JP2002050801A - Thermoelectric conversion device and its manufacturing method - Google Patents

Thermoelectric conversion device and its manufacturing method

Info

Publication number
JP2002050801A
JP2002050801A JP2000231991A JP2000231991A JP2002050801A JP 2002050801 A JP2002050801 A JP 2002050801A JP 2000231991 A JP2000231991 A JP 2000231991A JP 2000231991 A JP2000231991 A JP 2000231991A JP 2002050801 A JP2002050801 A JP 2002050801A
Authority
JP
Japan
Prior art keywords
substrate
conversion device
thermoelectric conversion
glass layer
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000231991A
Other languages
Japanese (ja)
Inventor
Susumu Sugiyama
進 杉山
Toshiyuki Toriyama
寿之 鳥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2000231991A priority Critical patent/JP2002050801A/en
Publication of JP2002050801A publication Critical patent/JP2002050801A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device having a large output voltage, and its manufacturing method. SOLUTION: In a method for manufacturing a thermoelectric conversion device 1, the thermoelectric conversion device 1 is provided with a substrate 2 and a plurality of thermocouples 3 that are erected on the substrate 2 with an interval one another and are connected in series. The thermocouples 3 are formed in an L shape with a horizontal part 4 that is fixed onto the substrate 2, and a vertical part 5 where a base edge 5a is connected to a side end 4a of the horizontal part 4 so that it can be flexed freely. A glass layer 7 is formed on the substrate 2, and a plurality of thermocouples 3 that are composed of the horizontal part 4 and the vertical part 5 being connected so that they can be flexed freely via at least one-layer metal films 8 and 9 and are connected in series are formed in parallel with the substrate 2 on the glass layer 7, the glass layer 7 is removed while a specific range between the horizontal part 4 and the substrate 2 is left, and then the vertical part 5 is bent vertically to the substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子デバイスの
供給電源や補助電源、及び温度センサや赤外線センサ等
として利用可能な素子であって、温接点と冷接点の温度
差により発電するゼーベック効果を利用した熱電変換デ
バイス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element which can be used as a power supply or an auxiliary power supply for an electronic device, a temperature sensor, an infrared sensor, or the like. The present invention relates to a thermoelectric conversion device used and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のこの種の熱電素子としては、例え
ば図18に示すように、交互に列をなして規則的に配列
された角柱状のn型熱電半導体素片20及びp型熱電半
導体素片21を絶縁体22で一体化した熱電素子ブロッ
ク23等が知られている(特開昭63−20880号公
報参照)。
2. Description of the Related Art As a conventional thermoelectric element of this type, for example, as shown in FIG. 18, a prismatic n-type thermoelectric semiconductor element 20 and a p-type thermoelectric semiconductor element 20 are regularly arranged alternately in rows. There is known a thermoelectric element block 23 in which the element pieces 21 are integrated with an insulator 22 (see Japanese Patent Application Laid-Open No. 63-20880).

【0003】この熱電素子ブロック23の上面23cと
下面23dには蒸着等により電極が形成され、n型熱電
半導体素片20とp型熱電半導体素片21とが交互に直
列接続されている。
[0003] Electrodes are formed on the upper surface 23c and the lower surface 23d of the thermoelectric element block 23 by vapor deposition or the like, and the n-type thermoelectric semiconductor pieces 20 and the p-type thermoelectric semiconductor pieces 21 are alternately connected in series.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような熱電素子ブロック23においては、n型熱電半導
体素片20とp型熱電半導体素片21の周囲に絶縁体2
2が存在し、上面23cc側接点と下面23d側接点と
の温度差が小さいため、出力電圧も小さいという問題点
がある。
However, in the above-described thermoelectric element block 23, the insulator 2 is formed around the n-type thermoelectric semiconductor element 20 and the p-type thermoelectric semiconductor element 21.
2 and there is a problem that the output voltage is small because the temperature difference between the upper contact 23cc side contact and the lower contact 23d side contact is small.

【0005】この発明は、以上のような問題点に鑑みて
なされたものであり、出力電圧が大きい熱電変換デバイ
ス及びその製造方法を提供することを目的とする。
[0005] The present invention has been made in view of the above problems, and has as its object to provide a thermoelectric conversion device having a large output voltage and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、熱電変換デバイスに係る請求項1の発明は、基板
と、この基板上に互いに間隔を開けて立設され、直列に
接続された複数の熱電対とを備えたものである。
According to a first aspect of the present invention, there is provided a thermoelectric conversion device comprising: a substrate; and a plurality of the substrates, which are erected on the substrate at an interval from each other and connected in series. And a thermocouple.

