JP2002048337A - LOW NOx COMBUSTOR - Google Patents

LOW NOx COMBUSTOR

Info

Publication number
JP2002048337A
JP2002048337A JP2000237063A JP2000237063A JP2002048337A JP 2002048337 A JP2002048337 A JP 2002048337A JP 2000237063 A JP2000237063 A JP 2000237063A JP 2000237063 A JP2000237063 A JP 2000237063A JP 2002048337 A JP2002048337 A JP 2002048337A
Authority
JP
Japan
Prior art keywords
combustion
flame
lean
air
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000237063A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000237063A priority Critical patent/JP2002048337A/en
Publication of JP2002048337A publication Critical patent/JP2002048337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Gas Burners (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the generation of NOx and to secure variable burning rate by thinning the fuel concentration of the lean fuel flames in a low NOx combustion apparatus. SOLUTION: A low NOx combustor is provided with a lean fuel burner port 12 feeding a lean air-fuel mixture communicating with a lean gas chamber 11, a first flame port 14 arranged near the lean fuel burner port communicating with a first air-fuel mixture chamber 13 adjacent to the lean gas chamber and a second burner port 17 arranged near the first burner port communicating with a second air-fuel mixture chamber 16 adjacent to the first air-fuel mixture chamber, wherein the fuel concentration of the gas of the first air-fuel mixture chamber is controlled to be higher than the fuel concentration of the gas of the second air-fuel mixture chamber 16, and the flow capacities of the lean air-fuel mixture, a first air-fuel mixture and a second air fuel mixture are controlled at a same rate. Therefore, substance dispersion from a rich air-fuel mixture can be continued stably, as the flow pattern of the lean air-fuel mixture gas ejected form the lean air-fuel mixture burner port 12 resembles the flow pattern of the rich air-fuel mixture gas ejected from the first burner port 14 and the difference of the concentrations of the gases is maintained, and the ultra-low NOx can be realized by reducing the fuel concentration of the lean air-fuel mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として家庭用又
は業務用の燃焼装置において特に排気ガスのNOxを大
幅に低減しクリーン化を図った燃焼装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion apparatus mainly for domestic or commercial use, and particularly to a combustion apparatus in which NOx in exhaust gas is significantly reduced to achieve cleanness.

【0002】[0002]

【従来の技術】従来のこの種の低NOx燃焼装置は第一
の例として特開平1−219406号公報に記載されて
いるようなものがある。この低NOx燃焼装置は希薄混
合気を燃焼室内に噴出供給する淡バーナと、淡バーナの
両側に濃混合気を噴出供給する濃バーナが交互に配置す
るように構成されている。
2. Description of the Related Art As a first example of this kind of conventional low NOx combustion apparatus, there is one disclosed in Japanese Patent Application Laid-Open No. 1-219406. The low NOx combustion device is configured such that light burners for supplying a lean air-fuel mixture into a combustion chamber and rich burners for supplying a rich air-fuel mixture to both sides of the light burner are alternately arranged.

【0003】そして上記淡バーナから供給された淡希薄
混合気は、燃焼室内で火炎温度が低く従って低NOxで
はあるが自身は不安定な希薄火炎を形成する。また濃バ
ーナから供給された濃混合気は、燃焼室内で火炎温度が
高く従って高NOxだが自身は安定な濃火炎を形成し、
近接した希薄火炎に熱エネルギーを供給して燃焼反応を
促進させることにより全体として安定ないわゆる濃淡燃
焼を実現する。そして淡バーナの燃焼割合を濃バーナよ
り大きく設定し、全体として低NOx化を図っていた。
[0003] The lean mixture supplied from the lean burner has a low flame temperature in the combustion chamber and thus has low NOx, but itself forms an unstable lean flame. The rich air-fuel mixture supplied from the rich burner has a high flame temperature in the combustion chamber and therefore has high NOx, but itself forms a stable rich flame,
By supplying thermal energy to the adjacent lean flame to promote the combustion reaction, a stable so-called lean-burn combustion as a whole is realized. Then, the combustion ratio of the light burner is set to be larger than that of the rich burner, and the NOx is reduced as a whole.

【0004】また第二の例として混合気濃度を段階的に
変化させ、低NOx化を図った全一次式の燃焼装置が特
公昭57ー12923号公報に記載されている。この装
置は図8に示すように中央炎口部1から周辺炎口部2に
むかって互いの希薄混合気室3を連通口4によって連通
させ、徐々に燃料を供給し希薄混合気室3の混合気濃度
を段階的に濃くする構成になっている。そして上記中央
炎口部1で形成された超希薄火炎を周囲のやや濃度の高
い希薄火炎である程度安定化させ、それぞれ順次濃度が
濃くなる希薄火炎で安定化するという全一次式の低NO
x燃焼を実現する。
[0004] As a second example, Japanese Patent Publication No. 57-12923 discloses an all-primary combustion apparatus in which the concentration of air-fuel mixture is changed stepwise to reduce NOx. In this device, as shown in FIG. 8, the lean mixture chamber 3 is communicated from the central flame opening 1 to the peripheral flame opening 2 by the communication port 4, and the fuel is gradually supplied so that the lean mixture chamber 3 It is configured to gradually increase the concentration of the air-fuel mixture. Then, the ultra-lean flame formed at the central flame opening portion 1 is stabilized to some extent by a peripheral flame having a relatively high concentration, and is stabilized by a lean flame having a gradually increasing concentration.
x combustion is realized.

【0005】さらに第三の例として濃淡燃焼で淡濃炎口
上部に温度検出素子を取り付け、その出力により燃焼空
燃比を検出する燃焼装置が特開平7−4640号公報に
記載されている。この装置は図9に示すように、濃バー
ナ5と淡バーナ6を間隔を置いて並設しその間に二次空
気を流し、濃炎口の火炎と火炎との間の淡混合気噴出通
路に空気比を検出する為の温度検出素子7を設けること
により、燃焼用空気の空気比を検出でき、また温度検出
素子自身の温度は高温とならなく耐久性が向上する。
As a third example, Japanese Patent Application Laid-Open No. 7-4640 discloses a combustion apparatus in which a temperature detecting element is mounted above the light and rich flame opening in the light and rich combustion and the output of the temperature detecting element is detected. In this apparatus, as shown in FIG. 9, a dense burner 5 and a light burner 6 are juxtaposed at intervals, and secondary air flows between them. By providing the temperature detecting element 7 for detecting the air ratio, the air ratio of the combustion air can be detected, and the temperature of the temperature detecting element itself does not become high, so that the durability is improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の第一の例における低NOx燃焼装置では、希薄火炎を
濃火炎の熱的エネルギーで安定化する方式であるため、
濃バーナの燃焼割合を小さくすると希薄火炎が不安定と
なり、希薄混合気の燃焼割合を増加させ更にNOxの低
減を図るには限界が存在するという課題があった。
However, in the low NOx combustion apparatus of the first conventional example, the lean flame is stabilized by the thermal energy of the rich flame.
If the burn rate of the rich burner is reduced, the lean flame becomes unstable, and there is a problem that there is a limit in increasing the burn rate of the lean mixture and further reducing NOx.

【0007】また上記図9に示す第二の例における低N
Ox燃焼装置では、中央炎口部1にも周辺炎口部2にも
全一次燃焼をおこなう希薄火炎が形成されることにな
り、濃淡燃焼における濃火炎のような希薄火炎を安定化
させる有効な手段を有しないため非常に微妙な燃料と空
気の供給バランスが必要で、従って連通口4の構成にも
高精度の加工が要求された。また高速で高精度の空気と
燃料の流量制御が必要であった。更に全一次燃焼で不安
定な希薄火炎を形成するため燃焼量の可変調節幅が小さ
く、燃焼量の高速変化への対応は燃料供給バランスが崩
れやすいため困難であるという課題を有していた。更に
図10に示す第三の例の低NOx燃焼装置では、実際の
高温燃焼火炎ではなく、温度検知素子が火炎の輻射と二
次空気による冷却によるバランスした温度を検出するた
め燃焼空気比と温度素子の出力とは相関はあるが、他の
影響が受けやすく、また高温の火炎からの放熱を低温と
なった所で検知するため測定精度が維持できないという
課題があった。
The low N in the second example shown in FIG.
In the Ox combustion device, a lean flame that performs all primary combustion is formed in both the central flame opening 1 and the peripheral flame opening 2, and is effective for stabilizing a lean flame such as a rich flame in the lean combustion. Since there is no means, a very delicate balance of fuel and air supply is required, and therefore, the configuration of the communication port 4 also requires high-precision processing. In addition, high-speed, high-precision air and fuel flow control was required. Further, there is a problem that a variable adjustment width of the combustion amount is small because an unstable lean flame is formed by the all primary combustion, and it is difficult to cope with a high-speed change of the combustion amount because the fuel supply balance is easily lost. Further, in the low NOx combustion apparatus of the third example shown in FIG. 10, the combustion air ratio and the temperature are not the actual high-temperature combustion flame, but the temperature detection element detects the temperature balanced by the radiation of the flame and the cooling by the secondary air. Although there is a correlation with the output of the element, there is a problem that the measurement accuracy cannot be maintained because the influence of other influences is easily detected and the heat radiation from the high-temperature flame is detected at a low temperature.

【0008】特に、二次空気の変動による誤差が大き
い。すなわち、一次空気と二次空気の和が燃焼空気であ
るが、外気温度、バーナの熱変形、通路の温度上昇など
による流れ抵抗の変化で二次空気量が一次空気に比べて
増加した時は、温度素子は燃焼空気比が所定より多いと
判断して空気減少に制御し火炎が空気不足となり黄炎す
す等が発生する。また逆に、二次空気量が一次空気に比
べて減少した時は温度素子は燃焼空気比が所定より少な
いと判断して空気増加に制御し、火炎が空気過多となり
吹き飛びによる不燃成分臭気が発生する。
In particular, errors due to fluctuations in the secondary air are large. That is, the sum of primary air and secondary air is combustion air, but when the secondary air volume increases compared to primary air due to changes in flow resistance due to outside air temperature, burner thermal deformation, passage temperature rise, etc. The temperature element determines that the combustion air ratio is larger than a predetermined value, and controls the air to be reduced, so that the flame becomes insufficient and yellow soot occurs. Conversely, when the amount of secondary air decreases compared to the primary air, the temperature element judges that the combustion air ratio is lower than the predetermined value and controls the air to increase, and the flame becomes excessive and the non-combustible component odor due to blow-off is generated. I do.

【0009】また、高温火炎と低温冷却空気の間に温度
素子を設ける為、温度勾配が非常に大きく温度素子の位
置による出力の変化が大きく製造上高精度に位置を保つ
ことは困難で有った。
In addition, since a temperature element is provided between the high-temperature flame and the low-temperature cooling air, the temperature gradient is very large, the output varies greatly depending on the position of the temperature element, and it is difficult to maintain the position with high precision in manufacturing. Was.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するため、希薄室と連通し希薄混合気を燃焼室内に流出
供給する希薄炎口と、前記希薄室に隣接した第一混合気
室に連通し前記希薄炎口に近接して設けられた第一炎口
と、前記第一混合気室に隣接した第二混合気室に連通し
前記第一炎口に近接して設けられた第二炎口を有し、前
記第一混合気室の濃度を前記第二混合気室の濃度より濃
くすると共に、前記希薄炎口の上方に複数の温度検知手
段を設け、この温度検知手段により燃料供給量または燃
焼用空気供給量を増減した構成してある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a lean flame port which communicates with a lean chamber and supplies a lean air-fuel mixture into a combustion chamber, and a first air-fuel chamber adjacent to the lean chamber. A first flame port provided in close proximity to the lean flame port, and a second flame port provided in proximity to the first flame port in communication with a second mixture chamber adjacent to the first mixture chamber. A second combustion chamber having a concentration higher than that of the second mixture chamber, and a plurality of temperature detection means provided above the lean flame port; The supply amount or the combustion air supply amount is increased or decreased.

【0011】ここで課題解決のポイントとなる希薄火炎
の安定性を決定づける火炎基部構造を詳細に調査した結
果、上記構成によって第二炎口上に形成される濃火炎で
第一炎口から供給される過濃混合気が熱分解を受け、化
学的に活性な中間生成物が多量に発生し、さらに物質拡
散によって希薄炎口の基部に供給されて基部の微小空間
に燃焼反応が活発に行われる「高温・高反応域」が形成
され、これにより希薄火炎が安定化されていることが分
かった。そして物質拡散の基本であるフックの法則から
推察されるように、第一混合気室と希薄室の濃度差が大
きいほど、また第一炎口からの噴出流速が小さいほど
「高温・高反応域」が形成されやすいことが判明した。
また第二炎口から供給される濃混合気により自身が安定
な濃火炎を形成し、希薄火炎の反応を促進するので燃焼
反応も完結する。
Here, as a result of a detailed investigation of the flame base structure that determines the stability of the lean flame, which is the point of solving the problem, the rich flame formed on the second flame port by the above configuration is supplied from the first flame port. The rich mixture is subjected to thermal decomposition, a large amount of chemically active intermediate products are generated, and furthermore, it is supplied to the base of the lean flame outlet by substance diffusion, and the combustion reaction is actively performed in the minute space of the base. It was found that a "high temperature and high reaction zone" was formed, and thereby the lean flame was stabilized. As inferred from Hooke's law, which is the basis of material diffusion, the higher the concentration difference between the first mixture chamber and the lean chamber, and the smaller the jet flow velocity from the first flame outlet, the higher the temperature and reaction zone. Was easily formed.
Further, the rich mixture supplied from the second flame port forms a stable rich flame by itself and promotes the reaction of the lean flame, so that the combustion reaction is completed.

