0
(m/日)としたことを特徴とする。
In order to achieve the above object, in a seawater intake system according to the present invention, an intake section formed by burying an intake pipe in a sand layer at the bottom of the sea passes from the sea through the sand layer. In the system for taking in seawater that naturally penetrates, the seawater permeation flow rate expressed in the sand layer by the water intake action of the water intake section is set to 1.0 to 8.0.
(M / day).

【0010】また、本発明にかかる海水取水方法にあっ
ては、海底の砂層内に取水管を埋設して形成した取水部
により、海中から当該砂層を通じて自然浸透してくる海
水を取水する方法において、上記取水部の取水作用によ
って上記砂層内に発現される海水浸透流速を1.0〜
8.0(m/日)としたことを特徴とする。
[0010] In the method of drawing seawater according to the present invention, the method of drawing seawater naturally penetrating from the sea through the sand layer by means of a water intake section formed by burying an intake pipe in a sand layer on the sea floor. The seawater infiltration flow rate expressed in the sand layer by the water intake action of the water intake section is 1.0 to
It is 8.0 (m / day).

【0011】またこの際、前記取水部が形成される前記
砂層の水深は、当該砂層の表層部分の砂が50cm以上
移動する水深よりも深く、かつ1cm以上移動する水深
よりも浅くする。
At this time, the water depth of the sand layer in which the water intake portion is formed is made deeper than the water depth at which the sand of the surface portion of the sand layer moves by 50 cm or more, and shallower than the water depth at which the sand moves by 1 cm or more.

【0012】さらに、前記砂層では、生物膜により海水
のろ過が行われるものである。
Further, in the sand layer, seawater is filtered by a biofilm.

【0013】砂層内に発現させる海水浸透流速を1.0
〜8.0(m/日)としたのは、次の理由による。つま
り、海水浸透流速が8.0(m/日)を超えると、シル
トを砂層内に巻き込む確率が高まるとともに、砂層表面
がシルトによりフタをされて目詰まりを起こし易くな
る。一方、海水浸透流速が1.0(m/日)よりも下回
ってしまうと、砂中への酸素供給量が減少してせっかく
形成された生物膜を死滅させてしまい、砂層内に十分な
生物膜を形成することができない。これらのことから、
十分な取水量を確保しつつ砂層に目詰まりが生じる可能
性を可及的に低く抑えるとともに、砂層内に生物膜を形
成させるためには、海水浸透流速を1.0〜8.0(m
/日)とするのが適当である。
[0013] The infiltration velocity of seawater in the sand layer is 1.0
The reason for setting to 8.0 (m / day) is as follows. In other words, when the seawater permeation flow rate exceeds 8.0 (m / day), the probability that the silt gets caught in the sand layer increases, and the surface of the sand layer is clogged by the silt being covered with the silt. On the other hand, when the seawater permeation flow rate is lower than 1.0 (m / day), the amount of oxygen supplied to the sand decreases, and the formed biofilm is killed. The film cannot be formed. from these things,
In order to secure a sufficient water intake and minimize the possibility of clogging of the sand layer, and to form a biofilm in the sand layer, the seawater permeation flow rate should be 1.0 to 8.0 (m).
/ Day) is appropriate.

【0014】このように海水浸透流速を1.0〜8.0
(m/日)とすることで、砂層表面に堆積したシルトが
砂層内に侵入するのを可及的に防ぐことができ、シルト
が砂層表層部を塞いで目詰まりが起きるのを可及的に低
減することができる。また、砂層内に十分な酸素を供給
することができ、砂層内に形成された生物膜を死滅させ
ることがない。これにより十分な生物膜を形成すること
ができ、この生物膜による生物ろ過機能の働きによっ
て、砂層による物理的なろ過の他に、細菌レベルで海水
を浄化処理することができる。これにより、取水した海
水の水質が向上する。
As described above, the infiltration speed of seawater is 1.0 to 8.0.
By setting (m / day), the silt deposited on the surface of the sand layer can be prevented as much as possible from entering the sand layer, and the silt blocks the surface layer of the sand layer as much as possible to cause clogging. Can be reduced. Further, sufficient oxygen can be supplied into the sand layer, and the biofilm formed in the sand layer is not killed. As a result, a sufficient biofilm can be formed, and by the function of the biofiltration function of the biofilm, seawater can be purified at the bacterial level in addition to the physical filtration by the sand layer. This improves the quality of the seawater that has been withdrawn.