【0007】請求項2の発明は、前記熱電対を、前記基
板上に固定された水平部と、この水平部の側端に基端が
屈曲自在に連結された垂直部とからL字形に形成したも
のである。
According to a second aspect of the present invention, the thermocouple is formed in an L-shape from a horizontal portion fixed on the substrate and a vertical portion having a base end flexibly connected to a side end of the horizontal portion. It was done.

【0008】請求項3の発明は、前記水平部と前記垂直
部とを少なくとも1層の金属膜で連結したものである。
According to a third aspect of the present invention, the horizontal portion and the vertical portion are connected by at least one metal film.

【0009】請求項4の発明は、前記複数の熱電対の先
端に、前記基板と相対向する天板を設けたものである。
According to a fourth aspect of the present invention, a top plate opposed to the substrate is provided at the tips of the plurality of thermocouples.

【0010】請求項5の発明は、前記熱電対を構成する
一方の熱電材を半導体で、他方の熱電材を金属でそれぞ
れ構成したものである。
According to a fifth aspect of the present invention, one thermoelectric material constituting the thermocouple is made of a semiconductor, and the other thermoelectric material is made of a metal.

【0011】また、熱電変換デバイスの製造方法に係る
請求項6の発明は、基板上にガラス層を形成し、このガ
ラス層上に、少なくとも1層の金属膜を介して屈曲自在
に連結された水平部と垂直部とから構成され、直列に接
続された複数の熱電対を前記基板に対して平行に形成
し、前記水平部と前記基板との間の所定範囲を残して前
記ガラス層を除去した後、前記垂直部を前記基板に対し
てそれぞれ垂直に折曲するものである。
According to a sixth aspect of the present invention, which relates to a method of manufacturing a thermoelectric conversion device, a glass layer is formed on a substrate, and the glass layer is flexibly connected to the glass layer via at least one metal film. A plurality of thermocouples composed of a horizontal portion and a vertical portion and connected in series are formed in parallel with the substrate, and the glass layer is removed while leaving a predetermined range between the horizontal portion and the substrate. Then, the vertical portions are respectively bent perpendicularly to the substrate.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて説明する。図1〜図3に示すように、この実
施形態に係る熱電変換デバイス1は、例えば、基板2
と、この基板2上にアレイ構造となるように互いに間隔
を開けて立設され、直列に接続された複数の熱電対3と
を備え、熱電対3を、基板2上に固定された水平部4
と、この水平部4の側端4aに基端5aが屈曲自在に連
結された垂直部5とからL字形に形成したものである。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 to 3, the thermoelectric conversion device 1 according to this embodiment includes, for example, a substrate 2
And a plurality of thermocouples 3 erected at an interval from each other so as to form an array structure on the substrate 2 and connected in series. The thermocouple 3 is fixed to a horizontal portion fixed on the substrate 2. 4
And a vertical portion 5 having a base end 5a flexibly connected to a side end 4a of the horizontal portion 4 in an L-shape.

【0013】基板2は、例えばセラミックス、ガラス、
シリコン等で構成され、必要に応じてその上に窒化ケイ
素(Si3N4)層や酸化ケイ素(SiO2)層等の(電気的)
絶縁層6等が形成されている。
The substrate 2 is made of, for example, ceramics, glass,
It is composed of silicon or the like, and if necessary, a silicon nitride (Si 3 N 4 ) layer or a silicon oxide (SiO 2 ) layer (electrical)
An insulating layer 6 and the like are formed.

【0014】熱電対3は、水平部4と垂直部5とからL
字形に形成されている。水平部4は、絶縁層6及びこの
絶縁層6上の所定範囲に形成されたリンガラス等からな
るガラス層7を介して基板2上に固定されている。垂直
部5の基端5aは、水平部4の側端4aに例えば2層の
金属膜8,9を介して屈曲自在に連結されている。
The thermocouple 3 is connected to the horizontal portion 4 and the vertical portion 5 by L
It is formed in the shape of a letter. The horizontal portion 4 is fixed on the substrate 2 via an insulating layer 6 and a glass layer 7 made of phosphorus glass or the like formed in a predetermined range on the insulating layer 6. The base end 5a of the vertical portion 5 is connected to the side end 4a of the horizontal portion 4 via, for example, two layers of metal films 8 and 9 so as to be freely bent.