【0012】燃焼の大半は希薄炎口からの希薄混合ガス
の燃焼である。この燃焼状態はサーマルNoxの発生を
抑制して低NOx化する為に燃焼空気比を一般的な火炎
に比べて大きく(概略m=1.4〜2.0)設定して火
炎温度の低下を図っている。そのため燃焼空気比がさら
に大きくなると火炎長が伸び、また、一部で吹き飛びが
生じやすい傾向にある。そこで、希薄炎口の上方に複数
の温度検知手段を設ければ、この希薄燃焼中の空気比を
直接検知でき、この温度検知手段の出力により燃料供給
量または燃焼用空気供給量を増減することにより常に最
適な燃焼空気比を維持できる。
Most of the combustion is the combustion of a lean gas mixture from a lean flame port. In this combustion state, in order to suppress the generation of thermal NOx and reduce NOx, the combustion air ratio is set to be larger (approximately m = 1.4 to 2.0) than that of a general flame to reduce the flame temperature. I'm trying. For this reason, when the combustion air ratio is further increased, the flame length is increased, and blow-off tends to occur in a part. Therefore, if a plurality of temperature detectors are provided above the lean flame outlet, the air ratio during the lean combustion can be directly detected, and the output of the temperature detector increases or decreases the fuel supply amount or the combustion air supply amount. As a result, the optimum combustion air ratio can always be maintained.

【0013】従って希薄混合気の燃焼割合をさらに増加
させ、また希薄混合気の濃度を小さくすることができる
ので更に低NOx化が図られ、この状態で燃焼量の可変
幅の拡大が図られ、空気の高速変動にも追従して安定燃
焼を実現できる。このように互いに濃度の異なる混合気
を供給し超低NOx燃焼を実現する燃焼方式を、従来の
濃淡燃焼と識別するため以後「多濃度燃焼」と呼ぶ。
Therefore, since the combustion ratio of the lean air-fuel mixture can be further increased and the concentration of the lean air-fuel mixture can be reduced, the NOx can be further reduced, and in this state, the variable width of the combustion amount can be expanded. Stable combustion can be realized by following high-speed fluctuations of air. Such a combustion system that supplies air-fuel mixtures having different concentrations to achieve ultra-low NOx combustion is hereinafter referred to as "multi-concentration combustion" in order to distinguish it from the conventional lean-burn combustion.

【0014】[0014]

【発明の実施の形態】本発明の請求項1にかかる低NO
x燃焼装置は、希薄室と連通し希薄混合気を燃焼室内に
流出供給する希薄炎口と、前記希薄室に隣接した第一混
合気室に連通し前記希薄炎口に近接して設けられた第一
炎口と、前記第一混合気室に隣接した第二混合気室に連
通し前記第一炎口に近接して設けられた第二炎口を有
し、前記第一混合気室の濃度を前記第二混合気室の濃度
より濃くすると共に、希薄炎口の上方に複数の温度検知
手段を設けこの希薄燃焼中の空気比を直接検知でき、こ
の温度検知手段の出力により燃料供給量または燃焼用空
気供給量を増減する構成としてあり、常に最適な燃焼空
気比を維持できる。このため、希薄混合気の燃焼割合を
増加させ、また希薄混合気の濃度を小さくして超低NO
x化を図ることができると共に良好な燃焼を維持する燃
焼量の可変幅を大きく確保できる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
The x-burning device is provided in close proximity to the lean flame port which communicates with the lean chamber and communicates the lean mixture to flow out and into the combustion chamber and communicates with the first mixture chamber adjacent to the lean chamber. A first flame port, having a second flame port provided in close proximity to the first flame port and communicating with a second gas mixture chamber adjacent to the first gas mixture chamber; In addition to making the concentration higher than the concentration of the second mixture chamber, a plurality of temperature detecting means are provided above the lean flame port, so that the air ratio during the lean combustion can be directly detected. Alternatively, the configuration is such that the supply amount of combustion air is increased or decreased, so that an optimum combustion air ratio can be always maintained. For this reason, the combustion ratio of the lean air-fuel mixture is increased, and the concentration of the lean air-fuel mixture is reduced to reduce the ultra-low NO.
x can be achieved, and a large variable width of the combustion amount for maintaining good combustion can be secured.

【0015】本発明の請求項2にかかる低NOx燃焼装
置は、温度検知手段による検出温度の相互差に応じて燃
料供給量または燃焼用空気供給量を増減する構成として
あり、火炎の状態を検知して燃焼空気比を調節できる。
空気比の大きい火炎は炎口から噴出した混合ガスと燃焼
速度が釣り合ったところから火炎が発生し反応が終わっ
た所で燃焼が完結する。火炎の位置を決める燃焼速度は
燃焼空気比により決まる。炎口のガス流れに沿って複数
の温度検知手段を設け、この出力相互の差により火炎の
位置が判別できる。その為、燃焼空気比を最適に調節す
ることが可能となり、超低NOx燃焼を実現することが
できる。
According to a second aspect of the present invention, there is provided a low NOx combustion apparatus configured to increase or decrease a fuel supply amount or a combustion air supply amount in accordance with a difference between temperatures detected by temperature detecting means, and detect a state of a flame. To adjust the combustion air ratio.
The flame having a large air ratio is generated when the combustion speed is balanced with the mixed gas ejected from the flame outlet, and the combustion is completed when the reaction is completed. The combustion speed that determines the position of the flame is determined by the combustion air ratio. A plurality of temperature detecting means are provided along the gas flow in the flame port, and the position of the flame can be determined based on the difference between the outputs. Therefore, the combustion air ratio can be optimally adjusted, and ultra-low NOx combustion can be realized.

【0016】本発明の請求項3にかかる低NOx燃焼装
置は、温度検知手段と接続した比較制御部を設け、この
比較制御部は相互の目標温度差値を記憶する記憶部と、
前記温度検知手段の検知した値の相互差と比較する演算
比較部と、この値に応じて燃料供給量または燃焼用空気
供給量を増減する制御部とからなる構成を有する。これ
により、予め最適の空気比に応じた目標温度差値を記憶
部に記憶し、この値と温度検知手段の検知した値の相互
差とを演算比較部で比較し、この値に応じて燃料供給量
または燃焼用空気供給量を制御部で増減することにより
常に良好な燃焼を維持できる。
A low NOx combustion apparatus according to a third aspect of the present invention includes a comparison control unit connected to a temperature detecting means, the comparison control unit storing a mutual target temperature difference value,
It has a configuration comprising a calculation and comparison unit for comparing the difference between the values detected by the temperature detecting means with each other, and a control unit for increasing or decreasing the fuel supply amount or the combustion air supply amount according to the value. As a result, the target temperature difference value corresponding to the optimum air ratio is stored in the storage unit in advance, and this value is compared with the mutual difference between the values detected by the temperature detection means in the operation comparison unit. By increasing or decreasing the supply amount or the combustion air supply amount by the control unit, good combustion can always be maintained.

【0017】本発明の請求項4にかかる低NOx燃焼装
置は、温度検知手段による検出温度の相互比率に応じて
燃料供給量または燃焼用空気供給量を増減する構成とし
てあり、燃焼量が変化させた場合も火炎の状態を検知し
て燃焼空気比を調節できる。燃焼量の増減により混合ガ
スの噴出速度が変化し火炎の発生する所と反応が終わっ
た所が移動する。炎口のガス流れに沿って複数の温度検
知手段を設け、この出力相互の比率により相互の差より
も感度が向上して火炎の位置が明確に判別できる。その
為、燃焼量の変化に対応して燃焼空気比を最適に調節す
ることが可能となり、超低NOx燃焼を実現することが
できる。
The low NOx combustion apparatus according to claim 4 of the present invention is configured to increase or decrease the fuel supply amount or the combustion air supply amount in accordance with the mutual ratio of the temperatures detected by the temperature detecting means. In this case, the combustion air ratio can be adjusted by detecting the state of the flame. The jetting speed of the mixed gas changes due to the increase or decrease in the amount of combustion, and the place where the flame is generated and the place where the reaction is completed move. A plurality of temperature detecting means are provided along the gas flow of the flame outlet, and the sensitivity of the flame is improved more than the mutual difference by the ratio of the outputs, so that the position of the flame can be clearly determined. Therefore, the combustion air ratio can be optimally adjusted according to the change in the combustion amount, and ultra-low NOx combustion can be realized.

【0018】本発明の請求項5にかかる低NOx燃焼装
置は、温度検知手段と接続した比較制御部を設け、この
比較制御部は相互の目標温度比率値を記憶する記憶部
と、前記温度検知手段の検知した値の相互比率値と比較
する演算比較部と、この値に応じて燃料供給量または燃
焼用空気供給量を増減する制御部とからなる構成とし
た。これにより、炎口のガス流れに沿って複数の温度検
知手段を設け、この出力相互の比率により相互の差より
も感度が向上して火炎の位置が明確に判別できる。その
為、燃焼量の変化に対応して燃焼空気比を最適に調節す
ることが可能となり、さらに、記憶部に記憶した最適の
空気比に応じた目標温度差値と演算比較部で比較し、こ
の値に応じて燃料供給量または燃焼用空気供給量を制御
部で増減することにより燃焼量の変化に応じて常に良好
な燃焼を維持でき、燃焼量の少ない場合も希薄混合気の
燃焼割合を増加させ、また希薄混合気の濃度を小さくし
て超低NOx化を図ることができる。
A low NOx combustion apparatus according to a fifth aspect of the present invention is provided with a comparison control unit connected to a temperature detection means, the comparison control unit storing a mutual target temperature ratio value, and the temperature detection unit. The calculation unit is configured to compare the value detected by the means with the mutual ratio value, and the control unit increases or decreases the fuel supply amount or the combustion air supply amount according to the value. Thus, a plurality of temperature detecting means are provided along the gas flow in the flame outlet, and the sensitivity of the output is improved more than the mutual difference by the ratio of the outputs, so that the position of the flame can be clearly determined. Therefore, it is possible to optimally adjust the combustion air ratio in accordance with the change in the combustion amount, and further, compare the target temperature difference value according to the optimum air ratio stored in the storage unit with the operation comparison unit, By increasing or decreasing the fuel supply amount or the combustion air supply amount in accordance with this value, good combustion can always be maintained in accordance with the change in the combustion amount, and even when the combustion amount is small, the combustion ratio of the lean air-fuel mixture can be reduced. Ultra-low NOx can be achieved by increasing the concentration and decreasing the concentration of the lean mixture.

【0019】本発明の請求項6にかかる低NOx燃焼装
置は、希薄室と連通し希薄混合気を燃焼室内に流出供給
する希薄炎口と、前記希薄室に隣接した第一混合気室に
連通し前記希薄炎口に近接して設けられた第一炎口と、
前記第一混合気室に隣接した第二混合気室に連通し前記
第一炎口に近接して設けられた第二炎口を有し、前記第
一混合気室の濃度を前記第二混合気室の濃度より濃くす
ると共に、希薄炎口の上方に複数の火炎検知手段を設け
この希薄燃焼状態から空気比を応答性早く直接検知で
き、この火炎検知手段の出力により燃料供給量または燃
焼用空気供給量を増減する構成としたことにより、常に
最適な燃焼空気比を応答性良く維持できる。このため、
希薄混合気の燃焼割合を増加させ、また希薄混合気の濃
度を小さくして超低NOx化を図ることができると共に
燃焼量変化させた場合も良好な燃焼を維持する燃焼量の
可変幅を大きく確保できる。
A low NOx combustion apparatus according to a sixth aspect of the present invention communicates with a lean flame port which communicates with a lean chamber and supplies and supplies a lean air-fuel mixture into the combustion chamber, and a first air-fuel mixture chamber adjacent to the lean chamber. And a first flame port provided in close proximity to the lean flame port,
A second flame port provided in close proximity to the first flame port in communication with a second gas mixture chamber adjacent to the first gas mixture chamber, wherein the concentration of the first gas mixture chamber is controlled by the second mixing chamber; A plurality of flame detection means are provided above the lean flame port, and the air ratio can be directly detected from the lean combustion state with high responsiveness.The output of the flame detection means enables the fuel supply amount or the fuel supply amount to be increased. With the configuration in which the air supply amount is increased or decreased, the optimum combustion air ratio can always be maintained with good responsiveness. For this reason,
The combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx, and the variable range of the amount of combustion that maintains good combustion even when the amount of combustion is changed is increased. Can be secured.

