JP2002050676A - Electrostatic chuck and electrostatic attraction structure - Google Patents

Electrostatic chuck and electrostatic attraction structure

Info

Publication number
JP2002050676A
JP2002050676A JP2001140916A JP2001140916A JP2002050676A JP 2002050676 A JP2002050676 A JP 2002050676A JP 2001140916 A JP2001140916 A JP 2001140916A JP 2001140916 A JP2001140916 A JP 2001140916A JP 2002050676 A JP2002050676 A JP 2002050676A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
electrode
wafer
electrostatic
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001140916A
Other languages
Japanese (ja)
Other versions
JP4540252B2 (en
Inventor
Hideyoshi Tsuruta
英芳 鶴田
Naohito Yamada
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001140916A priority Critical patent/JP4540252B2/en
Publication of JP2002050676A publication Critical patent/JP2002050676A/en
Application granted granted Critical
Publication of JP4540252B2 publication Critical patent/JP4540252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent lowering of attraction after an electrostatic chuck has been bonded to a conductive member. SOLUTION: The electrostatic chuck comprises a base substance 2 provided with a wafer-placing face 2a and a back face 2b on the opposite side, electrostatic chuck electrodes 4A, 4B embedded in the base substance, and an insulation layer 7 provided on the back face of the base substance 2. The basic body 2 has at least the wafer-placing face 2a and a dielectric layer 3 surrounding the electrostatic chuck electrodes 4A, 4B. The insulation layer 7 is composed of an insulating material, having volume resistivity higher than that of the dielectric layer 3. the insulation layer 7 is bonded to a cooling member 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の静電チャッ
ク電極を備えており、各静電チャック電極に対して相異
なる電位を印加する静電チャックに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck having a plurality of electrostatic chuck electrodes and applying different potentials to the respective electrostatic chuck electrodes.

【0002】[0002]

【従来の技術】静電チャックにおいては、通常、絶縁層
の設置面から突出する多数の突起ないしエンボス部分を
設け、この突起の頂面(接触面)を半導体ウエハーに対
して接触させる。また、絶縁層内の内部電極に直流電圧
を印加し、半導体ウエハーと突起の接触面との接触界面
でジョンソン−ラーベック力を発生させ、接触面上の半
導体ウエハーを吸着する。
2. Description of the Related Art In an electrostatic chuck, usually, a large number of projections or embossed portions projecting from a surface on which an insulating layer is provided are provided, and the top surface (contact surface) of the projection is brought into contact with a semiconductor wafer. In addition, a DC voltage is applied to the internal electrode in the insulating layer to generate a Johnson-Rahbek force at a contact interface between the semiconductor wafer and the contact surface of the projection, thereby attracting the semiconductor wafer on the contact surface.

【0003】現在、半導体ウエハーの高密度プラズマ
(HDP)CVDやエッチングの際には、半導体ウエハ
ー上に高密度プラズマを生成させている。そして、エッ
チングの場合には、半導体ウエハーを静電チャックによ
って吸着し、静電チャックの下側に冷却用部材を設け
る。そして、高密度プラズマから半導体ウエハーへと入
熱した熱量を静電チャック側へと逃がすことで、半導体
ウエハーの温度上昇を防止している。また、HDPCV
Dの際には、高密度プラズマから半導体ウエハーへと入
熱する熱量を、半導体ウエハーから一定速度で静電チャ
ックに逃がすことで、半導体ウエハーの温度を所望温度
に制御している。
At present, high-density plasma (HDP) CVD or etching of a semiconductor wafer generates a high-density plasma on the semiconductor wafer. In the case of etching, the semiconductor wafer is sucked by the electrostatic chuck, and a cooling member is provided below the electrostatic chuck. The amount of heat input to the semiconductor wafer from the high-density plasma is released to the electrostatic chuck side, thereby preventing the temperature of the semiconductor wafer from rising. HDPCV
In the case of D, the amount of heat input from the high-density plasma to the semiconductor wafer is released from the semiconductor wafer to the electrostatic chuck at a constant speed, thereby controlling the temperature of the semiconductor wafer to a desired temperature.

【0004】このようにジョンソン−ラーベック力を利
用するタイプの静電チャックにおいては、基体を半導体
によって構成し、基体内で電子または正孔を移動させ
る。例えば、窒化アルミニウム系セラミックスによって
基体を形成した場合には、窒化アルミニウム質セラミッ
クスはn型半導体となる。n型半導体の導電メカニズム
は、主として電子の移動により、正孔の移動はほとんど
ない。
As described above, in the electrostatic chuck of the type utilizing the Johnson-Rahbek force, the base is formed of a semiconductor, and electrons or holes are moved in the base. For example, when the base is formed of an aluminum nitride-based ceramic, the aluminum nitride-based ceramic becomes an n-type semiconductor. In the conduction mechanism of the n-type semiconductor, there is almost no movement of holes due mainly to movement of electrons.

