JP2002050346A - Negative electrode for lithium secondary cell, its manufacturing method and lithium secondary cell - Google Patents

Negative electrode for lithium secondary cell, its manufacturing method and lithium secondary cell

Info

Publication number
JP2002050346A
JP2002050346A JP2001184659A JP2001184659A JP2002050346A JP 2002050346 A JP2002050346 A JP 2002050346A JP 2001184659 A JP2001184659 A JP 2001184659A JP 2001184659 A JP2001184659 A JP 2001184659A JP 2002050346 A JP2002050346 A JP 2002050346A
Authority
JP
Japan
Prior art keywords
lithium secondary
negative electrode
graphite particles
secondary battery
secondary cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001184659A
Other languages
Japanese (ja)
Other versions
JP3361510B2 (en
Inventor
Yoshito Ishii
義人 石井
Tatsuya Nishida
達也 西田
Atsushi Fujita
藤田  淳
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26557020&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002050346(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001184659A priority Critical patent/JP3361510B2/en
Publication of JP2002050346A publication Critical patent/JP2002050346A/en
Application granted granted Critical
Publication of JP3361510B2 publication Critical patent/JP3361510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium secondary cell which is suited for a lithium secondary cell of high capacity, a manufacturing method for a negative electrode of high capacity for a lithium secondary cell which is suited for a lithium secondary cell having a good boosting charge and discharge characteristics and a cycle characteristics, and a lithium secondary cell which has a high capacity and good boosting charge and discharge characteristics and cycle characteristics. SOLUTION: The negative electrode for the lithium secondary cell made by integrating a collector and a mixture of graphite particles and an organic binder has a mixture density of the graphite particles and the organic binder after being pressurized and integrated from 1.5 to 1.9 g/cm3. As the manufacturing method of the negative electrode for the lithium secondary cell, a graphitized catalyst is added by 1 to 50 weight % to a graphitizable aggregate or graphite and a graphitizable binder, which is then mixed, calcined, and fractured into graphite particles, to which is added and mixed an organic binder and a solvent, and the mixture is applied on the collector, which is pressurized and integrated after the solvent is dried. The lithium secondary cell has the negative electrode for the lithium secondary cell or a negative electrode of a lithium secondary cell which is manufactured with the above manufacturing method, and the positive electrode placed face to face through a separator, and an electrolyte solution filled around them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用負極及びその製造法並びにリチウム二次電池に関す
る。さらに詳しくは、ポータブル機器、電気自動車、電
力貯蔵等に用いるのに好適な、急速充放電特性、サイク
ル特性等に優れたリチウム二次電池とそれを得るための
リチウム二次電池用負極及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a negative electrode for a lithium secondary battery, a method for producing the same, and a lithium secondary battery. More specifically, a lithium secondary battery excellent in rapid charge / discharge characteristics, cycle characteristics, etc., suitable for use in portable devices, electric vehicles, power storage, and the like, a negative electrode for a lithium secondary battery for obtaining the same, and production thereof About the law.

【0002】[0002]

【従来の技術】従来のリチウム二次電池用負極は、例え
ば天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、
有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛粒
子、これらを粉砕した黒鉛粒子、メソカーボンマイクロ
ビーズを黒鉛化した球状粒子などを用いたものがある。
これらの黒鉛粒子は、有機系結着剤及び有機溶剤と混合
して黒鉛ペーストとし、この黒鉛ペーストを銅箔の表面
に塗布し、溶剤を乾燥させてリチウム二次電池用負極と
して使用されている。例えば、特公昭62−23433
号公報に示されるように、負極に黒鉛を使用することで
リチウムのデンドライトによる内部短絡の問題を解消
し、サイクル特性の改良を図っている。
2. Description of the Related Art Conventional negative electrodes for lithium secondary batteries include, for example, natural graphite particles, artificial graphite particles obtained by graphitizing coke,
Examples include organic polymer materials, artificial graphite particles obtained by graphitizing pitch and the like, graphite particles obtained by pulverizing these, spherical particles obtained by graphitizing mesocarbon microbeads, and the like.
These graphite particles are mixed with an organic binder and an organic solvent to form a graphite paste, the graphite paste is applied to the surface of a copper foil, and the solvent is dried to be used as a negative electrode for a lithium secondary battery. . For example, Japanese Patent Publication No. Sho 62-23433
As described in Japanese Patent Application Laid-Open Publication No. H10-107, the problem of internal short circuit due to lithium dendrite is solved by using graphite for the negative electrode, and the cycle characteristics are improved.

【0003】しかしながら、黒鉛結晶が発達している天
然黒鉛及びコークスを黒鉛化した人造黒鉛粒子は、c軸
方向の結晶の層間の結合力が、結晶の面方向の結合に比
べて弱いため、粉砕により黒鉛層間の結合が切れ、アス
ペクト比が大きい、いわゆる鱗状の黒鉛粒子となる。こ
の鱗状の黒鉛粒子は、アスペクト比が大きいために、バ
インダと混練して集電体に塗布して電極を作製したとき
に、鱗状の黒鉛粒子が集電体の面方向に配向し、その結
果、黒鉛結晶へのリチウムの吸蔵・放出の繰り返しによ
って発生するc軸方向の歪みにより電極内部の破壊が生
じ、サイクル特性が低下する問題があるばかりでなく、
負極密度を1.5g/cm3以上にすると、負極黒鉛にリチ
ウムが吸蔵・放出されにくくなり、急速充放電特性、放
電容量が急激に低下する問題がある。リチウム二次電池
は、負極密度を高くすることで、体積当たりのエネルギ
ー密度を大きくさせることが期待できる。そこでリチウ
ム二次電池の体積当たりのエネルギー密度を向上させる
ために、負極密度を高くしたときの放電容量の低下が少
ない負極が要求されている。
However, natural graphite in which graphite crystals are developed and artificial graphite particles in which coke is graphitized have a weaker bonding force between the layers in the c-axis direction than in the plane direction of the crystals. As a result, the bond between the graphite layers is broken, and so-called scale-like graphite particles having a large aspect ratio are obtained. Since the scale-like graphite particles have a large aspect ratio, when the electrode is produced by kneading with a binder and applying to a current collector, the scale-like graphite particles are oriented in the plane direction of the current collector, and as a result, In addition to the problem of destruction of the inside of the electrode due to the distortion in the c-axis direction caused by the repeated insertion and extraction of lithium into and from the graphite crystal, the cycle characteristics are degraded,
When the negative electrode density is 1.5 g / cm 3 or more, it becomes difficult to insert and release lithium into the negative electrode graphite, and there is a problem that rapid charge / discharge characteristics and discharge capacity are rapidly reduced. The lithium secondary battery can be expected to increase the energy density per volume by increasing the negative electrode density. Therefore, in order to improve the energy density per volume of the lithium secondary battery, there is a demand for a negative electrode that has a small decrease in discharge capacity when the negative electrode density is increased.