【0020】本発明の請求項7にかかる低NOx燃焼装
置は、火炎検知手段による出力の相互差に応じて燃料供
給量または燃焼用空気供給量を増減できる。空気比の大
きい淡火炎は炎口から噴出した混合ガスと燃焼速度が釣
り合ったところから火炎が発生し反応が終わった所で燃
焼が完結する。火炎の位置を決める燃焼速度は燃焼空気
比により決まる。炎口のガス流れに沿って複数の火炎検
知手段を設け、この出力相互の差により火炎の位置を応
答性早く判別できる。その為、燃焼空気比を瞬時に最適
調節することが可能となり、超低NOx燃焼を実現する
ことができる。
In the low NOx combustion apparatus according to the seventh aspect of the present invention, the fuel supply amount or the combustion air supply amount can be increased or decreased according to the mutual difference between the outputs from the flame detecting means. A flame with a large air ratio is completed when the flame is generated from the point where the combustion speed is balanced with the mixed gas ejected from the flame outlet and the reaction is completed. The combustion speed that determines the position of the flame is determined by the combustion air ratio. A plurality of flame detection means are provided along the gas flow in the flame outlet, and the position of the flame can be quickly determined by the difference between the outputs. Therefore, the combustion air ratio can be optimally adjusted instantaneously, and ultra-low NOx combustion can be realized.

【0021】本発明の請求項8にかかる低NOx燃焼装
置は、火炎検知手段と接続した比較制御部を設け、この
比較制御部は相互の目標出力差値を記憶する記憶部と、
前記火炎検知手段の検知した値の相互差と比較する演算
比較部と、この値に応じて燃料供給量または燃焼用空気
供給量を増減する制御部とからなる構成としてある。こ
れにより、予め最適の空気比に応じた目標出力差値を記
憶部に記憶し、この値と応答性の早い火炎検知手段から
の検知値との相互差とを演算比較部で比較し、この値に
応じて燃料供給量または燃焼用空気供給量を制御部で増
減することにより応答性が早く常に良好な燃焼を維持で
きる。
The low NOx combustion device according to claim 8 of the present invention includes a comparison control unit connected to the flame detection means, the comparison control unit storing a mutual target output difference value,
It is configured to include a calculation and comparison unit that compares the difference between the values detected by the flame detection unit and a control unit that increases or decreases the fuel supply amount or the combustion air supply amount according to the value. As a result, the target output difference value corresponding to the optimum air ratio is stored in the storage unit in advance, and this value is compared with the mutual difference between the detected value from the flame detection unit having high responsiveness in the operation comparison unit. By increasing or decreasing the fuel supply amount or the combustion air supply amount in accordance with the value, the responsiveness is quick and good combustion can always be maintained.

【0022】本発明の請求項9にかかる低NOx燃焼装
置は、火炎検知手段による出力の相互比率に応じて燃料
供給量または燃焼用空気供給量を増減して調節できる。
燃焼量の増減により混合ガスの噴出速度が変化すると、
火炎の発生する所と反応が終わった所が移動する。炎口
のガス流れに沿って複数の火炎検知手段を設け、この出
力相互の比率により相互の差よりも感度が向上して火炎
の位置が明確にかつ応答性が早く判別できる。その為、
燃焼量の変化に対応して燃焼空気比を応答性早く最適調
節することが可能となり、超低NOx燃焼を実現するこ
とができる。
In the low NOx combustion apparatus according to the ninth aspect of the present invention, the fuel supply amount or the combustion air supply amount can be adjusted by increasing or decreasing according to the mutual ratio of the outputs from the flame detecting means.
When the injection speed of the mixed gas changes due to the increase or decrease of the combustion amount,
The place where the flame is generated and the place where the reaction ends move. A plurality of flame detecting means are provided along the gas flow of the flame outlet, and the sensitivity of the flame is improved more than the mutual difference by the ratio of the outputs, so that the flame position can be clearly identified and the response can be quickly determined. For that reason,
It becomes possible to quickly and optimally adjust the combustion air ratio in response to a change in the amount of combustion, thereby realizing ultra-low NOx combustion.

【0023】本発明の請求項10にかかる低NOx燃焼
装置は、火炎検知手段と接続した比較制御部を設け、こ
の比較制御部は相互の目標出力比率値を記憶する記憶部
と、前記火炎検知手段の検知した値の相互比率値と比較
する演算比較部と、この値に応じて燃料供給量または燃
焼用空気供給量を増減する制御部とからなる構成とし
た。これにより、炎口のガス流れに沿って複数の火炎検
知手段を設け、この出力相互の比率により相互の差より
も感度が向上して応答性が早く火炎の位置が明確に判別
できる。その為、燃焼量の変化に対応して燃焼空気比を
応答性が早く最適調節することが可能となり、さらに、
記憶部に記憶した最適の空気比に応じた目標出力差値と
演算比較部で比較し、この値に応じて燃料供給量または
燃焼用空気供給量を制御部で増減することにより応答性
の早い燃焼量変化に応じて常に良好な燃焼を維持でき、
燃焼量を負荷に応じて増減中や燃焼量の少ない場合も希
薄混合気の燃焼割合を増加させ、また希薄混合気の濃度
を小さくして超低NOx化を図ることができる。
A low NOx combustion apparatus according to a tenth aspect of the present invention includes a comparison control unit connected to the flame detection means, the comparison control unit storing a mutual target output ratio value, and the flame detection unit. The calculation unit is configured to compare the value detected by the means with the mutual ratio value, and the control unit increases or decreases the fuel supply amount or the combustion air supply amount according to the value. Thereby, a plurality of flame detecting means are provided along the gas flow of the flame outlet, and the sensitivity of the flame is improved more than the mutual difference by the ratio of the outputs, so that the response is quick and the position of the flame can be clearly identified. Therefore, it becomes possible to quickly and optimally adjust the combustion air ratio in response to a change in the combustion amount.
The target output difference value corresponding to the optimum air ratio stored in the storage unit is compared with the operation comparison unit, and the fuel supply amount or the combustion air supply amount is increased / decreased by the control unit according to this value, so that quick response is achieved. Good combustion can always be maintained in response to changes in combustion volume,
Even when the amount of combustion is increasing or decreasing according to the load or when the amount of combustion is small, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx.

【0024】本発明の請求項11にかかる低NOx燃焼
装置は、燃焼中の温度検出手段または火炎検知手段の検
知した値と比較し、燃料供給量または燃焼用空気供給量
を増減した値を記憶部に保持し、この値で次回の燃焼を
開始する構成を有する。このことにより、空燃比が最適
の状態で燃焼開始を行うことができ着火の確実性と未燃
分の発生を抑制でき、性能の向上と長時間使用による摩
耗変形等による性能変化を是正し耐久的に信頼性を確保
できる。
The low NOx combustion apparatus according to claim 11 of the present invention stores a value obtained by increasing or decreasing a fuel supply amount or a combustion air supply amount by comparing with a value detected by a temperature detecting means or a flame detecting means during combustion. And the next combustion is started with this value. As a result, combustion can be started with the optimal air-fuel ratio, the ignition can be reliably performed, and the generation of unburned components can be suppressed. Reliability can be ensured.

【0025】本発明の請求項12にかかる低NOx燃焼
装置は、燃焼開始から一定の時間燃焼量と空気量を一定
とした構成により、着火時の火炎の空気比をより正確に
検出できる。着火時の火炎は温度が急激に上昇し燃焼反
応も平衡していないため空気比の変化と燃焼量の変化に
よる場合が判別し難い。そこで、一定時間の間、燃焼量
と空気量を固定して一定量とする事により空気比の影響
を検出できる。このため、更に未燃分の発生を抑制でき
る。
According to the low NOx combustion apparatus of the twelfth aspect of the present invention, the air ratio of the flame at the time of ignition can be detected more accurately by the configuration in which the combustion amount and the air amount are constant for a certain period of time from the start of combustion. Since the temperature of the flame at the time of ignition rises rapidly and the combustion reaction is not equilibrium, it is difficult to discriminate between a change in the air ratio and a change in the combustion amount. Therefore, the influence of the air ratio can be detected by fixing the amount of combustion and the amount of air to a certain amount for a certain time. For this reason, the generation of unburned components can be further suppressed.

【0026】[0026]

【実施例】以下、本発明の実施例について図面を用いて
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】(実施例1)図1は本発明の実施例1の低
NOx燃焼装置を示す全体断面図、図2は同低NOx燃
焼装置の火炎形成状態を示す部分拡大図である。
(Embodiment 1) FIG. 1 is an overall sectional view showing a low NOx combustion apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a partially enlarged view showing a flame formation state of the low NOx combustion apparatus.

【0028】図1〜図2において、希薄バーナ10は希
薄混合気を内包する希薄室11が希薄炎口12に連接し
て構成してあり、希薄バーナ10の両側には第一混合気
室13を内包し第一炎口14に連接した第一バーナ15
が密着して設けられている。第一バーナ15の外側には
第二混合気室16を内包し第二炎口17に連接した第二
バーナ18が同様に密着して設けられ、これら希薄バー
ナ10とその両側の第一バーナ15と更にその両側に設
けられた第二バーナ18が一体化されてバーナブロック
19を構成している。
In FIG. 1 and FIG. 2, the lean burner 10 is configured such that a lean chamber 11 containing a lean air-fuel mixture is connected to a lean flame port 12, and a first air-fuel mixture chamber 13 is provided on both sides of the lean burner 10. The first burner 15 connected to the first flame port 14
Are provided in close contact with each other. Outside the first burner 15, a second burner 18 containing a second air-fuel mixture chamber 16 and connected to a second flame 17 is similarly provided in close contact with the lean burner 10 and the first burners 15 on both sides thereof. And the second burners 18 provided on both sides thereof are integrated to form a burner block 19.

【0029】バーナケース20内にはこのバーナブロッ
ク19が複数個収納され燃焼室21と連接している。ま
たバーナケース20の上流側には燃料を供給する燃料管
22と燃焼用空気を供給するファン23が設けられてい
る。燃料管22は比例弁24を介して下流側に希薄混合
器25、第一混合器26、第二混合器27がそれぞれ分
岐して設けられ、各混合器は、燃料管22に希薄燃料調
節手段28、第一燃料調節手段29、第二燃料調節手段
30を介し接続してある。またファン23の下流側には
希薄混合器25、第一混合器26、第二混合器27がそ
れぞれ分岐して設けられ、各混合器は、その空気系の中
に希薄空気調節手段31、第一空気調節手段32、第二
空気調節手段33が介されている。そして希薄混合器2
5と希薄室11は希薄通路34で、第一混合器26と第
一混合気室13は第一通路35で、第二混合器27と第
二混合気室16は第二通路36でそれぞれ接続されてい
る。各通路には他のバーナブロック19に各混合気を供
給する分岐路37、37’、37”が設けられている。
そして、第一通路35と第二通路36は分岐してそれぞ
れ2個の第一混合気室13、第二混合気室16に接続し
て構成してある。
A plurality of burner blocks 19 are housed in the burner case 20 and are connected to the combustion chamber 21. A fuel pipe 22 for supplying fuel and a fan 23 for supplying combustion air are provided upstream of the burner case 20. The fuel pipe 22 is provided with a lean mixer 25, a first mixer 26, and a second mixer 27, each of which is branched on a downstream side via a proportional valve 24. 28, a first fuel adjusting means 29, and a second fuel adjusting means 30. On the downstream side of the fan 23, a lean mixer 25, a first mixer 26, and a second mixer 27 are respectively provided in a branched manner, and each mixer is provided with a lean air adjusting means 31, One air adjusting means 32 and second air adjusting means 33 are interposed. And lean mixer 2
5 and the lean chamber 11 are connected by a lean passage 34, the first mixer 26 and the first air-fuel mixture chamber 13 are connected by a first passage 35, and the second mixer 27 and the second air-fuel mixture chamber 16 are connected by a second passage 36, respectively. Have been. Each passage is provided with branch passages 37, 37 ', 37 "for supplying each air-fuel mixture to the other burner block 19.
The first passage 35 and the second passage 36 are branched and connected to the two first mixture chambers 13 and the second mixture chamber 16, respectively.

【0030】また空気供給系は各混合器と接続する以外
に空気調節手段38を介してバーナケース20に接続す
る空気路39が設けてある。希薄燃料調節手段28、第
一燃料調節手段29、第二燃料調節手段30、希薄空気
調節手段31、第一空気調節手段32、第二空気調節手
段33、空気調節手段38は、ノズル等の流れ抵抗設定
手段により構成して各通路の流量配分を調整するか、或
いは電磁弁等を追加して燃焼量変化による流量に応じて
切り替える手段を設けても良い。そして、ファン23と
比例弁24は制御部40と電気的に接続し燃焼量の可変
量に応じた必要空気量と燃料量を供給する様に制御す
る。
The air supply system is provided with an air passage 39 connected to the burner case 20 via an air adjusting means 38 in addition to the connection with each mixer. The lean fuel adjustment means 28, the first fuel adjustment means 29, the second fuel adjustment means 30, the lean air adjustment means 31, the first air adjustment means 32, the second air adjustment means 33, and the air adjustment means 38 A configuration may be made by resistance setting means to adjust the flow distribution of each passage, or a means for switching according to the flow rate due to a change in the combustion amount by adding an electromagnetic valve or the like may be provided. The fan 23 and the proportional valve 24 are electrically connected to the control unit 40 and control so as to supply a required air amount and a fuel amount according to the variable amount of the combustion amount.