【0015】なお、金属膜8の材質としては例えばCr
等、金属膜9の材質としては例えばAu等が挙げられる。
金属膜8,9は、2層に限定されるものではなく、1層
又は3層以上であってもよい。また、水平部4や垂直部
5の材質としては各種の半導体や金属等が挙げられる
が、いずれも金属で構成される場合は、これら水平部4
と垂直部5とを少なくとも1層の金属膜8,9で一体的
に形成してもよい。
The material of the metal film 8 is, for example, Cr
The material of the metal film 9 is, for example, Au.
The metal films 8 and 9 are not limited to two layers, and may be one layer or three or more layers. The material of the horizontal portion 4 and the vertical portion 5 includes various semiconductors and metals.
And the vertical portion 5 may be integrally formed of at least one metal film 8,9.

【0016】水平部4は、間隔を開けて配設された2つ
の熱電材10,11の水平部分10a,11aから構成
されている。水平部分10a,11aは、いずれもガラ
ス層7上に形成された基層12と、基層12上の所定範
囲に形成された金属膜8,9とから構成されている。隣
接する熱電対3同士は、基層12及び金属膜8,9をい
ずれも一体的に形成することにより直列に接続されてい
る。なお、基層12の材質としては、例えば多結晶シリ
コン等が挙げられる。
The horizontal portion 4 is composed of horizontal portions 10a and 11a of two thermoelectric materials 10 and 11 arranged at an interval. Each of the horizontal portions 10a and 11a includes a base layer 12 formed on the glass layer 7 and metal films 8 and 9 formed in a predetermined range on the base layer 12. Adjacent thermocouples 3 are connected in series by integrally forming the base layer 12 and the metal films 8 and 9. The material of the base layer 12 is, for example, polycrystalline silicon.

【0017】垂直部5は、2つの熱電材10,11の垂
直部分10b,11bから構成されている。一方の垂直
部分10bは、基層12と、垂直部5の基端5a付近に
おける基層12の側面に形成された金属膜8,9とから
構成されている。他方の垂直部分11bは、基層12
と、この基層12の側面全体に形成された金属膜8,9
とから構成されている。2つの垂直部分10b,11b
は、垂直部5の先端5bで基層12及び金属膜8,9を
いずれも一体的に形成することにより接続されている。
また、垂直部分10b,11bの金属膜8,9と水平部
分10a,11aの金属膜8,9も一体的に形成され、
延性材料であるこの金属膜8,9を介して水平部4と垂
直部5とが屈曲自在に連結されている。そのため、後述
するように、垂直部5を基板2に対して平行に形成した
状態から垂直に折曲できると共に、折曲時の破損もほと
んどないという利点がある。
The vertical portion 5 is composed of vertical portions 10b and 11b of two thermoelectric materials 10 and 11. One vertical portion 10b is composed of the base layer 12 and metal films 8, 9 formed on the side surface of the base layer 12 near the base end 5a of the vertical portion 5. The other vertical portion 11b is
And metal films 8, 9 formed on the entire side surfaces of the base layer 12.
It is composed of Two vertical parts 10b, 11b
Are connected by integrally forming the base layer 12 and the metal films 8 and 9 at the tip 5b of the vertical portion 5.
Further, the metal films 8, 9 of the vertical portions 10b, 11b and the metal films 8, 9 of the horizontal portions 10a, 11a are also integrally formed,
The horizontal portion 4 and the vertical portion 5 are flexibly connected to each other via the metal films 8 and 9 that are ductile materials. Therefore, as described later, there is an advantage that the vertical portion 5 can be bent perpendicularly from a state where the vertical portion 5 is formed parallel to the substrate 2 and there is almost no breakage at the time of bending.

【0018】このように構成される熱電変換デバイス1
は、基板2側と熱電対3の先端側5bのいずれか一方が
温接点、他方が冷接点として機能するが、熱電対3の周
囲には何も存在しないので、温接点と冷接点の温度差が
大きく、そのため出力電圧も大きいという利点がある。
なお、この熱電変換デバイス1は、例えば、産業廃熱に
よる発電、自動車の排気ガスの熱による発電、パーソナ
ルコンピュータ等の電子装置の基板放熱による発電、腕
時計の体温による発電、及び温度センサや赤外線センサ
等の各種の用途に利用できる。
The thermoelectric conversion device 1 configured as described above
Either the substrate 2 side or the distal end 5b of the thermocouple 3 functions as a hot junction and the other functions as a cold junction, but since there is nothing around the thermocouple 3, the temperature of the hot junction and the cold junction There is an advantage that the difference is large and the output voltage is also large.
The thermoelectric conversion device 1 includes, for example, power generation by industrial waste heat, power generation by heat of automobile exhaust gas, power generation by substrate heat radiation of an electronic device such as a personal computer, power generation by body temperature of a wristwatch, and a temperature sensor or an infrared sensor. It can be used for various purposes such as.