【0015】ここに、取水部の取水作用によって上記数
値範囲の海水浸透流速を発現させる仕方は種々考えられ
る。海水浸透流速を決定する取水部の取水作用は例え
ば、取水部をどの程度の広さにわたって形成するかとい
う設備面積や、砂層内への取水管の埋設深さ、取水管の
配設密度、取水管の埋設本数、取水管の長さ、取水管の
設置間隔、取水管のレイアウト、取水管の管径などの多
種多様な設計要素によって変更・調整することが可能で
あり、本システムを設置する現地を実地調査して得られ
た砂層の調査データなどに応じこれら設計要素を適宜に
組み合わせることで、砂層内に発現させるべき海水浸透
流速を1.0〜8.0(m/日)とすることが容易にで
きる。
Here, there are various ways to develop the seawater permeation flow velocity in the above numerical range by the water intake action of the water intake part. The intake action of the intake section that determines the seawater infiltration velocity is, for example, the equipment area of how large the intake section is to be formed, the burial depth of the intake pipe in the sand layer, the distribution density of the intake pipe, It can be changed and adjusted by various design factors such as the number of buried water pipes, the length of intake pipes, the spacing of intake pipes, the layout of intake pipes, the diameter of intake pipes, etc. By appropriately combining these design elements according to the survey data of the sand layer obtained by conducting an on-site survey of the site, the seawater permeation flow rate to be expressed in the sand layer is set to 1.0 to 8.0 (m / day). Can be done easily.

【0016】さらにここで、取水部が形成される砂層の
水深を、当該砂層の表層部分の砂が50cm以上移動す
る水深よりも深く、かつ1cm以上移動する水深よりも
浅くすることとする。砂層の表層部分の砂が1cm以上
移動するとは、いわば海底の砂が洗われる程度であっ
て、この水深よりも深ければ、砂層表層部分の砂粒子の
移動はほとんど認められない。一方、砂層の表層部分の
砂が50cm以上移動するとは、いわば海底の砂層の侵
食が認められる程度であって、この水深よりも浅けれ
ば、海底の砂層表層部分の砂粒子は大規模に移動し、侵
食が顕著になる。取水部を形成する砂層の水深を上記範
囲にすることにより、砂層の表面は海中に発現する波や
流れなどにより適度に撹拌され、砂層表面に堆積したゴ
ミ、シルト等の懸濁物を除去することができ、安定した
取水を確保することができる。
Here, the water depth of the sand layer where the water intake portion is formed is set to be deeper than the water depth at which the sand at the surface portion of the sand layer moves by 50 cm or more, and shallower than the water depth at which the sand moves by 1 cm or more. The movement of the sand on the surface portion of the sand layer by 1 cm or more means that the sand on the seabed is washed, so to speak, if it is deeper than this water depth, the movement of the sand particles on the surface portion of the sand layer is hardly recognized. On the other hand, the movement of the sand on the surface of the sand layer by 50 cm or more means that the erosion of the sand layer on the seabed is recognized, and if it is shallower than this depth, the sand particles on the surface layer of the seabed move on a large scale. And erosion becomes remarkable. By setting the water depth of the sand layer forming the water intake portion to the above range, the surface of the sand layer is appropriately stirred by waves and currents appearing in the sea, and removes suspended matter such as dust and silt deposited on the surface of the sand layer. And stable water intake can be secured.