【0031】そして、希薄炎口12の上方に熱電対ある
いはサーミスタ等の複数の温度検知手段41a、41
b、41cを設け、この温度検知手段41a、41b、
41cの出力を制御部40に接続し、制御部40はこの
信号に応じて比例弁24とファン23の供給量を変化さ
せて燃料供給量または燃焼用空気供給量を増減する。
A plurality of temperature detecting means 41a, 41, such as thermocouples or thermistors, are provided above the lean flame port 12.
b, 41c, and the temperature detecting means 41a, 41b,
The output of 41c is connected to the control unit 40, and the control unit 40 changes the supply amount of the proportional valve 24 and the fan 23 according to this signal to increase or decrease the fuel supply amount or the combustion air supply amount.

【0032】次に動作、作用について説明すると、燃料
管22から供給された燃料は比例弁24を介して燃料調
節手段28、第一燃料調節手段29、第二燃料調節手段
30で所定の分配比に調節された後、希薄混合器25、
第一混合器26、第二混合器27にそれぞれ供給され
る。またファン23から供給された燃焼用空気は一部が
二次空気として空気調節手段38で所定の流量に調節さ
れた後、空気路39を通ってバーナケース20に供給さ
れ、各バーナブロック19との隙間を通過して燃焼室2
1に流出する。大部分の燃焼用空気は3つに分岐され希
薄空気調節手段31、第一空気調節手段32、第二空気
調節手段33で所定の分配比に調節された後、希薄混合
器25、第一混合器26、第二混合器27にそれぞれ供
給される。そして大部分の燃料が希薄燃料調節手段28
で、大量の燃焼用空気が希薄空気調節手段31で希薄混
合器25に供給され均一な希薄混合気となって希薄通路
34及び分岐路37を通って各バーナブロック19に設
けられた希薄バーナ10の希薄室11に供給される。
Next, the operation and action will be described. The fuel supplied from the fuel pipe 22 is supplied to the fuel control means 28, the first fuel control means 29 and the second fuel control means 30 through the proportional valve 24 at a predetermined distribution ratio. After being adjusted to, the lean mixer 25,
It is supplied to the first mixer 26 and the second mixer 27, respectively. A part of the combustion air supplied from the fan 23 is adjusted as a secondary air to a predetermined flow rate by the air adjusting means 38, and then supplied to the burner case 20 through the air passage 39. Through the gap of combustion chamber 2
Spill into one. Most of the combustion air is branched into three and adjusted to a predetermined distribution ratio by the lean air adjusting means 31, the first air adjusting means 32, and the second air adjusting means 33, and then the lean mixer 25, the first mixing air. Are supplied to the mixer 26 and the second mixer 27, respectively. Most of the fuel is supplied to the lean fuel adjusting means 28.
Then, a large amount of combustion air is supplied to the lean mixer 25 by the lean air adjusting means 31, and becomes a uniform lean mixture. The lean burner 10 is provided in each burner block 19 through the lean passage 34 and the branch passage 37. Is supplied to the lean chamber 11.

【0033】希薄室11に供給された希薄混合気は図2
に示すように、希薄炎口12から燃焼室21内に噴出さ
れ火炎温度が低く極めてNOx濃度が低い希薄火炎Eを
形成する。次に少量の燃料が第一燃料調節手段29で、
極めて少量の燃焼用空気が第一空気調節手段32で流量
調節され第一混合器26に供給され均一な過濃混合気と
なって第一通路35及び分岐路37’を通って各バーナ
ブロック19に設けられた第一混合気室13に供給され
る。第一混合気室13に供給された過濃混合気は第一炎
口14から燃焼室21内に低速で流出し、熱分解を受け
て多量の活性な化学種を生成し、この拡散供給によって
希薄火炎の基部に燃焼反応が極めて活発な「高温・高反
応域」αを形成し、大量の希薄火炎を両側の基部で安定
化させる過濃火炎Fを形成する。また次に極めて少量の
燃料が第二燃料調節手段30で、少量の燃焼用空気が第
二空気調節手段33で流量調節され第二混合器27に供
給され均一な濃混合気となって第二通路36及び分岐路
37”を通って各バーナブロック19に設けられた第二
混合気室16に供給される。第二混合気室16に供給さ
れた濃混合気は第二炎口17から燃焼室21内に低速で
流出し、安定した濃火炎Gを形成すると共に、第一バー
ナ15の過濃混合気を着火して過濃火炎Fを発生させ、
同時にバーナブロック19間から供給される燃焼用空気
で完全燃焼する。
The lean mixture supplied to the lean chamber 11 is shown in FIG.
As shown in FIG. 5, a lean flame E is ejected from the lean flame port 12 into the combustion chamber 21 and has a low flame temperature and an extremely low NOx concentration. Next, a small amount of fuel is supplied to the first fuel adjusting means 29,
An extremely small amount of combustion air is adjusted in flow rate by the first air adjusting means 32 and supplied to the first mixer 26 to become a uniform rich mixture, and passes through the first passage 35 and the branch passage 37 ′ to each burner block 19. Is supplied to the first air-fuel mixture chamber 13 provided at The rich mixture supplied to the first mixture chamber 13 flows out of the first flame port 14 into the combustion chamber 21 at a low speed and undergoes thermal decomposition to generate a large amount of active chemical species. At the base of the lean flame, a "high-temperature / high-reaction zone" α in which a combustion reaction is extremely active is formed, and an over-rich flame F that stabilizes a large amount of the lean flame at both bases is formed. Next, a very small amount of fuel is adjusted by the second fuel adjusting means 30 and a small amount of combustion air is adjusted by the second air adjusting means 33 and supplied to the second mixer 27 to form a uniform rich mixture to form a second rich air-fuel mixture. The mixture is supplied to the second mixture chamber 16 provided in each burner block 19 through the passage 36 and the branch path 37 ″. The rich mixture supplied to the second mixture chamber 16 is burned from the second flame port 17. It flows out into the chamber 21 at a low speed, forms a stable rich flame G, and ignites the rich mixture of the first burner 15 to generate a rich flame F,
At the same time, complete combustion is performed with the combustion air supplied from between the burner blocks 19.

【0034】このように、これら3種類の混合気濃度を
有する多濃度燃焼により従来の濃淡燃焼でも設けられて
いた自身が安定した濃火炎Gで過濃火炎Fを着火させ、
多量の活性な反応化学種いわゆるラジカルを希薄火炎F
の基部に拡散供給して「高温・高反応域」αを形成し希
薄火炎の安定化を大きく促進する。ここで第一燃料調節
手段29及び第二燃料調節手段30により第二炎口17
よりも第一炎口16の燃料流量を多く流れる様に設定し
第一炎口16の燃料濃度を過濃度とすることにより、活
性化学種の生成量が増加し「高温・高反応域」αの形成
領域も拡大して希薄火炎Eの安定性を更に増加させるこ
とが出来る。これにより希薄火炎Eが吹き飛ぶ希薄炎口
12からの限界噴出流速は、基部の安定化促進によって
大幅に向上させることが出来た。そして、各混合気の流
量を各々制御し希薄混合気と第一混合気と第二混合気の
流量を同率で増減する。
As described above, the multi-concentration combustion having the three types of mixture concentration ignites the rich flame F with the stable rich flame G, which is provided even in the conventional lean-burn combustion.
A large amount of active reactive species, so-called radicals
Is diffused and supplied to the base of the gas to form a "high temperature / high reaction zone" α, which greatly promotes the stabilization of the lean flame. Here, the first fuel adjusting means 29 and the second fuel adjusting means 30 control the second flame opening 17.
By setting the fuel flow rate of the first flame port 16 to be larger than that of the first flame port 16 and making the fuel concentration of the first flame port 16 excessive, the generation amount of active chemical species increases and the “high temperature / high reaction zone” α Can be further increased, and the stability of the lean flame E can be further increased. As a result, the critical jet flow velocity from the lean flame port 12 from which the lean flame E blows could be greatly improved by promoting the stabilization of the base. Then, the flow rates of the respective air-fuel mixtures are controlled, and the flow rates of the lean air-fuel mixture, the first air-fuel mixture, and the second air-fuel mixture are increased and decreased at the same rate.

【0035】この事により、燃焼量を増減した時も希薄
炎口12から噴出した淡混合ガスと第一炎口14から噴
出した濃混合ガスは流れのパターンが相似的に流れ希薄
混合ガスと高濃混合ガスの濃度差が維持されるため、希
薄混合ガスへ向かって濃混合ガスからの物質拡散が安定
して持続する。このため、希薄炎口12の基部に中間生
成物が供給されて基部の微小空間に燃焼反応が活発な
「高温・高反応域」が燃焼量の増減しても常に形成され
る。このため、希薄混合気の燃焼割合を増加させ、また
希薄混合気の濃度を小さくして超低NOx化を図ること
ができると共に良好な燃焼を維持する燃焼量の可変幅を
大きく確保できる。
Thus, even when the amount of combustion is increased or decreased, the flow pattern of the light mixed gas ejected from the lean flame port 12 and that of the rich mixed gas ejected from the first flame port 14 are similar to each other, and the flow rate of the lean mixed gas is high. Since the concentration difference of the rich mixed gas is maintained, the substance diffusion from the rich mixed gas toward the lean mixed gas is stably maintained. For this reason, an intermediate product is supplied to the base of the lean flame outlet 12, and a “high temperature / high reaction zone” in which a combustion reaction is active is formed in a minute space of the base even if the amount of combustion increases or decreases. For this reason, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx.

【0036】そして、図2に示す様に、燃焼量の大半を
占める希薄炎口12から燃焼室21内に噴出され形成す
る希薄火炎Eは、空気比が高いため火炎温度が低く極め
てNOx濃度が低いが、空気比を高くするに従って燃焼
速度が小さくなる。そのためこの希薄火炎Eは火炎長が
長く、且つ空気比により火炎長が大きく伸短する。そこ
で、希薄炎口12の上方に設けた複数の温度検知手段4
1a、41b、41c(実施例では3個)によりこの希
薄燃焼火炎Eの大きさから希薄火炎E中の空気比を直接
検知できる。この温度検知手段41a、41b、41c
の出力により制御部40で比例弁24またはファン23
を制御する事により燃料供給量または燃焼用空気供給量
を増減して常に最適な燃焼空気比を維持できる。このた
め、希薄混合気の燃焼割合をさらに増加させ、また希薄
混合気の濃度を小さくして超低NOx化を図ることがで
きると共に良好な燃焼を維持する燃焼量の可変幅を大き
く確保できる。
As shown in FIG. 2, the lean flame E formed by being injected into the combustion chamber 21 from the lean flame port 12 occupying most of the combustion amount has a high air ratio, and therefore has a low flame temperature and extremely low NOx concentration. Although low, the burning rate decreases as the air ratio increases. For this reason, the lean flame E has a long flame length, and the flame length greatly increases and decreases depending on the air ratio. Therefore, a plurality of temperature detecting means 4 provided above the lean flame port 12
The air ratio in the lean flame E can be directly detected from the size of the lean burn flame E by 1a, 41b, 41c (three in the embodiment). These temperature detecting means 41a, 41b, 41c
Of the proportional valve 24 or the fan 23
, The fuel supply amount or the combustion air supply amount can be increased or decreased to always maintain the optimum combustion air ratio. Therefore, it is possible to further increase the combustion ratio of the lean air-fuel mixture, reduce the concentration of the lean air-fuel mixture, achieve ultra-low NOx, and secure a large variable width of the amount of combustion for maintaining good combustion.

【0037】図3にこの希薄火炎Eと温度検知手段41
a、41b、41cの温度との関係を示す。空気比の大
きい希薄火炎Eは希薄炎口12から噴出した希薄混合ガ
スと燃焼速度が釣り合った所Hで火炎が発生し反応途中
のIから反応が終わった所Jで燃焼が完結する。混合ガ
スの温度は希薄炎口12から火炎の輻射熱で少しずつ上
昇するが燃焼が開始する所Hから燃焼熱で急激に温度上
昇する。そして、燃焼が完結した所Jで温度上昇は終わ
りその後は輻射放熱分の温度低下をする。空気比が増加
すると、燃焼が開始する所Hは少し上流側にシフトし燃
焼速度の低下により燃焼が完結した所Jは大きく上流側
に移動する。また、この燃焼が完結した所Jの温度は、
エンタルピの増加で低くなる。そこで温度検出手段41
a、41b、41cの値に応じて空気比を常に最適にで
きる。
FIG. 3 shows this lean flame E and the temperature detecting means 41.
The relationship between a, 41b, and 41c and the temperature is shown. The flame of the lean flame E having a large air ratio is generated at a place H where the combustion speed is balanced with that of the lean mixed gas ejected from the lean flame port 12, and the combustion is completed at a point J where the reaction is completed from I during the reaction. The temperature of the mixed gas gradually increases with the radiant heat of the flame from the lean flame port 12, but rises sharply with the heat of combustion from the point H where combustion starts. Then, the temperature rise ends at the point J where the combustion is completed, and thereafter, the temperature of the radiated heat is decreased. When the air ratio increases, the position H at which combustion starts shifts slightly to the upstream side, and the position J at which combustion is completed due to a decrease in combustion speed moves largely upstream. In addition, the temperature of J where this combustion is completed is
It decreases as the enthalpy increases. Therefore, the temperature detecting means 41
The air ratio can always be optimized according to the values of a, 41b and 41c.

