JP2002050377A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2002050377A
JP2002050377A JP2000232633A JP2000232633A JP2002050377A JP 2002050377 A JP2002050377 A JP 2002050377A JP 2000232633 A JP2000232633 A JP 2000232633A JP 2000232633 A JP2000232633 A JP 2000232633A JP 2002050377 A JP2002050377 A JP 2002050377A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
amount
power generation
generation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232633A
Other languages
Japanese (ja)
Other versions
JP3570355B2 (en
Inventor
Masataka Ozeki
正高 尾関
Shinji Miyauchi
伸二 宮内
Akinari Nakamura
彰成 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000232633A priority Critical patent/JP3570355B2/en
Publication of JP2002050377A publication Critical patent/JP2002050377A/en
Application granted granted Critical
Publication of JP3570355B2 publication Critical patent/JP3570355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Feedback Control In General (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable and highly reliable operating method of a fuel cell system even when the power required of the fuel cell system has changed. SOLUTION: The system comprises a fuel cell and a fuel generating unit and when the fuel utilization rate has become larger than the first threshold value that is predetermined in advance, the fuel quantity supplied to the fuel cell is increased and when the utilization rate has become smaller than the predetermined second threshold value, the fuel quantity supplied to the fuel cell is reduced. Thereby a wide variable range of generating power can be secured while maintaining high reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電原料から生成
され燃料を用いて、発電を行う燃料電池システムに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system for generating electric power by using fuel generated from a power generation material.

【0002】[0002]

【従来の技術】従来の燃料電池システムは、図6に示す
ように、燃料ガスと酸化剤を用いて発電を行う燃料電池
1と、天然ガスなどの発電原料に水を添加して改質し水
素に富んだ燃料を生成する燃料生成器2と、天然ガスな
どの燃焼原料と燃料電池1より排出される残余燃料ガス
とを燃焼する燃焼器3と、酸化剤としての空気を燃料電
池1に供給するブロア4と、燃料電池1の発電する電力
を調節する電力調節器5と、燃料生成器2へ供給する発
電原料および水の量を調節する発電原料調節器6と、燃
焼器3へ供給する燃焼原料の流量を調節して燃料生成器
2の温度を発電原料から燃料を生成するのに必要な温度
(約700℃)に維持する燃焼原料調節器7とを有して
いる。
2. Description of the Related Art As shown in FIG. 6, a conventional fuel cell system generates a fuel cell 1 using a fuel gas and an oxidant, and reforms the water by adding water to a power generation material such as natural gas. A fuel generator 2 for producing a hydrogen-rich fuel, a combustor 3 for burning a combustion raw material such as natural gas and a residual fuel gas discharged from the fuel cell 1, and an air as an oxidant to the fuel cell 1 Blower 4 to be supplied, power regulator 5 to regulate the power generated by fuel cell 1, power supply regulator 6 to regulate the amount of power generation material and water to be supplied to fuel generator 2, and supply to combustor 3 And a combustion material controller 7 for controlling the flow rate of the combustion raw material to be maintained to maintain the temperature of the fuel generator 2 at a temperature (about 700 ° C.) necessary for generating fuel from the power generation raw material.

【0003】燃料電池システムは、電力調節器5を通し
て電力負荷に接続されると同時に、電力系統と連携され
ている(図示せず)。
[0003] The fuel cell system is connected to a power load through a power regulator 5 and is also linked to a power system (not shown).

【0004】燃料生成器2は、燃料電池1へ供給する燃
料を生成するとともに、燃料ガスに含まれる一酸化炭素
を燃料電池1の触媒にダメージを与えない濃度まで除去
する機能も有する。また、燃料電池1へ供給する燃料の
量は、発電原料調節器6により発電原料および水の量を
調節することにより調節される。
[0004] The fuel generator 2 has a function of generating fuel to be supplied to the fuel cell 1 and removing carbon monoxide contained in the fuel gas to a concentration that does not damage the catalyst of the fuel cell 1. Further, the amount of fuel supplied to the fuel cell 1 is adjusted by adjusting the amounts of power generation material and water by the power generation material regulator 6.

【0005】燃焼器3は、燃焼原料調節器7により供給
量を調節された燃焼原料と、燃料電池1より排出された
残余燃料ガスとが供給され、前記燃焼原料と残余燃料ガ
スが燃焼される。
[0005] The combustor 3 is supplied with the combustion raw material whose supply amount is adjusted by the combustion raw material controller 7 and the residual fuel gas discharged from the fuel cell 1, and the combustion raw material and the residual fuel gas are burned. .

【0006】燃料生成器2においては、発電原料から燃
料ガスを効率よく生成し、燃料ガスに含まれる一酸化炭
素を十分除去する能力を維持するためには、燃料生成器
2の温度を適切な温度に維持することが必要となる。
In the fuel generator 2, the temperature of the fuel generator 2 must be set to an appropriate level in order to efficiently generate fuel gas from the power generation material and maintain the ability to sufficiently remove carbon monoxide contained in the fuel gas. It is necessary to maintain the temperature.