【0005】[0005]

【発明が解決しようとする課題】本発明者はジョンソン
−ラーベックタイプの静電チャックを作製していたが、
この過程で、静電チャックを冷却用部材へと接合した後
にウエハーの吸着力が低下することがあった。特に、1
00ボルト程度の電圧ではこうした問題はほとんど生じ
ないが、300ボルト以上、更には500ボルト以上の
高電圧領域になると、吸着力が目的値に達しないという
現象が見られた。
The present inventor has manufactured a Johnson-Rahbek type electrostatic chuck.
In this process, the adsorbing force of the wafer may decrease after the electrostatic chuck is joined to the cooling member. In particular, 1
At a voltage of about 00 volts, such a problem hardly occurs. However, in a high voltage region of 300 volts or more, or even 500 volts or more, a phenomenon that the attraction force does not reach the target value was observed.

【0006】本発明の課題は、静電チャックを導電性部
材へと接合した後に生ずる吸着力の低下を防止すること
である。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent a decrease in an attraction force generated after an electrostatic chuck is joined to a conductive member.

【0007】[0007]

【課題を解決するための手段】本発明は、ウエハー設置
面とこのウエハー設置面とは反対側の背面とが設けられ
ている基体と、基体内に埋設された静電チャック電極
と、基板背面に設けた絶縁層とを有し、該基体が、少な
くとも前記ウエハー設置面を有しかつ静電チャック電極
を包囲する誘電体層を含み、該絶縁層が誘電体層の体積
抵抗率よりも高い体積抵抗率を有する絶縁性材料からな
ることを特徴とする、静電チャックに係るものである。
SUMMARY OF THE INVENTION The present invention provides a substrate having a wafer mounting surface and a back surface opposite to the wafer mounting surface, an electrostatic chuck electrode embedded in the substrate, and a substrate rear surface. An insulating layer provided on the substrate, wherein the substrate includes a dielectric layer having at least the wafer mounting surface and surrounding the electrostatic chuck electrode, wherein the insulating layer is higher than the volume resistivity of the dielectric layer. The present invention relates to an electrostatic chuck, which is made of an insulating material having a volume resistivity.

【0008】基体背面に導電性部材を設けることが好ま
しい。導電性部材は、特に好ましくは冷却用部材、特に
は金属製の冷却用部材であるが、冷却用部材には限定さ
れない。
Preferably, a conductive member is provided on the back surface of the base. The conductive member is particularly preferably a cooling member, particularly a metal cooling member, but is not limited to a cooling member.

【0009】本発明者は、導電性部材へと静電チャック
を接合した後に生ずる吸着力の低下について検討した結
果、次の仮説に至った。
The inventor of the present invention has studied the reduction in the attraction force generated after the electrostatic chuck is joined to the conductive member, and has reached the following hypothesis.

【0010】例えば図2の模式図に示すように、静電チ
ャック2Aの背面2b側に冷却用部材5を接合すると、
冷却用部材5は通常接地されているので、静電チャック
電極4から冷却用部材5へと向かって電流B1、B2が
流れる。なお、A1、A2は、電極4からウエハー設置
面2a側へと流れるジョンソン−ラーベック電流であ
る。しかし、当業者の常識に従って考えると、こうした
冷却用部材5への漏れ電流は吸着力には影響を及ぼさな
いと考えられる。なぜなら、電極4を中心として見たと
き、電極4からウエハー設置面2aへと電流が流れるの
と共に、電極2から背面2b側へも電流が流れるが、こ
れら2つの電流経路は互いに並列接続の関係にある。従
って、かりに背面2b側への漏れ電流B1、B2が非常
に大きくなったものと仮定しても、電極とウエハー設置
面との間の電位差は何ら変わらないのであるから、電極
とウエハー設置面との間のジョンソン−ラーベック電流
にも影響がなく、吸着力を低下させないと考えられる。
For example, as shown in the schematic diagram of FIG. 2, when the cooling member 5 is joined to the back surface 2b side of the electrostatic chuck 2A,
Since the cooling member 5 is normally grounded, currents B1 and B2 flow from the electrostatic chuck electrode 4 toward the cooling member 5. A1 and A2 are Johnson-Rahbek currents flowing from the electrode 4 to the wafer installation surface 2a. However, considering the common sense of those skilled in the art, it is considered that such leakage current to the cooling member 5 does not affect the attraction force. This is because, when viewed from the electrode 4 as a center, a current flows from the electrode 4 to the wafer installation surface 2a and also a current flows from the electrode 2 to the back surface 2b. These two current paths are connected in parallel with each other. It is in. Therefore, even if it is assumed that the leakage currents B1 and B2 to the back surface 2b become extremely large, the potential difference between the electrode and the wafer mounting surface does not change at all. It is considered that there is no effect on the Johnson-Rahbek current during the period, and the adsorption force is not reduced.