【0038】また、温度検知手段41a、41b、41
cによる検出温度の相互差に応じて燃料供給量または燃
焼用空気供給量を増減する事により火炎の状態を検知し
て燃焼空気比を調節できる。火炎の位置を決める燃焼速
度は燃焼空気比により決まる。そこで淡炎口12のガス
流れに沿って複数の温度検知手段41a、41b、41
cを設け、この出力相互の差により火炎の位置が判別で
きる。図3において火炎中の温度を温度検知手段41b
で検出し火炎完了を温度検知手段41cで検出する設定
とすると、出力相互の差=温度検知手段41cー温度検
知手段41bとすると、空気比が正常より小さい場合は
マイナスとなり空気比が多い場合はプラスとなる。ま
た、燃焼開始場所近くの温度検知手段41aと火炎中の
温度を温度検知手段41bの出力相互の差=温度検知手
段41b−温度検知手段41aは火炎の温度上昇に近似
し空気比が大きくなるに従って小さくなる。その為、燃
焼空気比を最適に調節することが可能となり、超低NO
x燃焼を実現することができる。
Further, the temperature detecting means 41a, 41b, 41
By increasing or decreasing the fuel supply amount or the combustion air supply amount according to the mutual difference in the detected temperatures due to c, it is possible to detect the state of the flame and adjust the combustion air ratio. The combustion speed that determines the position of the flame is determined by the combustion air ratio. Therefore, a plurality of temperature detecting means 41a, 41b, 41
c, and the position of the flame can be determined from the difference between the outputs. In FIG. 3, the temperature in the flame is detected by the temperature detecting means 41b.
If it is set that the flame detection is detected by the temperature detecting means 41c, the difference between the outputs = the temperature detecting means 41c-the temperature detecting means 41b. It will be a plus. Further, the difference between the output of the temperature detecting means 41a near the combustion start location and the temperature in the flame = the difference between the outputs of the temperature detecting means 41b = the temperature detecting means 41b-the temperature detecting means 41a approximates the temperature rise of the flame and increases as the air ratio increases Become smaller. Therefore, the combustion air ratio can be adjusted optimally, and the ultra-low NO
x combustion can be realized.

【0039】(実施例2)図4は本発明の実施例2の低
NOx燃焼装置を示す全体断面図である。温度検知手段
41a、41b、41cと接続した比較制御部43を設
け、この比較制御部43は相互の目標温度差値を記憶す
る記憶部44と、温度検知手段41a、41b、41c
の検知した値の相互差と比較する演算比較部45と、こ
の値に応じて燃料供給量または燃焼用空気供給量を増減
する制御部46とからなる構成を有する。これにより、
予め最適な空気比に応じた目標温度差値を記憶部44に
記憶し、この値と温度検知手段41a、41b、41c
の検知した値の相互差とを演算比較部45で比較し、こ
の値に応じて燃料供給量または燃焼用空気供給量を制御
部46で増減することにより常に良好な燃焼を維持でき
る。
(Embodiment 2) FIG. 4 is an overall sectional view showing a low NOx combustion apparatus according to Embodiment 2 of the present invention. A comparison control unit 43 connected to the temperature detection units 41a, 41b, and 41c is provided. The comparison control unit 43 stores a mutual target temperature difference value, and a temperature detection unit 41a, 41b, and 41c.
And a control unit 46 for increasing or decreasing the fuel supply amount or the combustion air supply amount in accordance with this value. This allows
A target temperature difference value corresponding to the optimum air ratio is stored in the storage unit 44 in advance, and this value and the temperature detection means 41a, 41b, 41c are stored.
The calculation and comparison unit 45 compares the mutual difference between the detected values with each other, and the control unit 46 increases or decreases the fuel supply amount or the combustion air supply amount according to this value, so that good combustion can always be maintained.

【0040】また、温度検知手段41a、41b、41
cによる検出温度の相互比率に応じて燃料供給量または
燃焼用空気供給量を増減した事により燃焼量を変化させ
た場合も火炎の状態を検知して燃焼空気比を調節でき
る。図3に示したように、燃焼量の増減により混合ガス
の噴出速度が変化し火炎の発生する所と反応が終わった
所が移動する。炎口のガス流れに沿って複数の温度検知
手段41a、41b、41cを設け、この出力相互の比
率により相互の差よりも感度が向上して火炎の位置が明
確に判別できる。すなわち温度検知手段41a、41
b、41cの検知温度には、外気温度や熱負荷に対する
火炎輻射量の変化等変動要素が存在する。そこで相互の
比率から判断することによりこの影響が除外でき検知感
度の向上が図れる。
The temperature detecting means 41a, 41b, 41
When the amount of combustion is changed by increasing or decreasing the amount of fuel supply or the amount of combustion air supplied in accordance with the mutual ratio of the detected temperatures according to c, the combustion air ratio can be adjusted by detecting the state of the flame. As shown in FIG. 3, the injection speed of the mixed gas changes according to the increase or decrease of the combustion amount, and the place where the flame is generated and the place where the reaction is completed move. A plurality of temperature detecting means 41a, 41b, 41c are provided along the gas flow of the flame port, and the sensitivity of the flame is improved more than the mutual difference by the ratio of the outputs, so that the position of the flame can be clearly determined. That is, the temperature detecting means 41a, 41
The detected temperatures b and 41c have fluctuation factors such as a change in the amount of flame radiation with respect to the outside air temperature and the heat load. Therefore, by judging from the mutual ratio, this effect can be excluded and the detection sensitivity can be improved.

【0041】火炎中の温度を温度検知手段41bで検出
し火炎完了を温度検知手段41cで検出すると、出力相
互の比=温度検知手段41c÷温度検知手段41bとな
り、空気比の増加に従って大きい値となる。また、燃焼
開始場所近くの温度検知手段41aと火炎中の温度を温
度検知手段41bの出力相互の比=温度検知手段41b
÷温度検知手段41aは、火炎の温度上昇に近似し空気
比が大きくなるに従って小さくなる。その為、燃焼空気
比を最適に調節することが可能となり、燃焼量の変化に
対応して燃焼空気比を最適に調節することが可能とな
り、超低NOx燃焼を実現することができる。
When the temperature in the flame is detected by the temperature detecting means 41b and the completion of the flame is detected by the temperature detecting means 41c, the ratio between the outputs is equal to the temperature detecting means 41c ÷ the temperature detecting means 41b, and the value becomes larger as the air ratio increases. Become. Further, the ratio between the output of the temperature detecting means 41a near the combustion start location and the temperature in the flame = the temperature detecting means 41b.
(4) The temperature detecting means 41a approximates the temperature rise of the flame and decreases as the air ratio increases. Therefore, the combustion air ratio can be optimally adjusted, the combustion air ratio can be optimally adjusted according to the change in the amount of combustion, and ultra-low NOx combustion can be realized.

【0042】また、図4に示すものは、希薄炎口12の
ガス流れに沿って複数の温度検知手段41a、41b、
41cを設けた構成となり、この出力相互の比率により
相互の差よりも感度が向上して火炎の位置が明確に判別
できる。その為、燃焼量の変化に対応して燃焼空気比を
最適に調節することが可能となり、さらに、記憶部44
に記憶した最適空気比に対応する目標温度差値と演算比
較部45で比較し、この値に応じて燃料供給量または燃
焼用空気供給量を制御部46で増減することにより燃焼
量の変化に応じて常に良好な燃焼を維持でき、燃焼量の
少ない場合も希薄混合気の燃焼割合を増加させ、また希
薄混合気の濃度を小さくして超低NOx化を図ることが
できる。
FIG. 4 shows a plurality of temperature detecting means 41a, 41b,
41c is provided, the sensitivity of the output is improved more than the difference between the outputs, and the position of the flame can be clearly determined. Therefore, it is possible to optimally adjust the combustion air ratio according to the change in the combustion amount.
Is compared with the target temperature difference value corresponding to the optimum air ratio stored in the calculation unit 45, and the fuel supply amount or the combustion air supply amount is increased or decreased by the control unit 46 according to this value. Accordingly, good combustion can always be maintained, and even when the amount of combustion is small, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx.

【0043】(実施例3)図5は本発明の実施例3の低
NOx燃焼装置を示す全体断面図である。希薄室11と
連通し希薄混合気を燃焼室21内に流出供給する希薄炎
口12と、希薄室11に隣接した第一混合気室13に連
通し希薄炎口12に近接して設けられた第一炎口14
と、第一混合気室13に隣接した第二混合気室16に連
通し第一炎口14に近接して設けられた第二炎口17を
有し、第一混合気室13の濃度を第二混合気室16の濃
度より濃くすると共に、希薄炎口12の上方に複数の火
炎検知手段47a、47b、47c(実施例では3個)
を設けてある。火炎検知手段47a、47b、47cは
火炎中の活性化イオンを検知するフレームロッドや火炎
発光のスペクトルを検知する光電管等がある。
(Embodiment 3) FIG. 5 is an overall sectional view showing a low NOx combustion apparatus according to Embodiment 3 of the present invention. A lean flame port 12 which communicates with the lean chamber 11 and supplies a lean mixture to flow out into the combustion chamber 21, and is provided near the lean flame port 12 which communicates with a first mixture chamber 13 adjacent to the lean chamber 11. First flame outlet 14
And a second flame port 17 provided in communication with a second gas mixture chamber 16 adjacent to the first gas mixture chamber 13 and provided in close proximity to the first flame port 14. In addition to making the concentration higher than that of the second mixture chamber 16, a plurality of flame detecting means 47a, 47b, 47c (three in this embodiment) are provided above the lean flame port 12.
Is provided. The flame detecting means 47a, 47b and 47c include a flame rod for detecting activated ions in the flame and a photoelectric tube for detecting the spectrum of the flame emission.

【0044】本実施例ではフレームロットを用いた構成
とし、火炎検知手段47a、47b、47cは火炎中に
ロッドを注入し希薄炎口12と金属的結合したバーナケ
ース20をアースとしてアース線48で回路を構成す
る。このため、複数の火炎検知手段47a、47b、4
7cによりこの希薄燃焼反応から希薄火炎中の空気比を
直接検知できる。
In this embodiment, a flame lot is used, and the flame detecting means 47a, 47b and 47c are connected to a ground wire 48 with the burner case 20 in which a rod is injected into the flame and metallically connected to the lean flame port 12 as ground. Configure the circuit. Therefore, a plurality of flame detecting means 47a, 47b, 4
7c, the air ratio in the lean flame can be directly detected from the lean combustion reaction.

【0045】そしてこの火炎検知手段47a、47b、
47cの出力により制御部40で比例弁24またはファ
ン23を制御する事により燃料供給量または燃焼用空気
供給量を増減して常に最適な燃焼空気比を維持できる。
このため、希薄混合気の燃焼割合をさらに増加させ、ま
た希薄混合気の濃度を小さくして超低NOx化を図るこ
とができると共に良好な燃焼を維持する燃焼量の可変幅
を大きく確保できる。
The flame detecting means 47a, 47b,
By controlling the proportional valve 24 or the fan 23 by the control unit 40 with the output of 47c, the fuel supply amount or the combustion air supply amount can be increased or decreased to always maintain the optimum combustion air ratio.
Therefore, it is possible to further increase the combustion ratio of the lean air-fuel mixture, reduce the concentration of the lean air-fuel mixture, achieve ultra-low NOx, and secure a large variable width of the amount of combustion for maintaining good combustion.