【0007】このような燃料電池システムの運転方法と
して、特開2000−67897号公報にあるように、
燃料生成器2に供給する発電原料の供給量を一定にし
て、燃料ガス生成量を常に一定に保つことにより、燃料
生成器2の温度を適切な温度に安定的に維持する方法が
用いられていた。
As a method of operating such a fuel cell system, as disclosed in Japanese Patent Application Laid-Open No. 2000-67897,
A method of stably maintaining the temperature of the fuel generator 2 at an appropriate temperature by keeping the supply amount of the power generation raw material to be supplied to the fuel generator 2 constant and always keeping the fuel gas generation amount constant. Was.

【0008】[0008]

【発明が解決しようとする課題】このような燃料電池シ
ステムの運転方法においては、燃料電池システムに要求
される電力が小さくなると、燃料電池1において消費さ
れる燃料の量が少なくなり、燃料電池1より排出される
残余燃料ガスの量が多くなる。この残余燃料ガスは燃焼
器3に供給されるが、燃焼器3へ供給される残余燃料ガ
スの量が多くなると燃焼器3での燃焼量も多くなる。残
余燃料ガスがある一定量を超えると、燃焼器3へ供給す
る燃焼原料の量をゼロにしても燃料生成器2の温度を維
持できないほどの燃焼量が燃焼器3で発生し、燃料生成
器2が異常に高い温度となる。その結果、燃料電池シス
テムを停止しなくてはならなくなる。場合によっては、
燃料生成器2の破損という事態を招くこともあった。
In such a method of operating a fuel cell system, when the power required for the fuel cell system decreases, the amount of fuel consumed in the fuel cell 1 decreases, and the fuel cell 1 The amount of residual fuel gas discharged is increased. This residual fuel gas is supplied to the combustor 3. However, as the amount of the residual fuel gas supplied to the combustor 3 increases, the amount of combustion in the combustor 3 also increases. When the residual fuel gas exceeds a certain amount, the combustion amount is generated in the combustor 3 such that the temperature of the fuel generator 2 cannot be maintained even if the amount of the combustion raw material supplied to the combustor 3 is zero. 2 has an unusually high temperature. As a result, the fuel cell system must be stopped. In some cases,
In some cases, the fuel generator 2 may be damaged.

【0009】[0009]

【課題を解決するための手段】以上のような課題を解決
するために本発明は、燃料と酸化剤とで発電を行う燃料
電池と、発電原料から前記燃料電池へ供給する燃料を生
成する燃料生成器と、前記燃料生成器を加熱するための
燃焼器と、前記燃焼器に燃焼原料を供給する燃焼原料調
節器と、前記燃料電池より排出される残余燃料を前記燃
焼器に供給する手段とを具備し、前記燃料生成器から燃
料電池へ供給される燃料量Aに対する前記燃料電池が消
費する燃料量Bの割合が、所定の第1閾値より大きい場
合には前記燃料量Aを所定量増加させ、所定の第2閾値
より小さい場合には前記燃料量Aを所定量減少させ、前
記第1閾値と第2閾値の間にある場合には前記燃料量A
を維持させることを特徴とする燃料電池システムであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a fuel cell for generating power by using a fuel and an oxidant, and a fuel for generating fuel to be supplied to the fuel cell from a power generation material. A generator, a combustor for heating the fuel generator, a combustion material regulator for supplying combustion material to the combustor, and a unit for supplying residual fuel discharged from the fuel cell to the combustor. And when the ratio of the fuel amount B consumed by the fuel cell to the fuel amount A supplied from the fuel generator to the fuel cell is larger than a first predetermined threshold value, the fuel amount A is increased by a predetermined amount. The fuel amount A is reduced by a predetermined amount when the fuel amount is smaller than a second predetermined threshold, and the fuel amount A is reduced when the fuel amount is between the first threshold and the second threshold.
Is a fuel cell system characterized by maintaining the following.

【0010】また請求項2の本発明は、燃料電池が発生
する電流を検知して、前記燃料生成器から燃料電池へ供
給される燃料量Aに対する前記燃料電池が消費する燃料
量Bの割合を演算し、前記発電原料調節器へ発電原料の
供給量を指令する利用率検知機を設けたことを特徴とす
る燃料電池システムである。
According to a second aspect of the present invention, a ratio of a fuel amount B consumed by the fuel cell to a fuel amount A supplied from the fuel generator to the fuel cell is detected by detecting a current generated by the fuel cell. A fuel cell system comprising a utilization detector for calculating and instructing the power generation material regulator on the supply amount of the power generation material.

【0011】さらに請求項3の本発明は、燃料電池が発
生する電力を検知して、前記燃料生成器から燃料電池へ
供給される燃料量Aに対する前記燃料電池が消費する燃
料量Bの割合を演算し、前記発電原料調節器へ発電原料
の供給量を指令する利用率検知機を設けたことを特徴と
する燃料電池システムである。
Further, according to the present invention, the ratio of the fuel amount B consumed by the fuel cell to the fuel amount A supplied from the fuel generator to the fuel cell is detected by detecting the electric power generated by the fuel cell. A fuel cell system comprising a utilization detector for calculating and instructing the power generation material regulator on the supply amount of the power generation material.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施の形態1)図1は、本発明の実施の
形態1における燃料電池システムの構成図であり、図6
で示した従来例と同じ構成要素については、同じ番号を
付与している。
(Embodiment 1) FIG. 1 is a block diagram of a fuel cell system according to Embodiment 1 of the present invention.
The same constituent elements as those of the conventional example shown in FIG.