【0004】[0004]

【発明が解決しようとする課題】請求項1記載の発明
は、高容量のリチウム二次電池に好適なリチウム二次電
池用負極を提供するものである。請求項2及び3記載の
発明は、高容量で、急速充放電特性及びサイクル特性に
優れたリチウム二次電池に好適なリチウム二次電池用負
極を提供するものである。請求項4記載の発明は、高容
量で、急速充放電特性及びサイクル特性に優れたリチウ
ム二次電池に好適なリチウム二次電池用負極の製造法を
提供するものである。請求項5記載の発明は、高容量
で、急速充放電特性及びサイクル特性に優れたリチウム
二次電池を提供するものである。
An object of the present invention is to provide a negative electrode for a lithium secondary battery suitable for a high capacity lithium secondary battery. The invention according to claims 2 and 3 provides a negative electrode for a lithium secondary battery which is suitable for a lithium secondary battery having high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics. The invention described in claim 4 provides a method for producing a negative electrode for a lithium secondary battery which is suitable for a lithium secondary battery having a high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics. The invention according to claim 5 provides a lithium secondary battery having high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、黒鉛粒子及び
有機系結着剤の混合物と集電体とを一体化してなるリチ
ウム二次電池用負極において、加圧、一体化後の黒鉛粒
子及び有機系結着剤の混合物の密度が1.5〜1.9g/
cm3であるリチウム二次電池用負極に関する。また本発
明は、この黒鉛粒子が、扁平状の粒子を複数、配向面が
非平行となるように集合又は結合させた黒鉛粒子である
リチウム二次電池用負極に関する。また、本発明は、こ
の黒鉛粒子のアスペクト比が5以下である請求項1又は
2記載のリチウム二次電池用負極に関する。
SUMMARY OF THE INVENTION The present invention provides a negative electrode for a lithium secondary battery obtained by integrating a mixture of graphite particles and an organic binder with a current collector. And the density of the mixture of the organic binder is 1.5 to 1.9 g /
The present invention relates to a negative electrode for a lithium secondary battery having a size of cm 3 . The present invention also relates to a negative electrode for a lithium secondary battery, wherein the graphite particles are graphite particles in which a plurality of flat particles are aggregated or combined such that the orientation planes are non-parallel. The present invention also relates to the negative electrode for a lithium secondary battery according to claim 1 or 2, wherein the graphite particles have an aspect ratio of 5 or less.

【0006】また本発明は、黒鉛化可能な骨材又は黒鉛
と黒鉛化可能なバインダに黒鉛化触媒を1〜50重量%
添加し、これを混合、焼成、粉砕した黒鉛粒子に有機系
結着剤及び溶剤を添加して混合し、該混合物を集電体に
塗布し、溶剤を乾燥させた後、加圧して一体化すること
を特徴とするリチウム二次電池用負極の製造法に関す
る。さらに本発明は、前記リチウム二次電池用負極、若
しくは前記製造法で製造されたリチウム二次電池用負極
と、正極とをセパレータを介して対向して配置し、かつ
その周辺に電解液が注入されたリチウム二次電池に関す
る。
Further, the present invention provides a graphitizable aggregate or graphite and a graphitizable catalyst containing 1 to 50% by weight of a graphitizable binder.
An organic binder and a solvent are added to the mixed, calcined, and ground graphite particles, and the mixture is applied. The mixture is applied to a current collector, and the solvent is dried. And a method for producing a negative electrode for a lithium secondary battery. Further, in the present invention, the negative electrode for a lithium secondary battery, or the negative electrode for a lithium secondary battery manufactured by the above manufacturing method, and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolyte is injected around the negative electrode. To a rechargeable lithium secondary battery.

【0007】[0007]

【発明の実施の形態】本発明のリチウム二次電池用負極
は、黒鉛粒子及び有機系結着剤の混合物と集電体とが一
体化され、一体化後の該黒鉛粒子及び結着剤の混合物の
密度が1.5〜1.9g/cm3であることを特徴とする。
前記密度は、好ましくは1.55〜1.85g/cm3、よ
り好ましくは1.6〜1.85g/cm3、さらに好ましく
は1.6〜1.8g/cm3の範囲とされる。本発明におけ
る負極を構成する黒鉛粒子及び結着剤の混合物の密度を
高くすることにより、この負極を用いて得られるリチウ
ム二次電池は、体積当たりのエネルギー密度を大きくす
ることができる。黒鉛粒子及び有機系結着剤の混合物の
密度が1.9g/cm3を超えると、急速充電特性が低下
し、1.5g/cm3未満では得られるリチウム二次電池の
体積当たりのエネルギー密度が小さくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode for a lithium secondary battery according to the present invention is obtained by integrating a current collector with a mixture of graphite particles and an organic binder. The mixture has a density of 1.5 to 1.9 g / cm 3 .
The density is preferably in the range of 1.55 to 1.85 g / cm 3 , more preferably 1.6 to 1.85 g / cm 3 , and still more preferably 1.6 to 1.8 g / cm 3 . By increasing the density of the mixture of the graphite particles and the binder constituting the negative electrode of the present invention, the energy density per volume of the lithium secondary battery obtained using this negative electrode can be increased. When the density of the mixture of the graphite particles and the organic binder exceeds 1.9 g / cm 3 , the rapid charging characteristic is deteriorated, and when the density is less than 1.5 g / cm 3 , the energy density per unit volume of the obtained lithium secondary battery is obtained. Becomes smaller.

【0008】本発明のリチウム二次電池用負極に用いる
黒鉛粒子は、前記範囲に密度を設定できるものであれば
よく、例えば天然黒鉛等も用いることができるが、これ
らの中で、扁平状の粒子を複数、配向面が非平行となる
ように集合又は結合させた黒鉛粒子を用いることが好ま
しい。本発明において、扁平状の粒子とは、長軸と短軸
を有する形状の粒子のことであり、完全な球状でないも
のをいう。例えば鱗状、鱗片状、一部の塊状等の形状の
ものがこれに含まれる。黒鉛粒子において、複数の扁平
状の粒子の配向面が非平行とは、それぞれの粒子の形状
において有する扁平した面、換言すれば最も平らに近い
面を配向面として、複数の扁平状の粒子がそれぞれの配
向面を一定の方向にそろうことなく集合している状態を
いう。
The graphite particles used in the negative electrode for a lithium secondary battery according to the present invention may be any particles capable of setting the density within the above range. For example, natural graphite may be used. It is preferable to use graphite particles in which a plurality of particles are aggregated or bonded so that the orientation planes are non-parallel. In the present invention, flat particles are particles having a shape having a major axis and a minor axis, and are not perfectly spherical. For example, a shape such as a scaly shape, a scaly shape, or a partial lump shape is included in this. In the graphite particles, the orientation plane of the plurality of flat particles is non-parallel, and the flat surface having the shape of each particle, in other words, the plane closest to the plane is the orientation surface, and the plurality of flat particles are This refers to a state in which the respective alignment planes are gathered without being aligned in a certain direction.