【0046】図6にこの希薄火炎の空気比の変化による
形状を、図7にこの希薄火炎と火炎検知手段47a、4
7b、47cの出力との関係を示す。空気比の大きい希
薄火炎Eは希薄炎口12から噴出した希薄混合ガスと燃
焼速度が釣り合った所Hで火炎が発生し反応途中のIか
ら反応が終わった所Jで燃焼が完結する。フレームロッ
ドによる検知出力は電極間に電圧を加えた状態で、燃焼
反応によるラジカル中間生成物のイオン化により電極間
に電流が流れた量を検知する。燃焼が開始する所Hから
燃焼による中間生成物が発生し検知出力は急激に大きく
なる。そして、燃焼が完結した所Jで燃焼反応は終わり
中間生成物が無くなりその後は急激に小さくなる。空気
比が増加すると、燃焼が開始する所Hは少し上流側にシ
フトし燃焼速度の低下により燃焼が完結した所Jは大き
く上流側に移動する。また、空気比が大きくなると中間
生成物の濃度が薄くなり全体に小さい値となる。そこで
温度検出手段41a、41b、41cの値に応じて空気
比を常に最適にできる。また、フレームロッドは火炎の
状態を直接電気信号で処理するため、希薄燃焼状態から
空気比を応答性早く直接検知できる。この火炎検知手段
の出力により燃料供給量または燃焼用空気供給量を増減
する構成としたことにより常に最適な燃焼空気比を応答
性良く維持できる。このため、希薄混合気の燃焼割合を
増加させ、また希薄混合気の濃度を小さくして超低NO
x化を図ることができると共に燃焼量変化させた場合も
良好な燃焼を維持する燃焼量の可変幅を大きく確保でき
る。
FIG. 6 shows the shape of the lean flame due to the change in the air ratio, and FIG. 7 shows the lean flame and the flame detecting means 47a, 4b.
7 shows the relationship with the outputs of 7b and 47c. The flame of the lean flame E having a large air ratio is generated at a place H where the combustion speed is balanced with that of the lean mixed gas ejected from the lean flame port 12, and the combustion is completed at a point J where the reaction is completed from I during the reaction. The detection output by the flame rod detects the amount of current flowing between the electrodes due to the ionization of the radical intermediate produced by the combustion reaction in a state where a voltage is applied between the electrodes. Intermediate products due to combustion are generated at the point H where combustion starts, and the detection output sharply increases. Then, at the point J where the combustion is completed, the combustion reaction ends and the intermediate product disappears, and thereafter, the size decreases rapidly. When the air ratio increases, the position H at which combustion starts shifts slightly to the upstream side, and the position J at which combustion is completed due to a decrease in combustion speed moves largely upstream. Also, as the air ratio increases, the concentration of the intermediate product decreases, and the overall value decreases. Therefore, the air ratio can always be optimized according to the values of the temperature detecting means 41a, 41b, 41c. In addition, since the flame rod directly processes the state of the flame with an electric signal, the air ratio can be directly detected from the lean burn state with a quick response. Since the fuel supply amount or the combustion air supply amount is increased or decreased by the output of the flame detection means, the optimum combustion air ratio can always be maintained with good responsiveness. For this reason, the combustion ratio of the lean air-fuel mixture is increased, and the concentration of the lean air-fuel mixture is reduced to reduce the ultra-low NO.
x can be achieved, and also when the combustion amount is changed, a large variable width of the combustion amount that maintains good combustion can be secured.

【0047】また、火炎検知手段47a、47b、47
cによる出力の相互差に応じて燃料供給量または燃焼用
空気供給量を増減したことにより応答性早く火炎の状態
を検知して燃焼空気比を調節できる。空気比の大きい希
薄火炎は希薄炎口12から噴出した混合ガスと燃焼速度
が釣り合ったところから火炎が発生し反応が終わった所
で燃焼が完結する。火炎の位置を決める燃焼速度は燃焼
空気比により決まる。希薄炎口12のガス流れに沿って
複数の火炎検知手段47a、47b、47cを設け、こ
の出力相互の差により火炎の位置を応答性早く判別でき
る。図7において火炎中の火炎検知手段47bで検出し
火炎完了を火炎検知手段47cで検出する設定とする
と、出力相互の差=火炎検知手段47cー火炎検知手段
47bとすると、空気比が正常より小さい場合はマイナ
スとなり空気比が多い場合はプラスとなる。また、燃焼
開始場所近くの火炎検知手段47aと火炎中の火炎検知
手段47bの出力相互の差=火炎検知手段47bー火炎
検知手段47aは火炎の中間生成物濃度に近似し空気比
が大きくなるに従って大きくなる。その為、応答性が早
く燃焼空気比を最適に調節することが可能となり、超低
NOx燃焼を実現することができる。
The flame detecting means 47a, 47b, 47
By increasing or decreasing the fuel supply amount or the combustion air supply amount according to the mutual difference in the output due to c, the flame state can be detected quickly and the combustion air ratio can be adjusted. The lean flame having a large air ratio generates a flame when the combustion speed is balanced with the mixed gas ejected from the lean flame port 12, and the combustion is completed when the reaction is completed. The combustion speed that determines the position of the flame is determined by the combustion air ratio. A plurality of flame detecting means 47a, 47b, 47c are provided along the gas flow of the lean flame port 12, and the position of the flame can be quickly determined by the difference between the outputs. In FIG. 7, if it is set that the flame detection means 47b detects the completion of the flame and the flame detection means 47c detects the completion of the flame, the difference between the outputs = flame detection means 47c-flame detection means 47b, the air ratio is smaller than normal. In this case, the value is negative, and when the air ratio is large, the value is positive. Further, the difference between the output of the flame detecting means 47a near the combustion start location and the output of the flame detecting means 47b during the flame = flame detecting means 47b-the flame detecting means 47a approximates the intermediate concentration of the flame and increases as the air ratio increases. growing. Therefore, the responsiveness can be adjusted quickly and the combustion air ratio can be optimally adjusted, and ultra-low NOx combustion can be realized.

【0048】また、この実施例3においても火炎検知手
段47a、47b、47cと接続した比較制御部43を
設け、この比較制御部43は相互の目標温度差値を記憶
する記憶部44と、火炎検知手段47a、47b、47
cの検知した値の相互差と比較する演算比較部45と、
この値に応じて燃料供給量または燃焼用空気供給量を増
減する制御部46とからなる構成を有する。これによ
り、予め最適な空気比に応じた目標温度差値を記憶部4
4に記憶し、この値と火炎検知手段47a、47b、4
7cの検知した値の相互差とを演算比較部45で比較
し、この値に応じて燃料供給量または燃焼用空気供給量
を制御部46で増減することにより応答性が早く常に良
好な燃焼を維持できる。その為、燃焼量の変化に対応し
て燃焼空気比を応答性早く最適調節することが可能とな
り、超低NOx燃焼を実現することができる。
Also, in the third embodiment, a comparison control unit 43 connected to the flame detection means 47a, 47b, 47c is provided. The comparison control unit 43 includes a storage unit 44 for storing a mutual target temperature difference value, and a flame control unit. Detection means 47a, 47b, 47
an operation comparing unit 45 for comparing the detected value of c with the mutual difference,
The control unit 46 increases or decreases the fuel supply amount or the combustion air supply amount according to this value. Thereby, the target temperature difference value corresponding to the optimum air ratio is stored in the storage unit 4 in advance.
4 and this value and the flame detection means 47a, 47b, 4
7c are compared with each other by the operation comparing unit 45, and the fuel supply amount or the combustion air supply amount is increased or decreased by the control unit 46 in accordance with this value, so that quick response and good combustion are always achieved. Can be maintained. Therefore, it is possible to adjust the combustion air ratio optimally with a quick response in response to a change in the combustion amount, and to realize ultra-low NOx combustion.

【0049】また、火炎検知手段47a、47b、47
cによる検出出力の相互比率に応じて燃料供給量または
燃焼用空気供給量を増減した事により燃焼量を変化させ
た場合も応答性早く火炎の状態を検知して燃焼空気比を
調節できる。図7に示したように、燃焼量の増減により
混合ガスの噴出速度が変化し火炎の発生する所と反応が
終わった所が移動する。希薄炎口12のガス流れに沿っ
て複数の火炎検知手段47a、47b、47cを設け、
この出力相互の比率により相互の差よりも感度が向上し
て火炎の位置が明確に判別できる。すなわち火炎検知手
段47a、47b、47cの火炎検知出力には、燃焼熱
による絶縁抵抗の変化や雑音等の外乱成分等の変動要素
が存在する。そこで相互の比率から判断することにより
この影響が除外でき検知感度の向上が図れる。火炎中を
火炎検知手段47bで検出し火炎完了を温度検知手段4
7cで検出すると、出力相互の比=火炎検知手段47c
÷火炎検知手段47bとなり、空気比が小さい場合小さ
くなり空気比が大きい場合は小さい値となる。また、燃
焼開始場所近くの火炎検知手段47aと火炎中の火炎検
知手段47bの出力相互の比=火炎検知手段47b÷火
炎検知手段47aは、火炎の燃焼反応による中間生成物
の濃度に近似し空気比が大きくなるに従って小さくな
る。その為、燃焼空気比を最適に調節することが可能と
なり、燃焼量の変化に対応して燃焼空気比を応答性早く
最適に調節することが可能となり、超低NOx燃焼を実
現することができる。
The flame detecting means 47a, 47b, 47
Even when the amount of combustion is changed by increasing or decreasing the amount of fuel supply or the amount of combustion air supply in accordance with the mutual ratio of the detection outputs by c, the flame air state can be detected quickly and the combustion air ratio can be adjusted. As shown in FIG. 7, the injection speed of the mixed gas changes according to the increase and decrease of the combustion amount, and the place where the flame is generated and the place where the reaction is completed move. A plurality of flame detecting means 47a, 47b, 47c are provided along the gas flow of the lean flame port 12,
Due to the ratio between the outputs, the sensitivity is improved more than the difference between the outputs, and the position of the flame can be clearly determined. That is, the flame detection outputs of the flame detection means 47a, 47b, and 47c include fluctuation elements such as a change in insulation resistance due to combustion heat and a disturbance component such as noise. Therefore, by judging from the mutual ratio, this effect can be excluded and the detection sensitivity can be improved. The flame is detected by the flame detecting means 47b, and the completion of the flame is detected by the temperature detecting means 4b.
7c, the output ratio = flame detecting means 47c
と な り It becomes the flame detecting means 47b, and becomes small when the air ratio is small, and has a small value when the air ratio is large. Further, the ratio of the mutual output of the flame detecting means 47a near the combustion start location and the output of the flame detecting means 47b in the flame = flame detecting means 47b 手段 the flame detecting means 47a approximates the concentration of the intermediate product due to the combustion reaction of the flame. It decreases as the ratio increases. Therefore, the combustion air ratio can be optimally adjusted, the combustion air ratio can be optimally adjusted with a quick response in response to a change in the combustion amount, and ultra-low NOx combustion can be realized. .

【0050】また、図5に示すものは、火炎検知手段4
7a、47b、47cと接続した比較制御部43を設
け、この比較制御部43は相互の目標出力比率値を記憶
する記憶部44と、火炎検知手段47a、47b、47
cの検知した値の相互比率値と比較する演算比較部45
と、この値に応じて燃料供給量または燃焼用空気供給量
を増減する制御部46とからなる構成としたことによ
り、希薄炎口12のガス流れに沿って複数の火炎検知手
段47a、47b、47cを設けた構成となり、この出
力相互の比率により相互の差よりも感度が向上してかつ
応答性が早く火炎の位置が明確に判別できる。その為、
燃焼量の変化に対応して燃焼空気比を最適に調節するこ
とが可能となり、さらに、記憶部44に記憶した最適空
気比に対応する目標出力差値と演算比較部45で比較
し、この値に応じて燃料供給量または燃焼用空気供給量
を制御部46で増減することにより燃焼量の変化に応じ
て常に良好な燃焼を維持でき、燃焼量を負荷に応じて増
減中や燃焼量の少ない場合も希薄混合気の燃焼割合を増
加させ、また希薄混合気の濃度を小さくして超低NOx
化を図ることができる。
FIG. 5 shows a flame detecting means 4.
7a, 47b, and 47c are connected to each other, and the comparison control unit 43 includes a storage unit 44 for storing a mutual target output ratio value, and flame detection units 47a, 47b, and 47.
calculation comparing section 45 for comparing the detected value of c with the mutual ratio value
And a control unit 46 for increasing or decreasing the fuel supply amount or the combustion air supply amount according to this value, so that a plurality of flame detection means 47a, 47b, 47c, the sensitivity of the output is improved more than the difference between the outputs, the response is quick, and the position of the flame can be clearly identified. For that reason,
The combustion air ratio can be optimally adjusted in response to the change in the combustion amount. Further, the target output difference value corresponding to the optimal air ratio stored in the storage unit 44 is compared with the operation comparison unit 45, and this value is compared. By controlling the control unit 46 to increase or decrease the fuel supply amount or the combustion air supply amount in accordance with the change in the combustion amount, it is possible to always maintain good combustion in accordance with the change in the combustion amount. In this case, the combustion ratio of the lean air-fuel mixture is increased, and the concentration of the lean air-fuel mixture is reduced to reduce ultra-low NOx.
Can be achieved.