【0019】ここで、この実施形態のように、複数の熱
電対3の先端5bに基板2と相対向する天板13を設け
ておけば、熱電対3を保護できると共に、天板13側を
温接点として使用する場合には天板13を熱吸収体とし
ても利用できるという利点がある。なお、天板13の材
質としては、各種の半導体や金属等が挙げられる。
If a top plate 13 facing the substrate 2 is provided at the tips 5b of the plurality of thermocouples 3 as in this embodiment, the thermocouple 3 can be protected and the top plate 13 side can be protected. When used as a hot junction, there is an advantage that the top plate 13 can also be used as a heat absorber. Note that examples of the material of the top plate 13 include various semiconductors and metals.

【0020】次に、上記のように構成された熱電変換デ
バイス1の製造方法について工程順に説明する。 (a)図4及び図5に示すように、所定サイズの基板2
上に必要に応じて絶縁層6等をLPCVD(low pressu
re chemical vapor deposition)等により形成する。 (b)図6に示すように、絶縁層6上にガラス層7をA
PCVD(atmosphericpressure chemical vapor depos
ition)等により形成する。 (c)図7に示すように、ガラス層7上に基層12をL
PCVD等により形成する。 (d)図8に示すように、基層12上にガラス層14を
APCVD等により形成し、このガラス層14を通して
基層12に不純物をドーピングする。 (e)図9及び図10に示すように、RIE(reactive
ion etching)等により基層12を所定のパターンに形
成する。この場合、熱電対3の配列方向に沿って折曲用
溝15を形成しておく。 (f)全面的に金属膜8を蒸着等した後、図11及び図
12に示すように、この金属膜8をウェットエッチング
等により所定のパターンに形成する。この場合、折曲用
溝15の上方で金属膜8がブリッジングされるようにし
ておく。同様にして、図13及び図14に示すように、
金属膜8上に金属膜9を積層する。
Next, a method of manufacturing the thermoelectric conversion device 1 configured as described above will be described in the order of steps. (A) As shown in FIG. 4 and FIG.
If necessary, an insulating layer 6 or the like is formed by LPCVD (low pressu
re chemical vapor deposition) or the like. (B) As shown in FIG. 6, a glass layer 7
PCVD (atmosphericpressure chemical vapor depos
ition). (C) As shown in FIG. 7, the base layer 12 is
It is formed by PCVD or the like. (D) As shown in FIG. 8, a glass layer 14 is formed on the base layer 12 by APCVD or the like, and the base layer 12 is doped with impurities through the glass layer 14. (E) As shown in FIGS. 9 and 10, RIE (reactive
The base layer 12 is formed in a predetermined pattern by ion etching or the like. In this case, the bending groove 15 is formed along the arrangement direction of the thermocouples 3. (F) After depositing the metal film 8 on the entire surface, as shown in FIGS. 11 and 12, the metal film 8 is formed in a predetermined pattern by wet etching or the like. In this case, the metal film 8 is bridged above the bending groove 15. Similarly, as shown in FIGS. 13 and 14,
A metal film 9 is laminated on the metal film 8.

【0021】以上の操作により、ガラス層7上に、金属
膜8,9を介して屈曲自在に連結された水平部4と垂直
部5とから構成され、直列に接続された複数の熱電対3
が基板2に対して平行に形成される。
By the above operation, a plurality of thermocouples 3 composed of the horizontal portion 4 and the vertical portion 5 which are flexibly connected to the glass layer 7 via the metal films 8 and 9 and which are connected in series.
Are formed parallel to the substrate 2.

【0022】(g)図15及び図16に示すように、水
平部4と絶縁層6との間の所定範囲を残してガラス層7
をメタノール置換法等により除去(リリース)した後、
垂直部5を基板2に対してそれぞれ垂直に折曲する。
(G) As shown in FIGS. 15 and 16, the glass layer 7 is left while leaving a predetermined range between the horizontal portion 4 and the insulating layer 6.
Is removed (released) by the methanol replacement method, etc.
The vertical portions 5 are bent perpendicularly to the substrate 2 respectively.