【0017】ここに、海底の砂層の挙動を定義する用語
として、「表層移動限界水深」や「完全移動限界水深」
が知られている。「表層移動限界水深」とはおおよそ、
対象とする波によって海底面にある砂粒子がある程度移
動することが確認される最大水深と言われている。ま
た、「完全移動限界水深」もおおよそ、対象とする波の
作用によって海底の砂層が侵食されることが確認される
最大水深と言われている。しかしながら、これら用語に
対する厳密な意味での定義付けには種々の学説等があ
り、一様ではない。そこで本明細書では疑義を生じない
ように、このような一様でない用語は用いず、「砂層の
表層部分の砂が50cm以上移動する水深」や「砂層の
表層部分の砂が1cm以上移動する水深」なる数値で砂
層の水深を特定したけれども、この特定の意味するとこ
ろは諸学説等で言われる意味内容の上記水深を指す。す
なわち、「砂層の表層部分の砂が50cm以上移動する
水深」は、上記「完全移動限界水深」に相当するもので
あり、「砂層の表層部分の砂が1cm以上移動する水
深」は、上記「表層移動限界水深」に相当するものであ
る。
Here, terms that define the behavior of the sand layer on the seabed include “surface movement limit water depth” and “complete movement limit water depth”.
It has been known. The "surface movement limit water depth" is roughly
It is said to be the maximum water depth at which sand particles on the sea floor can move to some extent by the target wave. Also, the “complete movement limit water depth” is generally said to be the maximum water depth at which it is confirmed that the sand layer on the seabed is eroded by the action of the target wave. However, the definition of these terms in a strict sense includes various theories and is not uniform. Therefore, in the present specification, such a non-uniform term is not used so as not to raise a doubt, and "water depth at which the sand on the surface portion of the sand layer moves by 50 cm or more" or "water at the surface portion of the sand layer moves by 1 cm or more" Although the water depth of the sand layer was specified by the numerical value "water depth", this specific meaning refers to the above-mentioned water depth of the meaning content described in various theories. That is, the “water depth at which the sand on the surface portion of the sand layer moves by 50 cm or more” corresponds to the above “complete movement limit water depth”, and the “water depth at which the sand on the surface portion of the sand layer moves by 1 cm or more” It is equivalent to "surface movement limit water depth".

【0018】[0018]

【発明の実施の形態】図1および図2は、本発明にかか
る海水取水システムおよび海水取水方法の一実施形態を
示したものである。この海水取水システムおよび海水取
水方法は、海岸1付近の浅瀬の海底2の砂層3内に陸4
側から海5側に向かって導水管10を埋設し、この導水
管10の海側先端部に設けた取水管12,14によって
砂層3内に形成した取水部10aにより、海中から海底
2の砂層3を自然浸透してくる海水を取水するシステム
または方法である。
1 and 2 show an embodiment of a seawater intake system and a seawater intake method according to the present invention. The seawater intake system and the seawater intake method include a land 4 in a sand layer 3 on a seabed 2 in a shallow water near a coast 1.
The water pipe 10 is buried from the side toward the sea 5 side, and the water layer 10a formed in the sand layer 3 by the water pipes 12 and 14 provided at the sea end of the water pipe 10 causes the sand layer on the seabed 2 from the sea. 3 is a system or a method for taking in seawater which naturally penetrates the seawater.

【0019】導水管10の海側先端部には、左右両側か
ら直角に横方向に3本の横取水管12が相互に平行に並
設されて延出されている。これら3本の横取水管12の
間には、さらに多数の縦取水管14が相互に間隔をあけ
て平行に介設されている。各縦取水管14は3本の横取
水管12を相互に結合している。これら横取水管12お
よび縦取水管14の外周には、管内部に連通する多数の
取水孔(図示外)が貫通形成されている。これら横取水
管12および縦取水管14は砂層3内に埋設されて取水
部10aとして機能し、海底2の砂層3内を自然浸透し
てくる海水は、多数の取水孔を通って横取水管12およ
び縦取水管14の各管内へ導入される。そして、海水
は、横取水管12および縦取水管14の各管内から導水
管10へと集められ、当該導水管10を通って陸4側の
地中に設置された貯水槽16へと送られる。海水はこの
貯水槽16で一旦貯留され、供給ライン18を通って海
水淡水化プラント等の海水処理プラントに供給される。
At the front end of the water guide pipe 10 at the sea side, three horizontal intake pipes 12 are arranged in parallel at right angles to the left and right sides in a lateral direction and extend in parallel with each other. Between these three horizontal water pipes 12, a large number of vertical water pipes 14 are provided in parallel at intervals. Each vertical water pipe 14 connects three horizontal water pipes 12 to each other. A number of water intake holes (not shown) communicating with the inside of the pipes are formed through the outer periphery of the horizontal water intake pipe 12 and the vertical water intake pipe 14. The horizontal intake pipe 12 and the vertical intake pipe 14 are buried in the sand layer 3 to function as an intake section 10a, and the seawater that naturally penetrates into the sand layer 3 of the seabed 2 passes through a large number of intake holes to take the horizontal intake pipe. 12 and the vertical water pipe 14 are introduced into each pipe. Then, the seawater is collected from the inside of each of the horizontal intake pipe 12 and the vertical intake pipe 14 to the water conveyance pipe 10 and sent to the water storage tank 16 installed underground on the land 4 side through the water conveyance pipe 10. . Seawater is temporarily stored in the water tank 16 and supplied to a seawater treatment plant such as a seawater desalination plant through a supply line 18.