【0014】燃料ガスと酸化剤を用いて発電を行う燃料
電池1と、天然ガスなどの発電原料に水を添加して改質
し水素に富んだ燃料を生成する燃料生成器2と、天然ガ
スなどの燃焼原料と燃料電池1より排出される残余燃料
とを燃焼する燃焼器3と、酸化剤としての空気を燃料電
池1に供給するブロア4と、燃料電池1の発電する電力
を調節する電力調節器5と、燃料生成器2へ供給する発
電原料および水のを調節する発電原料調節器6と、燃焼
器3へ供給する燃焼原料の流量を調節して燃料生成器2
の温度を発電原料から燃料を生成するのに必要な温度
(約700℃)に維持する燃焼原料調節器7とを有して
いる。
A fuel cell 1 for generating power using a fuel gas and an oxidizing agent, a fuel generator 2 for adding water to a power generation material such as natural gas to reform it to produce a hydrogen-rich fuel, A combustor 3 that burns a combustion raw material such as fuel and residual fuel discharged from the fuel cell 1, a blower 4 that supplies air as an oxidant to the fuel cell 1, and an electric power that regulates electric power generated by the fuel cell 1. A regulator 5, a power generation material controller 6 for adjusting the power generation material and water supplied to the fuel generator 2, and a fuel generator 2
And a combustion raw material controller 7 for maintaining the temperature of the raw material at a temperature (about 700 ° C.) necessary for generating fuel from the power generation raw material.

【0015】燃料電池システムは、電力調節器5を通し
て電力負荷に接続されると同時に、電力系統と連携され
ている(図示せず)。
The fuel cell system is connected to a power load through a power controller 5 and is also linked to a power system (not shown).

【0016】燃料生成器2は、燃料電池1へ供給する燃
料を生成するとともに、燃料ガスに含まれる一酸化炭素
を燃料電池1の触媒にダメージを与えない濃度まで除去
する機能も有する。
The fuel generator 2 has a function of generating fuel to be supplied to the fuel cell 1 and a function of removing carbon monoxide contained in the fuel gas to a concentration that does not damage the catalyst of the fuel cell 1.

【0017】また、燃料電池1へ供給する燃料量Aは、
発電原料調節器6により発電原料および水の量を調節す
ることにより調節される。
The fuel amount A to be supplied to the fuel cell 1 is
It is adjusted by adjusting the amount of power generation material and water by the power generation material regulator 6.

【0018】燃焼器3は、燃焼原料調節器7により供給
量を調節された燃焼原料と、燃料電池1より排出された
残余燃料ガスとが供給され、前記燃焼原料と残余燃料ガ
スが燃焼される。
The combustor 3 is supplied with the combustion raw material whose supply amount has been adjusted by the combustion raw material controller 7 and the residual fuel gas discharged from the fuel cell 1, and the combustion raw material and the residual fuel gas are burned. .

【0019】また、第1の利用率検知器8は、燃料電池
1が発生する電流を検知して、燃料電池1に供給される
燃料量Aに対する前記燃料電池が消費する燃料量Bの割
合、すなわち水素利用率Ufを演算し、発電原料調節器
6へ発電原料の供給量を指令することにより、燃料電池
1へ供給する燃料の量を制御するものである。
The first utilization rate detector 8 detects a current generated by the fuel cell 1 and determines a ratio of a fuel amount B consumed by the fuel cell to a fuel amount A supplied to the fuel cell 1; That is, the amount of fuel to be supplied to the fuel cell 1 is controlled by calculating the hydrogen utilization rate Uf and instructing the supply amount of the power generation material to the power generation material controller 6.

【0020】図2は、図1に示した本発明の実施の形態
1における燃料電池システムの、運転形態を示すフロー
チャートである。
FIG. 2 is a flowchart showing an operation mode of the fuel cell system according to Embodiment 1 of the present invention shown in FIG.

【0021】まず、燃料生成器2に供給される発電原料
の供給量から燃料電池1へ供給される水素量Hdを演算
する(001)。
First, the amount of hydrogen Hd supplied to the fuel cell 1 is calculated from the amount of power generation material supplied to the fuel generator 2 (001).

【0022】発電原料として都市ガス13Aを用いた場
合には、1L/minの都市ガス13Aから理論的には
約4.6L/minの水素が生成可能である。実際に
は、燃料生成器2の転換率が96%程度であるので、1
L/minの都市ガス13Aから約4.4L/minの
水素が生成される。よって、燃料電池1へ供給される水
素量Hd[L/min]は発電原料の量を4.4倍する
ことによって得られる。
When city gas 13A is used as a power generation material, theoretically about 4.6 L / min of hydrogen can be generated from 1 L / min of city gas 13A. Actually, since the conversion rate of the fuel generator 2 is about 96%, 1
About 4.4 L / min of hydrogen is generated from the L / min city gas 13A. Therefore, the amount of hydrogen Hd [L / min] supplied to the fuel cell 1 is obtained by multiplying the amount of the power generation material by 4.4.