【0023】複数の熱電対3の先端5bに既述の天板1
3を設ける場合は、更に、熱電対3の周囲にレジスト等
を充填し、その上に適宜の半導体や金属等を蒸着等して
天板13を形成した後、レジスト等をエッチング等によ
り除去すればよい。
The above-described top plate 1 is attached to the tips 5b of the plurality of thermocouples 3.
In the case where the thermocouple 3 is provided, the periphery of the thermocouple 3 is further filled with a resist or the like, and an appropriate semiconductor or metal or the like is deposited thereon to form a top plate 13 and then the resist or the like is removed by etching or the like. I just need.

【0024】このように、上記の製造方法によれば、フ
ォトリソグラフィ等の電子デバイスの実装技術を利用で
きるので、従来品よりも集積密度を向上できるという利
点がある。
As described above, according to the above-described manufacturing method, since an electronic device mounting technique such as photolithography can be used, there is an advantage that the integration density can be improved as compared with a conventional product.

【0025】[0025]

【実施例】次いで、実施例により更に詳細に説明する
が、この発明は係る実施例に限定されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0026】既述の実施形態と同様にして、リリース前
の熱電変換デバイスを製作した。この製作には、3層多
結晶シリコン構造の協同試作を行う社団法人日本電気学
会のMICS(Micromachine Integrated Chip Servic
e)を利用した。基板としてはシリコン基板を使用し、
その上に絶縁層を形成した。ガラス層はリンガラス、基
層は多結晶シリコン、基層上の金属膜はCr、2層目の金
属膜はAuでそれぞれ構成した。
A thermoelectric conversion device before release was manufactured in the same manner as in the above-described embodiment. For this production, MICS (Micromachine Integrated Chip Servic) of the Institute of Electrical Engineers of Japan, which conducts joint trial production of a three-layer polycrystalline silicon structure.
e) was used. Use a silicon substrate as the substrate,
An insulating layer was formed thereon. The glass layer was made of phosphorus glass, the base layer was made of polycrystalline silicon, the metal film on the base layer was made of Cr, and the second metal film was made of Au.

【0027】HFウェットエッチング、NH4F洗浄、
疎水性処理、メタノール洗浄、及びベーキングを順に行
うメタノール置換法により、上記の熱電変換デバイスに
おける水平部と基板との間の所定範囲を残してガラス層
を除去(リリース)した後、垂直部を基板に対してそれ
ぞれ垂直に折曲した。
HF wet etching, NH 4 F cleaning,
After removing (release) the glass layer leaving a predetermined range between the horizontal part and the substrate in the above-described thermoelectric conversion device by a methanol replacement method in which hydrophobic treatment, methanol washing, and baking are sequentially performed, the vertical part is removed from the substrate. To each other.

【0028】なお、リリース前に、先端が約360℃の
電熱ヒータを熱源に利用し、熱電対の先端側を温接点と
して熱電変換デバイスの出力電圧を測定した。その結果
を図17に示す。図17中の計算値は、次の式(1)、
式(2)、及び文献の物性値を用いて算出した〔関
信弘:伝熱工学,森北出版(1988),pp.1-175.R,Le
nggenhager: CMOS Thermoelectric Infrared Sensors,
ETH Zurich (1994).日本熱物性学会:熱物性ハンド
ブック,Table B-2-1,養賢堂(1990)〕。多結晶シリ
コン、Cr、及びAuからなる複合膜のゼーベック係数につ
いては、Auの値を採用した。 V=N(α1−α2)ΔT ・・・・(1) ΔT=Pabs /GT ・・・・・・・(2) ここで、V(V):出力電圧 N:熱電対の数 α1(V/K)α2(V/K):各熱電材のゼーベック
係数 ΔT(K):温接点と冷接点の温度差 Pabs(W):温接点の吸収エネルギー GT(W/K):熱電対の全熱伝導係数
Before the release, the output voltage of the thermoelectric conversion device was measured using an electric heater having a tip of about 360 ° C. as a heat source and using the tip of the thermocouple as a hot junction. The result is shown in FIG. The calculated value in FIG.
It was calculated using the equation (2) and the physical property values of the literature.
Nobuhiro: Heat transfer engineering, Morikita Publishing (1988), pp.1-175. R, Le
nggenhager: CMOS Thermoelectric Infrared Sensors,
ETH Zurich (1994). The Japan Society of Thermophysical Properties: Thermophysical Properties Handbook, Table B-2-1, Yokendo (1990)]. For the Seebeck coefficient of the composite film made of polycrystalline silicon, Cr, and Au, the value of Au was adopted. V = N (α 1 −α 2 ) ΔT (1) ΔT = P abs / G T (2) where V (V): output voltage N: thermocouple Number α 1 (V / K) , α 2 (V / K): Seebeck coefficient of each thermoelectric material ΔT (K): Temperature difference between hot junction and cold junction Pabs (W): Absorbed energy G T ( W / K): Total thermal conductivity coefficient of thermocouple