【0009】この黒鉛粒子において扁平状の粒子は集合
又は結合しているが、結合とは互いの粒子が、タール、
ピッチ等のバインダーを炭素化した炭素質を介して、化
学的に結合している状態をいい、集合とは互いの粒子が
化学的に結合してはないが、その形状等に起因して、そ
の集合体としての形状を保っている状態をいう。機械的
な強度の面から、結合しているものが好ましい。1つの
黒鉛粒子において、扁平状の粒子の集合又は結合する数
としては、3個以上であることが好ましい。個々の扁平
状の粒子の大きさとしては、粒径で1〜100μmであ
ることが好ましく、これらが集合又は結合した黒鉛粒子
の平均粒径の2/3以下であることが好ましい。
[0009] In the graphite particles, the flat particles are aggregated or bonded.
Through a carbonaceous material obtained by carbonizing a binder such as a pitch, it refers to a state in which the particles are chemically bonded.Assembling means that the particles are not chemically bonded to each other, but due to its shape and the like, A state in which the shape of the aggregate is maintained. From the standpoint of mechanical strength, it is preferable to combine them. In one graphite particle, the number of flat particles aggregated or bonded is preferably three or more. The size of each flat particle is preferably 1 to 100 μm in particle size, and is preferably 2/3 or less of the average particle size of the graphite particles in which these are aggregated or bonded.

【0010】該黒鉛粒子を負極に使用すると、集電体上
に黒鉛粒子が配向し難く、負極黒鉛にリチウムを吸蔵・
放出し易くなるため、得られるリチウム二次電池の急速
充放電特性及びサイクル特性を向上させることができ
る。なお、図1に本発明で用いる黒鉛粒子の一例の粒子
構造の走査型電子顕微鏡写真を示す。図1において、
(a)は本発明で用いる黒鉛粒子の外表面の走査型電子
顕微鏡写真、(b)は黒鉛粒子の断面の走査型電子顕微
鏡写真である。(a)においては、細かな鱗片状の黒鉛
粒子が数多く、それらの粒子の配向面を非平行にして結
合し、黒鉛粒子を形成している様子が観察できる。
When the graphite particles are used for a negative electrode, it is difficult for the graphite particles to be oriented on the current collector, and lithium is inserted into the negative electrode graphite.
Since the lithium secondary battery is easily released, the charge / discharge characteristics and the cycle characteristics of the obtained lithium secondary battery can be improved. FIG. 1 shows a scanning electron micrograph of the particle structure of one example of the graphite particles used in the present invention. In FIG.
(A) is a scanning electron micrograph of the outer surface of the graphite particles used in the present invention, and (b) is a scanning electron micrograph of the cross section of the graphite particles. In (a), it can be observed that a number of fine flake-like graphite particles are formed, and the orientation planes of these particles are combined in a non-parallel manner to form graphite particles.

【0011】またアスペクト比が5以下である黒鉛粒子
は、集電体上で粒子が配向し難い傾向があり、上記と同
様にリチウムを吸蔵・放出し易くなるので好ましい。ア
スペクト比は1.2〜5であることがより好ましい。ア
スペクト比が1.2未満では、粒子間の接触面積が減る
ことにより、導電性が低下する傾向にある。同様の理由
で、さらに好ましい範囲の下限は1.3以上である。ま
た、さらに好ましい範囲の上限は、3以下であり、アス
ペクト比がこれより大きくなると、急速充放電特性が低
下し易くなる傾向がある。従って、特に好ましいアスペ
クト比は1.3〜3である。なお、アスペクト比は、黒
鉛粒子の長軸方向の長さをA、短軸方向の長さをBとし
たとき、A/Bで表される。本発明におけるアスペクト
比は、顕微鏡で黒鉛粒子を拡大し、任意に100個の黒
鉛粒子を選択し、A/Bを測定し、その平均値をとった
ものである。また、アスペクト比が5以下である黒鉛粒
子の構造としては、より小さい黒鉛粒子の集合体又は結
合体であることが好ましく、前記の、扁平状の粒子を複
数、配向面が非平行となるように集合又は結合させた黒
鉛粒子を用いることがより好ましい。
[0011] Graphite particles having an aspect ratio of 5 or less are preferable because the particles tend to be hardly oriented on the current collector and easily occlude and release lithium as described above. The aspect ratio is more preferably 1.2 to 5. If the aspect ratio is less than 1.2, the contact area between the particles tends to decrease, so that the conductivity tends to decrease. For the same reason, the lower limit of the more preferable range is 1.3 or more. Further, the upper limit of the more preferable range is 3 or less, and when the aspect ratio is larger than this, the rapid charge / discharge characteristics tend to be easily deteriorated. Therefore, a particularly preferable aspect ratio is 1.3 to 3. The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention is obtained by magnifying graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring A / B, and taking the average value. In addition, the structure of the graphite particles having an aspect ratio of 5 or less is preferably an aggregate or a combination of smaller graphite particles, and a plurality of the flat particles, the orientation plane of which is non-parallel. It is more preferable to use graphite particles that are aggregated or bonded to the same.

【0012】本発明で使用する黒鉛粒子は、比表面積が
8m2/g以下のものが好ましく、より好ましくは5m2/g以
下とされる。該黒鉛粒子を負極に使用すると、得られる
リチウム二次電池の急速充放電特性及びサイクル特性を
向上させることができ、また、第一サイクル目の不可逆
容量を小さくすることができる。比表面積が、8m2/gを
超えると、得られるリチウム二次電池の第一サイクル目
の不可逆容量が大きくなる傾向にあり、エネルギー密度
が小さく、さらに負極を作製する際多くの結着剤が必要
になる傾向にある。得られるリチウム二次電池の急速充
放電特性、サイクル特性等がさらに良好な点から、比表
面積は、1.5〜5m2/gであることがさらに好ましく、
2〜5m2/gであることが極めて好ましい。比表面積の測
定は、BET法(窒素ガス吸着法)などの既知の方法を
とることができる。
The graphite particles used in the present invention preferably have a specific surface area of 8 m 2 / g or less, more preferably 5 m 2 / g or less. When the graphite particles are used for a negative electrode, the obtained lithium secondary battery can have improved rapid charge / discharge characteristics and cycle characteristics, and can have a reduced irreversible capacity in the first cycle. When the specific surface area exceeds 8 m 2 / g, the irreversible capacity in the first cycle of the obtained lithium secondary battery tends to increase, the energy density is low, and many binders are used when producing a negative electrode. Tends to be needed. The specific surface area is more preferably 1.5 to 5 m 2 / g from the viewpoint that the obtained lithium secondary battery has more favorable rapid charge / discharge characteristics and cycle characteristics.
It is extremely preferred that it is 2 to 5 m 2 / g. The specific surface area can be measured by a known method such as a BET method (nitrogen gas adsorption method).

【0013】さらに、本発明で用いる各黒鉛粒子のX線
広角回折における結晶の層間距離d(002)は3.3
8Å以下が好ましく、3.37Å以下であることがより
好ましく、3.36Å以下であることがさらに好まし
い。c軸方向の結晶子の大きさLc(002)は500
Å以上が好ましく、1000〜10000Åであること
がより好ましい。結晶の層間距離d(002)が小さく
なるかc軸方向の結晶子の大きさLc(002)が大き
くなると、放電容量が大きくなる傾向がある。
Further, the interlayer distance d (002) of the graphite in the X-ray wide angle diffraction of each graphite particle used in the present invention is 3.3.
It is preferably at most 8 °, more preferably at most 3.37 °, even more preferably at most 3.36 °. The crystallite size Lc (002) in the c-axis direction is 500
Å or more is preferable, and 1000 to 10000Å is more preferable. As the interlayer distance d (002) of the crystal decreases or the crystallite size Lc (002) in the c-axis direction increases, the discharge capacity tends to increase.