【0051】また、実施例1〜3に示す構成で、燃焼中
の温度検出手段または火炎検知手段の検知した値と比較
し、燃料供給量または燃焼用空気供給量を増減した値を
記憶部44に保持し、この値で次回の燃焼を開始する構
成としてある。このことにより、比例弁24やファン2
3などの経時的な劣化等で性能が変わった時も空燃比は
最適の状態で燃焼開始を行うことができて着火の確実性
と未燃分の発生を抑制でき、性能の向上と長時間使用に
よる摩耗変形等による性能変化を是正し耐久的に信頼性
を確保できる。
In the configuration shown in the first to third embodiments, the storage unit 44 stores a value obtained by increasing or decreasing the fuel supply amount or the combustion air supply amount in comparison with the value detected by the temperature detecting means or the flame detecting means during combustion. And the next combustion is started with this value. This allows the proportional valve 24 and the fan 2
Even when the performance changes due to deterioration over time, such as 3, the air-fuel ratio can start combustion in an optimal state, ensuring the ignition and suppressing the generation of unburned components, improving the performance and prolonging the time. Performance changes due to wear deformation due to use can be corrected, and reliability can be ensured durably.

【0052】また、燃焼開始から一定の時間は燃焼量と
空気量を一定とする構成としてあり、これにより、着火
時の火炎の空気比をより正確に検出できる。着火時の火
炎は温度が急激に上昇し燃焼反応も平衡していないため
空気比の変化と燃焼量の変化による場合が判別し難い。
しかし、一定時間の間、燃焼量と空気量を固定して一定
量とする事により空気比の影響を検出できる。このた
め、更に未燃分の発生を抑制できる。
In addition, the combustion amount and the air amount are set to be constant for a certain time from the start of combustion, whereby the air ratio of the flame at the time of ignition can be detected more accurately. Since the temperature of the flame at the time of ignition rises rapidly and the combustion reaction is not equilibrium, it is difficult to discriminate between a change in the air ratio and a change in the combustion amount.
However, the influence of the air ratio can be detected by fixing the amount of combustion and the amount of air to a certain amount for a certain time. For this reason, the generation of unburned components can be further suppressed.

【0053】[0053]

【発明の効果】以上説明したように、本発明の請求項1
に係る低NOx燃焼装置は、希薄室と連通し希薄混合気
を燃焼室内に流出供給する希薄炎口と、前記希薄室に隣
接した第一混合気室に連通し前記希薄炎口に近接して設
けられた第一炎口と、前記第一混合気室に隣接した第二
混合気室に連通し前記第一炎口に近接して設けられた第
二炎口を有し、前記第一混合気室の濃度を前記第二混合
気室の濃度より濃くすると共に、前記希薄炎口の上方に
複数の温度検知手段を設け、この温度検知手段により燃
料供給量または燃焼用空気供給量を増減する構成とした
ことにより常に最適な燃焼空気比を維持できる。このた
め、希薄混合気の燃焼割合を増加させ、また希薄混合気
の濃度を小さくして超低NOx化を図ることができると
共に良好な燃焼を維持する燃焼量の可変幅を大きく確保
できる。
As described above, according to the first aspect of the present invention,
The low NOx combustion device according to the present invention is characterized in that a lean flame port which communicates with the lean chamber and supplies the lean air mixture to the combustion chamber, and which communicates with the first air chamber adjacent to the lean chamber and is close to the lean flame port. A first flame port provided, and a second flame port provided in close proximity to the first flame port in communication with a second gas mixture chamber adjacent to the first gas mixture chamber; The concentration of the air chamber is made higher than the concentration of the second mixture chamber, and a plurality of temperature detecting means are provided above the lean flame port, and the fuel supply amount or the combustion air supply amount is increased or decreased by the temperature detecting means. With this configuration, the optimum combustion air ratio can be always maintained. For this reason, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx.

【0054】本発明の請求項2にかかる低NOx燃焼装
置は、温度検知手段による検出温度の相互差に応じて燃
料供給量または燃焼用空気供給量を増減する事により火
炎の状態を検知して燃焼空気比を調節できる。また複数
の温度検知手段を設け、この出力相互の差により火炎の
位置が判別できる為、燃焼空気比を最適に調節すること
が可能となり、超低NOx燃焼を実現することができ
る。
The low NOx combustion apparatus according to the second aspect of the present invention detects the state of the flame by increasing or decreasing the fuel supply amount or the combustion air supply amount according to the difference between the temperatures detected by the temperature detecting means. The combustion air ratio can be adjusted. Further, since a plurality of temperature detecting means are provided and the position of the flame can be determined based on the difference between the outputs, the combustion air ratio can be adjusted optimally, and ultra-low NOx combustion can be realized.

【0055】本発明の請求項3にかかる低NOx燃焼装
置は、記憶部と演算比較部と制御部とからなる構成によ
り、予め最適の空気比に応じた目標温度差値を記憶部に
記憶し、この値と温度検知手段の検知した値の相互差と
を演算比較部で比較し、この値に応じて燃料供給量また
は燃焼用空気供給量を制御部で増減することにより常に
良好な燃焼を維持できる。
According to a third aspect of the present invention, the low NOx combustion apparatus comprises a storage section, an operation comparison section, and a control section, and stores in advance a target temperature difference value corresponding to an optimum air ratio in the storage section. This value is compared with the mutual difference between the values detected by the temperature detection means in the arithmetic and comparison unit, and the control unit increases or decreases the fuel supply amount or the combustion air supply amount in accordance with this value, thereby always achieving good combustion. Can be maintained.

【0056】本発明の請求項4にかかる低NOx燃焼装
置は、温度検知手段による検出温度の相互比率に応じて
燃料供給量または燃焼用空気供給量を増減する事により
燃焼量が変化させた場合も火炎の状態を検知して燃焼空
気比を調節でき、この出力相互の比率により相互の差よ
りも感度が向上して火炎の位置が明確に判別できる。そ
の為、燃焼量の変化に対応して燃焼空気比を最適に調節
することが可能となり、超低NOx燃焼を実現すること
ができる。
In the low NOx combustion apparatus according to the fourth aspect of the present invention, when the amount of combustion is changed by increasing or decreasing the amount of fuel supply or the amount of combustion air supplied in accordance with the mutual ratio of the temperatures detected by the temperature detecting means. Also, the combustion air ratio can be adjusted by detecting the state of the flame, and the sensitivity of the output can be improved more than the difference between the outputs, so that the position of the flame can be clearly determined. Therefore, the combustion air ratio can be optimally adjusted according to the change in the combustion amount, and ultra-low NOx combustion can be realized.

【0057】本発明の請求項5にかかる低NOx燃焼装
置は、記憶部と演算比較部と制御部とからなる構成によ
り、温度検知手段の出力相互の比率により相互の差より
も感度が向上して火炎の位置が明確に判別できる。その
為、燃焼量の変化に対応して燃焼空気比を最適に調節す
ることが可能となり、さらに、燃焼量の変化に応じて常
に良好な燃焼を維持でき、燃焼量の少ない場合も希薄混
合気の燃焼割合を増加させ、また希薄混合気の濃度を小
さくして超低NOx化を図ることができる。
In the low NOx combustion apparatus according to the fifth aspect of the present invention, the sensitivity is improved as compared with the difference between the outputs of the temperature detecting means due to the ratio of the outputs of the temperature detecting means due to the configuration comprising the storage section, the operation comparing section and the control section. The position of the flame can be clearly determined. Therefore, it is possible to optimally adjust the combustion air ratio in accordance with the change in the amount of combustion, and further, it is possible to always maintain good combustion in accordance with the change in the amount of combustion, and to use a lean air-fuel mixture even when the amount of combustion is small. And the concentration of the lean mixture can be reduced to achieve ultra-low NOx.

【0058】本発明の請求項6にかかる低NOx燃焼装
置は、希薄炎口の上方に複数の火炎検知手段を設けてい
るのでこの希薄燃焼状態から空気比を応答性早く直接検
知でき、この火炎検知手段の出力により燃料供給量また
は燃焼用空気供給量を増減する構成としたことにより常
に最適な燃焼空気比を応答性良く維持できる。このた
め、希薄混合気の燃焼割合を増加させ、また希薄混合気
の濃度を小さくして超低NOx化を図ることができると
共に燃焼量変化させた場合も良好な燃焼を維持する燃焼
量の可変幅を大きく確保できる。
In the low NOx combustion apparatus according to the sixth aspect of the present invention, since a plurality of flame detecting means are provided above the lean flame port, the air ratio can be directly detected with a quick response from the lean combustion state. Since the fuel supply amount or the combustion air supply amount is increased or decreased according to the output of the detection means, the optimum combustion air ratio can always be maintained with good responsiveness. For this reason, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx. A large width can be secured.

【0059】本発明の請求項7にかかる低NOx燃焼装
置は、火炎検知手段による出力の相互差に応じて燃料供
給量または燃焼用空気供給量を増減できる。この出力相
互の差により火炎の位置を応答性早く判別できる。その
為、燃焼空気比を瞬時に最適調節することが可能とな
り、超低NOx燃焼を実現することができる。
The low NOx combustion apparatus according to claim 7 of the present invention can increase or decrease the fuel supply amount or the combustion air supply amount according to the mutual difference between the outputs from the flame detecting means. From the difference between the outputs, the position of the flame can be determined with high responsiveness. Therefore, the combustion air ratio can be optimally adjusted instantaneously, and ultra-low NOx combustion can be realized.

【0060】本発明の請求項8にかかる低NOx燃焼装
置は、記憶部と演算比較部と制御部とからなる構成によ
り、目標出力差値と応答性の早い火炎検知手段からの検
知値との相互差とを演算比較部で比較し制御部で増減す
ることにより応答性が早く常に良好な燃焼を維持でき
る。
The low NOx combustion apparatus according to claim 8 of the present invention comprises a storage section, an operation comparison section, and a control section, so that the target output difference value and the detection value from the flame detection means having a quick response can be obtained. By comparing the difference with the calculation comparison unit and increasing / decreasing the difference by the control unit, the responsiveness is quick and good combustion can always be maintained.

【0061】本発明の請求項9にかかる低NOx燃焼装
置は、火炎検知手段による出力の相互比率に応じて燃料
供給量または燃焼用空気供給量を増減して調節できる。
火炎検知手段の出力相互の比率により相互の差よりも感
度が向上して火炎の位置が明確にかつ応答性が早く判別
できる。その為、燃焼量の変化に対応して燃焼空気比を
応答性早く最適調節することが可能となり、超低NOx
燃焼を実現することができる。
In the low NOx combustion apparatus according to the ninth aspect of the present invention, the fuel supply amount or the combustion air supply amount can be increased or decreased according to the mutual ratio of the outputs from the flame detecting means.
Depending on the ratio of the outputs of the flame detecting means, the sensitivity is improved as compared with the mutual difference, so that the position of the flame can be clearly identified and the response can be determined quickly. Therefore, it is possible to quickly and optimally adjust the combustion air ratio in response to a change in the combustion amount, and to achieve an extremely low NOx.
Combustion can be realized.

【0062】本発明の請求項10にかかる低NOx燃焼
装置は、記憶部と演算比較部と制御部とからなる構成に
より、火炎検知手段の出力相互の比率により相互の差よ
りも感度が向上して応答性が早く火炎の位置が明確に判
別できる。その為、燃焼量の変化に対応して燃焼空気比
を応答性が早く最適調節することが可能となり、さら
に、記憶部に記憶した最適の空気比に応じた目標出力差
値と演算比較部で比較し、この値に応じて燃料供給量ま
たは燃焼用空気供給量を制御部で増減することにより応
答性の早い燃焼量変化に応じて常に良好な燃焼を維持で
き、燃焼量を負荷に応じて増減中や燃焼量の少ない場合
も希薄混合気の燃焼割合を増加させ、また希薄混合気の
濃度を小さくして超低NOx化を図ることができる。
In the low NOx combustion apparatus according to the tenth aspect of the present invention, the sensitivity is improved more than the mutual difference by the ratio of the outputs of the flame detecting means by the configuration including the storage section, the operation comparing section and the control section. The responsiveness is fast and the position of the flame can be clearly identified. Therefore, it is possible to quickly and optimally adjust the combustion air ratio in response to a change in the amount of combustion, and furthermore, a target output difference value corresponding to the optimal air ratio stored in the storage unit and a calculation comparison unit. By comparing and increasing / decreasing the fuel supply amount or the combustion air supply amount in accordance with this value by the control unit, it is possible to always maintain good combustion in response to a rapid response change in the combustion amount, and to control the combustion amount in accordance with the load. Even during the increase / decrease or when the combustion amount is small, the combustion ratio of the lean air-fuel mixture can be increased, and the concentration of the lean air-fuel mixture can be reduced to achieve ultra-low NOx.

【0063】本発明の請求項11にかかる低NOx燃焼
装置は、検出手段の検知値と比較し、供給量を増減した
値を記憶部に保持し、この値で次回の燃焼を開始する構
成としたことにより、着火の確実性と未燃分の発生を抑
制でき、性能の向上と長時間使用による摩耗変形等によ
る性能変化を是正し耐久的に信頼性を確保できる。
A low NOx combustion apparatus according to claim 11 of the present invention has a configuration in which a value obtained by increasing or decreasing a supply amount is stored in a storage unit, compared with a detection value of a detection means, and the next combustion is started with this value. As a result, the reliability of ignition and the generation of unburned components can be suppressed, and the performance can be improved, and performance changes due to wear deformation due to long-term use can be corrected, and durability can be ensured in reliability.