【0020】本実施形態にあっては、これら横取水管1
2や縦取水管14等の取水部10aの取水作用によって
砂層3内に発現される海水浸透流速を1.0〜8.0
(m/日)とした。ここで、海水浸透流速とは、海水が
砂層3を浸透するときの浸透速度で、この海水浸透流速
が速ければ速いほど、海水を多く取水することができる
反面、砂層3内へシルトを侵入させてしまったり、砂層
3の表面にシルトを堆積させてしまい、砂層3の目詰ま
りの原因となる。その一方で、海水浸透流速が遅すぎる
と、取水量が少なくなって取水効率が非常に悪いととも
に、砂層3内に十分な酸素を供給することができず、生
物膜を死滅に至らしめることになる。
In this embodiment, these horizontal intake pipes 1
2 and the seawater permeation flow rate generated in the sand layer 3 by the water intake action of the water intake part 10a such as the vertical water intake pipe 14 is 1.0 to 8.0.
(M / day). Here, the seawater permeation flow velocity is the permeation velocity when seawater permeates the sand layer 3. The higher the seawater permeation flow velocity, the more seawater can be taken, but the silt penetrates into the sand layer 3. Otherwise, silt is deposited on the surface of the sand layer 3, which causes clogging of the sand layer 3. On the other hand, if the seawater permeation flow rate is too slow, the amount of water withdrawal will be low and the efficiency of water withdrawal will be extremely low, and sufficient oxygen cannot be supplied into the sand layer 3, resulting in the death of the biofilm. Become.

【0021】そこで、これらの問題をなるべく起こさず
に済むような適切な海水浸透流速を求めた。シルト粒子
の粒径は一般におおよそ、0.005mm〜0.074
mmである。シルトが動き出さない海水の流速、即ち移
動限界流速を求める。移動限界流速は、シルト粒子の限
界実流速に対して面積空隙率を乗じた値となる。なお、
ここでは、面積空隙率は0.35とする。シルト粒子の
限界実流速は、図3に示す粒径と限界実流速の関係を表
すグラフ(地盤工学会:『地盤工学ハンドブック』、報
光堂、p1041、1999:久保田・田中による測定結果)を
使って求める。このグラフから粒径0.08mmの粒径
の大きなシルト粒子の限界実流速は、0.026cm/
sと読みとれる。従って、シルトの移動限界流速の上限
は、0.026×0.35×24×3600=786.
24(cm/日)⇒約8.0(m/日)となる。
Therefore, an appropriate seawater infiltration flow rate was determined so as to avoid these problems as much as possible. The particle size of the silt particles is generally approximately 0.005 mm to 0.074.
mm. The flow velocity of the seawater at which the silt does not move, that is, the movement limit flow velocity is obtained. The movement limit flow velocity is a value obtained by multiplying the limit actual flow velocity of the silt particles by the area porosity. In addition,
Here, the area porosity is 0.35. The critical actual flow velocity of the silt particles is shown in Fig. 3 showing the relationship between the particle size and the critical actual velocity (Geotechnical Society of Japan: Geotechnical Engineering Handbook, Hokkodo, p1041, 1999: Measurement results by Kubota and Tanaka). Ask using. From this graph, the critical actual flow rate of the large silt particles having a particle size of 0.08 mm is 0.026 cm /
You can read s. Therefore, the upper limit of the movement limit flow velocity of the silt is 0.026 × 0.35 × 24 × 3600 = 786.
24 (cm / day) ⇒ about 8.0 (m / day).