【0023】次に、燃料電池1の発電電流から燃料ガス
中に含まれる水素の消費量Hsを演算する(002)。
Next, the consumption Hs of hydrogen contained in the fuel gas is calculated from the current generated by the fuel cell 1 (002).

【0024】発電電流I[A]に対して、消費される水
素量Hs[L/min]は次式(数1)で求められる。
With respect to the generated current I [A], the consumed hydrogen amount Hs [L / min] is obtained by the following equation (Equation 1).

【0025】[0025]

【数1】 (Equation 1)

【0026】そして、水素利用率Uf[%]を次式(数
2)により求める(003)。
Then, the hydrogen utilization rate Uf [%] is obtained by the following equation (Equation 2) (003).

【0027】[0027]

【数2】 (Equation 2)

【0028】例えば、電力調節器5により発電量が変更
され、水素利用率Ufが第一閾値90%より大きくなっ
た場合には(004)、発電原料の供給量を12%増加
させ、水素利用率Ufを80%程度にする(005)。
For example, when the power generation amount is changed by the power controller 5 and the hydrogen utilization rate Uf becomes larger than the first threshold value 90% (004), the supply amount of the power generation raw material is increased by 12% and the hydrogen utilization rate is increased. The rate Uf is set to about 80% (005).

【0029】逆に、水素利用率Ufが第二閾値70%よ
り小さくなった場合には(006)、発電原料の供給量
を12%減少させ、水素利用率Ufを80%程度にする
(007)。
Conversely, when the hydrogen utilization rate Uf becomes smaller than the second threshold value 70% (006), the supply amount of the power generation material is reduced by 12%, and the hydrogen utilization rate Uf is reduced to about 80% (007). ).

【0030】以上のように、燃料電池システムの運転に
おいて、水素利用率Ufが上限値としての第一閾値90
%より大きくなった場合には、発電原料の供給量を増加
させて水素利用率Ufを80%程度になるように変更
し、水素利用率Ufが下限値としての第二閾値70%よ
り小さくなった場合には、発電原料の供給量を減少させ
て水素利用率Ufを80%程度になるように変更するこ
とにより、燃料電池1における発電量がいかなる場合で
も、燃料電池1における水素利用率Ufが70〜90%
の間に納まる。そのため、発電量が定格の1/4などの
ように小さいときでも、残余燃料ガス中に含まれる水素
の量が過大とならないため、燃焼器3における燃焼量も
過大にならず、燃料生成器2の温度を安定的に維持可能
となり、燃料電池システムの異常停止や燃料生成器2の
破損といった事態をまねくことがなくなるため、燃料電
池システムの信頼性を高く維持することが可能となる。
As described above, in the operation of the fuel cell system, the hydrogen utilization rate Uf is set to the first threshold value 90 as the upper limit value.
%, The supply amount of the power generation material is increased to change the hydrogen utilization rate Uf to about 80%, and the hydrogen utilization rate Uf becomes smaller than the second threshold value 70% as the lower limit. In this case, the supply rate of the power generation material is reduced to change the hydrogen utilization rate Uf to about 80%, so that the hydrogen utilization rate Uf in the fuel cell 1 can be changed regardless of the power generation rate in the fuel cell 1. 70-90%
Fits between Therefore, even when the amount of power generation is as small as 1/4 of the rating, the amount of hydrogen contained in the residual fuel gas does not become excessive, so that the amount of combustion in the combustor 3 does not become excessive, and the fuel generator 2 Can be maintained stably, and abnormal situations such as abnormal stop of the fuel cell system and damage to the fuel generator 2 can be prevented, so that high reliability of the fuel cell system can be maintained.

【0031】(実施の形態2)図3は、本発明の第2の
技術手段を用いた実施の形態における燃料電池システム
の構成図であり、図1に示した実施の形態1における燃
料電池システムと同様であるものについては同じ番号を
付与してあり、詳細は図1で示した本発明の実施の形態
1における燃料電池システムのものに準ずるものとす
る。
(Embodiment 2) FIG. 3 is a configuration diagram of a fuel cell system according to an embodiment using the second technical means of the present invention. The fuel cell system according to Embodiment 1 shown in FIG. The same reference numerals are given to the same components as in the first embodiment, and the details correspond to those of the fuel cell system according to the first embodiment of the present invention shown in FIG.

【0032】図3において、第2の利用率検知器9は、
燃料電池1が発生する電力Wを検知して、燃料電池1に
供給される燃料量Aに対する前記燃料電池が消費する燃
料量Bの割合、すなわち水素利用率Ufを演算し、発電
原料調節器6へ発電原料の供給量を指令することによ
り、燃料電池1へ供給する燃料の量を制御するものであ
る。
In FIG. 3, the second utilization rate detector 9 is
The power W generated by the fuel cell 1 is detected, and the ratio of the fuel amount B consumed by the fuel cell to the fuel amount A supplied to the fuel cell 1, that is, the hydrogen utilization rate Uf, is calculated, and the power generation material regulator 6 is calculated. The amount of fuel supplied to the fuel cell 1 is controlled by instructing the supply amount of the power generation material to the fuel cell 1.