【0064】本発明の請求項12にかかる低NOx燃焼
装置は、燃焼開始から一定の時間燃焼量と空気量を一定
とする構成としたことにより、着火時の火炎の空気比を
より正確に検出でき、更に未燃分の発生を抑制できる。
The low NOx combustion apparatus according to the twelfth aspect of the present invention has a structure in which the combustion amount and the air amount are constant for a certain period of time from the start of combustion, so that the air ratio of the flame at the time of ignition can be detected more accurately. And the generation of unburned components can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における燃焼装置の全体断面
FIG. 1 is an overall sectional view of a combustion apparatus according to a first embodiment of the present invention.

【図2】同燃焼装置要部の部分拡大図FIG. 2 is a partially enlarged view of a main part of the combustion device.

【図3】同実施例1における温度検知手段の位置と温度
の説明図
FIG. 3 is an explanatory diagram of a position and a temperature of a temperature detecting unit according to the first embodiment.

【図4】本発明の実施例2における燃焼装置の全体断面
FIG. 4 is an overall sectional view of a combustion apparatus according to a second embodiment of the present invention.

【図5】本発明の実施例3における燃焼装置の全体断面
FIG. 5 is an overall sectional view of a combustion apparatus according to a third embodiment of the present invention.

【図6】同燃焼装置要部の部分拡大図FIG. 6 is a partially enlarged view of a main part of the combustion device.

【図7】本発明の実施例2、3における火炎検知手段の
位置と出力の説明図
FIG. 7 is an explanatory diagram of a position and an output of a flame detecting unit in Embodiments 2 and 3 of the present invention.

【図8】従来の燃焼装置の部分断面図FIG. 8 is a partial sectional view of a conventional combustion device.

【図9】他の従来の燃焼装置の部分断面図FIG. 9 is a partial cross-sectional view of another conventional combustion device.

【符号の説明】[Explanation of symbols]

11 希薄室 12 希薄炎口 13 第一混合気室 14 第一炎口 16 第二混合気室 17 第二炎口 23 ファン 24 比例弁 41a、41b、41c、温度検知手段 47a、47b、47c、火炎検知手段 DESCRIPTION OF SYMBOLS 11 Lean chamber 12 Lean flame 13 First mixture chamber 14 First flame 16 Second mixture chamber 17 Second flame 23 Fan 24 Proportional valves 41a, 41b, 41c, temperature detection means 47a, 47b, 47c, flame Detection means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23N 5/10 310 F23N 5/10 310E 5/12 5/12 J 5/14 5/14 B 5/20 5/20 F Fターム(参考) 3K003 FA01 FB04 FB05 GA03 3K005 AA06 AB04 AC02 AC05 BA05 BA06 EA02 FA03 GA15 GB01 HA00 JA02 3K017 AA01 AA03 AA06 AB01 AB07 AD02 3K065 TA01 TA04 TA12 TB02 TB12 TD01 TE01 TF03 TH04 TN01 TN03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23N 5/10 310 F23N 5/10 310E 5/12 5/12 J 5/14 5/14 B 5/20 5/20 FF term (reference) 3K003 FA01 FB04 FB05 GA03 3K005 AA06 AB04 AC02 AC05 BA05 BA06 EA02 FA03 GA15 GB01 HA00 JA02 3K017 AA01 AA03 AA06 AB01 AB07 AD02 3K065 TA01 TA04 TA12 TB02 TB12 TD01 TE01 TF03 TH03 TN03

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 希薄室と連通し希薄混合気を燃焼室内に
流出供給する希薄炎口と、前記希薄室に隣接した第一混
合気室に連通し前記希薄炎口に近接して設けられた第一
炎口と、前記第一混合気室に隣接した第二混合気室に連
通し前記第一炎口に近接して設けられた第二炎口を有
し、前記第一混合気室の濃度を前記第二混合気室の濃度
より濃くすると共に、前記希薄炎口の上方に複数の温度
検知手段を設け、この温度検知手段により燃料供給量ま
たは燃焼用空気供給量を増減する低NOx燃焼装置。
1. A lean flame port communicating with a lean chamber and supplying and supplying a lean air-fuel mixture into a combustion chamber, and being provided in close proximity to the lean flame port and communicating with a first air-fuel mixture chamber adjacent to the lean chamber. A first flame port, having a second flame port provided in close proximity to the first flame port and communicating with a second gas mixture chamber adjacent to the first gas mixture chamber; A low NOx combustion in which the concentration is made higher than the concentration of the second mixture chamber and a plurality of temperature detecting means are provided above the lean flame port, and the temperature detecting means increases or decreases the fuel supply amount or the combustion air supply amount. apparatus.
【請求項2】 温度検知手段による検出温度の相互差に
応じて燃料供給量または燃焼用空気供給量を増減する請
求項1記載の低NOx燃焼装置。
2. The low NOx combustion apparatus according to claim 1, wherein the fuel supply amount or the combustion air supply amount is increased or decreased according to the mutual difference between the temperatures detected by the temperature detecting means.
【請求項3】 温度検知手段と接続した比較制御部を設
け、この比較制御部は相互の目標温度差値を記憶する記
憶部と、前記温度検知手段の検知した値の相互差と比較
する演算比較部と、この値に応じて燃料供給量または燃
焼用空気供給量を増減する制御部とからなる請求項1記
載の低NOx燃焼装置。
3. A comparison control unit connected to the temperature detection unit, wherein the comparison control unit stores a mutual target temperature difference value and an operation for comparing the storage unit with the mutual difference between the values detected by the temperature detection unit. 2. The low NOx combustion apparatus according to claim 1, comprising: a comparison unit; and a control unit that increases or decreases a fuel supply amount or a combustion air supply amount according to the value.
【請求項4】 温度検知手段による検出温度の相互比率
に応じて燃料供給量または燃焼用空気供給量を増減した
請求項1記載の低NOx燃焼装置。
4. The low NOx combustion apparatus according to claim 1, wherein the fuel supply amount or the combustion air supply amount is increased or decreased according to the mutual ratio of the temperatures detected by the temperature detecting means.
【請求項5】 温度検知手段と接続した比較制御部を設
け、この比較制御部は相互の目標温度比率値を記憶する
記憶部と、前記温度検知手段の検知した値の相互比率値
と比較する演算比較部と、この値に応じて燃料供給量ま
たは燃焼用空気供給量を増減する制御部とからなる請求
項1記載の低NOx燃焼装置。
5. A comparison control unit connected to a temperature detection means, wherein the comparison control unit compares a storage unit storing mutual target temperature ratio values with a mutual ratio value of the values detected by the temperature detection unit. 2. The low NOx combustion apparatus according to claim 1, comprising: an arithmetic comparison unit; and a control unit that increases or decreases a fuel supply amount or a combustion air supply amount according to the value.
【請求項6】 希薄室と連通し希薄混合気を燃焼室内に
流出供給する希薄炎口と、前記希薄室に隣接した第一混
合気室に連通し前記希薄炎口に近接して設けられた第一
炎口と、前記第一混合気室に隣接した第二混合気室に連
通し前記第一炎口に近接して設けられた第二炎口を有
し、前記第一混合気室の濃度を前記第二混合気室の濃度
より濃くすると共に、前記希薄炎口の上方に複数の火炎
検知手段を設け、この火炎検知手段により燃料供給量ま
たは燃焼用空気供給量を増減する低NOx燃焼装置。
6. A lean flame port which communicates with the lean chamber and supplies and supplies a lean mixture into and from the combustion chamber, and is provided adjacent to the lean flame port which communicates with a first mixture chamber adjacent to the lean chamber. A first flame port, having a second flame port provided in close proximity to the first flame port and communicating with a second gas mixture chamber adjacent to the first gas mixture chamber; A low NOx combustion in which the concentration is made higher than that of the second mixture chamber and a plurality of flame detecting means are provided above the lean flame port, and the flame detecting means increases or decreases a fuel supply amount or a combustion air supply amount. apparatus.
【請求項7】 火炎検知手段による出力の相互差に応じ
て燃料供給量または燃焼用空気供給量を増減した請求項
6記載の低NOx燃焼装置。
7. The low NOx combustion apparatus according to claim 6, wherein the fuel supply amount or the combustion air supply amount is increased or decreased according to the mutual difference between the outputs of the flame detecting means.
【請求項8】 火炎検知手段と接続した比較制御部を設
け、この比較制御部は相互の目標出力差値を記憶する記
憶部と、前記火炎検知手段の検知した値の相互差と比較
する演算比較部と、この値に応じて燃料供給量または燃
焼用空気供給量を増減する制御部とからなる請求項6記
載の低NOx燃焼装置。
8. A comparison control unit connected to the flame detection means is provided, the comparison control unit storing a mutual target output difference value, and an arithmetic operation for comparing the difference between the values detected by the flame detection means. 7. The low NOx combustion apparatus according to claim 6, comprising a comparison unit and a control unit that increases or decreases the fuel supply amount or the combustion air supply amount according to the value.
【請求項9】 火炎検知手段による出力の相互比率に応
じて燃料供給量または燃焼用空気供給量を増減した請求
項6記載の低NOx燃焼装置。
9. The low NOx combustion apparatus according to claim 6, wherein a fuel supply amount or a combustion air supply amount is increased or decreased in accordance with a mutual ratio of outputs from the flame detection means.
【請求項10】 火炎検知手段と接続した比較制御部を
設け、この比較制御部は相互の目標出力比率値を記憶す
る記憶部と、前記火炎検知手段の検知した値の相互比率
値と比較する演算比較部と、この値に応じて燃料供給量
または燃焼用空気供給量を増減する制御部とからなる請
求項6記載の低NOx燃焼装置。
10. A comparison control unit connected to the flame detection means, wherein the comparison control part compares a storage unit for storing mutual target output ratio values with a mutual ratio value of the values detected by the flame detection means. 7. The low NOx combustion apparatus according to claim 6, comprising: an operation comparison unit; and a control unit that increases or decreases the fuel supply amount or the combustion air supply amount according to the value.
【請求項11】 燃焼中の温度検出手段または火炎検知
手段の検知した値と比較し、燃料供給量または燃焼用空
気供給量を増減した値を記憶部に保持し、この値で次回
の燃焼を開始する請求項3、5、8、10記載の低NO
x燃焼装置。
11. A value obtained by comparing a value detected by a temperature detecting means or a flame detecting means during combustion with a fuel supply amount or a combustion air supply amount is stored in a storage unit, and the next combustion is performed by using this value. Low NO according to claims 3, 5, 8, 10 starting
x combustion device.
【請求項12】 燃焼開始時から一定の時間燃焼量と空
気量を一定とした請求項1〜11のいずれか1項記載の
低NOx燃焼装置。
12. The low NOx combustion apparatus according to claim 1, wherein the amount of combustion and the amount of air are constant for a certain period from the start of combustion.
JP2000237063A 2000-08-04 2000-08-04 LOW NOx COMBUSTOR Pending JP2002048337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237063A JP2002048337A (en) 2000-08-04 2000-08-04 LOW NOx COMBUSTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237063A JP2002048337A (en) 2000-08-04 2000-08-04 LOW NOx COMBUSTOR

Publications (1)

Publication Number Publication Date
JP2002048337A true JP2002048337A (en) 2002-02-15

Family

ID=18728986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237063A Pending JP2002048337A (en) 2000-08-04 2000-08-04 LOW NOx COMBUSTOR

Country Status (1)

Country Link
JP (1) JP2002048337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109138A (en) * 2007-10-31 2009-05-21 Sumitomo Electric Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109138A (en) * 2007-10-31 2009-05-21 Sumitomo Electric Ind Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Similar Documents

Publication Publication Date Title
CN111051776B (en) Low NO X CO burner method and apparatus
US20220120440A1 (en) Method for operating a premix gas burner, a premix gas burner and a boiler
RU2705326C1 (en) Combustion chamber of a gas turbine, a gas turbine and a method of controlling a combustion chamber of a gas turbine
KR20070061574A (en) Burner device with a porous body
US20070251467A1 (en) Combustion apparatus
JP2002048337A (en) LOW NOx COMBUSTOR
JP3873119B2 (en) In-cylinder swirl combustor
JP3453973B2 (en) Control method of premixed combustion device
JP7307441B2 (en) combustor
JP3143270B2 (en) Combustion equipment
JPH074661A (en) Gas turbine combustor
JPS6332218A (en) Burning control device
JPS63169422A (en) Combustion control
JPH07119492A (en) Combustion device for gas turbine and control method therefor
JPH09112842A (en) Burner device
JPS6349622A (en) Combustion device
WO2023280923A1 (en) Premix gas burner system and method
JPS6373005A (en) Low nox fan heater
JP2001263607A (en) LOW-NOx COMBUSTION EQUIPMENT
JP2002213714A (en) Combustion device
JPS63254308A (en) Burner
JPS63105318A (en) Combustion control apparatus
JPS6349623A (en) Combustion device
JPH081281B2 (en) Burner
JPH0490403A (en) Flame holder