【0014】本発明のリチウム二次電池用負極の製造法
に特に制限はないが、黒鉛化可能な骨材又は黒鉛と黒鉛
化可能なバインダに黒鉛化触媒を1〜50重量%添加し
て混合し、焼成した後粉砕することによりまず黒鉛粒子
を得、ついで、該黒鉛粒子に有機系結着剤及び溶剤を添
加して混合し、該混合物を集電体に塗布し、乾燥して溶
剤を除去した後、加圧して一体化して前記密度にするこ
とによって得ることができる。
Although there is no particular limitation on the method for producing the negative electrode for a lithium secondary battery of the present invention, 1 to 50% by weight of a graphitizing catalyst is added to graphitizable aggregate or graphite and a graphitizable binder. First, graphite particles are obtained by calcination and then crushing, and then an organic binder and a solvent are added to the graphite particles and mixed. The mixture is applied to a current collector, dried, and the solvent is dried. After removal, it can be obtained by pressurizing and integrating to obtain the above density.

【0015】黒鉛化可能な骨材としては、例えば、コー
クス粉末、樹脂の炭化物等が使用できるが、黒鉛化でき
る粉末材料であれば特に制限はない。中でも、ニードル
コークス等の黒鉛化しやすいコークス粉末が好ましい。
また黒鉛としては、例えば天然黒鉛粉末、人造黒鉛粉末
等が使用できるが粉末状であれば特に制限はない。黒鉛
化可能な骨材又は黒鉛の粒径は、本発明で作製する黒鉛
粒子の粒径より小さいことが好ましい。
As the graphitizable aggregate, for example, coke powder, carbide of resin and the like can be used, but there is no particular limitation as long as the material can be graphitized. Among them, coke powder such as needle coke which is easily graphitized is preferable.
As the graphite, for example, natural graphite powder, artificial graphite powder and the like can be used, but there is no particular limitation as long as the powder is in the form of powder. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the graphite particles produced in the present invention.

【0016】さらに黒鉛化触媒としては、例えば鉄、ニ
ッケル、チタン、ケイ素、硼素等の金属、これらの炭化
物、酸化物などの黒鉛化触媒が使用できる。これらの中
で、ケイ素または硼素の炭化物または酸化物が好まし
い。これらの黒鉛化触媒の添加量は、得られる黒鉛粒子
に対して好ましくは1〜50重量%、より好ましくは5
〜40重量%の範囲、さらに好ましくは5〜30重量%
の範囲とされ、1重量%未満であると黒鉛粒子のアスペ
クト比及び比表面積が大きくなり黒鉛の結晶の発達が悪
くなる傾向にあり、一方50重量%を超えると均一に混
合することが困難で作業性が悪くなる傾向にある。
Further, examples of the graphitization catalyst include graphitization catalysts such as metals such as iron, nickel, titanium, silicon, and boron, and carbides and oxides thereof. Of these, carbides or oxides of silicon or boron are preferred. The amount of the graphitization catalyst to be added is preferably 1 to 50% by weight, more preferably 5 to 50% by weight based on the obtained graphite particles.
-40% by weight, more preferably 5-30% by weight
If the content is less than 1% by weight, the aspect ratio and the specific surface area of the graphite particles tend to be large, and the development of graphite crystals tends to be poor. On the other hand, if it exceeds 50% by weight, it is difficult to mix them uniformly. Workability tends to deteriorate.

【0017】バインダとしては、例えば、タール、ピッ
チの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が
好ましい。バインダの配合量は、扁平状の黒鉛化可能な
骨材又は黒鉛に対し、5〜80重量%添加することが好
ましく、10〜80重量%添加することがより好まし
く、15〜80重量%添加することがさらに好ましい。
バインダの量が多すぎたり少なすぎると、作製する黒鉛
粒子のアスペクト比及び比表面積が大きくなり易いとい
う傾向がある。黒鉛化可能な骨材又は黒鉛とバインダの
混合方法は、特に制限はなく、ニーダー等を用いて行わ
れるが、バインダの軟化点以上の温度で混合することが
好ましい。具体的にはバインダがピッチ、タール等の際
には、50〜300℃が好ましく、熱硬化性樹脂の場合
には、20〜100℃が好ましい。
As the binder, for example, organic materials such as thermosetting resins and thermoplastic resins are preferable in addition to tar and pitch. The binder is preferably added in an amount of 5 to 80% by weight, more preferably 10 to 80% by weight, and more preferably 15 to 80% by weight, based on the flat graphitizable aggregate or graphite. Is more preferable.
If the amount of the binder is too large or too small, the graphite particles to be produced tend to have an increased aspect ratio and specific surface area. The method of mixing the graphitizable aggregate or graphite and the binder is not particularly limited, and is performed using a kneader or the like, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, the temperature is preferably 50 to 300 ° C, and when the binder is a thermosetting resin, the temperature is preferably 20 to 100 ° C.

【0018】次に上記の混合物を焼成し、黒鉛化処理を
行う。なお、この処理の前に上記混合物を所定形状に成
形しても良い。さらに、成形後、黒鉛化前に粉砕し、粒
径を調整した後、黒鉛化を行っても良い。焼成は前記混
合物が酸化し難い条件で焼成することが好ましく、例え
ば窒素雰囲気中、アルゴンガス雰囲気中、真空中で焼成
する方法が挙げられる。黒鉛化の温度は、2000℃以
上が好ましく、2500℃以上であることがより好まし
く、2800℃〜3200℃であることがさらに好まし
い。黒鉛化の温度が低いと、黒鉛の結晶の発達が悪く、
放電容量が低くなる傾向があると共に添加した黒鉛化触
媒が作製する黒鉛粒子に残存し易くなる傾向がある。黒
鉛化触媒が、作製する黒鉛粒子中に残存すると、放電容
量が低下する。黒鉛化の温度が高すぎると、黒鉛が昇華
することがある。
Next, the above mixture is fired and graphitized. The mixture may be formed into a predetermined shape before this treatment. Further, after the molding, it may be pulverized before graphitization, and after adjusting the particle size, graphitization may be performed. The firing is preferably performed under conditions in which the mixture is unlikely to be oxidized. Examples of the firing include a method of firing in a nitrogen atmosphere, an argon gas atmosphere, or a vacuum. The temperature for graphitization is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C. If the graphitization temperature is low, the development of graphite crystals is poor,
The discharge capacity tends to decrease and the added graphitization catalyst tends to remain in the produced graphite particles. If the graphitization catalyst remains in the graphite particles to be produced, the discharge capacity decreases. If the graphitization temperature is too high, the graphite may sublime.

【0019】次に、得られた黒鉛化物を粉砕することが
好ましい。黒鉛化物の粉砕方法は、特に制限はないが、
例えばジェットミル、振動ミル、ピンミル、ハンマーミ
ル等の既知の方法をとることができる。粉砕後の粒径
は、平均粒径が1〜100μmが好ましく、10〜50
μmであることがより好ましい。平均粒径が大きくなり
すぎる場合は作製する電極の表面に凹凸ができ易くなる
傾向がある。なお、本発明において平均粒径は、レーザ
ー回折粒度分布計により測定することができる。
Next, the obtained graphitized product is preferably pulverized. The method of pulverizing the graphitized material is not particularly limited,
For example, a known method such as a jet mill, a vibration mill, a pin mill, and a hammer mill can be used. The particle size after pulverization is preferably such that the average particle size is 1 to 100 μm,
More preferably, it is μm. If the average particle size is too large, the surface of the electrode to be produced tends to have irregularities. In the present invention, the average particle size can be measured by a laser diffraction particle size distribution meter.