【0011】しかし、本発明者は、こうした常識を再検
討し、次の仮説に至った。即ち、電極4の周囲に何らか
の高抵抗領域10が存在しており,この領域10におけ
る抵抗率が周囲の誘電体層3の抵抗率よりも大きいもの
と仮定した。かりにこの仮定が正しいものとすると、背
面側への漏れ電流B1、B2の増加による吸着力の低下
が説明できるものと思われる。なぜなら、電極4の電位
をVOとし、高抵抗領域10の周縁における電位をVR
とし、設置面2aにおける電位をVSとする。高抵抗領
域10の周縁における電位VRと電極の電位VOとの電
位差(VO−VR)は、ジョンソン−ラーベック電流A
1、A2と漏れ電流B1、B2との総和に対して、高抵
抗領域10における抵抗を乗じた値となる。ここで、高
抵抗領域10における体積抵抗率が周囲の体積抵抗率よ
りも充分に大きいものとすると、電位差(VO−VR)
が電位差(VR−VS)に比べて大きくなる。これと共
に、漏れ電流B1、B2が充分に大きいものとすると、
電位差(VO−VR)は主として漏れ電流B1、B2の
大きさによって支配される。この結果、漏れ電流B1、
B2の値が大きくなるほど、電極から高抵抗領域10の
周縁へと至る間の電位降下が大きくなり、その分ジョン
ソン−ラーベック電流A1、A2は小さくなり、吸着力
が低下する。
However, the present inventor has reconsidered such common sense and arrived at the following hypothesis. That is, it is assumed that some high resistance region 10 exists around the electrode 4, and the resistivity in this region 10 is higher than the resistivity of the surrounding dielectric layer 3. Assuming that this assumption is correct, it seems that the decrease in the attraction force due to the increase in the leakage currents B1 and B2 to the rear side can be explained. This is because the potential of the electrode 4 is VO, and the potential at the periphery of the high resistance region 10 is VR.
And the potential on the installation surface 2a is VS. The potential difference (VO-VR) between the potential VR at the periphery of the high resistance region 10 and the potential VO of the electrode is the Johnson-Rahbek current A
1, the sum of A2 and the leakage currents B1, B2 is multiplied by the resistance in the high resistance region 10. Here, assuming that the volume resistivity in the high-resistance region 10 is sufficiently larger than the surrounding volume resistivity, the potential difference (VO-VR)
Becomes larger than the potential difference (VR-VS). At the same time, if the leakage currents B1 and B2 are sufficiently large,
The potential difference (VO-VR) is mainly governed by the magnitude of the leakage currents B1, B2. As a result, the leakage current B1,
As the value of B2 increases, the potential drop from the electrode to the periphery of the high resistance region 10 increases, and the Johnson-Rahbek currents A1 and A2 decrease accordingly, and the attraction force decreases.

【0012】本発明者は、こうした仮説に基づき、図
1、図3に示すように、静電チャック2の背面2b側に
絶縁層7を設けた。この結果、前述した静電チャックの
冷却用部材への接合に伴う吸着力の低下は見られなくな
った。これは、B1、B2のような漏れ電流が絶縁層7
によって大きく低減したからであろう。
Based on such a hypothesis, the present inventor provided an insulating layer 7 on the back surface 2b side of the electrostatic chuck 2 as shown in FIGS. As a result, a decrease in the attraction force associated with the joining of the electrostatic chuck to the cooling member was not observed. This is because the leakage current such as B1 and B2
This is probably due to the large reduction.

【0013】なお、図1において、1はウエハーであ
り、4A、4Bは電極であり、5aは冷却媒体の通路で
あり、Pはウエハーへの入熱である。
In FIG. 1, 1 is a wafer, 4A and 4B are electrodes, 5a is a passage of a cooling medium, and P is heat input to the wafer.

【0014】絶縁層7は、誘電体層の体積抵抗率よりも
高い体積抵抗率を有する絶縁性材料からなる。ここで、
静電チャックの使用温度において、誘電体の体積抵抗率
に対する絶縁性材料の堆積抵抗率の倍率は、10倍以上
であることが好ましい。また、誘電体の体積抵抗率は、
使用温度領域において、10−1012Ω・cmであ
ることが好ましい。静電チャックの使用温度範囲におけ
る絶縁層の体積抵抗率は、1012−1015Ω・cm
であることが好ましい。
The insulating layer 7 is made of an insulating material having a higher volume resistivity than that of the dielectric layer. here,
At the operating temperature of the electrostatic chuck, the ratio of the deposition resistivity of the insulating material to the volume resistivity of the dielectric is preferably 10 times or more. The volume resistivity of the dielectric is
In the operating temperature range, it is preferably 10 8 -10 12 Ω · cm. The volume resistivity of the insulating layer in the operating temperature range of the electrostatic chuck is 10 12 -10 15 Ω · cm.
It is preferred that

【0015】本発明において好ましくは、静電チャック
電極が互いに負荷電位の異なる少なくとも二つの電極か
らなる。
In the present invention, preferably, the electrostatic chuck electrode comprises at least two electrodes having different load potentials.

【0016】誘電体は特に限定されないが、窒化アルミ
ニウム、窒化珪素、アルミナ、炭化珪素が好ましい。絶
縁性材料は、窒化アルミニウム、窒化珪素、アルミナ、
窒化ホウ素、マグネシアが好ましい。
Although the dielectric is not particularly limited, aluminum nitride, silicon nitride, alumina and silicon carbide are preferred. The insulating material is aluminum nitride, silicon nitride, alumina,
Boron nitride and magnesia are preferred.