【0029】[0029]

【発明の効果】以上のように、請求項1の発明によれ
ば、熱電対の周囲に何も存在しないので、温接点と冷接
点の温度差が大きく、そのため出力電圧も大きい。
As described above, according to the first aspect of the present invention, since nothing exists around the thermocouple, the temperature difference between the hot junction and the cold junction is large, and the output voltage is large.

【0030】請求項2の発明によれば、熱電対を水平部
と垂直部とからL字形に形成しているので、垂直部を基
板に対して平行に形成した状態から垂直に折曲できる。
According to the second aspect of the present invention, since the thermocouple is formed in an L-shape from the horizontal portion and the vertical portion, the thermocouple can be bent vertically from a state where the vertical portion is formed parallel to the substrate.

【0031】請求項3の発明によれば、水平部と垂直部
とを少なくとも1層の金属膜で連結しているので、垂直
部の折曲時の破損がほとんどない。
According to the third aspect of the present invention, since the horizontal portion and the vertical portion are connected by at least one metal film, there is almost no damage when the vertical portion is bent.

【0032】請求項4の発明によれば、複数の熱電対の
先端に天板を設けているので、熱電対を保護できると共
に、天板側を温接点として使用する場合には天板を熱吸
収体としても利用できる。
According to the fourth aspect of the present invention, since the top plate is provided at the tips of the plurality of thermocouples, the thermocouple can be protected, and when the top plate side is used as a hot junction, the top plate is heated. It can also be used as an absorber.

【0033】請求項5の発明によれば、前記熱電対を構
成する一方の熱電材を多結晶シリコン等の半導体で、他
方の熱電材をAuやCr等の金属でそれぞれ構成しているの
で、従来にない新規な熱電変換デバイスを提供できる。
According to the fifth aspect of the present invention, one thermoelectric material constituting the thermocouple is made of a semiconductor such as polycrystalline silicon, and the other thermoelectric material is made of a metal such as Au or Cr. An unprecedented new thermoelectric conversion device can be provided.

【0034】請求項6の発明によれば、水平部と基板と
の間の所定範囲を残してガラス層を除去した後、垂直部
を基板に対してそれぞれ垂直に折曲して製造するので、
フォトリソグラフィ等の電子デバイスの実装技術を利用
できる。そのため、従来品よりも集積密度を向上でき
る。
According to the sixth aspect of the present invention, the glass layer is removed while leaving a predetermined range between the horizontal portion and the substrate, and then the vertical portions are respectively bent perpendicularly to the substrate.
Electronic device mounting techniques such as photolithography can be used. Therefore, the integration density can be improved as compared with the conventional product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る熱電変換デバイスの要部拡大断
面図。
FIG. 1 is an enlarged sectional view of a main part of a thermoelectric conversion device according to an embodiment.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】基板の要部拡大断面図。FIG. 4 is an enlarged sectional view of a main part of a substrate.

【図5】基板上に絶縁層を形成した状態を示す要部拡大
断面図。
FIG. 5 is an enlarged sectional view of a main part showing a state where an insulating layer is formed on a substrate.

【図6】絶縁層上にガラス層を形成した状態を示す要部
拡大断面図。
FIG. 6 is an enlarged sectional view of a main part showing a state where a glass layer is formed on an insulating layer.

【図7】ガラス層上に基層を形成した状態を示す要部拡
大断面図。
FIG. 7 is an enlarged sectional view of a main part showing a state where a base layer is formed on a glass layer.

【図8】基層上にガラス層を形成した状態を示す要部拡
大断面図。
FIG. 8 is an enlarged sectional view of a main part showing a state where a glass layer is formed on a base layer.

【図9】基層を所定のパターンに形成した状態を示す要
部拡大断面図。
FIG. 9 is an enlarged sectional view of a main part showing a state where a base layer is formed in a predetermined pattern.