【0020】本発明は、上記に示す工程を経ることによ
り、扁平状の粒子を複数、配向面が非平行となるように
集合又は結合させることができ、またアスペクト比が5
以下の黒鉛粒子を得ることができ、さらに比表面積が8
m2/g以下の黒鉛粒子を得ることができる。
According to the present invention, a plurality of flat particles can be aggregated or bonded so that their orientation planes are non-parallel, and the aspect ratio is 5 through the above-described steps.
The following graphite particles can be obtained, and the specific surface area is 8
Graphite particles of m 2 / g or less can be obtained.

【0021】得られた前記黒鉛粒子は、有機系結着剤及
び溶剤を含む材料を混合して、シート状、ペレット状等
の形状に成形される。有機系結着剤としては、例えば、
ポリエチレン、ポリプロピレン、エチレンプロピレンタ
ーポリマー、ブタジエンゴム、スチレンブタジエンゴ
ム、ブチルゴム、イオン伝導率の大きな高分子化合物等
が使用できる。本発明においてイオン伝導率の大きな高
分子化合物としては、ポリフッ化ビニリデン、ポリエチ
レンオキサイド、ポリエピクロルヒドリン、ポリフォス
ファゼン、ポリアクリロニトリル等が使用できる。これ
らの中では、イオン伝導率の大きな高分子化合物が好ま
しく、ポリフッ化ビニリデンが特に好ましい。
The obtained graphite particles are formed into a sheet or pellet shape by mixing a material containing an organic binder and a solvent. As an organic binder, for example,
Polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, high molecular compounds having high ionic conductivity, and the like can be used. In the present invention, as the polymer compound having a large ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, and the like can be used. Among these, a polymer compound having a large ionic conductivity is preferable, and polyvinylidene fluoride is particularly preferable.

【0022】黒鉛粒子と有機系結着剤との混合比率は、
黒鉛粒子100重量部に対して、有機系結着剤を3〜1
0重量部用いることが好ましい。溶剤としては特に制限
はなく、N−メチル2−ピロリドン、ジメチルホルムア
ミド、イソプロパノール等が用いられる。溶剤の量に特
に制限はなく、所望の粘度に調整できればよいが、混合
物に対して、30〜70重量%用いられることが好まし
い。
The mixing ratio of the graphite particles and the organic binder is as follows:
The organic binder is 3-1 to 100 parts by weight of the graphite particles.
It is preferable to use 0 parts by weight. The solvent is not particularly limited, and N-methyl 2-pyrrolidone, dimethylformamide, isopropanol and the like are used. The amount of the solvent is not particularly limited as long as it can be adjusted to a desired viscosity, but is preferably used in an amount of 30 to 70% by weight based on the mixture.

【0023】集電体としては、例えばニッケル、銅等の
箔、メッシュなどの金属集電体が使用できる。なお一体
化は、例えばロール、プレス等の成形法で行うことがで
き、またこれらを組み合わせて一体化してもよい。この
ようにして得られた負極はセパレータを介して正極を対
向して配置し、かつ電解液を注入することにより、従来
の炭素材料を負極に使用したリチウム二次電池に比較し
て、急速充放電特性及びサイクル特性に優れ、かつ不可
逆容量が小さいリチウム二次電池を作製することができ
る。
As the current collector, for example, a metal current collector such as a foil of nickel, copper or the like, or a mesh can be used. In addition, the integration can be performed by a molding method such as a roll, a press, or the like, and these may be combined and integrated. The negative electrode obtained in this way is arranged with the positive electrode facing the other with a separator interposed therebetween, and injected with an electrolytic solution, so that the negative electrode is rapidly charged as compared with a conventional lithium secondary battery using a carbon material for the negative electrode. A lithium secondary battery having excellent discharge characteristics and cycle characteristics and small irreversible capacity can be manufactured.

【0024】本発明におけるリチウム二次電池の正極に
用いられる材料については特に制限はなく、LiNiO
2、LiCoO2、LiMn24等を単独又は混合して使
用することができる。電解液としては、LiClO4
LiPF6、LiAsF6、LiBF4、LiSO3CF3
等のリチウム塩を例えばエチレンカーボネート、ジエチ
ルカーボネート、ジメトキシエタン、ジメチルカーボネ
ート、テトラヒドロフラン、プロピレンカーボネート等
の非水系溶剤に溶解したいわゆる有機電解液を使用する
ことができる。
The material used for the positive electrode of the lithium secondary battery according to the present invention is not particularly limited.
2 , LiCoO 2 , LiMn 2 O 4, etc. can be used alone or as a mixture. LiClO 4 ,
LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3
For example, a so-called organic electrolytic solution in which a lithium salt such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, and propylene carbonate are dissolved can be used.

【0025】セパレータとしては、例えばポリエチレ
ン、ポリプロピレン等のポリオレフィンを主成分とした
不織布、クロス、微孔フィルム又はこれらを組み合わせ
たものを使用することができる。なお、図2に円筒型リ
チウム二次電池の一例の一部断面正面図を示す。図2に
示す円筒型リチウム二次電池は、薄板状に加工された正
極1と、同様に加工された負極2が、ポリエチレン製微
孔膜等のセパレータ3を介して重ね合わせたものを捲回
し、これを金属製等の電池缶7に挿入し、密閉化されて
いる。正極1は正極タブ4を介して正極蓋6に接合さ
れ、負極2は負極タブ5を介して電池底部へ接合されて
いる。正極蓋6はガスケット8にて電池缶7へ固定され
ている。
As the separator, for example, a nonwoven fabric, cloth, microporous film, or a combination thereof, containing a polyolefin such as polyethylene or polypropylene as a main component can be used. FIG. 2 shows a partial cross-sectional front view of an example of the cylindrical lithium secondary battery. The cylindrical lithium secondary battery shown in FIG. 2 is formed by winding a positive electrode 1 processed into a thin plate and a negative electrode 2 processed in the same manner with a separator 3 such as a polyethylene microporous membrane interposed therebetween. This is inserted into a battery can 7 made of metal or the like to be sealed. The positive electrode 1 is connected to a positive electrode cover 6 via a positive electrode tab 4, and the negative electrode 2 is connected to a battery bottom via a negative electrode tab 5. The positive electrode lid 6 is fixed to the battery can 7 with a gasket 8.