【0033】図4は、図3に示した本発明の実施の形態
2における燃料電池システムの、運転形態を示すフロー
チャートである。
FIG. 4 is a flowchart showing an operation mode of the fuel cell system according to Embodiment 2 of the present invention shown in FIG.

【0034】まず、燃料生成器2に供給される発電原料
の供給量から燃料電池1へ供給される水素量Hdを演算
する(011)。
First, the amount of hydrogen Hd supplied to the fuel cell 1 is calculated from the supply amount of the power generation material supplied to the fuel generator 2 (011).

【0035】発電原料として都市ガス13Aを用いた場
合には、1L/minの都市ガス13Aから理論的には
約4.6L/minの水素が生成可能である。実際に
は、燃料生成器2の転換率が96%程度であるので、1
L/minの都市ガス13Aから約4.4L/minの
水素が生成される。よって、燃料電池1へ供給される水
素量Hd[L/min]は発電原料の量を4.4倍する
ことによって得られる。
When city gas 13A is used as a power generation material, about 4.6 L / min of hydrogen can be theoretically generated from 1 L / min of city gas 13A. Actually, since the conversion rate of the fuel generator 2 is about 96%, 1
About 4.4 L / min of hydrogen is generated from the L / min city gas 13A. Therefore, the amount of hydrogen Hd [L / min] supplied to the fuel cell 1 is obtained by multiplying the amount of the power generation material by 4.4.

【0036】次に、燃料電池1の発電電流から燃料ガス
中に含まれる水素の消費量Hsを演算する(012)。
Next, the consumption Hs of hydrogen contained in the fuel gas is calculated from the current generated by the fuel cell 1 (012).

【0037】発電電力W[W]に対して、消費される水
素量Hs[L/min]は、図5に示すような予め得ら
れる燃料電池1の電圧電流特性を基に燃料電池1の電流
を演算したのち、前記式(数1)で求められる。
With respect to the generated power W [W], the amount of hydrogen consumed Hs [L / min] is calculated based on the voltage-current characteristics of the fuel cell 1 obtained in advance as shown in FIG. Is calculated, and is obtained by the above equation (Equation 1).

【0038】そして、水素利用率Uf[%]を前記式
(数2)により求める(013)。
Then, the hydrogen utilization rate Uf [%] is obtained by the above equation (Equation 2) (013).

【0039】例えば、電力調節器5により発電量が変更
され、水素利用率Ufが第一閾値90%より大きくなっ
た場合には(014)、発電原料の供給量を12%増加
させ、水素利用率Ufを80%程度にする(015)。
For example, when the power generation amount is changed by the power controller 5 and the hydrogen utilization rate Uf becomes larger than the first threshold value 90% (014), the supply amount of the power generation material is increased by 12% and the hydrogen utilization rate is increased. The rate Uf is set to about 80% (015).

【0040】逆に、水素利用率Ufが第二閾値70%よ
り小さくなった場合には(016)、発電原料の供給量
を12%増加させ、水素利用率Ufを80%程度にする
(017)。
Conversely, when the hydrogen utilization rate Uf becomes smaller than the second threshold value 70% (016), the supply amount of the power generation material is increased by 12% and the hydrogen utilization rate Uf is set to about 80% (017). ).

【0041】以上のように、燃料電池システムの運転に
おいて、水素利用率Ufが上限値としての第一閾値90
%より大きくなった場合には、発電原料の供給量を増加
させて水素利用率Ufを80%程度になるように変更
し、水素利用率Ufが下限値としての第二閾値70%よ
り小さくなった場合には、発電原料の供給量を減少させ
て水素利用率Ufを80%程度になるように変更するこ
とにより、燃料電池1における発電量がいかなる場合で
も燃料電池1における水素利用率Ufが70〜90%の
間に納まる。そのため、発電量が定格の1/4などのよ
うに小さいときでも、残余燃料ガス中に含まれる水素の
量が過大とならないため、燃焼器3における燃焼量も過
大にならず、燃料生成器2の温度を安定的に維持可能と
なり、燃料電池システムの異常停止や燃料生成器2の破
損といった事態をまねくことがなくなるため、燃料電池
システムの信頼性を高く維持することが可能となる。
As described above, in the operation of the fuel cell system, the hydrogen utilization rate Uf is set to the first threshold value 90 as the upper limit value.
%, The supply amount of the power generation material is increased to change the hydrogen utilization rate Uf to about 80%, and the hydrogen utilization rate Uf becomes smaller than the second threshold value 70% as the lower limit. In this case, the supply rate of the power generation material is reduced to change the hydrogen utilization rate Uf to about 80%, so that the hydrogen utilization rate Uf in the fuel cell 1 can be increased regardless of the power generation rate in the fuel cell 1. It falls between 70-90%. Therefore, even when the amount of power generation is as small as 1/4 of the rating, the amount of hydrogen contained in the residual fuel gas does not become excessive, so that the amount of combustion in the combustor 3 does not become excessive, and the fuel Can be maintained stably, and abnormal situations such as abnormal stop of the fuel cell system and damage to the fuel generator 2 can be prevented, so that high reliability of the fuel cell system can be maintained.