【図10】図9の平面図。FIG. 10 is a plan view of FIG. 9;

【図11】基層上の金属膜を所定のパターンに形成した
状態を示す要部拡大断面図。
FIG. 11 is an enlarged sectional view of a main part showing a state where a metal film on a base layer is formed in a predetermined pattern.

【図12】図11の平面図。FIG. 12 is a plan view of FIG. 11;

【図13】金属膜上に2層目の金属膜を積層した状態を
示す要部拡大断面図。
FIG. 13 is an enlarged sectional view of a main part showing a state where a second metal film is stacked on the metal film.

【図14】図13の平面図。FIG. 14 is a plan view of FIG. 13;

【図15】水平部と絶縁層との間の所定範囲を残してガ
ラス層を除去(リリース)した状態を示す要部拡大断面
図。
FIG. 15 is an enlarged cross-sectional view of a main part showing a state where a glass layer is removed (released) while leaving a predetermined range between a horizontal portion and an insulating layer.

【図16】垂直部を基板に対して垂直に折曲した状態を
示す要部拡大断面図。
FIG. 16 is an enlarged sectional view of a main part showing a state where a vertical part is bent perpendicularly to a substrate.

【図17】実施例における熱源までの距離と出力電圧と
の関係を示すグラフ。
FIG. 17 is a graph showing a relationship between a distance to a heat source and an output voltage in the example.

【図18】従来例の一部を省略した要部拡大斜視図。FIG. 18 is an enlarged perspective view of a main part in which a part of the conventional example is omitted.

【符号の説明】[Explanation of symbols]

1 熱電変換デバイス 2 基板 3 熱電対 4 水平部 4a 側端 5 垂直部 5a 基端 5b 先端 7 ガラス層 8,9 金属膜 10,11 熱電材 13 天板 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion device 2 Substrate 3 Thermocouple 4 Horizontal part 4a Side end 5 Vertical part 5a Base end 5b Tip 7 Glass layer 8, 9 Metal film 10, 11 Thermoelectric material 13 Top plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上に互いに間隔を開け
て立設され、直列に接続された複数の熱電対とを備えた
ことを特徴とする熱電変換デバイス。
1. A thermoelectric conversion device comprising: a substrate; and a plurality of thermocouples which are erected on the substrate at an interval from each other and connected in series.
【請求項2】 前記熱電対を、前記基板上に固定された
水平部と、この水平部の側端に基端が屈曲自在に連結さ
れた垂直部とからL字形に形成した請求項1記載の熱電
変換デバイス。
2. The thermocouple according to claim 1, wherein said thermocouple is formed in an L-shape from a horizontal portion fixed on said substrate and a vertical portion having a base end connected to a side end of said horizontal portion so as to be freely bent. Thermoelectric conversion device.
【請求項3】 前記水平部と前記垂直部とを少なくとも
1層の金属膜で連結した請求項2記載の熱電変換デバイ
ス。
3. The thermoelectric conversion device according to claim 2, wherein said horizontal portion and said vertical portion are connected by at least one metal film.
【請求項4】 前記複数の熱電対の先端に、前記基板と
相対向する天板を設けた請求項1乃至3のいずれか記載
の熱電変換デバイス。
4. The thermoelectric conversion device according to claim 1, wherein a top plate facing the substrate is provided at a tip of the plurality of thermocouples.
【請求項5】 前記熱電対を構成する一方の熱電材を半
導体で、他方の熱電材を金属でそれぞれ構成した請求項
1乃至4のいずれか記載の熱電変換デバイス。
5. The thermoelectric conversion device according to claim 1, wherein one thermoelectric material constituting the thermocouple is made of a semiconductor, and the other thermoelectric material is made of a metal.
【請求項6】 基板上にガラス層を形成し、このガラス
層上に、少なくとも1層の金属膜を介して屈曲自在に連
結された水平部と垂直部とから構成され、直列に接続さ
れた複数の熱電対を前記基板に対して平行に形成し、前
記水平部と前記基板との間の所定範囲を残して前記ガラ
ス層を除去した後、前記垂直部を前記基板に対してそれ
ぞれ垂直に折曲することを特徴とする熱電変換デバイス
の製造方法。
6. A glass layer is formed on a substrate, and a horizontal portion and a vertical portion are connected on the glass layer so as to be freely bent via at least one metal film, and are connected in series. A plurality of thermocouples are formed in parallel with the substrate, and after removing the glass layer leaving a predetermined range between the horizontal portion and the substrate, the vertical portions are respectively perpendicular to the substrate. A method for manufacturing a thermoelectric conversion device, comprising bending.
JP2000231991A 2000-07-31 2000-07-31 Thermoelectric conversion device and its manufacturing method Pending JP2002050801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231991A JP2002050801A (en) 2000-07-31 2000-07-31 Thermoelectric conversion device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231991A JP2002050801A (en) 2000-07-31 2000-07-31 Thermoelectric conversion device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002050801A true JP2002050801A (en) 2002-02-15