【0026】[0026]

【実施例】以下、本発明の実施例を図面を引用し説明す
る。 実施例1 平均粒径が8μmのコークス粉末50重量部、タールピ
ッチ20重量部、炭化ケイ素5重量部及びコールタール
15重量部を混合し、100℃で1時間撹拌した。次い
で、窒素雰囲気中で2800℃で焼成した後粉砕し、平
均粒径が25μmの黒鉛粒子を作製した。得られた黒鉛
粒子を100個任意に選び出し、アスペクト比の平均値
を測定した結果、1.5であった。また得られた黒鉛粒
子のBET法による比表面積は、2.1m2/gであり、黒
鉛粒子のX線広角回折による結晶の層間距離d(00
2)は3.365Å、結晶子の大きさLc(002)は
1000Å以上であった。さらに得られた黒鉛粒子の走
査型電子顕微鏡写真(SEM写真)によれば、この黒鉛
粒子は、扁平状の粒子が複数配向面が非平行となるよう
に集合又は結合した構造をしていた。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 50 parts by weight of coke powder having an average particle size of 8 μm, 20 parts by weight of tar pitch, 5 parts by weight of silicon carbide and 15 parts by weight of coal tar were mixed and stirred at 100 ° C. for 1 hour. Next, it was baked at 2800 ° C. in a nitrogen atmosphere and then pulverized to produce graphite particles having an average particle size of 25 μm. As a result of arbitrarily selecting 100 obtained graphite particles and measuring the average value of the aspect ratio, it was 1.5. The specific surface area of the obtained graphite particles by the BET method was 2.1 m 2 / g, and the interlayer distance d (00) of the crystals of the graphite particles by X-ray wide-angle diffraction was found.
2) was 3.365 ° and the crystallite size Lc (002) was 1000 ° or more. Further, according to a scanning electron micrograph (SEM photograph) of the obtained graphite particles, the graphite particles had a structure in which flat particles were aggregated or bonded such that a plurality of orientation planes became non-parallel.

【0027】次いで得られた黒鉛粒子90重量%にN−
メチル−2−ピロリドンに溶解したポリフッ化ビニリデ
ン(PVDF)を固形分で10重量%加えて混練し、黒
鉛ペーストを得た。この黒鉛ペーストを厚さが10μm
の圧延銅箔に塗布し、さらに乾燥してN−メチル−2−
ピロリドンを除去し、プレスで30MPaの圧力で圧縮
し、黒鉛粒子とPVDFの混合物層の厚さが80μm及
び密度が1.55g/cm3の試料電極を得た。
Next, 90% by weight of the obtained graphite particles was
Polyvinylidene fluoride (PVDF) dissolved in methyl-2-pyrrolidone was added at a solid content of 10% by weight and kneaded to obtain a graphite paste. This graphite paste has a thickness of 10 μm.
N-methyl-2-
The pyrrolidone was removed and the sample was compressed with a press at a pressure of 30 MPa to obtain a sample electrode having a mixture layer of graphite particles and PVDF having a thickness of 80 μm and a density of 1.55 g / cm 3 .

【0028】得られた試料電極を3端子法による定電流
充放電を行い、リチウム二次電池用負極としての評価を
行った。図3はリチウム二次電池の概略図であり、試料
電極の評価は図3に示すようにガラスセル9に、電解液
10としてLiPF をエチレンカーボネート(EC)
及びジメチルカーボネート(DMC)(ECとDMCは
体積比で1:1)の混合溶媒に1モル/リットルの濃度
になるように溶解した溶液を入れ、試料電極11、セパ
レータ12及び対極13を積層して配置し、さらに参照
極14を上部から吊るしてリチウム二次電池を作製して
行った。なお、対極13及び参照極14には金属リチウ
ムを使用し、セパレータ12にはポリエチレン微孔膜を
使用した。得られたリチウム二次電池を用いて試料電極
11と対極13の間に、試料電極の黒鉛粒子とPVDF
の混合物の面積に対して、0.2mA/cm2の定電流で5mV
(Vvs.Li/Li+)まで充電し、1V(Vvs.Li/L
i+)まで放電する試験を50サイクル繰り返したが放
電容量の低下は確認されなかった。また急速充放電特性
評価として、0.3mA/cm2の定電流で充電し、放電電流
を0.5、2.0、4.0及び6.0mA/cm2に変化さ
せ、このときの黒鉛粒子とPVDFの混合物の体積に対
する放電容量を表1に示す。
The obtained sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode for a lithium secondary battery. FIG. 3 is a schematic view of a lithium secondary battery. The evaluation of the sample electrode is performed by using LiPF 4 as an electrolyte 10 in ethylene carbonate (EC) in a glass cell 9 as shown in FIG.
And a solution prepared by dissolving a mixture of dimethyl carbonate (DMC) (EC and DMC in a volume ratio of 1: 1) to a concentration of 1 mol / liter was added, and a sample electrode 11, a separator 12, and a counter electrode 13 were laminated. The lithium secondary battery was produced by suspending the reference electrode 14 from above. Metal lithium was used for the counter electrode 13 and the reference electrode 14, and a polyethylene microporous membrane was used for the separator 12. Using the obtained lithium secondary battery, graphite particles of the sample electrode and PVDF were placed between the sample electrode 11 and the counter electrode 13.
5 mV at a constant current of 0.2 mA / cm 2 with respect to the area of the mixture of
(Vvs. Li / Li +) and 1V (Vvs. Li / L)
The test for discharging to i +) was repeated 50 cycles, but no decrease in discharge capacity was confirmed. In order to evaluate the rapid charge / discharge characteristics, the graphite was charged at a constant current of 0.3 mA / cm 2 , and the discharge current was changed to 0.5, 2.0, 4.0 and 6.0 mA / cm 2. Table 1 shows the discharge capacity with respect to the volume of the mixture of the particles and PVDF.

【0029】実施例2 プレスでの圧縮力を40MPaとした以外は、実施例1と
同様の工程を経て試料電極を得た。得られた試料電極の
黒鉛粒子とPVDFの混合物の厚さは80μm及び密度
は1.63g/cm3であった。次いで、実施例1と同様の
工程を経て、リチウム二次電池を作製し、実施例1と同
様の試験を行ったが放電容量の低下は確認されなかっ
た。また急速充放電特性評価として、0.3mA/cm2の定
電流で充電し、放電電流を0.5、2.0、4.0及び
6.0mA/cm2に変化させたときの放電容量を表1に示
す。
Example 2 A sample electrode was obtained through the same steps as in Example 1 except that the compression force of the press was set to 40 MPa. The thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 μm, and the density was 1.63 g / cm 3 . Next, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed, but no decrease in discharge capacity was confirmed. As a quick charge / discharge characteristic evaluation, the discharge capacity when charging at a constant current of 0.3 mA / cm 2 and changing the discharge current to 0.5, 2.0, 4.0, and 6.0 mA / cm 2. Are shown in Table 1.

【0030】実施例3 プレスでの圧縮力を80MPaとした以外は、実施例1と
同様の工程を経て試料電極を得た。得られた試料電極の
黒鉛粒子とPVDFの混合物の厚さは80μm及び密度
は1.75g/cm3であった。次いで、実施例と同様の工
程を経て、リチウム二次電池を作製し、実施例1と同様
の試験を行ったが放電容量の低下は確認されなかった。
また急速充放電特性評価として、0.3mA/cm2の定電流
で充電し、放電電流を0.5、2.0、4.0及び6.
0mA/cm2に変化させたときの放電容量を表1に示す。
Example 3 A sample electrode was obtained through the same steps as in Example 1 except that the compression force in the press was changed to 80 MPa. The thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 μm, and the density was 1.75 g / cm 3 . Next, a lithium secondary battery was manufactured through the same steps as in the example, and the same test as in example 1 was performed, but no decrease in discharge capacity was confirmed.
As a quick charge / discharge characteristic evaluation, the battery was charged at a constant current of 0.3 mA / cm 2 and the discharge current was 0.5, 2.0, 4.0, and 6.
Table 1 shows the discharge capacity when the discharge capacity was changed to 0 mA / cm 2 .