【0022】この結果から、シルトによる目詰まりを生
じさせないためには、最大でも海水浸透流速は、8.0
(m/日)以下に設定すべきであることがわかる。ま
た、砂層3内に十分な酸素を供給して生物膜を死滅に至
らしめないようにするには、少なくとも1.0(m/
日)の海水浸透流速が必要である。これらのことからし
て、海水浸透流速は、1.0〜8.0(m/日)の範囲
内に設定するのが最良である。このような範囲の海水浸
透流速に設定すれば、図4に示すように、海水は砂層3
内を相当の浸透流速で自然浸透してゆく過程で、砂層3
中の砂粒子(ここでは置換砂層中の砂粒子)の周りに形
成された硝化細菌等の微生物からなる生物膜と接触し、
この生物膜により生物ろ過されて細菌レベルまで浄化さ
れる。
From this result, in order to prevent clogging due to silt, the maximum permeation flow rate of seawater is 8.0.
(M / day). In order to supply sufficient oxygen into the sand layer 3 so as not to kill the biofilm, at least 1.0 (m /
The seawater infiltration flow rate on the day is required. From these facts, it is best to set the seawater permeation flow rate within the range of 1.0 to 8.0 (m / day). If the seawater infiltration velocity is set in such a range, as shown in FIG.
In the process of natural permeation through the interior at a considerable permeation velocity, the sand layer 3
Contact with a biofilm composed of microorganisms such as nitrifying bacteria formed around the sand particles inside (here, the sand particles in the replacement sand layer),
The biofilm is biofiltered and purified to bacterial levels.

【0023】さらに、これら横取水管12や縦取水管1
4からなる取水部10aが埋め込まれる砂層3の水深
は、当該砂層3の表層部分の砂が50cm以上移動する
水深(X)よりも深く、かつ1cm以上移動する水深
(Y)よりも浅く設定される。これら水深は、数値計算
によるだけでなく、例えば放射性トレーサーを用いた漂
砂の移動観測データをはじめ、波浪データや海底表面の
底質データ、潮流分析データ等の各種海洋学上の観測デ
ータに基づき求められる。これら水深は、海域によって
様々に異なるものである。
Further, the horizontal intake pipe 12 and the vertical intake pipe 1
The water depth of the sand layer 3 in which the water intake part 10a made of the steel 4 is embedded is set to be deeper than the water depth (X) at which the sand of the surface layer of the sand layer 3 moves by 50 cm or more and shallower than the water depth (Y) at which the sand moves by 1 cm or more. You. These water depths can be obtained not only by numerical calculations but also based on various oceanographic observation data such as, for example, moving observation data of drifting sand using radioactive tracers, wave data, sea bottom surface sediment data, and tidal current analysis data. Can be These water depths vary depending on the sea area.

【0024】図5は、これらの条件を満たす領域を概略
的に示したものである。取水部10aは、前述したデー
タに基づき求められた領域、例えば水深11m前後の領
域に設置される。この領域では、砂層3の表面が月に1
〜2回程度発生する波や流れにより撹拌される。これに
より、砂層3表面に堆積したゴミやシルトをはじめとす
る懸濁物を除去することができる。砂層3表面もあまり
撹拌し過ぎることがないので、砂層3内の生物膜等をあ
まり痛めずに済む。
FIG. 5 schematically shows regions satisfying these conditions. The water intake unit 10a is installed in an area determined based on the above-described data, for example, an area at a water depth of about 11 m. In this area, the surface of the sand layer 3
It is agitated by waves or flows generated about twice. Thereby, suspended matter such as dust and silt deposited on the surface of the sand layer 3 can be removed. Since the surface of the sand layer 3 is not agitated too much, a biofilm or the like in the sand layer 3 is not damaged much.