【0017】特に好ましくは、誘電体と絶縁性材料とが
同種のセラミックスからなる。ここで、同種のセラミッ
クスとは、セラミックスの基材が同じであることを言
い、添加成分は異動がある。特に好ましくは、誘電体と
絶縁性材料とが窒化アルミニウム、窒化珪素またはアル
ミナであり、更に好ましくは窒化アルミニウムである。
Particularly preferably, the dielectric and the insulating material are made of the same type of ceramic. Here, the same type of ceramics means that the base material of the ceramics is the same, and the additive component varies. Particularly preferably, the dielectric and the insulating material are aluminum nitride, silicon nitride or alumina, more preferably aluminum nitride.

【0018】静電チャック内における高抵抗領域10の
形態や材質、組織はいまだ明らかではない。しかし、セ
ラミックスを焼成する過程で生じやすいものと思われ
る。また、誘電体が窒化アルミニウムである場合には特
に高抵抗領域が発生し易い傾向が見られる。また、特
に、電極をモリブデン金属またはモリブデン合金によっ
て形成した場合に特に発生し易い。窒化アルミニウム質
セラミックスはn型半導体であり、電子がキャリアとし
て働いている。従って、モリブデン金属がセラミックス
内に拡散し、カウンタードープ材として作用し、キャリ
アである電子の数を減少させたものと考えられる。
The form, material and structure of the high resistance region 10 in the electrostatic chuck are not yet clear. However, it is thought that it is likely to occur during the process of firing ceramics. In addition, when the dielectric is aluminum nitride, there is a tendency that a high resistance region is easily generated. In particular, this is particularly likely to occur when the electrode is formed of molybdenum metal or a molybdenum alloy. Aluminum nitride ceramics are n-type semiconductors, and electrons work as carriers. Therefore, it is considered that molybdenum metal diffused into the ceramics and acted as a counter-doping material, thereby reducing the number of electrons as carriers.

【0019】モリブデン金属の窒化アルミニウム質セラ
ミックス中への拡散現象も明確には理解されていない
が、窒化アルミニウム粒子の表面の酸素とモリブデンが
反応して酸化モリブデンを生成し、酸化モリブデンが焼
成工程において揮発し、窒化アルミニウム粒子中に拡散
している可能性がある。
Although the phenomenon of diffusion of molybdenum metal into aluminum nitride ceramics is not clearly understood, molybdenum oxide reacts with oxygen on the surface of the aluminum nitride particles to form molybdenum oxide, and the molybdenum oxide is used in the firing step. It may have volatilized and diffused into the aluminum nitride particles.

【0020】静電チャック電極の材質は限定されない
が、金属モリブデンあるいはモリブデン合金が好まし
い。モリブデン合金としては、モリブデンとタングステ
ン、アルミニウム、白金との合金が好ましい。モリブデ
ン合金の場合には、モリブデンの割合の上限は特にな
く、100重量%(純金属)まで増やしてよいが、モリ
ブデンの割合の下限は50重量%が好ましい。
The material of the electrostatic chuck electrode is not limited, but metal molybdenum or a molybdenum alloy is preferable. As the molybdenum alloy, an alloy of molybdenum and tungsten, aluminum, or platinum is preferable. In the case of a molybdenum alloy, the upper limit of the molybdenum ratio is not particularly limited and may be increased to 100% by weight (pure metal), but the lower limit of the molybdenum ratio is preferably 50% by weight.

【0021】また、モリブデン金属または合金以外に、
タングステン、アルミニウム、白金の純金属または合金
が好ましい。
In addition to the molybdenum metal or alloy,
Pure metals or alloys of tungsten, aluminum and platinum are preferred.

【0022】静電チャックの背面と導電性部材との接合
方法は限定されず、ろう接合、ガラス接合、樹脂接合、
固相拡散法による接合等であってよい。
The joining method between the back surface of the electrostatic chuck and the conductive member is not limited, and may be brazing, glass joining, resin joining,
Bonding by a solid phase diffusion method or the like may be used.

【0023】電極の形態は限定されないが、特に網状ま
たはパンチングメタル状である場合に前述の問題が生じ
やすく、本発明が有効である。これは、電極の形状効果
によるものと思われる。
Although the form of the electrode is not limited, the above-mentioned problem is likely to occur particularly in the case of a mesh or punched metal, and the present invention is effective. This seems to be due to the shape effect of the electrodes.

【0024】本発明の静電チャックの製作方法は限定さ
れないが、次のいずれかの方法を採用できる。
Although the method of manufacturing the electrostatic chuck of the present invention is not limited, any of the following methods can be employed.

【0025】(1)誘電体用セラミックス粉末をプレス
成形し、その上に電極を設置し、その上に誘電体用セラ
ミックス粉末を更に充填し、プレス成形する。次いで、
この成形体の上に、絶縁層用のセラミックス粉末を充填
し、更にプレス成形し、成形体を得る。この成形体を一
体焼成して焼成体を得、焼成体を加工して静電チャック
を得る。
(1) The ceramic powder for dielectric is press-molded, electrodes are placed thereon, and the ceramic powder for dielectric is further filled thereon and press-molded. Then
A ceramic powder for an insulating layer is filled on the formed body, and further pressed to obtain a formed body. The molded body is integrally fired to obtain a fired body, and the fired body is processed to obtain an electrostatic chuck.