【0031】実施例4 プレスでの圧縮力を100MPaとした以外は、実施例1
と同様の工程を経て試料電極を得た。得られた試料電極
の黒鉛粒子とPVDFの混合物の厚さは80μm及び密
度は1.85g/cm3であった。次いで、実施例1と同様
の工程を経て、リチウム二次電池を作製し、実施例1と
同様の試験を行ったが放電容量の低下は確認されなかっ
た。また急速充放電特性評価として、0.3mA/cm2の定
電流で充電し、放電電流を0.5、2.0、4.0及び
6.0mA/cm2に変化させたときの放電容量を表1に示
す。
Example 4 Example 1 was repeated except that the compression force in the press was 100 MPa.
A sample electrode was obtained through the same steps as described above. The thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 μm, and the density was 1.85 g / cm 3 . Next, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed, but no decrease in discharge capacity was confirmed. As a quick charge / discharge characteristic evaluation, the discharge capacity when charging at a constant current of 0.3 mA / cm 2 and changing the discharge current to 0.5, 2.0, 4.0, and 6.0 mA / cm 2. Are shown in Table 1.

【0032】比較例1 プレスでの圧縮力を20MPaとした以外は、実施例1と
同様の工程を経て試料電極を得た。得られた試料電極の
黒鉛粒子とPVDFの混合物の厚さは80μm及び密度
は1.45g/cm3であった。次いで、実施例1と同様の
工程を経て、リチウム二次電池を作製し、実施例1と同
様の試験を行ったが放電容量の低下は確認されなかっ
た。また急速充放電特性評価として、0.3mA/cm2の定
電流で充電し、放電電流を0.5、2.0、4.0及び
6.0mA/cm2に変化させたときの放電容量を表1に示
す。
Comparative Example 1 A sample electrode was obtained through the same steps as in Example 1 except that the compression force in the press was changed to 20 MPa. The thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 μm, and the density was 1.45 g / cm 3 . Next, a lithium secondary battery was manufactured through the same steps as in Example 1, and the same test as in Example 1 was performed, but no decrease in discharge capacity was confirmed. As a quick charge / discharge characteristic evaluation, the discharge capacity when charging at a constant current of 0.3 mA / cm 2 and changing the discharge current to 0.5, 2.0, 4.0, and 6.0 mA / cm 2. Are shown in Table 1.

【0033】比較例2 プレスでの圧縮力を140MPaとした以外は、実施例1
と同様の工程を経て試料電極を得た。得られた試料電極
の黒鉛粒子とPVDFの混合物の厚さは80μm及び密
度は1.93g/cm3であった。次いで、例16と同様の
工程を経て、リチウム二次電池を作製し、例16と同様
の試験を行ったところ放電容量は15.7%低下した。
また急速充放電特性評価として、0.3mA/cm2の定電流
で充電し、放電電流を0.5、2.0、4.0及び6.
0mA/cm2に変化させたときの放電容量を表1に示す。
Comparative Example 2 Example 1 except that the compression force in the press was 140 MPa.
A sample electrode was obtained through the same steps as described above. The thickness of the mixture of graphite particles and PVDF of the obtained sample electrode was 80 μm, and the density was 1.93 g / cm 3 . Next, a lithium secondary battery was manufactured through the same steps as in Example 16, and the same test as in Example 16 was performed. As a result, the discharge capacity was reduced by 15.7%.
As a quick charge / discharge characteristic evaluation, the battery was charged at a constant current of 0.3 mA / cm 2 and the discharge current was 0.5, 2.0, 4.0, and 6.
Table 1 shows the discharge capacity when the discharge capacity was changed to 0 mA / cm 2 .

【0034】[0034]

【表1】 [Table 1]

【0035】表1に示されるように、本発明のリチウム
二次電池用負極を用いたリチウム二次電池は、高放電容
量で、急速放電特性に優れることが示される。
As shown in Table 1, it is shown that the lithium secondary battery using the negative electrode for a lithium secondary battery of the present invention has a high discharge capacity and excellent rapid discharge characteristics.

【0036】[0036]

【発明の効果】請求項1記載のリチウム二次電池用負極
は、高容量のリチウム二次電池に好適である。請求項2
及び3記載のリチウム二次電池用負極は、高容量で、急
速充放電特性及びサイクル特性に優れたリチウム二次電
池に好適なものである。請求項4記載の製造法によれ
ば、高容量で、急速充放電特性及びサイクル特性に優れ
たリチウム二次電池に好適なリチウム二次電池用負極が
得られる。請求項5記載のリチウム二次電池は、高容量
で、急速充放電特性及びサイクル特性に優れる。
The negative electrode for a lithium secondary battery according to the first aspect is suitable for a high capacity lithium secondary battery. Claim 2
The negative electrode for a lithium secondary battery described in (3) and (3) is suitable for a lithium secondary battery having high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics. According to the manufacturing method of the fourth aspect, a negative electrode for a lithium secondary battery that is suitable for a lithium secondary battery having high capacity and excellent in rapid charge / discharge characteristics and cycle characteristics can be obtained. The lithium secondary battery according to the fifth aspect has a high capacity and is excellent in rapid charge / discharge characteristics and cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる黒鉛粒子の走査型電子顕微鏡写
真であり、(a)は粒子の外表面の写真、(b)は粒子
の断面の写真である。
FIG. 1 is a scanning electron micrograph of graphite particles used in the present invention, wherein (a) is a photograph of the outer surface of the particles and (b) is a photograph of a cross section of the particles.

【図2】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 2 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【図3】本発明の実施例で、充放電特性及び不可逆容量
の測定に用いたリチウム二次電池の概略図である。
FIG. 3 is a schematic view of a lithium secondary battery used for measurement of charge / discharge characteristics and irreversible capacity in Examples of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 正極タブ 5 負極タブ 6 正極蓋 7 電池缶 8 ガスケット 9 ガラスセル 10 電解液 11 試料電極(負極) 12 セパレータ 13 対極(正極) 14 参照極 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode tab 5 Negative electrode tab 6 Positive electrode cover 7 Battery can 8 Gasket 9 Glass cell 10 Electrolyte 11 Sample electrode (negative electrode) 12 Separator 13 Counter electrode (positive electrode) 14 Reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 淳 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 (72)発明者 山田 和夫 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 Fターム(参考) 4G046 EA06 EC02 EC06 5H029 AJ02 AJ05 AK03 AL07 AM02 AM03 AM04 AM07 CJ06 CJ08 DJ07 DJ08 DJ16 EJ01 EJ12 HJ05 HJ07 HJ08 5H050 AA02 AA07 BA17 CA07 CB08 DA04 DA11 EA24 FA17 GA08 GA10 HA05 HA07 HA08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Fujita 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Chemical Co., Ltd. Yamazaki Plant (72) Inventor Kazuo Yamada 3-chome Ayukawacho, Hitachi City, Ibaraki Prefecture No. 1 F-term in Hitachi Chemical Co., Ltd. Yamazaki Plant (reference) 4G046 EA06 EC02 EC06 5H029 AJ02 AJ05 AK03 AL07 AM02 AM03 AM04 AM07 CJ06 CJ08 DJ07 DJ08 DJ16 EJ01 EJ12 HJ05 HJ07 HJ08 5H050 AA02 AA07 DA07 CB08 GA10 HA05 HA07 HA08