【0025】以上、この海水取水システムおよび海水取
水方法によれば、取水部10aの取水作用によって砂層
3内に発現される海水浸透流速を1.0〜8.0(m/
日)としたことにより、シルトによる砂層3の目詰まり
を防ぐことができる。また、砂層3内における生物膜を
維持することもできる。そしてこれらにより、安定した
取水を確保でき、かつまた非常に良好な水質を得ること
ができる。
As described above, according to the seawater intake system and the seawater intake method, the seawater permeation flow rate expressed in the sand layer 3 by the intake action of the intake section 10a is 1.0 to 8.0 (m / m).
Day), it is possible to prevent the sand layer 3 from being clogged by the silt. Further, the biofilm in the sand layer 3 can be maintained. Thus, stable water intake can be ensured, and very good water quality can be obtained.

【0026】また、取水管12,14を埋設する砂層3
の水深が、当該砂層3の表層部分の砂が50cm以上移
動する水深(X)よりも深く、かつ1cm以上移動する
水深(Y)よりも浅く設定したことにより、砂層3の表
層部分は適宜に、例えば月に1〜2回程度で撹拌洗浄が
行われて、砂層3に蓄積した懸濁物やゴミ等が除去され
て清浄化され、砂層3の更新を確保することができる。
The sand layer 3 for burying the intake pipes 12 and 14
Is set to be deeper than the water depth (X) at which the sand of the surface portion of the sand layer 3 moves by 50 cm or more, and shallower than the water depth (Y) at which the sand moves by 1 cm or more, so that the surface portion of the sand layer 3 is appropriately adjusted. For example, agitation washing is performed about once or twice a month, and suspended matter and dust accumulated in the sand layer 3 are removed and cleaned, and renewal of the sand layer 3 can be ensured.

【0027】要するに、本実施形態にあっては、砂層3
内に形成された生物膜の破壊やシルトによる砂層3の目
詰まりを防止でき、また砂層3表面に堆積した懸濁物等
を手間をかけずに除去することができる。
In short, in this embodiment, the sand layer 3
The destruction of the biofilm formed therein and the clogging of the sand layer 3 by the silt can be prevented, and the suspended matter and the like deposited on the surface of the sand layer 3 can be removed without trouble.

【0028】[0028]

【発明の効果】以上発明の実施の形態でも詳細に説明し
たように本発明の海水取水システムおよび海水取水方法
によれば、砂層がシルトによりフタをされて目詰まりを
起こすことを防止できる。また、砂層内に十分な酸素を
供給することができ、砂層内の生物膜を維持して取水し
た海水の水質も向上できる。そしれこれらにより、安定
的に十分な水量で取水することができる。
As described in detail in the embodiments of the present invention, according to the seawater intake system and the seawater intake method of the present invention, it is possible to prevent the sand layer from being capped by silt and causing clogging. In addition, sufficient oxygen can be supplied into the sand layer, and the quality of seawater taken can be improved while maintaining the biofilm in the sand layer. Thus, water can be stably taken with a sufficient amount of water.

【0029】また、砂層の表層部に対する撹拌洗浄が達
成され、砂層表面に蓄積した懸濁物やゴミ等を除去する
ことができて、安定した取水を確保することができる。
Further, the washing of the surface layer of the sand layer with stirring is achieved, and the suspended matter, dust and the like accumulated on the surface of the sand layer can be removed, and a stable water intake can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる海水取水システムおよび海水取
水方法の一実施形態を示した部分破断斜視図である。
FIG. 1 is a partially broken perspective view showing an embodiment of a seawater intake system and a seawater intake method according to the present invention.

【図2】本発明にかかる海水取水システムおよび海水取
水方法の一実施形態を示した断面図である。
FIG. 2 is a sectional view showing an embodiment of a seawater intake system and a seawater intake method according to the present invention.

【図3】粒径と限界実流速の関係を示したグラフであ
る。
FIG. 3 is a graph showing a relationship between a particle diameter and a critical actual flow velocity.

【図4】本発明にかかる海水取水システムおよび海水取
水方法の取水原理を説明する図である。
FIG. 4 is a diagram illustrating a water intake principle of a seawater intake system and a seawater intake method according to the present invention.

【図5】本発明にかかる海水取水システムおよび海水取
水方法における取水部の設置場所の一例を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing an example of an installation location of a water intake unit in the seawater intake system and the seawater intake method according to the present invention.