【0042】また、電流ではなく電力を計測することに
より、高価な電流検知器が必要なくなり、低コストなシ
ステムを実現できる。
In addition, by measuring power instead of current, an expensive current detector is not required, and a low-cost system can be realized.

【0043】なお、本発明の実施の形態1および実施の
形態2において、第一閾値を90%、第二閾値を70%
と設定したが、各閾値の値はこれに限るものではなく、
2つ閾値の幅を大きく取れば、発電原料供給量の変更頻
度が少なくなりより安定的な運転が実現できる。一方、
2つ閾値の幅を小さく取れば、利用率の変化幅が小さく
なり特に第二閾値を大きくすることにより、水素利用率
が向上して燃料電池システムの効率も向上させることが
出来る。
In the first and second embodiments of the present invention, the first threshold value is 90%, and the second threshold value is 70%.
Although the value of each threshold is not limited to this,
If the width of the two thresholds is set to be large, the frequency of changing the power supply amount is reduced, and more stable operation can be realized. on the other hand,
If the width of the two thresholds is small, the range of change in the utilization rate is small, and particularly, by increasing the second threshold value, the hydrogen utilization rate can be improved and the efficiency of the fuel cell system can be improved.

【0044】また、水素利用率が第一閾値より大きくな
った場合や第二閾値より小さくなった場合に、発電原料
を12%変更して、変更後の水素利用率が第一閾値と第
二閾値の中間程度になるようにしたが、発電原料の変更
幅はこれに限るものではない。
When the hydrogen utilization rate becomes larger than the first threshold value or becomes smaller than the second threshold value, the power generation material is changed by 12% so that the hydrogen utilization rate after the change is equal to the first threshold value and the second threshold value. Although it was set to be about the middle of the threshold value, the change width of the power generation raw material is not limited to this.

【0045】[0045]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、燃料電池における水素利用率に応じて発
電原料の供給量を調節するものであるから安定的かつ信
頼性の高い燃料電池システムを提供することができる。
As is apparent from the above description, the present invention regulates the supply amount of the power generation material in accordance with the hydrogen utilization rate in the fuel cell, so that the fuel cell system is stable and highly reliable. Can be provided.

【0046】すなわち、燃料電池における水素利用率を
求め、水素利用率が第一閾値より大きいときには発電原
料の供給量を増加させ、水素利用率が第二閾値より小さ
い時には発電原料の供給量を減少させ、水素利用率が第
一閾値と第二閾値の間にあるときには、発電原料の供給
量を維持することにより、発電電力変更に伴う頻繁な発
電原料供給量の変更が緩和される。そのため、燃料生成
器2の温度を安定的に維持することが可能となり、燃料
ガス中に含まれる一酸化炭素濃度を燃料電池の触媒にダ
メージを与えない濃度まで除去する機能が有効に働き、
燃料電池システムの信頼性を高く維持することが出来
る。
That is, the hydrogen utilization rate in the fuel cell is determined. When the hydrogen utilization rate is larger than the first threshold, the supply amount of the power generation material is increased, and when the hydrogen utilization rate is smaller than the second threshold value, the supply amount of the power generation material is decreased. When the hydrogen utilization rate is between the first threshold value and the second threshold value, the supply amount of the power generation material is maintained, so that the frequent change in the power generation material supply amount accompanying the change in the generated power is eased. Therefore, the temperature of the fuel generator 2 can be stably maintained, and the function of removing the concentration of carbon monoxide contained in the fuel gas to a concentration that does not damage the catalyst of the fuel cell works effectively.
High reliability of the fuel cell system can be maintained.

【0047】また、発電電力が小さくなった場合には、
発電原料も適切に供給量を少なく調節されるため、過大
な残余燃料ガスによる燃料生成器の過昇温をさけること
が出来るので、高い信頼性を維持したまま、幅広い発電
電力の可変幅を確保することも可能となる。
When the generated power becomes small,
Since the supply of power generation materials is also appropriately adjusted to a small amount, it is possible to avoid excessive heating of the fuel generator due to excessive residual fuel gas, and secure a wide range of variable power generation while maintaining high reliability. It is also possible to do.

【0048】さらに、燃料電池の電流もしくは電力を検
知して、燃料電池における水素利用率を求め、発電原料
の供給量を調節することにより、低コストで、安定的か
つ信頼性の高い燃料電池システムを実現できるものであ
る。
Further, by detecting the current or electric power of the fuel cell, determining the hydrogen utilization rate in the fuel cell, and adjusting the supply amount of the power generation material, a low-cost, stable and highly reliable fuel cell system is provided. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における燃料電池システ
ムの構成図
FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態1における動作形態を示す
フローチャート
FIG. 2 is a flowchart showing an operation mode according to the first embodiment of the present invention.

【図3】本発明の実施の形態2における燃料電池システ
ムの構成図
FIG. 3 is a configuration diagram of a fuel cell system according to Embodiment 2 of the present invention.