【0026】(2)誘電体層用のセラミックス粉末をプ
レス成形し、その上に電極を載せ、その上に誘電体層用
のセラミックス粉末を充填し、プレス成形する。この粉
末成形体の上に絶縁層用のセラミックスバルク体を載
せ、粉末成形体とバルク体とを一体焼成することによっ
て焼成体を得、この焼成体を加工する。
(2) A ceramic powder for a dielectric layer is press-molded, an electrode is placed thereon, and the ceramic powder for a dielectric layer is filled thereon and press-molded. A ceramic bulk body for an insulating layer is placed on the powder compact, and the powder compact and the bulk body are integrally fired to obtain a fired body, and the fired body is processed.

【0027】(3)誘電体層用のセラミックス粉末をプ
レス成形し、その上に電極を載せ、更にその上に誘電体
層用のセラミックス粉末を載せ、プレス成形し、一体焼
成して焼成体を得る。絶縁層用のセラミックスバルク体
を、この焼成体に対して接合し、所定形状に加工して静
電チャックを得る。この際の接合方法は、ガラス接合、
樹脂接合、拡散接合等であってよい。
(3) A ceramic powder for a dielectric layer is press-molded, an electrode is mounted thereon, and a ceramic powder for a dielectric layer is further mounted thereon, press-molded, and integrally fired to obtain a fired body. obtain. A ceramic bulk body for an insulating layer is bonded to the fired body and processed into a predetermined shape to obtain an electrostatic chuck. The joining method at this time is glass joining,
Resin bonding, diffusion bonding, or the like may be used.

【0028】[0028]

【実施例】(実施例1)前述の(1)の製法に従い、図
1に示す形態の双極型の静電チャックを製造した。具体
的には、還元窒化法によって得られた誘電体層用の窒化
アルミニウム粉末を使用し、この粉末にアクリル系樹脂
バインダーを添加し、噴霧造粒装置によって造粒し、造
粒顆粒を得た。この造粒顆粒を成形し、直径200m
m、厚さ30mmの円盤状予備成形体を作製した。この
際、成形体の中に電極を埋設した。この際の成形圧力を
200kg/cmとした。電極としては、モリブデン
製の金網を使用した。この金網としては、直径φ0.2
0mmのモリブデン線を、1インチ当たり50本の密度
で編んだ金網を使用した。この成形体の上に、絶縁層用
の、同じ焼成条件によって体積抵抗の異なる物が得られ
るような窒化アルミニウム粉末を載せ、200kg/c
の圧力でプレス成形した。
(Example 1) A bipolar electrostatic chuck having the form shown in FIG. 1 was manufactured according to the above-mentioned manufacturing method (1). Specifically, aluminum nitride powder for a dielectric layer obtained by a reduction nitridation method was used, an acrylic resin binder was added to the powder, and the mixture was granulated by a spray granulator to obtain granules. . This granulated granule is molded and has a diameter of 200 m.
m, a disc-shaped preform having a thickness of 30 mm was prepared. At this time, an electrode was embedded in the compact. The molding pressure at this time was 200 kg / cm 2 . A molybdenum wire mesh was used as an electrode. This wire mesh has a diameter of φ0.2
A wire mesh in which a 0-mm molybdenum wire was knitted at a density of 50 wires per inch was used. An aluminum nitride powder for an insulating layer, which has a different volume resistance under the same sintering conditions, is placed on this molded body, and 200 kg / c.
Press molding was performed at a pressure of m 2 .

【0029】この円盤状成形体をホットプレス型中に収
容し、密封した。昇温速度300℃/時間で温度を上昇
させ、この際、室温〜1300℃の温度範囲で減圧を行
った。この温度の上昇と同時にプレス圧力を上昇させ
た。最高温度を1900℃とし、最高温度で5時間保持
し、焼結体を得た。この焼結体の吸着面側に、ブラスト
加工によって、平面円形の多数の突起を形成し、実施例
1の静電チャックを得た。ただし、ウエハー設置面から
の電極の深さは1mmとし、誘電体層の体積抵抗率を室
温で1×1010Ω・cmに調節し、絶縁層の体積抵抗
率を約1×1013Ω・cmに調節した。
The disc-shaped compact was housed in a hot press mold and sealed. The temperature was increased at a rate of 300 ° C./hour, and the pressure was reduced in a temperature range from room temperature to 1300 ° C. The press pressure was raised at the same time as the temperature was raised. The maximum temperature was set to 1900 ° C., and maintained at the maximum temperature for 5 hours to obtain a sintered body. A large number of planar circular projections were formed on the suction surface side of the sintered body by blasting, and the electrostatic chuck of Example 1 was obtained. However, the depth of the electrode from the wafer installation surface was 1 mm, the volume resistivity of the dielectric layer was adjusted to 1 × 10 10 Ω · cm at room temperature, and the volume resistivity of the insulating layer was about 1 × 10 13 Ω · cm. cm.

【0030】この静電チャックの吸着力を測定した。負
荷電圧は、+300ボルトおよび−300ボルトとし
た。この静電チャックのシリコンウエハーに対する吸着
力を圧力(Torr)単位で測定した。この結果、吸着
力は室温で50−70Torrの値を示した。
The chucking force of the electrostatic chuck was measured. The load voltage was +300 volts and -300 volts. The attraction force of the electrostatic chuck to the silicon wafer was measured in units of pressure (Torr). As a result, the adsorption power showed a value of 50-70 Torr at room temperature.

【0031】次いで、静電チャックの背面側に銀ペース
トを塗布し、400℃で焼き付けた。この後、前述のよ
うに吸着力を測定したところ、室温で50−70Tor
rの値を示した。
Next, a silver paste was applied to the back side of the electrostatic chuck and baked at 400.degree. After that, when the adsorptive power was measured as described above, it was found to be 50-70 Torr at room temperature.
The value of r is shown.

【0032】(実施例2)実施例1と同様にして静電チ
ャックを製作した。ただし、前述の(2)に示す方法を
採用した。そして、誘電体層用の窒化アルミニウム成形
体の中に電極を埋設すると共に、絶縁層用の窒化アルミ
ニウム焼結体の平板(厚さ3mm)を用意し、成形体と
平板とを積層した。こうして得られた積層体をホットプ
レス型中に収容し、実施例1と同様にして焼成した。
Example 2 An electrostatic chuck was manufactured in the same manner as in Example 1. However, the method shown in the above (2) was adopted. The electrodes were embedded in the aluminum nitride compact for the dielectric layer, and a flat plate (thickness: 3 mm) of an aluminum nitride sintered compact for the insulating layer was prepared, and the compact and the flat plate were laminated. The laminate thus obtained was placed in a hot press mold and fired in the same manner as in Example 1.

【0033】こうして得られた静電チャックは、誘電体
層の体積抵抗が1×10 10Ω・cmであり、絶縁体層
の体積抵抗は2×1013Ω・cmであった。この静電
チャックについてシリコンウエハーに対する吸着力を測
定したところ、50−70Torrの値を示した。ま
た、静電チャックの背面に銀ペーストを焼き付けた後、
吸着力を測定したところ、50−70Torrの値を示
した。
The thus obtained electrostatic chuck is a dielectric chuck.
The volume resistance of the layer is 1 × 10 10Ω · cm, insulator layer
Has a volume resistance of 2 × 1013Ω · cm. This electrostatic
Measure the chucking force of the chuck against the silicon wafer
As a result, a value of 50-70 Torr was shown. Ma
After baking silver paste on the back of the electrostatic chuck,
When the adsorption force was measured, it showed a value of 50-70 Torr.
did.

【0034】(実施例3)実施例1と同様にして静電チ
ャックを製作した。ただし、前述の(3)に示す方法を
採用した。そして、誘電体層用の窒化アルミニウム成形
体の中に電極を埋設して成形体を得た後、この成形体を
実施例1と同様にして焼成し、体積抵抗が3×1010
Ω・cmの焼成体を得た。これと共に、絶縁層用の窒化
アルミニウム焼結体の平板(厚さ5mm:体積抵抗1×
1014Ω・cm)を用意した。前述の電極が埋設され
た焼成体と絶縁層用の平板とを積層し、固相接合法によ
って接合した。
Example 3 An electrostatic chuck was manufactured in the same manner as in Example 1. However, the method shown in the above (3) was adopted. Then, after embedding an electrode in an aluminum nitride molded body for a dielectric layer to obtain a molded body, the molded body is fired in the same manner as in Example 1 to have a volume resistance of 3 × 10 10
A fired body of Ω · cm was obtained. At the same time, a flat plate of an aluminum nitride sintered body for an insulating layer (thickness 5 mm: volume resistance 1 ×
10 14 Ω · cm). The fired body in which the above-described electrodes were embedded and a flat plate for an insulating layer were laminated and joined by a solid-state joining method.

【0035】こうして得られた静電チャックについて、
シリコンウエハーに対する吸着力を測定したところ、5
0−70Torrの値を示した。また、静電チャックの
背面に銀ペーストを焼き付けた後、吸着力を測定したと
ころ、50−70Torrの値を示した。
With respect to the thus-obtained electrostatic chuck,
When the adsorption force to the silicon wafer was measured,
It showed a value of 0-70 Torr. After the silver paste was baked on the back surface of the electrostatic chuck, the adsorption force was measured, and the result showed a value of 50-70 Torr.

【0036】(比較例)実施例1と同様にして静電チャ
ックを製作した。ただし、静電チャックの基体の全体
を、前述した誘電体層用の窒化アルミニウムによって形
成し、絶縁層用の窒化アルミニウムは使用しなかった。
(Comparative Example) An electrostatic chuck was manufactured in the same manner as in Example 1. However, the entire substrate of the electrostatic chuck was formed of the above-described aluminum nitride for the dielectric layer, and the aluminum nitride for the insulating layer was not used.

【0037】こうして得られた静電チャックについて、
シリコンウエハーに対する吸着力を測定したところ、5
0−70Torrの値を示した。また、静電チャックの
背面に銀ペーストを焼き付けた後、吸着力を測定したと
ころ、38Torrであった。
With respect to the thus obtained electrostatic chuck,
When the adsorption force to the silicon wafer was measured,
It showed a value of 0-70 Torr. After the silver paste was baked on the back surface of the electrostatic chuck, the adhesion was measured and found to be 38 Torr.