【符号の説明】[Explanation of symbols]

2 海底 3 砂層 4 陸 5 海 10 導水管 12 横取水管 14 縦取水管 16 貯水槽 2 seabed 3 sand layer 4 land 5 sea 10 water pipe 12 horizontal water pipe 14 vertical water pipe 16 water tank

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 海底の砂層内に取水管を埋設して形成し
た取水部により、海中から当該砂層を通じて自然浸透し
てくる海水を取水するシステムにおいて、 上記取水部の取水作用によって上記砂層内に発現される
海水浸透流速を1.0〜8.0(m/日)としたことを
特徴とする海水取水システム。
1. A system for taking in seawater that naturally penetrates from the sea through the sand layer by means of a water intake section formed by burying an intake pipe in a sand layer on the seabed. A seawater intake system characterized in that the developed seawater permeation flow rate is 1.0 to 8.0 (m / day).
【請求項2】 前記取水部が形成される前記砂層の水深
は、当該砂層の表層部分の砂が50cm以上移動する水
深よりも深く、かつ1cm以上移動する水深よりも浅い
ことを特徴とする請求項1に記載の海水取水システム。
2. The water depth of the sand layer where the water intake portion is formed is deeper than the water depth at which the sand of the surface layer of the sand layer moves by 50 cm or more, and shallower than the water depth at which the sand moves by 1 cm or more. Item 2. A seawater intake system according to Item 1.
【請求項3】 海底の砂層内に取水管を埋設して形成し
た取水部により、海中から当該砂層を通じて自然浸透し
てくる海水を取水する方法において、 上記取水部の取水作用によって上記砂層内に発現される
海水浸透流速を1.0〜8.0(m/日)としたことを
特徴とする海水取水方法。
3. A method for taking in seawater that naturally penetrates from the sea through the sand layer by means of a water intake part formed by burying an intake pipe in a sand layer on the seabed, wherein the water intake part of the water intake part enters the sand layer. A seawater intake method, characterized in that the developed seawater permeation flow rate is 1.0 to 8.0 (m / day).
【請求項4】 前記取水部が形成される前記砂層の水深
は、当該砂層の表層部分の砂が50cm以上移動する水
深よりも深く、かつ1cm以上移動する水深よりも浅い
ことを特徴とする請求項3に記載の海水取水方法。
4. The water depth of the sand layer where the water intake portion is formed is deeper than the water depth at which the sand of the surface layer of the sand layer moves by 50 cm or more, and shallower than the water depth at which the sand moves by 1 cm or more. Item 4. The method for extracting seawater according to Item 3.
【請求項5】 前記砂層では、生物膜により海水のろ過
が行われることを特徴とする請求項3または4に記載の
海水取水方法。
5. The seawater intake method according to claim 3, wherein seawater is filtered by a biofilm in the sand layer.
JP2000243009A 2000-08-10 2000-08-10 Seawater intake system and seawater intake method Expired - Fee Related JP3899788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243009A JP3899788B2 (en) 2000-08-10 2000-08-10 Seawater intake system and seawater intake method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243009A JP3899788B2 (en) 2000-08-10 2000-08-10 Seawater intake system and seawater intake method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006005865A Division JP2006152798A (en) 2006-01-13 2006-01-13 Seawater intake system and method

Publications (2)

Publication Number Publication Date
JP2002054183A true JP2002054183A (en) 2002-02-20
JP3899788B2 JP3899788B2 (en) 2007-03-28

Family

ID=18733933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243009A Expired - Fee Related JP3899788B2 (en) 2000-08-10 2000-08-10 Seawater intake system and seawater intake method

Country Status (1)