【図4】本発明の実施の形態2における動作形態を示す
フローチャート
FIG. 4 is a flowchart showing an operation mode according to the second embodiment of the present invention;

【図5】本発明の実施の形態2における燃料電池の電圧
電力特性図
FIG. 5 is a voltage-power characteristic diagram of the fuel cell according to Embodiment 2 of the present invention.

【図6】従来の燃料電池システムを示す構成図FIG. 6 is a configuration diagram showing a conventional fuel cell system.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 燃料生成器 3 燃焼器 4 ブロア 5 電力調節器 6 発電原料調節器 7 燃焼原料調節器 8 第1の利用率検知器 9 第2の利用率検知器 DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel generator 3 Combustor 4 Blower 5 Power regulator 6 Power generation raw material regulator 7 Combustion raw material regulator 8 First utilization detector 9 Second utilization detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 彰成 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H027 AA02 BA01 BA09 BA16 KK25 KK52 KK56 MM12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akinari Nakamura 1006 Kazuma Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H027 AA02 BA01 BA09 BA16 KK25 KK52 KK56 MM12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料と酸化剤とで発電を行う燃料電池
と、発電原料から前記燃料電池へ供給する燃料を生成す
る燃料生成器と、前記燃料生成器を加熱するための燃焼
器と、前記燃焼器に燃焼原料を供給する燃焼原料調節器
と、前記燃料電池より排出される残余燃料を前記燃焼器
に供給する手段とを具備し、前記燃料生成器から燃料電
池へ供給される燃料量Aに対する前記燃料電池が消費す
る燃料量Bの割合が、所定の第1閾値より大きい場合に
は前記燃料量Aを所定量増加させ、所定の第2閾値より
小さい場合には前記燃料量Aを所定量減少させ、前記第
1閾値と第2閾値の間にある場合には前記燃料量Aを維
持させることを特徴とする燃料電池システム。
A fuel cell configured to generate power from a fuel and an oxidant; a fuel generator configured to generate fuel to be supplied to the fuel cell from a power generation material; a combustor configured to heat the fuel generator; A combustion material regulator for supplying a combustion material to the combustor; and a means for supplying a residual fuel discharged from the fuel cell to the combustor, and a fuel amount A supplied from the fuel generator to the fuel cell. When the ratio of the fuel amount B consumed by the fuel cell to the fuel cell is larger than a first predetermined threshold, the fuel amount A is increased by a predetermined amount. When the ratio is smaller than a second predetermined threshold, the fuel amount A is increased. The fuel cell system according to claim 1, wherein the fuel amount is kept constant when the fuel amount is reduced between the first threshold value and the second threshold value.
【請求項2】 前記燃料電池が発生する電流を検知し
て、前記燃料生成器から燃料電池へ供給される燃料量A
に対する前記燃料電池が消費する燃料量Bの割合を演算
し、前記発電原料調節器へ発電原料の供給量を指令する
利用率検知機を設けたことを特徴とする請求項1記載の
燃料電池システム。
2. An amount of fuel A supplied from the fuel generator to the fuel cell by detecting a current generated by the fuel cell.
2. A fuel cell system according to claim 1, further comprising a utilization rate detector for calculating a ratio of a fuel amount B consumed by the fuel cell to the power generation material controller and instructing the power generation material regulator to supply a supply amount of the power generation material. .
【請求項3】 前記燃料電池が発生する電力を検知し
て、前記燃料生成器から燃料電池へ供給される燃料量A
に対する前記燃料電池が消費する燃料量Bの割合を演算
し、前記発電原料調節器へ発電原料の供給量を指令する
利用率検知機を設けたことを特徴とする請求項1記載の
燃料電池システム。
3. The amount of fuel A supplied from the fuel generator to the fuel cell by detecting power generated by the fuel cell.
2. A fuel cell system according to claim 1, further comprising a utilization rate detector for calculating a ratio of a fuel amount B consumed by the fuel cell to the power generation material controller and instructing the power generation material regulator to supply a supply amount of the power generation material. .
JP2000232633A 2000-08-01 2000-08-01 Fuel cell system Expired - Lifetime JP3570355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232633A JP3570355B2 (en) 2000-08-01 2000-08-01 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232633A JP3570355B2 (en) 2000-08-01 2000-08-01 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2002050377A true JP2002050377A (en) 2002-02-15
JP3570355B2 JP3570355B2 (en) 2004-09-29

Family

ID=18725283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232633A Expired - Lifetime JP3570355B2 (en) 2000-08-01 2000-08-01 Fuel cell system

Country Status (1)

Country Link
JP (1) JP3570355B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196203A (en) * 2005-01-11 2006-07-27 Casio Comput Co Ltd Power supply system and control unit of power supply system, and control method of power supply system
JP2007141565A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP2009295522A (en) * 2008-06-09 2009-12-17 Toyota Motor Corp Fuel cell system and control method for fuel cell system
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof
JP2013525952A (en) * 2010-04-12 2013-06-20 ワルトシラ フィンランド オサケユキチュア Method and apparatus for controlling fuel supply in a fuel cell system
JP2013527555A (en) * 2010-01-19 2013-06-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング How to operate a cogeneration facility