Family

ID=18724737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231991A Pending JP2002050801A (en) 2000-07-31 2000-07-31 Thermoelectric conversion device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002050801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207391A (en) * 2002-12-24 2004-07-22 Ritsumeikan Thermoelectric transfer device and its manufacturing method
JP2005026519A (en) * 2003-07-03 2005-01-27 Ritsumeikan Method for manufacturing thermoelectric conversion device
US7217894B2 (en) 2003-06-20 2007-05-15 Kabushiki Kaisha Tokai Rika Denki Seisakusho Switch apparatus for use in vehicles
JP2015059833A (en) * 2013-09-19 2015-03-30 株式会社アンベエスエムティ Thermocouple for surface temperature measurement and surface temperature measurement device
JP2018088445A (en) * 2016-11-28 2018-06-07 積水化学工業株式会社 Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207391A (en) * 2002-12-24 2004-07-22 Ritsumeikan Thermoelectric transfer device and its manufacturing method
US7355113B2 (en) 2002-12-24 2008-04-08 Kabushiki Kaisha Tokai Rika Denki Seisakusho Thermoelectric conversion device and method of manufacturing the same
US7217894B2 (en) 2003-06-20 2007-05-15 Kabushiki Kaisha Tokai Rika Denki Seisakusho Switch apparatus for use in vehicles
JP2005026519A (en) * 2003-07-03 2005-01-27 Ritsumeikan Method for manufacturing thermoelectric conversion device
JP2015059833A (en) * 2013-09-19 2015-03-30 株式会社アンベエスエムティ Thermocouple for surface temperature measurement and surface temperature measurement device
JP2018088445A (en) * 2016-11-28 2018-06-07 積水化学工業株式会社 Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure

Similar Documents

Publication Publication Date Title
JP5677710B2 (en) Bidirectional thermoelectric conversion device using the Savebeck / Peltier effect using nanowires made of conductive material or semiconductor material
JP5988302B2 (en) Thermoelectric conversion device using the Savebeck / Peltier effect, comprising parallel nanowires made of a conductive material or a semiconductor material arranged in rows and columns via an insulating material, and a method of manufacturing the same
US20150076651A1 (en) Thermocouple, thermopile, infrared ray sensor and method of manufacturing infrared ray sensor
JP2007510310A5 (en)
WO2013127113A1 (en) Three-dimensional thermoelectric energy collector and manufacturing method therefor
KR101680766B1 (en) Thermoelectric device and Array of Thermoelectric device
CN102263197B (en) Novel miniature thermoelectric generator and manufacturing method
US9490415B2 (en) Integrated thermoelectric generator
JP2002050801A (en) Thermoelectric conversion device and its manufacturing method
CN104081549A (en) Thermocouple, method of production and substrate that is suitable for carrying out the method
CN108007580A (en) High-temperature heat flux sensor based on SiC thermoelectric materials and preparation method thereof
Yang et al. Development of thermoelectric energy generator with high area density stacked polysilicon thermocouples
JP3730868B2 (en) Method of manufacturing thin film piezoresistive sensor
JP4056382B2 (en) Thermoelectric conversion device and manufacturing method thereof
KR100894500B1 (en) Thermopile sensor and method for preparing the same
CN105070822A (en) Formation of a thermopile sensor utilizing cmos fabrication techniques
JP2004079606A5 (en)
JPS63102382A (en) Manufacture and construction of thin film thermoelectric transducer module
Shin et al. Microgenerator Using BiSbTe-Pt Thermopile and Pt-Al 2 O 3 Ceramic Combustor
JP7360120B2 (en) Thermoelectric conversion device, electronic equipment, and method for manufacturing thermoelectric conversion device
KR101408670B1 (en) Method for manufacturing thermoelectric module using silicon-mask
KR101166304B1 (en) Thermopile sensor and manufacturing method thereof
CN202145467U (en) Novel minisize thermoelectricity generator
JPS63110778A (en) Manufacture of thermoelectric device
TW406446B (en) Thermopile infrared sensor and manufacture method thereof