Country Link
JP (1) JP3899788B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009565A (en) * 2005-06-30 2007-01-18 Ohbayashi Corp Infiltration water intake system
JP2008142666A (en) * 2006-12-12 2008-06-26 Ohbayashi Corp Seawater purification system and method therefor
JP2012246711A (en) * 2011-05-30 2012-12-13 Hitachi Zosen Corp Seawater percolation and filtration method, and device for preventing sand layer surface from clogging
JP2013075268A (en) * 2011-09-30 2013-04-25 Hitachi Zosen Corp Osmosis filtering method for sea water and osmosis water intake unit
JP2013111559A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
JP2013181371A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp Seawater infiltration intake device
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
WO2015125357A1 (en) * 2014-02-21 2015-08-27 日立造船株式会社 Seawater permeation intake apparatus
CN116856908A (en) * 2023-09-01 2023-10-10 西南石油大学 Experimental determination method for sand carrying critical flow velocity of shale gas well

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822644B2 (en) 2011-10-20 2015-11-24 日立造船株式会社 Cleaning device for filtration layer in seawater infiltration.

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009565A (en) * 2005-06-30 2007-01-18 Ohbayashi Corp Infiltration water intake system
JP4544060B2 (en) * 2005-06-30 2010-09-15 株式会社大林組 Osmotic intake system
JP2008142666A (en) * 2006-12-12 2008-06-26 Ohbayashi Corp Seawater purification system and method therefor
JP2012246711A (en) * 2011-05-30 2012-12-13 Hitachi Zosen Corp Seawater percolation and filtration method, and device for preventing sand layer surface from clogging
JP2013075268A (en) * 2011-09-30 2013-04-25 Hitachi Zosen Corp Osmosis filtering method for sea water and osmosis water intake unit
JP2013111559A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
JP2013181371A (en) * 2012-03-05 2013-09-12 Hitachi Zosen Corp Seawater infiltration intake device
WO2015002194A1 (en) * 2013-07-03 2015-01-08 三菱重工業株式会社 Water treatment system and water treatment method
JP2015013238A (en) * 2013-07-03 2015-01-22 三菱重工業株式会社 Water treatment system and water treatment method
AU2014285172B2 (en) * 2013-07-03 2016-10-20 Aqua Systems Limited Water treatment system and water treatment method
WO2015125357A1 (en) * 2014-02-21 2015-08-27 日立造船株式会社 Seawater permeation intake apparatus
CN116856908A (en) * 2023-09-01 2023-10-10 西南石油大学 Experimental determination method for sand carrying critical flow velocity of shale gas well
CN116856908B (en) * 2023-09-01 2024-02-06 西南石油大学 Experimental determination method for sand carrying critical flow velocity of shale gas well

Also Published As

Publication number Publication date
JP3899788B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5822623B2 (en) Seawater osmotic filtration method and osmotic water intake unit
JP5822644B2 (en) Cleaning device for filtration layer in seawater infiltration.
CA2919219C (en) Apparatus, system and method for removing and treating contaminated materials from the bottom of a body of water and revitalizing the treated area
JP2002054183A (en) System and method for intake of seawater
JP2012246711A (en) Seawater percolation and filtration method, and device for preventing sand layer surface from clogging
JP4299382B2 (en) Artificial wetland for water treatment
Peters et al. Improved seawater intake and pre-treatment system based on Neodren technology
KR100419959B1 (en) Process and System for Waste water treatment contacting micorbes and Plants in the Swampy land
JP5801249B2 (en) Desalination apparatus and desalination method
JP2006152798A (en) Seawater intake system and method
JP4136877B2 (en) Floating island type water purification system
JP6603954B2 (en) Purification method and system for oil-contaminated soil
JP4586147B2 (en) Water purification equipment
JP2005058957A (en) Floating type water area cleaning apparatus
JPH0713766Y2 (en) Seawater purification structure
JP3797297B2 (en) Purification method of bottom sludge
KR100984320B1 (en) A bank filtered water treatment apparatus by aeration catchment well
JP4858142B2 (en) Seawater purification system and seawater purification method
JP6940934B2 (en) On-site immersion type water purification equipment
JP4381154B2 (en) Method for recovering aggregates in water and recovery tool for aggregates in water used therefor
JP2003047955A (en) Apparatus for recovering suspended matter
Tansel Environmental impacts of concentrate management alternatives: Criteria for comparative assessment
EA009507B1 (en) Method for cleaning water and bottom segments of water reservoirs from oil and petroleum products
WO2021245437A1 (en) Desalination arrangement
JP4739460B2 (en) Water purification method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees