JP2002050464A - Cooling structure of induction heating furnace - Google Patents

Cooling structure of induction heating furnace

Info

Publication number
JP2002050464A
JP2002050464A JP2000235992A JP2000235992A JP2002050464A JP 2002050464 A JP2002050464 A JP 2002050464A JP 2000235992 A JP2000235992 A JP 2000235992A JP 2000235992 A JP2000235992 A JP 2000235992A JP 2002050464 A JP2002050464 A JP 2002050464A
Authority
JP
Japan
Prior art keywords
induction heating
water
coil
cooling
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000235992A
Other languages
Japanese (ja)
Inventor
Naoki Uchida
直喜 内田
Keiji Kawanaka
啓二 川中
Takahiro Ao
高広 阿尾
Ryuichi Kasaishi
隆一 笠石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2000235992A priority Critical patent/JP2002050464A/en
Publication of JP2002050464A publication Critical patent/JP2002050464A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-cooled heat insulation structure of an induction heating furnace in which the temperature of an induction heating coil is made to be kept in a low-temperature as far as possible by installing a water-cooled heat insulation layer between an electromagnetic induction heating furnace and the induction heating coil. SOLUTION: A heat-resistant heat insulating material layer 5 is installed at an outside of a furnace body 2, and the water-cooled heat insulation layer consisting of water-cooled tubes 7 is formed between the heat insulating material layer 5 and the induction heating coil 11, and the water-cooled tubes 7 are made of metal tubes and pipes which are connected with a cooling water inlet 8 and a cooling water outlet 9 of the water-cooled tubes 7 are made of rubber or resin, and an electrically closed circuit is made not to be formed by the metal part of the water-cooled tube.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、電磁誘導加熱炉の
冷却構造に関し、更に詳細には電磁誘導加熱炉におい
て、例えば耐熱性が低い誘導加熱コイルに有利に適用で
きる電磁誘導加熱炉の冷却熱構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure of an electromagnetic induction heating furnace, and more particularly, to a cooling structure of the electromagnetic induction heating furnace which can be advantageously applied to, for example, an induction heating coil having low heat resistance. It is about structure.

【0002】[0002]

【従来の技術】電磁誘導加熱炉は、急速加熱、設備の小
型化、自動化が可能であり、しかも温度制御精度が高い
などの理由で、比較的小型の部品の加熱炉として利用が
高まっている。
2. Description of the Related Art Electromagnetic induction heating furnaces have been increasingly used as heating furnaces for relatively small parts because of their rapid heating, miniaturization and automation of equipment, and high temperature control accuracy. .

【0003】周知のとおり誘導加熱炉は、交流電源に接
続されたコイルの中に鉄などの金属を挿入すると、磁束
が金属に収束されて漏れ磁束が極めて少なくなり、コイ
ルと金属とが離れているにも関わらず金属は表面から加
熱さることを利用したものであり、コイル内を被加熱体
である前記金属を通過させるために、一般に炉体は円筒
型高温耐熱材により作られている。また、誘導加熱コイ
ルは、円筒体軸心方向に通常複数配置して加熱制御を容
易にすると共に、前記加熱が当該コイル内の金属のみ加
熱するよう電磁遮蔽を施すことが行われている。
As is well known, in an induction heating furnace, when a metal such as iron is inserted into a coil connected to an AC power supply, the magnetic flux is converged on the metal, the leakage magnetic flux is extremely reduced, and the coil is separated from the metal. In spite of the fact that the metal is heated from the surface, the furnace body is generally made of a cylindrical high temperature heat-resistant material in order to allow the metal to be heated to pass through the inside of the coil. Further, the induction heating coil is usually arranged in plural numbers in the axial direction of the cylindrical body to facilitate the heating control, and to perform electromagnetic shielding so that the heating only heats the metal in the coil.

【0004】[0004]

【発明が解決しようとする課題】ところで、誘導加熱コ
イルは従来から角型の銅管によって作り、管内を冷却水
通路として加熱による電力損を防止したものが使用され
ていた。しかしながら、かかる誘導加熱コイルは電流が
炉側に偏在して流れるためコイル損失が大きいという問
題がある。
By the way, the induction heating coil has conventionally been made of a rectangular copper tube, and the inside of the tube has been used as a cooling water passage to prevent power loss due to heating. However, such an induction heating coil has a problem in that coil current is large because current flows unevenly to the furnace side.

【0005】そこで例えば特開平9−283269号公
報に開示されているように、0.1〜0.3mm程度の
径の絶縁被覆導電を複数本縒り合わせた導体を用いた誘
導加熱コイルは、前記導電線の径が電流浸透深さより十
分に小さく、コイル損失を無くし、また他層の磁束によ
る誘導加熱が防止され、且つ冷却効率の向上を図ること
ができる。
Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 9-283269, an induction heating coil using a conductor obtained by twisting a plurality of insulating coating conductors having a diameter of about 0.1 to 0.3 mm is disclosed in Japanese Patent Laid-Open No. 9-283269. The diameter of the conductive wire is sufficiently smaller than the current penetration depth, thereby eliminating coil loss, preventing induction heating by magnetic flux of another layer, and improving cooling efficiency.

【0006】また特開平6−28928号公報に開示さ
れた誘導加熱コイルは、誘導加熱炉の電源と加熱用コイ
ルとの間の電位降下を減少させるために、スプリングに
あみ線状導体を巻きつけた内筒の外側に、スプリングを
配置し、このスプリングにも前記と同様のあみ線状導体
を巻きつけ外筒を形成し、それぞれのスプリングの内側
に冷却水を流すようにした誘導加熱用コイルを提案して
いる。
In the induction heating coil disclosed in Japanese Patent Application Laid-Open No. Hei 6-28928, a wire conductor is wound around a spring to reduce a potential drop between the power supply of the induction heating furnace and the heating coil. An induction heating coil in which a spring is arranged on the outside of the inner cylinder, and a wire conductor similar to that described above is wound around the spring to form an outer cylinder, and cooling water flows inside each spring. Has been proposed.

【0007】これらの加熱用コイルは、前記絶縁被覆し
た細い電線を用いることにより可及的にコイル損失を低
減し、冷却効率、絶縁抵抗などについて高い性能を与え
ることができるが、炉体の周りにコイルを巻きつけるた
めには可撓性とする必要があるが、高い性能の有する誘
導加熱コイルを、高い耐熱性材料で達成することは困難
である。また外部の温度が高いと冷却能力に限界がある
ため冷却水出口側の水温が上昇し、冷却水出口側のコイ
ル損失が上昇するなどの問題も認められた。
[0007] These heating coils can reduce coil loss as much as possible by using the thin wire covered with insulation, and can provide high performance in terms of cooling efficiency, insulation resistance, and the like. However, it is difficult to achieve an induction heating coil having high performance with a high heat-resistant material. Also, when the outside temperature is high, the cooling capacity is limited, so that the water temperature at the cooling water outlet side rises, and problems such as an increase in coil loss at the cooling water outlet side were also recognized.

【0008】本発明は、以上の問題に着目してなされた
ものであり、前記導体の電気絶縁性、水密性、導体温度
の低温化及びコイルに巻く際の作業性に優れた材料の選
定を容易にするため、電磁誘導加熱炉と誘導加熱コイル
との間に、炉内温度に悪影響与えず、しかも誘導加熱コ
イルを可及的に低温に保つことができる誘導加熱炉の水
冷断熱構造を提供することを目的としている。
The present invention has been made in view of the above problems, and has been made to select a material which is excellent in electrical insulation, watertightness, lowering of the conductor temperature and workability in winding on a coil of the conductor. Provide a water-cooled insulation structure of the induction heating furnace between the electromagnetic induction heating furnace and the induction heating coil, which does not adversely affect the furnace temperature and keeps the temperature of the induction heating coil as low as possible. It is intended to be.

【0009】[0009]

【課題を解決するための手段】以上の目的を達成するた
めの本発明の誘導加熱炉の冷却構造は、電磁誘導加熱炉
の炉体と誘導加熱用コイルとの間に水冷断熱層を設けた
ものである。
According to the present invention, there is provided a cooling structure for an induction heating furnace in which a water-cooled heat insulating layer is provided between a furnace body of an electromagnetic induction heating furnace and an induction heating coil. Things.

【0010】前記の水冷断熱層が高熱に曝され、冷却水
の温度が上昇すると、その分誘導加熱コイルの外皮温度
が上昇する。したがって本発明は、炉体と水冷断熱層と
の間に耐熱性断熱材層を設けることが好ましい。使用し
うる耐熱性断熱材には特に限定はないが、例えば、セラ
ミックファイバーなどを使用することができる。
When the temperature of the cooling water rises when the water-cooled heat-insulating layer is exposed to high heat, the outer skin temperature of the induction heating coil rises accordingly. Therefore, in the present invention, it is preferable to provide a heat-resistant heat insulating material layer between the furnace body and the water-cooled heat insulating layer. The heat-resistant heat insulating material that can be used is not particularly limited, and for example, ceramic fiber or the like can be used.

【0011】前記水冷断熱層を所定間隔を開けて配置し
た金属製水冷管によって形成し、この水冷管の冷却水入
口及び出口に接続する配管を電気絶縁体によって形成
し、金属部分による電気的閉回路が形成されないように
して、誘導電流による電力損失の発生を抑制することが
好ましい。また、前記水冷管の間は空隙のままとするこ
とができる。前記電気絶縁性材料としては、例えば合成
ゴム、シリコーンゴムなど、従来から使用される材料の
中から適宜選定することができるまた前記水冷管の長さ
を炉体の長さより長くし、前記炉体の軸心に沿う方向に
配置し、前記炉体の端部で折り返して配管するようにし
たり、更に、炉体の周囲を複数区画に分割し、各区画ご
とに前記水冷管を配置することができる。
[0011] The water-cooled heat-insulating layer is formed by a metal water-cooled pipe arranged at a predetermined interval, and a pipe connected to a cooling water inlet and an outlet of the water-cooled pipe is formed by an electric insulator. It is preferable to suppress the occurrence of power loss due to the induced current by preventing a circuit from being formed. Further, the space between the water cooling tubes can be left as an air gap. The electrically insulating material can be appropriately selected from conventionally used materials such as synthetic rubber and silicone rubber, and the length of the water-cooled tube is made longer than the length of the furnace body. May be arranged in a direction along the axis of the furnace body, and may be folded back at the end of the furnace body for piping.Furthermore, the periphery of the furnace body may be divided into a plurality of sections, and the water cooling pipe may be arranged for each section. it can.

【0012】本発明に使用する誘導加熱コイルには特に
限定はないが、例えば、導管内に形成された導電線及び
冷却水路からなり、前記導電線は、周波数によって決ま
る電流浸透深さよりも径が小さい絶縁被覆導電線からな
る素線を複数本縒り合わせ又は編成したものからなり、
前記冷却水路は、導管内に銅線などの金属線を螺旋状に
巻いたスプリングを配置した空洞部を用い、前記導管は
可撓性且つ電気絶縁性材料によって形成することができ
る。前記導電線は前記スプリングを巻芯としてその上に
螺旋状に巻き付けることができる。
The induction heating coil used in the present invention is not particularly limited. For example, the induction heating coil includes a conductive wire and a cooling water channel formed in a conduit, and the conductive wire has a diameter larger than a current penetration depth determined by a frequency. It consists of twisted or knitted multiple strands of small insulated conductive wire,
The cooling water channel uses a hollow portion in which a spring in which a metal wire such as a copper wire is spirally wound is arranged in a conduit, and the conduit can be formed of a flexible and electrically insulating material. The conductive wire may be spirally wound around the spring as a winding core.

【0013】更に、前記導管に繊維強化且つ可撓性のテ
ープを巻きつけ、前記導管内水圧に対する耐圧性を強化
するようにすると、前記導管を形成する材料に電気絶縁
性を有する熱収縮性樹脂を使用し、導管形成する際の作
業性を向上させることができる。
Further, a fiber reinforced and flexible tape is wrapped around the conduit so as to enhance the pressure resistance against the water pressure in the conduit, so that the material forming the conduit has a heat-shrinkable resin having electrical insulation properties. Can be used to improve workability in forming a conduit.

【0014】[0014]

【発明の実施の形態】以下添付の図面を参照し、一実施
の形態により本発明の誘導加熱炉の冷却構造を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cooling structure of an induction heating furnace according to the present invention will be described below with reference to the accompanying drawings.

【0015】図1に示す本実施の形態に使用した電磁誘
導加熱炉1は、アルミナなどの耐火材で製造した円筒状
の炉体2の外周に、碍子3に挿通して炉体2との間を電
気的に絶縁して保温用電熱線4を螺旋状に配置し、その
外側にセラミックテープ10′(図2)を巻き、その上に
ペースト状のセラミックファイバー耐火材などを充填し
て円筒状耐熱材層5を形成し、その外側にセラミックフ
ァイバーなどで作った耐熱性テープ断熱層6 (図2)を
巻きつけて炉本体を形成した。
The electromagnetic induction heating furnace 1 used in the present embodiment shown in FIG. 1 has a cylindrical furnace body 2 made of a refractory material such as alumina and is inserted into an insulator 3 around the outer periphery of the furnace body 2. The heating wire 4 for heat insulation is helically arranged with electrical insulation between them, and a ceramic tape 10 '(FIG. 2) is wrapped around the heating wire 4; The heat-resistant material layer 5 was formed, and a heat-resistant tape heat-insulating layer 6 (FIG. 2) made of ceramic fiber or the like was wound around the layer 5 to form a furnace body.

【0016】前記炉本体の周囲に水冷管7を等間隔に配
置して水冷断熱層を形成し、その外側にセラミックテー
プ10を巻いて水冷断熱層を形成した。なお隣り合う水冷
管7の間は、空隙のままにした。次いで水冷断熱層の外
側に誘導加熱コイル11を設けた。なお、図1に2点鎖線
で示した符合12は、被加熱体であるビレットである。以
下表1に本実施の形態で使用した各部材の厚みを例示す
る。
Water cooling tubes 7 were arranged at equal intervals around the furnace body to form a water cooling heat insulating layer, and a ceramic tape 10 was wound around the outside thereof to form a water cooling heat insulating layer. The space between the adjacent water cooling tubes 7 was left as an air gap. Next, an induction heating coil 11 was provided outside the water-cooled heat insulating layer. Reference numeral 12 shown by a two-dot chain line in FIG. 1 is a billet as a heated object. Table 1 below illustrates the thickness of each member used in the present embodiment.

【0017】[0017]

【表1】 [Table 1]

【0018】図2に示す本実施の形態の水冷管7は、炉
体を周方向に4分割し、4本の水冷管7-1〜7-4(7-2
〜7-3は図示せず)を各区に配置して構成した。なお、
水冷管を総称するときは符合7で示すことにする。
The water cooling tube 7 of the present embodiment shown in FIG. 2 has a furnace body divided into four parts in the circumferential direction, and has four water cooling tubes 7-1 to 7-4 (7-2).
7-3 are not shown) in each section. In addition,
The water cooling tube is generally denoted by reference numeral 7.

【0019】前記水冷管7-1〜7-4は、図2に示すとお
り、いずれも2往復折り返したジグザグ形状とし、冷却
水入口8及び冷却水出口9となる端部をコイルの両端で
折り曲げ、冷却水給水・排水用ゴムホース(いずれも図
示せず)に接続し冷却水の給水・排水を行うようにし
た。
As shown in FIG. 2, each of the water cooling pipes 7-1 to 7-4 has a zigzag shape which is folded back and forth twice, and ends of a cooling water inlet 8 and a cooling water outlet 9 are bent at both ends of the coil. And a rubber hose for cooling water supply / drainage (both not shown) to supply / drain the cooling water.

【0020】以上説明した本実施の形態の冷却構造は、
炉体の周囲に水冷管7を都合16本配置(本実施の形態
の水冷管7の間隔約16mm)した水冷断熱層によって形
成したものである。表2に前記水冷構造の諸元を示す。
なお本実施の形態は、表2に示すとおり水冷管7は20
本と16本の2つ場合について実施した。
The cooling structure of the present embodiment described above
It is formed by a water-cooled heat-insulating layer in which 16 water-cooling tubes 7 are conveniently arranged around the furnace body (the distance between the water-cooling tubes 7 in the present embodiment is about 16 mm). Table 2 shows the specifications of the water cooling structure.
In this embodiment, as shown in Table 2, the water cooling pipe 7
Two cases, book and 16 were performed.

【0021】[0021]

【表2】 [Table 2]

【0022】以上のように形成した水冷断熱層の効果を
ビレット12の温度が1250℃の場合について実測した
結果を表3に示す。
The effect of the water-cooled heat-insulating layer formed as described above is shown in Table 3 when the billet 12 is at a temperature of 1250 ° C.

【0023】[0023]

【表3】 [Table 3]

【0024】表3の結果から水冷断熱層を設けた場合
は、設けない場合に対して水冷断熱層の内側の温度で3
00℃以上低下させ、しかも1000℃となる炉体2内
の位置はほぼ同じであることが分かる。
From the results shown in Table 3, when the water-cooled heat-insulating layer was provided, the temperature at the inside of the water-cooled heat-insulating layer was less than that when the water-cooled heat insulating layer was not provided.
It can be seen that the position in the furnace body 2 where the temperature is lowered by at least 00 ° C. and becomes 1000 ° C. is almost the same.

【0025】したがって、本実施の形態の水冷断熱層
は、ビレット12の温度に悪影響を与えることなく、誘導
加熱コイル11部分の温度を300℃以下とすることがで
きることが分かった。したがって、細い電線を束状にし
てコイル損失を低減させ、しかも高い水密性、冷却効
率、絶縁抵抗を有し、且つコイルを形成する作業性に優
れた誘導加熱コイル11を得るための樹脂などの有機材料
の選択幅を大幅に広げることができた。
Therefore, it was found that the water-cooled heat-insulating layer of the present embodiment can reduce the temperature of the induction heating coil 11 to 300 ° C. or less without affecting the temperature of the billet 12. Therefore, a resin or the like for obtaining an induction heating coil 11 having a bundle of thin electric wires to reduce coil loss and having high watertightness, cooling efficiency, insulation resistance, and excellent workability of forming the coil. The range of choice of organic materials was greatly expanded.

【0026】次に図3以降に示す図によって本実施の形
態に使用した誘導加熱炉用コイル11の詳細を説明する。
即ち誘導加熱用コイル11(以下単にコイルという)は、
炉体2の外側に導電管15を螺旋状に周回(図示せず)さ
せて内巻コイル11-1及び外巻コイル11-2を2重に形成し
たものである。
Next, the details of the induction heating furnace coil 11 used in the present embodiment will be described with reference to FIGS.
That is, the induction heating coil 11 (hereinafter simply referred to as a coil)
An inner winding coil 11-1 and an outer winding coil 11-2 are formed double by spirally winding (not shown) a conductive tube 15 outside the furnace body 2.

【0027】前記導電管15は、図3,4に示すとおり巻
芯16、導電線束17からなる導電層及び外皮からなり、巻
芯16の内部をコイル内冷却水通路18としたものである。
前記巻芯16は、金属線19(本実施の形態では直径0.9
mmの銅線を使用)を螺旋状に密に巻いたスプリング状物
であり、内部(導電管15の中心部を構成する)にコイル
内冷却水通路18を確保し、且つ前記導電層の形状保持及
びコイル形成時の作業性を容易にした。なお、図3に示
す符号10′はセラミックテープである。
As shown in FIGS. 3 and 4, the conductive tube 15 comprises a core 16, a conductive layer comprising a conductive wire bundle 17 and an outer cover, and the inside of the core 16 is a cooling water passage 18 in the coil.
The winding core 16 is provided with a metal wire 19 (in the present embodiment, a diameter of 0.9).
mm of copper wire) is spirally and densely wound in a spiral shape. A cooling water passage 18 in the coil is secured inside (constituting the center of the conductive tube 15), and the shape of the conductive layer Workability during holding and coil formation is facilitated. Reference numeral 10 'shown in FIG. 3 is a ceramic tape.

【0028】前記外皮は、導電層の周囲を絶縁性の高い
熱収縮ゴムチューブ20で覆い、その外側を繊維強化プラ
スチックステープ21を巻いて熱収縮ゴムチューブ20の機
械的強度を高め、冷却水の水圧に耐えられるようにし
た。なお、前記熱収縮ゴムチューブ20には熱収縮性シリ
コーンゴムを使用し、前記繊維強化プラスチックステー
プ21には未加硫シリコーンゴムを使用したガラスクロス
補強シリコーンテープを使用し、19.6Pa(2kgf/
cm2 の耐水圧性能を有するようにした。
The outer skin is covered with a highly insulating heat-shrinkable rubber tube 20 around the conductive layer, and the outside thereof is wrapped with a fiber-reinforced plastic tape 21 to increase the mechanical strength of the heat-shrinkable rubber tube 20 and to provide cooling water. It was made to withstand water pressure. A heat-shrinkable silicone rubber is used for the heat-shrinkable rubber tube 20, and a glass cloth reinforced silicone tape using an unvulcanized silicone rubber is used for the fiber-reinforced plastic tape 21 at 19.6 Pa (2 kgf / kg).
cm 2) Water pressure resistance.

【0029】前記導電線束17は、ウレタン樹脂を塗装し
た絶縁被覆銅線からなる素線を複数本縒り合わせた縒り
線としたものを複数本縒り合わせ又は編成したものであ
る。このようにして得た導電線束17複数本を前記巻芯16
に螺旋状に巻き付けて導電層を形成した。
The conductive wire bundle 17 is formed by twisting or knitting a plurality of twisted wires obtained by twisting a plurality of strands of an insulated copper wire coated with urethane resin. The plurality of conductive wire bundles 17 thus obtained are
To form a conductive layer.

【0030】本実施の形態で使用した素線、縒り、導電
線束17及びコイル11の諸元を表1に示す。但し本発明は
表1に示す諸元に限定されない。なお、導電線束17内の
各素線は、縒り合わせ又は編成することにより、各素線
の前記軸心Cに対する距離を常に入れ換えることにより
各素線間の電流の偏りを防止した。
Table 1 shows the specifications of the element wire, twist, conductive wire bundle 17 and coil 11 used in the present embodiment. However, the present invention is not limited to the data shown in Table 1. The wires in the conductive wire bundle 17 were twisted or knitted so that the distance between the wires with respect to the axis C was always changed, thereby preventing the current from being biased between the wires.

【0031】[0031]

【表4】 [Table 4]

【0032】注:1.表4中「導電層の構成」は、導電
線束17の本数/縒り線の縒り本数/素線の縒り本数であ
る。 2.素線の径は0.1mmと表1に示す0.3mmとの
電力損失について比較したところ、両者に相違がなかっ
たので、本実施の形態においては取り扱い易い0.3m
m径の素線を使用した。 3.図3はBコイルによって実施した場合を示したもの
であり、Aコイルによって実施した場合は、巻芯16の周
囲に配置した導電線束17の本数が12本に増加する以外
は図3と同様の構成とした。
Notes: 1. “Constitution of conductive layer” in Table 4 is “the number of conductive wire bundles 17 / the number of twisted strands / the number of strands of strands”. 2. A comparison was made between the power loss of the wire of 0.1 mm and the power loss of 0.3 mm shown in Table 1. As a result, there was no difference between the two.
An m-diameter wire was used. 3. FIG. 3 shows a case where the present invention is implemented by using the B coil. In the case where the embodiment is implemented by using the A coil, the same as FIG. 3 except that the number of conductive wire bundles 17 arranged around the winding core 16 is increased to twelve. The configuration was adopted.

【0033】図3及び表4から理解されるように導電層
は導電線束17の太さを細くしたBコイルの方がより縒り
線の配置を密にすることができる。
As can be understood from FIG. 3 and Table 4, in the conductive layer, the arrangement of the twisted wires can be made denser in the B coil in which the thickness of the conductive wire bundle 17 is reduced.

【0034】次にコイル11について説明する前に図1に
基づき誘導加熱炉の概要を説明する。コイル11は、図3
に示すように導電管15を炉体2の表面に螺旋状に密に巻
き付けて内巻コイル11-1を形成し、この巻き付けた導電
管15同士の間に形成される螺旋状の窪んだ溝条23に導電
管15を巻き付けて外巻コイル11-2とすることにより2重
コイルとしたものである。このようにすると図1のコイ
ル断面図から理解されるように、外側コイル11-1の巻き
付け作業性が向上するだけでなく、内巻コイル11-1と外
巻コイル11-2との接点p,qによって互いに干渉し合い
(更に導電管15を密に巻いた場合には更に接点sも加わ
り)、コイル自体で位置保持を行わせることができる。
Next, before describing the coil 11, an outline of the induction heating furnace will be described with reference to FIG. The coil 11 is shown in FIG.
As shown in FIG. 2, the conductive tube 15 is spirally and densely wound around the surface of the furnace body 2 to form an inner winding coil 11-1, and a spiral concave groove formed between the wound conductive tubes 15 is formed. The conductive tube 15 is wound around the strip 23 to form an outer winding coil 11-2 to form a double coil. This not only improves the winding workability of the outer coil 11-1 but also improves the contact point p between the inner coil 11-1 and the outer coil 11-2, as understood from the coil sectional view of FIG. , Q (when the conductive tube 15 is densely wound, a contact s is further added), and the coil itself can hold the position.

【0035】本実施の形態のコイル11は、図5の電気回
路接続系統図に示すように一つの炉体2に対しNo.1〜N
o.3の3ブロックに分割することにより加熱制御を容易
にした。No.3のコイル11は、1層巻とした外は図1に示
す構造と同様としたので説明を省略する。なお、No.3の
コイル11を1重巻きとしたのは実務上の理由によるもの
であり、本発明にとって本質的意味はない。以下に示す
表5によってNo.1及びMo.2のコイル11の諸元を示す。
As shown in the electric circuit connection system diagram of FIG. 5, the coil 11 of this embodiment
Heating control was facilitated by dividing into three blocks of o.3. The coil 11 of No. 3 has the same structure as that shown in FIG. The reason why the coil 11 of No. 3 is made into a single winding is for practical reasons and has no essential meaning for the present invention. Table 5 shows the specifications of the No. 1 and Mo. 2 coils 11.

【0036】[0036]

【表5】 [Table 5]

【0037】次に図5によってNo.1〜No.3の電気的接続
方法を説明する。No,1及びNo.2の2重コイル11は、いず
れもコイル中央部で2分し、中央部で前半の内巻コイル
11-1と外巻コイル11-2とを、また外巻11-2と内巻コイル
11-1とを、それぞれ直列に接続し、これら直列に接続し
たものを並列に接続した。また1重コイルとしたNo.3の
コイル11(前記内巻コイル11-1と同様の形状) は、コイ
ル中央部で2分割し、電源に対して並列に接続した。
Next, the electrical connection method of No. 1 to No. 3 will be described with reference to FIG. The No.1, No.2 and No.2 double coils 11 are divided into two parts at the center of the coil, and the inner half of the first half
11-1 and outer coil 11-2, and outer 11-2 and inner coil
11-1 were connected in series, and those connected in series were connected in parallel. The single coil No. 3 coil (same shape as the inner coil 11-1) was divided into two at the center of the coil and connected in parallel to the power supply.

【0038】以上のように接続したNo.1〜No.3の各コイ
ル11は電源Eに対して並列に接続した。このようにして
No,1〜No.3の内巻コイル11-1と外巻コイル11-2間の電流
の偏りを無くした。なお、図6に示す符合24は内巻コイ
ル11-1と外巻コイル11-2とを接続する内外転位用接続
片、25はコイル端子をそれぞれ表す。
The coils 11 of No. 1 to No. 3 connected as described above were connected in parallel to the power source E. Like this
The bias of the current between the inner winding coil 11-1 and the outer winding coil 11-2 of No. 1 to No. 3 was eliminated. Reference numeral 24 shown in FIG. 6 denotes a connection piece for internal / external transposition for connecting the inner winding coil 11-1 and the outer winding coil 11-2, and 25 denotes a coil terminal.

【0039】図6に示す第2の実施の形態の電磁誘導加
熱炉用コイル11は、外巻コイル11-2を内巻コイル11-1に
対し逆巻きとしたものである。このようにするとコイル
電流の偏りを無くすことができるが、この場合は第1の
実施の形態の電磁誘導加熱炉用コイル11と異なり内巻コ
イル11-1の上に外巻コイル11-2が乗るようになる。した
がって、図3に示したようなコイル位置安定作用が得ら
れず、コイルの位置保持のために樹脂でコイル11を固め
るなどの処理が必要となり、しかもコイル巻径が大きく
なる。しかしながら、第2実施の形態は本発明の構成を
有するものであって、本発明に属さないと解釈さるべき
ではない。
The coil 11 for an electromagnetic induction heating furnace according to the second embodiment shown in FIG. 6 is obtained by winding the outer coil 11-2 in reverse to the inner coil 11-1. By doing so, the bias of the coil current can be eliminated. In this case, unlike the coil 11 for the electromagnetic induction heating furnace of the first embodiment, the outer winding coil 11-2 is placed on the inner winding coil 11-1. I will get on. Therefore, the effect of stabilizing the coil position as shown in FIG. 3 cannot be obtained, and a process such as hardening the coil 11 with a resin to maintain the position of the coil is required, and the coil diameter is increased. However, the second embodiment has the configuration of the present invention and should not be interpreted as not belonging to the present invention.

【0040】熱収縮ゴムチューブ20は冷却水の水密性被
覆を行うための作業性の向上と、導電管15の全体に示す
導電層容積をより大きくする作用があり、また繊維強化
プラスチックステープ21は冷却水を効果的に流通させる
ために必要とする耐水圧性の確保に十分の強度をより薄
い厚さで実現させるように作用する。
The heat-shrinkable rubber tube 20 has the function of improving the workability for water-tight coating of the cooling water and the effect of increasing the volume of the conductive layer shown in the entirety of the conductive tube 15. It works so that a sufficient strength for ensuring the water pressure resistance required for effectively flowing the cooling water can be realized with a smaller thickness.

【0041】以上説明した実施の形態はいずれも導電管
15を2重巻きとコイル損失を低減させたものであるが、
本発明はこれに限定されず他の巻き数、例えば1重巻き
として実施してもよい。
In each of the embodiments described above, the conductive tube is used.
15 has double winding and reduced coil loss.
The present invention is not limited to this, and may be implemented with another number of turns, for example, a single turn.

【0042】[0042]

【発明の効果】以上説明した本発明の誘導加熱炉の水冷
断熱構造は、誘導加熱炉の外側に形成した水冷断熱層と
によって、炉内温度に水冷断熱層による温度低下の影響
をなくし、且つ誘導加熱コイルを高温から遮断するよう
にしたので、誘導加熱コイルを形成する材料の選択幅を
大幅に改善することが可能となった。したがって、水密
性、冷却効率及び絶縁抵抗のいずれも高い性能を有し、
且つコイルに巻く際の作業性に優れた誘導加熱コイルを
得るための各種材料の選択幅を大幅に広がるという効果
と、無駄な電力消費 (コイル損失)を防止するという効
果とを奏することができる。
The water-cooling insulation structure of the induction heating furnace according to the present invention described above eliminates the effect of the water-cooling insulation layer on the temperature inside the furnace by the water-cooling insulation layer formed outside the induction heating furnace, and Since the induction heating coil is cut off from the high temperature, it is possible to greatly improve the selection range of materials for forming the induction heating coil. Therefore, watertightness, cooling efficiency and insulation resistance all have high performance,
In addition, the effect of greatly expanding the selection range of various materials for obtaining an induction heating coil excellent in workability when winding the coil and the effect of preventing unnecessary power consumption (coil loss) can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による誘導加熱炉の断面
図である。
FIG. 1 is a sectional view of an induction heating furnace according to an embodiment of the present invention.

【図2】図1に示す水冷却管の斜視図である。FIG. 2 is a perspective view of the water cooling pipe shown in FIG.

【図3】本発明の一実施の形態の誘導加熱炉用コイルを
装着した誘導加熱炉の要部半断面図である。
FIG. 3 is a half cross-sectional view of a main part of an induction heating furnace equipped with an induction heating furnace coil according to an embodiment of the present invention.

【図4】図3に示す導電管の構造を説明するため一部破
断して示した斜視図である。
FIG. 4 is a partially cutaway perspective view for explaining the structure of the conductive tube shown in FIG. 3;

【図5】図3の誘導加熱炉に適用した誘導加熱炉用コイ
ルの構成と電源に接続する際の電気回路の系統を説明す
る図である。
5 is a diagram illustrating a configuration of an induction heating furnace coil applied to the induction heating furnace of FIG. 3 and a system of an electric circuit when connected to a power supply.

【図6】図3に示した実施の形態の変形例による誘導加
熱炉用コイルを装着した誘導加熱炉の要部半断面図であ
る。
6 is a half sectional view of a main part of an induction heating furnace equipped with an induction heating furnace coil according to a modification of the embodiment shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 電磁誘導加熱炉 2 炉体 5 耐熱材層 7 水冷管 8 冷却水入口 9 冷却水出口 11 誘導加熱コイル REFERENCE SIGNS LIST 1 electromagnetic induction heating furnace 2 furnace body 5 heat-resistant material layer 7 water cooling tube 8 cooling water inlet 9 cooling water outlet 11 induction heating coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿尾 高広 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 (72)発明者 笠石 隆一 岡山県玉野市玉3丁目1番1号 三井造船 株式会社玉野事業所内 Fターム(参考) 3K059 AA10 AB15 AB25 AC09 AD03 AD07 AD34 AD40 CD44 CD48 CD52 CD73 CD74 CD77 CD79 4K063 BA02 BA03 CA06 EA01 FA34 FA39  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Takahiro Ao 3-1-1, Tamano, Tamano-shi, Okayama Prefecture Mitsui Engineering & Shipbuilding Co., Ltd. (72) Ryuichi Kasaishi 3-1-1, Tamano-shi, Tamano-shi, Okayama Prefecture Mitsui Engineering & Shipbuilding Co., Ltd. Tamano Works F-term (reference) 3K059 AA10 AB15 AB25 AC09 AD03 AD07 AD34 AD40 CD44 CD48 CD52 CD73 CD74 CD77 CD79 4K063 BA02 BA03 CA06 EA01 FA34 FA39

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電磁誘導加熱炉の炉体と誘導加熱用コイ
ルとの間に水冷断熱層を設けた誘導加熱炉の冷却構造。
1. A cooling structure for an induction heating furnace having a water-cooled heat-insulating layer provided between a furnace body of an electromagnetic induction heating furnace and an induction heating coil.
【請求項2】 前記炉体と前記水冷断熱層との間に耐熱
性断熱材層を設けた請求項1記載の誘導加熱炉の冷却構
造。
2. The cooling structure for an induction heating furnace according to claim 1, wherein a heat-resistant heat insulating material layer is provided between said furnace body and said water-cooled heat insulating layer.
【請求項3】 前記水冷断熱層を所定間隔を開けて配置
した金属製水冷管によって形成し、該水冷管の冷却水入
口及び出口に接続する配管を電気絶縁体によって形成
し、金属部分による電気的閉路が形成されないようにし
た請求項1又は2記載の誘導加熱炉の冷却構造。
3. The water-cooled heat-insulating layer is formed by a metal water-cooled pipe arranged at a predetermined interval, and a pipe connected to a cooling water inlet and an outlet of the water-cooled pipe is formed by an electric insulator. 3. The cooling structure for an induction heating furnace according to claim 1, wherein a closed circuit is not formed.
【請求項4】 前記水冷管の長さを前記炉体の長さより
長くし、前記炉体の軸心に沿う方向に配置し、前記炉体
の端部で折り返して配管するようにした請求項3記載の
誘導加熱炉の冷却構造。
4. The furnace according to claim 1, wherein a length of said water cooling tube is longer than a length of said furnace body, and is arranged in a direction along an axis of said furnace body. 3. The cooling structure of the induction heating furnace according to 3.
【請求項5】 前記炉体の周囲を複数区画に分割し、該
区画ごとに前記水冷管を配置した請求項4記載の誘導加
熱炉の冷却構造。
5. The cooling structure for an induction heating furnace according to claim 4, wherein the periphery of said furnace body is divided into a plurality of sections, and said water cooling pipe is arranged for each section.
【請求項6】 前記コイルは、導管内に形成された導電
線及び冷却水路からなり、前記導電線は、周波数によっ
て決まる電流浸透深さよりも径が小さい絶縁被覆導電線
からなる素線を複数本縒り合わせ又は編成したものから
なり、前記冷却水路は、前記導管内にスプリングを配置
した空洞部からなり、前記導管は可撓性且つ電気絶縁性
材料によって形成した請求項1,2,3,4又は5記載
の誘導加熱炉の冷却構造。
6. The coil includes a conductive wire and a cooling water channel formed in a conduit, and the conductive wire includes a plurality of strands formed of an insulated conductive wire having a diameter smaller than a current penetration depth determined by a frequency. 5. A cooling water passage formed by twisting or knitting, wherein the cooling water passage comprises a cavity in which a spring is disposed in the conduit, and the conduit is formed of a flexible and electrically insulating material. Or the cooling structure of the induction heating furnace as described in 5.
【請求項7】 前記導管に繊維強化且つ可撓性のテープ
を巻きつけ、前記導管内水圧に対する耐圧性を強化した
請求項6記載の誘導加熱炉の冷却構造。
7. The cooling structure of an induction heating furnace according to claim 6, wherein a fiber reinforced and flexible tape is wrapped around said conduit to enhance pressure resistance against water pressure in said conduit.
JP2000235992A 2000-08-03 2000-08-03 Cooling structure of induction heating furnace Pending JP2002050464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235992A JP2002050464A (en) 2000-08-03 2000-08-03 Cooling structure of induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235992A JP2002050464A (en) 2000-08-03 2000-08-03 Cooling structure of induction heating furnace

Publications (1)

Publication Number Publication Date
JP2002050464A true JP2002050464A (en) 2002-02-15

Family

ID=18728112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235992A Pending JP2002050464A (en) 2000-08-03 2000-08-03 Cooling structure of induction heating furnace

Country Status (1)

Country Link
JP (1) JP2002050464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438343A (en) * 2011-09-22 2012-05-02 淮南联合大学 Electromagnetic heating closed electric furnace
CN103033045A (en) * 2011-09-28 2013-04-10 喏莫里克株式会社 Graphite heater furnace
CN103334157A (en) * 2013-06-14 2013-10-02 中山大学 Energy-saving induction coil and crystal growth furnace adopting same
CN105066428A (en) * 2015-08-04 2015-11-18 苏阳东 Electromagnetic water heating device with through-type cooling air duct
CN108489281A (en) * 2018-05-15 2018-09-04 上海实树汽车工程技术有限公司 A kind of superaudio heating furnace cooling device and its control method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285005A (en) * 1976-01-07 1977-07-15 Hitachi Ltd Induction furnace
JPS63139794U (en) * 1987-03-04 1988-09-14
JPH02301984A (en) * 1989-05-17 1990-12-14 Mitsui Eng & Shipbuild Co Ltd Waiting operation method of induction heating device
JPH0375751U (en) * 1989-11-24 1991-07-30
JPH0525690U (en) * 1991-09-13 1993-04-02 北芝電機株式会社 Induction heating device inductor
JPH0594990U (en) * 1992-05-28 1993-12-24 株式会社ミヤデン High frequency induction heating coil
JPH0628928A (en) * 1992-07-07 1994-02-04 Sanki Dengiyou Kk Water-cooled cable
JPH0673896U (en) * 1993-03-29 1994-10-18 日本鋼管株式会社 Induction heating device inductor
JPH0855676A (en) * 1994-08-12 1996-02-27 Kitashiba Denki Kk Inductor for induction heating device
JPH08203663A (en) * 1994-11-25 1996-08-09 Kitashiba Denki Kk Heat resistant plate for induction heating device
JPH09283269A (en) * 1996-04-10 1997-10-31 Mitsubishi Heavy Ind Ltd Induction heating apparatus
JPH11102781A (en) * 1997-09-29 1999-04-13 Nippon Thermal Engineering Kk High-frequency forced cooling composite conductor and electromagnetic induction heating coil
JPH11251049A (en) * 1997-12-29 1999-09-17 Kitashiba Electric Co Ltd Induction heating apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285005A (en) * 1976-01-07 1977-07-15 Hitachi Ltd Induction furnace
JPS63139794U (en) * 1987-03-04 1988-09-14
JPH02301984A (en) * 1989-05-17 1990-12-14 Mitsui Eng & Shipbuild Co Ltd Waiting operation method of induction heating device
JPH0375751U (en) * 1989-11-24 1991-07-30
JPH0525690U (en) * 1991-09-13 1993-04-02 北芝電機株式会社 Induction heating device inductor
JPH0594990U (en) * 1992-05-28 1993-12-24 株式会社ミヤデン High frequency induction heating coil
JPH0628928A (en) * 1992-07-07 1994-02-04 Sanki Dengiyou Kk Water-cooled cable
JPH0673896U (en) * 1993-03-29 1994-10-18 日本鋼管株式会社 Induction heating device inductor
JPH0855676A (en) * 1994-08-12 1996-02-27 Kitashiba Denki Kk Inductor for induction heating device
JPH08203663A (en) * 1994-11-25 1996-08-09 Kitashiba Denki Kk Heat resistant plate for induction heating device
JPH09283269A (en) * 1996-04-10 1997-10-31 Mitsubishi Heavy Ind Ltd Induction heating apparatus
JPH11102781A (en) * 1997-09-29 1999-04-13 Nippon Thermal Engineering Kk High-frequency forced cooling composite conductor and electromagnetic induction heating coil
JPH11251049A (en) * 1997-12-29 1999-09-17 Kitashiba Electric Co Ltd Induction heating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438343A (en) * 2011-09-22 2012-05-02 淮南联合大学 Electromagnetic heating closed electric furnace
CN103033045A (en) * 2011-09-28 2013-04-10 喏莫里克株式会社 Graphite heater furnace
CN103334157A (en) * 2013-06-14 2013-10-02 中山大学 Energy-saving induction coil and crystal growth furnace adopting same
CN105066428A (en) * 2015-08-04 2015-11-18 苏阳东 Electromagnetic water heating device with through-type cooling air duct
CN108489281A (en) * 2018-05-15 2018-09-04 上海实树汽车工程技术有限公司 A kind of superaudio heating furnace cooling device and its control method

Similar Documents

Publication Publication Date Title
US6741152B1 (en) Directly cooled magnetic coil, particularly a gradient coil, and method for manufacturing conductors therefor
EP0236096B1 (en) Flexible shielded cable and method of manufacture
US5430274A (en) Improvements made to the cooling of coils of an induction heating system
JP2004180498A (en) Concentrated volume coil electric motor with optimized coil cooling and slot filling
JP4135513B2 (en) Superconducting cable
JP2002050464A (en) Cooling structure of induction heating furnace
CN110383403A (en) With the cooling non-liquid soaking transformer of improved coil
JP2015533014A (en) Internal RF antenna with dielectric insulation
JPH10233280A (en) High frequency rod-shaped heater
JPH0352205A (en) Electromagnetic induction coil of electro- magnetic hydromecnanic apparatus
CN101901685A (en) Make the method and the coil of coil
JPH07114984A (en) Flexible heater coil
JP3624983B2 (en) Insertion type induction heating coil
JP4188597B2 (en) Electric motor water-cooled stator winding
RU2001104737A (en) Induction Borehole Electric Heater
KR100724605B1 (en) Non-magnetic field heating wire in bedding
JPH0628928A (en) Water-cooled cable
JPH11102781A (en) High-frequency forced cooling composite conductor and electromagnetic induction heating coil
US20210008988A1 (en) Tubular induction coil for wireless charging of a vehicle battery
JP4441830B2 (en) Superconducting cable
JP2007027216A (en) Small high electric power current transformer
KR20200137217A (en) Magnetic device using carbon nanotube wire without insulating sheaths
JP3697096B2 (en) High frequency coaxial cable
JP4738755B2 (en) Superconducting conductor connection device
JPS58218845A (en) Armature coil for rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120