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛粒子及び有機系結着剤の混合物と集
電体とを一体化してなるリチウム二次電池用負極におい
て、黒鉛粒子のアスペクト比が1.2〜5であり、加
圧、一体化後の黒鉛粒子及び有機系結着剤の混合物の密
度が1.5〜1.9g/cm3であるリチウム二次電池
用負極。
1. A negative electrode for a lithium secondary battery obtained by integrating a current collector with a mixture of graphite particles and an organic binder, wherein the graphite particles have an aspect ratio of 1.2 to 5; A negative electrode for a lithium secondary battery, wherein the density of the mixture of the graphite particles and the organic binder after integration is 1.5 to 1.9 g / cm 3 .
【請求項2】 黒鉛粒子のアスペクト比が1.3〜3で
ある請求項1記載のリチウム二次電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the graphite particles have an aspect ratio of 1.3 to 3.
【請求項3】 黒鉛粒子の比表面積が1.5〜5m2
gである請求項1又は2記載のリチウム二次電池用負
極。
3. A graphite particle having a specific surface area of 1.5 to 5 m 2 /
3. The negative electrode for a lithium secondary battery according to claim 1, wherein the negative electrode is g.
【請求項4】 黒鉛粒子の平均粒径が1〜100μmで
ある請求項1〜3のいずれか一項に記載のリチウム二次
電池用負極。
4. The negative electrode for a lithium secondary battery according to claim 1, wherein the graphite particles have an average particle size of 1 to 100 μm.
【請求項5】 リチウム二次電池用負極を製造するため
に用いられる黒鉛粒子において、前記黒鉛粒子は、黒鉛
粒子及び有機系結着剤の混合物と集電体とを一体化して
なる前記混合物の密度が1.5〜1.9g/cm3であ
るリチウム二次電池用負極を製造するために用いられる
ものであり、かつ、そのアスペクト比が1.2〜5であ
るリチウム二次電池負極用黒鉛粒子。
5. A graphite particle used for producing a negative electrode for a lithium secondary battery, wherein the graphite particle is a mixture of a mixture of graphite particles and an organic binder and a current collector. For use in producing a negative electrode for a lithium secondary battery having a density of 1.5 to 1.9 g / cm 3 , and for an anode of a lithium secondary battery having an aspect ratio of 1.2 to 5. Graphite particles.
【請求項6】 黒鉛粒子のアスペクト比が1.3〜3で
ある請求項5記載のリチウム二次電池負極用黒鉛粒子。
6. The graphite particles for a negative electrode of a lithium secondary battery according to claim 5, wherein the graphite particles have an aspect ratio of 1.3 to 3.
【請求項7】 黒鉛粒子の比表面積が1.5〜5m2
gである請求項5又は6記載のリチウム二次電池負極用
黒鉛粒子。
7. The graphite particles having a specific surface area of 1.5 to 5 m 2 /
7. The graphite particles for a negative electrode of a lithium secondary battery according to claim 5, which are g.
【請求項8】 黒鉛粒子の平均粒径が1〜100μmで
ある請求項5〜7のいずれか一項に記載のリチウム二次
電池負極用黒鉛粒子。
8. The graphite particles for a negative electrode of a lithium secondary battery according to claim 5, wherein the average particle size of the graphite particles is 1 to 100 μm.
JP2001184659A 1996-10-30 2001-06-19 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP3361510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184659A JP3361510B2 (en) 1996-10-30 2001-06-19 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-288109 1996-10-30
JP28810996 1996-10-30
JP2001184659A JP3361510B2 (en) 1996-10-30 2001-06-19 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31150997A Division JP3213575B2 (en) 1996-10-30 1997-10-27 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002006429A Division JP3951219B2 (en) 1996-10-30 2002-01-15 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002050346A true JP2002050346A (en) 2002-02-15
JP3361510B2 JP3361510B2 (en) 2003-01-07

Family

ID=26557020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184659A Expired - Lifetime JP3361510B2 (en) 1996-10-30 2001-06-19 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3361510B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
US7052803B2 (en) 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071176B1 (en) 2009-10-22 2011-10-10 쇼와 덴코 가부시키가이샤 Graphite material, carbon material for battery electrode and battery
EP2667435B1 (en) 2011-04-21 2018-04-11 Showa Denko K.K. Graphite carbon composite material, carbon material for the battery electrodes, and batteries
CN102844918B (en) 2011-04-21 2014-05-28 昭和电工株式会社 Graphite material, carbon material for battery electrode, and battery
TWI457278B (en) 2011-10-21 2014-10-21 昭和電工股份有限公司 Production method of electrode material for lithium ion battery
KR101347638B1 (en) 2011-10-21 2014-01-06 쇼와 덴코 가부시키가이샤 Graphite material, carbon material for battery electrode, and battery
US9284192B2 (en) 2011-10-21 2016-03-15 Showa Denko K.K. Method for producing electrode material for lithium ion batteries
JP5461746B1 (en) 2012-06-29 2014-04-02 昭和電工株式会社 Carbon material, carbon material for battery electrode, and battery
WO2014024473A1 (en) 2012-08-06 2014-02-13 昭和電工株式会社 Negative-electrode material for lithium-ion secondary battery
US9406936B2 (en) 2012-10-12 2016-08-02 Showa Denko K.K. Carbon material, carbon material for battery electrode, and battery
CN104969389B (en) 2013-02-04 2018-08-24 昭和电工株式会社 Active material for negative pole of Li-ion secondary battery graphite powder
KR101883678B1 (en) 2013-07-29 2018-07-31 쇼와 덴코 가부시키가이샤 Carbon material, cell electrode material, and cell
US20170155149A1 (en) 2014-05-30 2017-06-01 Showa Denko K.K. Carbon material, method for manufacturing same, and application of same
JP6605512B2 (en) 2015-02-09 2019-11-13 昭和電工株式会社 Carbon material, its production method and its use
CN107534149A (en) 2015-05-11 2018-01-02 昭和电工株式会社 The manufacture method of ion secondary battery cathode material lithium graphite powder
JP6472933B2 (en) 2016-06-23 2019-02-20 昭和電工株式会社 Graphite material and secondary battery electrode using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110233A (en) * 2000-09-29 2002-04-12 Toshiba Corp Non-aqueous electrolyte secondary battery
US7052803B2 (en) 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery

Also Published As

Publication number Publication date
JP3361510B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP4760379B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3305995B2 (en) Graphite particles for lithium secondary battery negative electrode
JP3361510B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3213575B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
JP3321782B2 (en) Graphite particles for lithium secondary battery negative electrode
JP4232404B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3951219B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3892957B2 (en) Method for producing graphite particles
JP4811699B2 (en) Negative electrode for lithium secondary battery
JP4483560B2 (en) Negative electrode for lithium secondary battery
JP2002343341A (en) Negative electrode for lithium secondary battery
JP4828118B2 (en) Negative electrode for lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JP4985611B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5853293B2 (en) Negative electrode for lithium secondary battery
JP5704473B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2017033945A (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP4687661B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP2005289803A (en) Graphite grain, graphite paste using graphite grain, negative electrode for lithium secondary battery, and lithium secondary battery
JPH10223231A (en) Anode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term