【0038】[0038]

【発明の効果】以上述べたように、本発明の静電チャッ
クによれば、静電チャックを導電性部材へと接合した後
に生ずる吸着力の低下を防止できる。
As described above, according to the electrostatic chuck of the present invention, it is possible to prevent the attraction force from being reduced after the electrostatic chuck is joined to the conductive member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静電吸着構造の一例を示す模式図であ
る。
FIG. 1 is a schematic view showing an example of an electrostatic suction structure of the present invention.

【図2】比較例の静電吸着構造を示す模式図である。FIG. 2 is a schematic view illustrating an electrostatic suction structure of a comparative example.

【図3】本発明例の静電吸着構造を示す模式図である。FIG. 3 is a schematic view showing an electrostatic suction structure according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ウエハー、2 静電チャック、2A 従来の
静電チャック、2a ウエハー設置面、2b 背
面、3 誘電体層、4、4A,4B 静電チャック
電極、5 冷却用部材、7 絶縁層、10 高抵
領域、A1,A2 ジョンソン−ラーベック電流、B
1,B2 背面への漏れ電流、VO 電極の電位、
VR 高抵抗領域10の周縁の電位、VS ウエハ
ー設置面2aにおける電位
Reference Signs List 1 wafer, 2 electrostatic chuck, 2A conventional electrostatic chuck, 2a wafer installation surface, 2b back surface, 3 dielectric layer, 4 4A, 4B electrostatic chuck electrode, 5 cooling member, 7 insulating layer, 10 high resistance Region, A1, A2 Johnson-Rahbek current, B
1, B2 leakage current to the back, potential of VO electrode,
VR Potential at the periphery of high-resistance region 10, VS Potential at wafer mounting surface 2a

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ウエハー設置面とこのウエハー設置面とは
反対側の背面とが設けられている基体と、基体内に埋設
された静電チャック電極と、基板背面に設けた絶縁層と
を有し、該基体が、少なくとも前記ウエハー設置面を有
しかつ静電チャック電極を包囲する誘電体層を含み、該
絶縁層が誘電体層の体積抵抗率よりも高い体積抵抗率を
有する絶縁性材料からなることを特徴とする、静電チャ
ック。
A substrate provided with a wafer mounting surface and a back surface opposite to the wafer mounting surface; an electrostatic chuck electrode embedded in the substrate; and an insulating layer provided on the back surface of the substrate. An insulating material having at least the wafer mounting surface and a dielectric layer surrounding the electrostatic chuck electrode, wherein the insulating layer has a volume resistivity higher than that of the dielectric layer; An electrostatic chuck, comprising:
【請求項2】前記静電チャック電極が互いに負荷電位の
異なる少なくとも二つの電極からなることを特徴とす
る、請求項1記載の静電チャック。
2. The electrostatic chuck according to claim 1, wherein said electrostatic chuck electrode comprises at least two electrodes having different load potentials.
【請求項3】前記背面に対して導電性部材を接合するこ
とによって前記ウエハー設置面側から入力された熱を前
記導電性部材へと逃がすことを特徴とする、請求項1ま
たは2記載の静電チャック。
3. The static electricity according to claim 1, wherein a heat input from the wafer installation surface side is released to the conductive member by bonding a conductive member to the back surface. Electric chuck.
【請求項4】前記静電チャック電極が網またはパンチン
グメタルからなることを特徴とする、請求項1−3のい
ずれか一つの請求項に記載の静電チャック。
4. The electrostatic chuck according to claim 1, wherein said electrostatic chuck electrode is made of mesh or punched metal.
【請求項5】前記静電チャック電極がモリブデン金属ま
たはモリブデン合金からなることを特徴とする、請求項
1−4のいずれか一つの請求項に記載の静電チャック。
5. The electrostatic chuck according to claim 1, wherein said electrostatic chuck electrode is made of molybdenum metal or a molybdenum alloy.
【請求項6】ウエハーを吸着するための静電チャック及
び該静電チャックの背面に接合されている導電性部材と
を備えている静電吸着構造であって、前記静電チャック
が、ウエハー設置面とこのウエハー設置面とは反対側の
背面とが設けられている基体と、基体内に埋設された静
電チャック電極と、基板背面に設けた絶縁層とを有し、
該基体が、少なくとも前記ウエハー設置面を有しかつ静
電チャック電極を包囲する誘電体層を含み、該絶縁層が
誘電体層の体積抵抗率よりも高い体積抵抗率を有する絶
縁性材料からなり、前記導電性部材が前記基体の前記背
面に接合されていることを特徴とする、静電吸着構造。
6. An electrostatic chuck structure comprising: an electrostatic chuck for chucking a wafer; and a conductive member joined to a back surface of the electrostatic chuck, wherein the electrostatic chuck includes a wafer mounting device. A base provided with a surface and a back surface opposite to the wafer installation surface, an electrostatic chuck electrode embedded in the base, and an insulating layer provided on the back surface of the substrate,
The substrate includes a dielectric layer having at least the wafer mounting surface and surrounding the electrostatic chuck electrode, and the insulating layer is made of an insulating material having a volume resistivity higher than the volume resistivity of the dielectric layer. Wherein the conductive member is bonded to the back surface of the base.
【請求項7】前記静電チャック電極が互いに負荷電位の
異なる少なくとも二つの電極からなることを特徴とす
る、請求項6記載の静電吸着構造。
7. The electrostatic chuck structure according to claim 6, wherein said electrostatic chuck electrode comprises at least two electrodes having different load potentials.
【請求項8】前記静電チャック電極が網またはパンチン
グメタルからなることを特徴とする、請求項6または7
記載の静電吸着構造。
8. The electrostatic chuck electrode according to claim 6, wherein the electrostatic chuck electrode is made of mesh or punched metal.
The electrostatic attraction structure described.
【請求項9】前記静電チャック電極がモリブデン金属ま
たはモリブデン合金からなることを特徴とする、請求項
6−8のいずれか一つの請求項に記載の静電吸着構造。
9. The electrostatic chuck structure according to claim 6, wherein said electrostatic chuck electrode is made of molybdenum metal or a molybdenum alloy.
【請求項10】前記導電性部材が冷却用部材であること
を特徴とする、請求項6−9のいずれか一つの請求項に
記載の静電吸着構造。
10. The electrostatic attraction structure according to claim 6, wherein said conductive member is a cooling member.
JP2001140916A 2000-05-19 2001-05-11 Electrostatic chuck and electrostatic chuck structure Expired - Lifetime JP4540252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140916A JP4540252B2 (en) 2000-05-19 2001-05-11 Electrostatic chuck and electrostatic chuck structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-147170 2000-05-19
JP2000147170 2000-05-19
JP2001140916A JP4540252B2 (en) 2000-05-19 2001-05-11 Electrostatic chuck and electrostatic chuck structure