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127203A (en) * 1982-01-26 1983-07-29 Yokogawa Hokushin Electric Corp Control system
JPS5953407U (en) * 1982-07-08 1984-04-07 西部電機工業株式会社 automatic control circuit
JPS59192705U (en) * 1983-06-06 1984-12-21 株式会社明電舎 Deviation proportional control device
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPS6196674A (en) * 1984-10-17 1986-05-15 Kansai Electric Power Co Inc:The Control system for power generating apparatus with fuel cell
JPH0845521A (en) * 1994-08-03 1996-02-16 Mitsubishi Electric Corp Control device of fuel cell
JPH08153532A (en) * 1994-11-29 1996-06-11 Mitsubishi Electric Corp Controlling method for operation of fuel cell power system
JPH0927335A (en) * 1995-07-11 1997-01-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Operation control device for fuel cell power generating system
JPH09147893A (en) * 1995-11-21 1997-06-06 Mitsubishi Electric Corp Fuel cell power generation device
JP2000067892A (en) * 1998-08-25 2000-03-03 Matsushita Electric Works Ltd Fuel cell power generating system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127203A (en) * 1982-01-26 1983-07-29 Yokogawa Hokushin Electric Corp Control system
JPS5953407U (en) * 1982-07-08 1984-04-07 西部電機工業株式会社 automatic control circuit
JPS59192705U (en) * 1983-06-06 1984-12-21 株式会社明電舎 Deviation proportional control device
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPS6196674A (en) * 1984-10-17 1986-05-15 Kansai Electric Power Co Inc:The Control system for power generating apparatus with fuel cell
JPH0845521A (en) * 1994-08-03 1996-02-16 Mitsubishi Electric Corp Control device of fuel cell
JPH08153532A (en) * 1994-11-29 1996-06-11 Mitsubishi Electric Corp Controlling method for operation of fuel cell power system
JPH0927335A (en) * 1995-07-11 1997-01-28 Yoyu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Operation control device for fuel cell power generating system
JPH09147893A (en) * 1995-11-21 1997-06-06 Mitsubishi Electric Corp Fuel cell power generation device
JP2000067892A (en) * 1998-08-25 2000-03-03 Matsushita Electric Works Ltd Fuel cell power generating system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196203A (en) * 2005-01-11 2006-07-27 Casio Comput Co Ltd Power supply system and control unit of power supply system, and control method of power supply system
JP4513572B2 (en) * 2005-01-11 2010-07-28 カシオ計算機株式会社 Power supply system, control device for power supply system, and control method for power supply system
US7887967B2 (en) 2005-01-11 2011-02-15 Casio Computer Co., Ltd. Power source system and control method thereof
JP2007141565A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Fuel cell system and control method of fuel cell
JP4627486B2 (en) * 2005-11-16 2011-02-09 本田技研工業株式会社 Fuel cell system and fuel cell control method
US8039155B2 (en) 2005-11-16 2011-10-18 Honda Motor Co., Ltd. Fuel-cell system and method of controlling fuel cell
JP2009295522A (en) * 2008-06-09 2009-12-17 Toyota Motor Corp Fuel cell system and control method for fuel cell system
JP2013527555A (en) * 2010-01-19 2013-06-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング How to operate a cogeneration facility
JP2013525952A (en) * 2010-04-12 2013-06-20 ワルトシラ フィンランド オサケユキチュア Method and apparatus for controlling fuel supply in a fuel cell system
JP2012059614A (en) * 2010-09-10 2012-03-22 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and control method thereof

Also Published As

Publication number Publication date
JP3570355B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US6960400B2 (en) Fuel cell power generation system and control method thereof
JP2004178962A (en) Fuel cell power generating system using hydrogen manufacturing device having combustor
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP6826436B2 (en) Fuel cell system and its operation method
JPH08153532A (en) Controlling method for operation of fuel cell power system
JP2008262727A (en) Phosphoric acid type fuel cell power-generating device
JP5069489B2 (en) Solid oxide fuel cell system
JP5314364B2 (en) Fuel cell power generation system and fuel cell output control method
US8263281B2 (en) Method for operating fuel-cell electricity-generating device
JP3570355B2 (en) Fuel cell system
JP2004207135A (en) Fuel cell power generating system
JP5215527B2 (en) Operation method of fuel cell
JP2004063368A (en) Fuel cell power generation system
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2013157189A (en) Energy management device
JP2018010763A (en) Fuel cell system
JP2003197233A (en) Fuel cell power generation system and its control method
JP2002158019A (en) Fuel cell electricity generating device
JPH0536429A (en) Power source device for internal reformed type fuel cell
JP3422167B2 (en) Fuel cell power generation system
JP3387234B2 (en) Fuel cell generator
JP2006073215A (en) Fuel cell system
JP5021895B2 (en) Fuel cell power generation system
JP2002008697A (en) Operation starting method of fuel cell system and its equipment
JP2003197234A (en) Fuel cell power generation system and it control method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R151 Written notification of patent or utility model registration

Ref document number: 3570355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term