Publications (2)

Publication Number Publication Date
JP2002050676A true JP2002050676A (en) 2002-02-15
JP4540252B2 JP4540252B2 (en) 2010-09-08

Family

ID=26592173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140916A Expired - Lifetime JP4540252B2 (en) 2000-05-19 2001-05-11 Electrostatic chuck and electrostatic chuck structure

Country Status (1)

Country Link
JP (1) JP4540252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222793A (en) * 2010-04-12 2011-11-04 Sumitomo Electric Ind Ltd Electrostatic chuck
US8279576B2 (en) 2009-04-07 2012-10-02 Ngk Insulators, Ltd. Electrostatic chuck
CN110678971A (en) * 2017-06-16 2020-01-10 周星工程股份有限公司 Substrate processing apparatus and rotary electric connector for vacuum
CN116262666A (en) * 2022-12-29 2023-06-16 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040734A (en) * 1998-07-24 2000-02-08 Ngk Insulators Ltd Semiconductor holding device, manufacture and use thereof
JP2000077508A (en) * 1998-08-31 2000-03-14 Kyocera Corp Electrostatic chuck

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040734A (en) * 1998-07-24 2000-02-08 Ngk Insulators Ltd Semiconductor holding device, manufacture and use thereof
JP2000077508A (en) * 1998-08-31 2000-03-14 Kyocera Corp Electrostatic chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279576B2 (en) 2009-04-07 2012-10-02 Ngk Insulators, Ltd. Electrostatic chuck
JP2011222793A (en) * 2010-04-12 2011-11-04 Sumitomo Electric Ind Ltd Electrostatic chuck
CN110678971A (en) * 2017-06-16 2020-01-10 周星工程股份有限公司 Substrate processing apparatus and rotary electric connector for vacuum
CN110678971B (en) * 2017-06-16 2024-04-16 周星工程股份有限公司 Substrate processing apparatus and rotary electrical connector for vacuum
CN116262666A (en) * 2022-12-29 2023-06-16 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck
CN116262666B (en) * 2022-12-29 2024-05-17 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck

Also Published As

Publication number Publication date
JP4540252B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
KR100450476B1 (en) Electrostatic chucks and electrostatically adsorbing structures
JP4156788B2 (en) Susceptor for semiconductor manufacturing equipment
JP3323135B2 (en) Electrostatic chuck
KR100793676B1 (en) Electrostatic chuck and producing method thereof
US7763831B2 (en) Heating device
JP3699349B2 (en) Wafer adsorption heating device
JP2006287210A (en) Electrostatic chuck and manufacturing method thereof
US7672111B2 (en) Electrostatic chuck and method for manufacturing same
JP2002222851A (en) Electrostatic chuck and board processor
JP2003282688A (en) Electrostatic chuck
US20050028739A1 (en) Semiconductor Manufacturing Apparatus
JP4540252B2 (en) Electrostatic chuck and electrostatic chuck structure
JP2000332090A (en) Electrostatic chuck
JP4033508B2 (en) Electrostatic chuck
JP2836986B2 (en) Electrostatic chuck and method of manufacturing the same
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP4849887B2 (en) Electrostatic chuck
JP4879771B2 (en) Electrostatic chuck
KR102203859B1 (en) Electrostatic chuck
JPH10189698A (en) Electrostatic chuck
JP2001244321A (en) Electrostatic chuck and manufacturing method therefor
JP2002324832A (en) Electrostatic chuck
JP2006049357A (en) Electrostatic chuck and equipment mounting it
JPH11220012A (en) Electrostatic chuck
JP2005166821A (en) Electrostatic chuck for holding wafer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

EXPY Cancellation because of completion of term